Oracle9

Replication Management API Reference

Release 2 (9.2)

March 2002
Part No. A96568-01

ORACLE

Oracle9i Replication Management API Reference, Release 2 (9.2)
Part No. A96568-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.
Primary Author: Ted Burroughs

Contributing Author: Randy Urbano

Graphic Artist: Valarie Moore

Contributors: N. Arora, S. Balaraman, Y. Chan, A. Demers, A. Downing, C. Elsbernd, Y. Feng, J.
Galagali, D. Goddard, L. Kaplan, V. Krishnamurthy, A. Lakshminath, P. Lane, J. Liu, E. Lu, P. McElroy, M.
Pratt, A. Rajaram, N. Shodhan, W. Smith, J. Stamos, J. Stern, M. Subramaniam, E. Vandevelde, L. Wong,
D. Zhang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle9i, Oracle8i, Oracle7, Oracle8, SQL*Plus, and
PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Send Us Your Comments

Preface

Partl Configuring Your Replication Environment

Replication Overview

Creating a Replication Environment Overview
Before YOU Start.........ccoccoveiiiiiensese e

Create Replication Site

Overview of Setting Up Replication Sites............cc.c.e...
Setting Up Master SiteS.......cccovviivieie i
Setting Up orc1.world ...,
Setting Up orc2.world ...
Setting Up orc3.world.........ccccoviieviicieicccece e,

Creating Scheduled Links Between the Master Sites

Setting Up Materialized View Sites........cccccocvvvvveivivennn,
Setting Up mvi.world...........ccccoiiiviiiiiiceeecnen,
Setting Up mMv2.wWorld...........cooooiiiiiiiiice,

Create a Master Group

Overview of Creating a Master Groupcccccceeveereruene.
Before YOU Start ...

Contents

Creating @ MASTEN GIOUPcoiiiiiiiieite ettt bbb bbb bbbt e b et e bt ebesbenbe b 3-6

Create a Deployment Template

Oracle Deployment TemMpPlateS CONCEPLSccoieiriiiiiiiirese e 4-2
Before Creating the Deployment TEMPIALE ..o 4-3
Creating a Deployment TEMPIALEccovocieecc e 4-3
Packaging a Deployment Template for INnStantiationc.ccocvvvininiiencncieccee, 4-12
Packaging a Deployment TEMPIALE ..o e 4-14
Saving an Instantiation SCript to File ..o 4-16
Distributing INStantiation FIlES..........ccce i 4-18
Instantiating a Deployment TEMPIALEc.ooiiiiiiiic s 4-19
Refreshing a Refresh Group After Instantiationccoccovivi v 4-21

Create Materialized View Group

Overview of Creating a Materialized VIEW GrOUDccccvivvivriviineniene e se e 5-2
Creating a Materialized VIEW GrOUPccoiiiiiiieieseene et 5-4
Creating the Materialized View Group at MVI.WOrld ... 5-4
Creating the Materialized View Group at Mv2.Worldc.cccoevvivvieiienencsescee s 5-12

Configure Conflict Resolution

Preparing for Conflict RESOIULIONcccoiiiiiic e 6-2
Creating Conflict Resolution Methods for Update Conflicts ... 6-3
Overwrite and Discard Conflict Resolution Methods............ccocviiiiiineneneee e 6-3
Minimum and Maximum Conflict Resolution Methods ..o 6-6
Timestamp Conflict Resolution Methods............coooiiiiiiiii e 6-9
Additive and Average Conflict Resolution Methods...........c.cccoeiiiininninnecee 6-13
Priority Groups Conflict Resolution Methods..........ccccoovviviininiciiniene e 6-16
Site Priority Conflict Resolution Methodsccoiiiiiiiic e 6-20
Creating Conflict Resolution Methods for Uniqueness Conflicts...........ccocoovviiniinciicennn 6-25
Creating Conflict Avoidance Methods for Delete Conflicts ..o 6-31
Using Dynamic Ownership Conflict AVOIAANCE..........cccooiiiiiiiiiiene e 6-35
WVOPKFIOWV ..ttt sttt st ettt et s e s e e st ebeebenne et 6-36
B0 =T T o 1357 1 T PSSP 6-37
Locating the OWNEr Of @ ROWoiiiiiiicc et 6-39

ODbtaiNiNG OWNEISNIP ..cviitiiiiiie bbbttt b bbb 6-39

APPIYING The CRANGE ...t 6-40
Auditing Successful Conflict RESOIULION ..o 6-41
Collecting Conflict Resolution StatiStiCsccccovveiiiicii i 6-41
Viewing Conflict ReSOIULION STatiSTICSccooiiviiiiiiicisc e 6-41
Canceling Conflict ReSOIUtION StAtiStICSccovvviiciiieiece e 6-42
Clearing Statistics INfOrmMatioNcco i 6-42

Part Il Managing and Monitoring Your Replication Environment

7 Managing a Master Replication Environment

Changing the Master DefinitionN SIte..........ccccoviiiiiiiicci e e 7-2
Option 1: All Master Sites Are AVailable ... 7-2
Option 2: The Old Master Definition Site Is Not Available...........cccccccoveveiiiciicrcciiniennn, 7-3

AdAING NEW MASTEE SISocviiieii et et et e b e et e s reenaesreenreanes 7-4
Adding New Master Sites Without Quiescing the Master Groupccccoeeerveneineieneenns 7-4
Adding New Master Sites to a Quiesced Master GrOUPcccevererereeriereereereeeeeseseseenes 7-31

Removing a Master Site from a Master GrOUPc.cooeieireiiiinese e 7-41
Removing an Unavailable MaSter SIte ... 7-44

Updating the Comments Fields in Data Dictionary VIieWs........ccccocvivrvvinienenecneiesiese e 7-45

Using Procedural ReplICAtION.cooiiiiiiii e e 7-47
Restrictions on Procedural REPIICATION ..ottt 7-47
User-Defined Types and Procedural Replicationcccccocvvvvvinii s 7-49
SerialiZiNg TraNSACTIONS......cciiii et e e esre e esreenes 7-50
Generating Support for Replicated ProCeduUreS ... 7-50

8 Managing a Materialized View Replication Environment

Refreshing MaterialiZed VIBWS ... 8-2
Changing a Materialized View Group’s Master Site........ccccoovivririeiienineiereseee s 8-2
Dropping Materialized View Groups and ODjJECTS..........ccoeriririnineiericee e 8-3
Dropping a Materialized View Groups Created with a Deployment Template................. 8-4
Dropping a Materialized View Group or Objects Created Manually............ccccccovvvvivrnnnne. 8-8
Cleaning Up a Master Site or Master Materialized View Site..........ccccooeneiiiniiiiininiennee 8-10
Managing Materialized VIEW LOGS ..o e 8-16

Altering Materialized VIEW LOQSocoueiieieiiee ettt 8-16
Managing Materialized VieW LOQ SPACEccviiiiriiiiiieenees e 8-17
Reorganizing Master Tables that Have Materialized View LOQS........ccccoeevvrvevvcieniennennn, 8-20
Dropping a Materialized VIEW LOQcoooiieiiieiiinesese et 8-24
Performing an Offline Instantiation of a Materialized View Site Using Export/Import.... 8-25
Using a Group Owner for a Materialized VIEW GroUp........ccccoovvievininieieneneseseeeeese e 8-36
9 Managing Replication Objects and Queues
Altering a Replicated ODJECTccviiiiiicce e re e 9-2
Altering a Replicated Object in a Quiesced MaSter GIrOUP.......c.cooerererieneieieeeeeese e 9-2
Modifying Tables without Replicating the Modificationsc.cccveiiiiieniine 9-5
(DY ES=To] T aTo =] o] [ToF- U1 o] o 0SSP 9-5
Reenabling the Replication FACHITY ... 9-6
Ensuring That Replicated Triggers Fire ONnly ONCE........cccooiiiiiiiiiiiicencceeeseese 9-7
Converting a LONG Column to a LOB Column in a Replicated Tablec.ccccoovevivnnnnns 9-7
Determining Differences Between Replicated Tables..........cccooiiiininiiiicice, 9-9
Using the DIFFERENCES ProCEAUIE...........coiiiiieiiieiseie ettt 9-9
UsSIiNg the RECTIFY PrOCEAUIEc.coveieiceeee ettt sne s 9-9
Managing the Deferred Transactions QUEUE...........ccccveieiiiieeiie st 9-14
Pushing the Deferred Transaction QUEUE............ccuieireiineiinerese e 9-14
Purging the Deferred Transaction QUEUEcccoviirireresese s ees 9-15
Using the AnyData Type to Determine the Value of an Argument in a Deferred Call ... 9-16
Managing the Error QUEUE..........ccuiiiiiiiiit ettt 9-18
Reexecuting Error Transaction as the RECEIVEN ... 9-19
Reexecuting Error Transaction as AErnate USErccccveiieiiiicie s 9-20
10 Monitoring a Replication Environment
Monitoring Master Replication ENVIrONMENTS ..o 10-2
MONITOFING IMASTEE SITES.....uiiitiiiiiici bbb 10-2
MONITOrING IMASEEE GFOUPS ...evvveteieiiesieitesieteeeeeseeresessessessesressestessessessessessensessesesssesensessessens 10-3
Y o] Ty (o] g1 e I\ F=] =T OSSR 10-6
Monitoring Materialized VIEW STTES........ccoiiiiiiiiii e 10-10
Listing General Information About a Materialized View Sitec..cccccoevvvveicivvcieinnnn, 10-10
Listing General Information About Materialized View Groupsc.ccoceveveienciniennenn 10-11
Listing Information About Materialized VIeWsS ..o 10-12

vi

Listing Information About the Refresh Groups at a Materialized View Site 10-14

Determining the Job ID for Each Refresh Job at a Materialized View Site 10-15
Determining Which Materialized Views Are Currently Refreshingccccocoeeeveivinnne 10-16
Monitoring AdMINIStrative REQUESTES........cc.iiiiiiiiecie e 10-16
Listing General Information About Administrative REQUESLScccccovreiereiineinecnne, 10-17
Determining the Cause of Administrative ReqUeSt EFrorsccoccvvvivveveieienicieinsinannns 10-17
Listing General Information About the Job that Executes Administrative Requests..... 10-18
Monitoring the Deferred Transactions QUEUEccceivieriiirieinieine e 10-19
Monitoring Transaction Propagationcccccveeerieieeireiisiese e sese e e eaeeseenens 10-20
Monitoring Purges of Successfully Propagated Transactionsc.ccocoeeeveieneinienienncns 10-22
Monitoring the Error QUEUEciiiiiee b 10-24
Listing General Information About the Error Transactions at a Replication Site........... 10-25
Determining the Percentage of Error Transactionsccccccvveiveneeiesieese s 10-26
Listing the Number of Error Transactions from Each Origin Master Site 10-26
Listing the Error Messages for the Error Transactions at a Replication Site.................. 10-27
Determining the Error Operations at a Replication Site...........ccccooiiiiiininciiiciccee 10-27
Monitoring Performance in a Replication ENVironmentc.ccccoeviinennncenccneeee 10-28
Tracking the Average Number of Row Changes in a Replication Transaction 10-28
Tracking the Rate of Transactions Entering the Deferred Transactions Queue............... 10-28
Determining the Average Network Traffic Created To Propagate a Transaction.......... 10-29
Determining the Average Amount of Time to Apply Transactions at Remote Sites...... 10-29
Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping 10-30
Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View............... 10-31
Monitoring Parallel Propagation of Deferred Transactions Using VSREPLPROP......... 10-31

Part lll Replication Management API Packages Reference

11

Introduction to the Replication Management API Reference

Examples of Using Oracle’s Replication Management APl ..o 11-2
Issues to Consider When Using the Replication Management APl ..., 11-3
The Replication Management Tool and the Replication Management APlccccee.... 11-3
Abbreviations for Datetime and Interval DatatyPes.........ccocvivviiievininieiescee e 11-4

Vii

12

DBMS DEFER
CALL PrOCEBAUIE ...ttt ettt e s be e s te et esta et e sbeebeearesbeennesreaneas 12-3
COMMIT _WORK PrOCEAUIE ..ottt sttt st en e e enenns 12-4
datatype_ARG PrOCEAULEcciiiiiitiiiie sttt bbb ettt ebe e 12-5
TRANSACTION PrOCEAUIEcvieeiie ettt sttt be et et e reesbe s e sbe e sbeennas 12-6

13 DBMS_DEFER_QUERY

GET_ARG_FORM FUNCLIONcutiiitiitiiiieee ettt 13-3
GET_ARG_TYPE FUNCLION ...ttt sttt n e e ene e 13-4
GET_CALL_ARGS PrOCEAUIE ...cvviiiiiieie ettt sttt e be s e sbeensesneennesneannas 13-6
GET_datatype_ARG FUNCLIONccoiiiiiiiiiieiiieiiesteste ettt 13-7
GET_OBJECT_NULL_VECTOR_ARG FUNCLIONccooiiiieicienieieriee e 13-10

14 DBMS_DEFER_SYS

viii

ADD_DEFAULT_DEST PrOCEAUIE.......cceiierieierieieieeeeesestestesiesteste e seessessesaessessessssessessessenes 14-4
CLEAR_PROP_STATISTICS PrOCEAUIE....c..ciiiiiiieiecte ettt 14-4
DELETE_DEFAULT_DEST PrOCEAUIEceiieiieiieieeteeeseete ettt sne s 14-5
DELETE_DEF_DESTINATION ProCeAUIE.......c.coviiiiiiiciteesiees et 14-5
DELETE_ERROR PrOCEAUIEcveiieiieciie ettt sttt ettt e st testa e nne e 14-6
DELETE_TRAN PrOCEAULEoitiitiiiiieiie ittt sttt ene e sne e 14-7
DISABLED FUNCLION ..ottt bbbt 14-7
EXCLUDE_PUSH FUNCLION. ...c.ciitiitiiiiiiee ettt ettt 14-8
EXECUTE_ERROR PrOCEAUIEoviiieiieeeeeee ettt st ettt 14-9
EXECUTE_ERROR_AS _USER ProCedUIE. ..ottt 14-10
PURGE FUNCEION ...ttt ettt bbbt ettt 14-11
PUSH FUNCLION ...ttt ettt ettt sttt se et e e e e eneereene e 14-14
REGISTER_PROPAGATOR ProCEAUIE......cceieriesiieiereeiees et ena s 14-16
SCHEDULE_PURGE PrOCEAUIE.coiiiiiiiiteiie sttt s eneas 14-17
SCHEDULE_PUSH PrOCEAUIE ..ottt st eneas 14-19
SET _DISABLED PrOCEAUIEocvviiiceectisie ettt st st sae e neanaenens 14-21
UNREGISTER_PROPAGATOR ProCeAUIEccuiieiiiieieicese e 14-23
UNSCHEDULE_PURGE ProCeAUIEccoiiiiiiiiieieiieie ettt 14-24
UNSCHEDULE_PUSH PrOCEAUIE.......cceiiiiciese ettt ens 14-24

15

16

17

18

19

DBMS_MVIEW

BEGIN_TABLE_REORGANIZATION Procedure........ccccoouviiiiiniiinisesisisieiesiensesssessssens 15-3
END_TABLE_REORGANIZATION ProCeaUFIEccceiriiiriiiieisieesie st 15-3
EXPLAIN_MVIEW ProCEAUIEcoeiiiiiiiiietiietesiee ettt ssens 15-4
EXPLAIN_REWRITE PrOCEAUIEccuiiiiiiciiieiesieie et 15-5
I_AM_A _REFRESH FUNCLIONooiiiiiiiiee e e 15-6
PMARKER FUNCHION ...ttt ettt 15-6
PURGE_DIRECT _LOAD_LOG ProCeAUIEcccueirieiirieiiiiiiisieisteisesesie s ssesassessssenes 15-7
PURGE_LOG PrOCEAUIE.......ccvieiiresiesiesies ettt e st st ste sttt nse e sa e e eneesasnasnessessenns 15-7
PURGE_MVIEW_FROM_LOG ProCEAUIEccoveuieeiirieiiniciesiei et 15-8
REFRESH PrOCEAULE ..ottt sttt st ettt r s eneebe e e 15-9
REFRESH_ALL_MVIEWS PrOCEAUIEcoiviiiiiiiteiieie ettt ettt 15-12
REFRESH_DEPENDENT PrOCEAUIEoviviiitiiettiiete ettt asbesesbe st et seese e 15-13
REGISTER_MVIEW PrOCEAUIEcvviviiiiiiictiiete ettt sbe s sve st st saenesnene e 15-15
UNREGISTER_MVIEW ProCEAUIE........cceieieeierieieeeeetese st e sttt saeae e enaeneenesnenns 15-18
DBMS_OFFLINE_OG
BEGIN_INSTANTIATION PrOCEAUIEccveeeeiceeeececeeese sttt e sre e 16-3
BEGIN_LOAD PrOCEAUIEcoeciiitiiie ettt sttt te st te st e ansesteaneesneeneesneannes 16-4
END_INSTANTIATION PrOCEAUNEccuiviiviietirieti ettt 16-5
END_LOAD PrOCEAUIEoocviciece ettt sttt sttt st s ae e enaesaeneanessensenns 16-6
RESUME_SUBSET_OF_MASTERS Procedure.........cccocviiiiiiiiiiisenisessesie s seeesieneseens 16-8

DBMS_OFFLINE_SNAPSHOT

BEGIN_LOAD PrOCEAUIEoeeiiciiiie ettt ettt te st be st et e ssaesbesneenne e e nreannes 17-3

END_LOAD PrOCEAUIE ..ottt sttt ettt sttt sttt s eseeseeneebe e ee 17-4
DBMS_ RECTIFIER_DIFF

DIFFERENGCES PrOCEAUIE.......cetieeitiie ettt ettt e st e s st e e s etae s s sab e s e sba e e seaanessaaeasssbaeesans 18-3

] O I L g = (oot =To 1 | 18-5
DBMS_REFRESH

J AN] B I o ot =T [LT 19-3

(OF o VAN N (€] Sl ol o Yot =T o (U] (RO 19-3

(D] Y I @ A o 0 Tor=To (U] (TSROSO 19-5
MAKE PrOCEAUIEcieie sttt sttt sae e e e e e e s eneeneeneeneerennennens 19-6
REFRESH PrOCEAUIEc.viiieii ettt sttt ettt et e te e saeenaesnaesnesnaestannaens 19-8
SUBTRACT PIrOCEUUIE ..ottt ettt ettt te e st a e s be e s beebestaestesasebeensesbeenresreennes 19-9

20 DBMS_REPCAT

ADD_GROUPED_COLUMN ProCeAUIEcveieiieiiiieiieie ettt anens 20-7
ADD_MASTER _DATABASE ProCEAUIEocveveieeeeeeese ettt e s 20-8
ADD_NEW_MASTERS PrOCEAUIEoiiiiiiiiisieisies ettt e 20-9
ADD_PRIORITY_datatype PrOCEAUIEccvciiieiiriiisieisieseesie et 20-14
ADD_SITE_PRIORITY_SITE PrOCEAUIEoviviieiiiieie ettt 20-16
ADD_conflicttype RESOLUTION ProCedUIE..........cccooiiiiiiiiiiiienie e 20-17
ALTER_CATCHUP_PARAMETERS ProCeaUre........cccooiiiiiiiie e 20-22
ALTER_MASTER_PROPAGATION ProCeaUIeccceiiriiirieiiieinieiesienesie st 20-24
ALTER_MASTER_REPOBJECT PrOCEAUIEevviiriiieieieisieieies et nes 20-25
ALTER_MVIEW_PROPAGATION ProCeaUreccoooiiiriiiiene et 20-29
ALTER _PRIORITY PrOCEAUIEccocvviiiicie ettt snaene e 20-30
ALTER_PRIORITY _datatype ProCeAUIEcooiiiiiiiiieiieene st 20-31
ALTER_SITE_PRIORITY ProCeUIEcoiiiiiiieeeeee sttt 20-33
ALTER_SITE_PRIORITY_SITE Procedure.........cccoiiiiriiireineiieiesie et 20-34
CANCEL_STATISTICS ProCEAUNE. ..ottt 20-35
COMMENT_ON_COLUMN_GROUP ProCeAUIE........ceeeiieiieere et eaneeneas 20-36
COMMENT_ON_MVIEW_REPSITES ProCedurecccooverinereeneieneesee e 20-37
COMMENT_ON_PRIORITY_GROUP/COMMENT_ON_SITE_PRIORITY

PrOCEAUIES ...ttt bbbt e b ettt et b e b 20-38
COMMENT_ON_REPGROUP ProCeAUIEccciiiieieieieeetetee e 20-39
COMMENT_ON_REPOBIECT ProCEAUIE.c.coveieiirerieeeeeresesestesteseeseessesieseesseseesssseasens 20-40
COMMENT_ON_REPSITES ProCEAUIE.........c.citiieiiiieieieiteie et 20-41
COMMENT_ON_conflicttype RESOLUTION Procedure.........cccccovvrirereneneneneieieseanens 20-43
COMPARE_OLD_VALUES ProCEAUIEc.ccveveiieieieetetieese et e st seesses e snensenaeasnaenens 20-44
CREATE_MASTER_REPGROUP ProCcedUIE.........ccooviiiiiiieenieeniees e 20-47
CREATE_MASTER_REPOBJIECT ProCeaUIEcceiiieiieiiieieeese e 20-48
CREATE_MVIEW_REPGROUP PrOCEAUIE.cviviirieieienieie et 20-52
CREATE_MVIEW_REPOBIECT ProCeAUIEcoviveieieiieieiieienieie et 20-53

DEFINE_COLUMN_GROUP PrOCEAUIEcoiviiiiriiireiateieere et 20-56

DEFINE_PRIORITY_GROUP PrOCEAUIEc..oviieiieieieiieiese sttt snens 20-57
DEFINE_SITE_PRIORITY ProCEAUIEc..cciiiiieisieesie et 20-58
DO_DEFERRED_REPCAT_ADMIN ProCedure.........cccoviiiiiiniie e 20-59
DROP_COLUMN_GROUP PrOCEAUIE.ccuiieeeieiieieeee ettt sne s 20-60
DROP_GROUPED_COLUMN ProCeaUIEcoeieeeeeieiesestsstesesiesie e saesiesaeseessessesasneanens 20-61
DROP_MASTER_REPGROUP ProCeaUIEcoeiiiiieiieieie sttt 20-62
DROP_MASTER_REPOBJIECT PrOCEAUIE......ceeieiieieeeiieiese sttt 20-64
DROP_MVIEW_REPGROUP PrOCEAUIEccveviicrieieee et ste et sie e e enaenasnennens 20-65
DROP_MVIEW_REPOBIECT PrOCEAUIEc..oviieiieieieiisieeie sttt sttt eneas 20-66
DROP_PRIORITY PrOCEAUIE........cciiiitiiieieeiiesie ettt sttt ste st sttt se e enessesneanens 20-67
DROP_PRIORITY_GROUP ProCEAUIEcceiveviieieieeeeeeese st sie et sie e s enaenesnennens 20-68
DROP_PRIORITY_datatype ProCeOUIEccoiiieieieieiisiesie st 20-69
DROP_SITE_PRIORITY PrOCEAUIE ..ottt st 20-70
DROP_SITE_PRIORITY_SITE ProCeAUIEccoceiiiiiiieiseeiee e 20-71
DROP_conflicttype RESOLUTION ProCeaUre.........cocooiiiriiiiiiine st 20-72
EXECUTE_DDL PrOCEAUIEottt ettt sttt st ene et 20-74
GENERATE_MVIEW_SUPPORT ProCeAUIEcceiriiririiisieisieieie st 20-75
GENERATE_REPLICATION_SUPPORT ProCeaureccocoririienineieieeieieeeeeeeee e 20-77
MAKE_COLUMN_GROUP ProCeAUIE........coueieiieiieieieiieese sttt sttt snens 20-79
PREPARE_INSTANTIATED_MASTER Procedure.........ccccovivniineiineniiensensie e 20-81
PURGE_MASTER_LOG PrOCEAUIEoouiiiieiieiieieeeeieees ettt 20-82
PURGE_STATISTICS PrOCEAUIEcueiviieie ettt st sne s 20-83
REFRESH_MVIEW_REPGROUP ProCEAUIE.......c.coveirieiirieierieienieesiee sttt 20-84
REGISTER_MVIEW_REPGROUP ProCeaUIEcccoiiiiiiiiiieiesese e 20-86
REGISTER_STATISTICS PrOCEAULIEoviiiieeieiieeeeeeees ettt 20-87
RELOCATE_MASTERDEF ProCeAUIEoveieeeee et 20-88
REMOVE_MASTER_DATABASES ProCeaUIE........ccociiiiiriiieniesiesie e 20-90
RENAME_SHADOW_COLUMN_GROUP Procedureccocurerereneneneneeeeeeeeeeeees 20-91
REPCAT _IMPORT_CHECK ProCeAUIE........coieieeeeeeetese sttt nesnenns 20-92
RESUME_MASTER_ACTIVITY ProCeAUIE........cooiiiiiiiiiieiee et 20-93
RESUME_PROPAGATION_TO_MDEF Procedure..........ccccooviinineninenieneseeeeeeeeeneees 20-94
SEND_OLD_VALUES PrOCEAUIEc..eveieieierieeeeetese ettt sae e enae e e enessessenns 20-95
SET_COLUMNS PrOCEAUIEooviiiiiiiee sttt sttt sbe et este e sne s 20-97
SPECIFY_NEW_MASTERS PrOCEAUIE ..ottt 20-99

Xi

21

22

SUSPEND_MASTER_ACTIVITY ProCEAUIE.......ccocviiiririitirieierieie sttt 20-102

SWITCH_MVIEW_MASTER ProCeAUIEccviveiiieieeiieie sttt sne s 20-102
UNDO_ADD_NEW_MASTERS_REQUEST Procedurecccocverivrirnesienneeienenennns 20-104
UNREGISTER_MVIEW_REPGROUP ProCeaUIE.........ccccvriririeriiiririeeisisieeesess e 20-105
VALIDATE FUNCHION ...ttt ettt enensens 20-106
WAIT_MASTER_LOG PrOCEAUIEc.veieiecieect ettt e nne s 20-108
DBMS_REPCAT_ADMIN
GRANT_ADMIN_ANY_SCHEMA ProCeAUIEccvvririeeeinisieieeniseeisresesesseeseseseesesenesenses 21-3
GRANT_ADMIN_SCHEMA PrOCEAUIEovcveieiiieicieiisi ettt s sssnenes 21-3
REGISTER_USER_REPGROUP ProCEAUIE.......cccueiiiieiiieisieit ettt 21-4
REVOKE_ADMIN_ANY_SCHEMA ProCedUrecccovivririririirisnerenesisieeesisesseesesessenens 21-6
REVOKE_ADMIN_SCHEMA ProCeAUIEccovvveveieiiiteteesesietees sttt 21-6
UNREGISTER_USER_REPGROUP ProCeUIEccoviveiiieiireiiceseetesiee e siese s 21-7

DBMS_REPCAT_INSTANTIATE

DROP_SITE_INSTANTIATION ProCEAUIE.......coiiiiiiiiciiieitsiee e 22-3
INSTANTIATE_OFFLINE FUNCEION ..ot 22-3
INSTANTIATE_ONLINE FUNCHIONooiiiiiiicicce s 22-6

23 DBMS_REPCAT_RGT

Xii

ALTER_REFRESH_TEMPLATE ProCeUIE........cociiiiiiiiieineesee s 23-5
ALTER_TEMPLATE_OBJECT PrOCEAUIE.....c.couiuiitiiiitieitieie ettt 23-7
ALTER_TEMPLATE_PARM PrOCEAUIEcccviiriiiiirereeeresrereee s 23-10
ALTER_USER_AUTHORIZATION ProCEAUIEcocveeirieitiiitiieineeneeeneeen s 23-11
ALTER_USER_PARM_VALUE ProCedUIE........cccoiiiiiiiiiiiiieiteieit et 23-13
COMPARE_TEMPLATES FUNCHION.......ciiiiiiciireee e 23-15
COPY_TEMPLATE FUNCHION ..ottt 23-16
CREATE_OBJECT_FROM_EXISTING FUNCHIONccooviiiiiiiieiiceeeee e 23-19
CREATE_REFRESH_TEMPLATE FUNCLIONocoiiiireiceese e 23-21
CREATE_TEMPLATE_OBIECT FUNCHION ..ottt 23-23
CREATE_TEMPLATE_PARM FUNCHIONocviiiiiiiiiieiesee e 23-26
CREATE_USER_AUTHORIZATION FUNCLION ..o 23-28
CREATE_USER_PARM_VALUE FUNCLION ..ottt 23-29

DELETE_RUNTIME_PARMS ProCedUIEcocoeiiiriiireiieieeeese e 23-31

DROP_ALL_OBIECTS PrOCEAUIE.......coctiiieiirieititeie sttt 23-32
DROP_ALL_TEMPLATE_PARMS ProCEAUIE ... 23-33
DROP_ALL_TEMPLATE_SITES ProCEAUIE.ccociiiriiirerieterieieseeie e 23-34
DROP_ALL_TEMPLATES ProCEAUIEciiiiiiieiiiieiitet ettt 23-35
DROP_ALL_USER_AUTHORIZATIONS Procedure...........cccorerierrnereinenseeenennenenens 23-35
DROP_ALL_USER_PARM_VALUES ProCeaUIecccoeriireririircieneieneee e 23-36
DROP_REFRESH_TEMPLATE ProCedUIEc.ccouiiiiiiiieiieierseeeeie e 23-37
DROP_SITE_INSTANTIATION ProCedUreccooiriiiirireiinneee s 23-38
DROP_TEMPLATE_OBJECT PrOCEAUIEcviriiiiriiireieerese s 23-39
DROP_TEMPLATE_PARM PrOCEAUIEccveiiieiiiiiiiteiete ettt 23-40
DROP_USER_AUTHORIZATION ProCeAUIEcoceiiriireiierneereie s 23-41
DROP_USER_PARM_VALUE ProCedUIecccsiiiiiriieiierseree e 23-42
GET_RUNTIME_PARM_ID FUNCHION ...ttt 23-43
INSERT_RUNTIME_PARMS PrOCEAUIE ..ot 23-43
INSTANTIATE_OFFLINE FUNCHION ..ottt 23-45
INSTANTIATE_ONLINE FUNCHION ..ottt 23-48
LOCK_TEMPLATE_EXCLUSIVE ProCeaUIE..........cceriiiirireiirnrseenenesrereeesnsnesse e 23-50
LOCK_TEMPLATE_SHARED ProCedUIEccouiiiiiiieiieeree e 23-51

24 DBMS_REPUTIL

REPLICATION_OFF PrOCEAUFE.cueiiiiiieieeieie ettt et 24-3
REPLICATION_ON PrOCEAUIE........cotiiiiieieieeieie ettt sttt enesre e e 24-3
REPLICATION_IS_ON FUNCLION ..ottt 24-3
FROM_REMOTE FUNCHION.cctiiitiiteitiieie ettt s sttt eb e 24-4
GLOBAL_NAME FUNCHON ..ottt st ene st sne s 24-4
MAKE_INTERNAL_PKG ProCeAUIEcceieieeeceeee sttt 24-4
SYNC _UP_REP PrOCEAUIEeoiiitie ettt sttt ste e aeste e e nne s 24-5

Part IV Replication Data Dictionary Reference

25 Replication Catalog Views

Summary of Replication Catalog VIBWS ..ot 25-2

DBA_REGISTERED_MVIEW_GROUPS ..ot 25-5

Xiii

Xiv

ALL_REPCAT_REFRESH_TEMPLATES ..o 25-5

ALL_REPCAT_TEMPLATE_OBIECTS evvvvvvveeorereeessssessssssessesesssssessssssseessssssssesesssssssesenns 25-6
ALL_REPCAT _TEMPLATE_PARMSoirooeoeeeeeoreeesssseeesseseeesessesssssessssssesesesssssseessseeee 25-8
ALL_REPCAT_TEMPLATE_SITES ...oeeeeovvoveeeeoeesesssesssseseessssessssssessssseeessssesssessssssseeesens 25-10
ALL_REPCAT_USER_AUTHORIZATIONS ..coooriorremreveeeeoieesessssessssseessssssesssessssssseeesens 25-11
ALL_REPCAT_USER_PARM_VALUEScoovoveeeeeeeesseeeeseeeeeeeesseessseessseseeeesessssssseesseeeee 25-12
ALL_REPCATLOG ..vvvoooooeeeeeeeeeeeeeeeeoeeeessseessessseeseseessssssssssssesssessssssesssssesesssesssesessssseeenes 25-15
ALL_REPCOLUMN .occoooeeeeeeseeeeeeooeseesseeessessseesssesssssssssssssssssessssssssssssssessssesssesssssssseesens 25-16
ALL_REPCOLUMN_GROUPoovovoeceoeeeeeeeeeeeeeeeeesseseesseeeesssseeessesssssesssssseeesesssssssessseseees 25-18
ALL_REPCONFLICT oooooteeeeeeeeeeeeeoeesesssseessesseessesesssssssssssssessseessssssesssssessssseesssessssssseeeses 25-19
ALL_REPDDL eoeeovvveeeoeees s esseeessesesssseessesssessssessssessssssssesssesssssesssssssesssesesssessssssssensennns 25-20
ALL_REPGENOBIECTS ...oovoreeieeeeeeeeeeserseesssseeesseeeeseessesssesessssseeesessssssssesssssseeesessssssseesseseees 25-20
ALL_REPGROUPoooooieeeseeeseeeeeeoesssssssessesseeesesesssssssssssssessseessssssesssssssesssesssessssssseeene 25-21
ALL_REPGROUP_PRIVILEGESooooeeeeeeveeeeosesssssesssssssessssessssseessssssessssssesssessssssssessens 25-22
ALL_REPGROUPED_COLUMNccoriieeminieeeeeeeerseseesseeeesesseeesssessseesssssseeeseesssssseesseseees 25-22
ALL_REPKEY_COLUMNS ..oovvveeeereeeesseeseeseeeesesesssssssssssssessseessssssesssssessssssesssessssssseeenes 25-23
ALL_REPOBIECT oovvvvooooeeeeeeesseesseesseeeessseessssssessesessssessssssssesssessssssssssssssessesesssessssssssesnenns 25-24
ALL_REPPARAMETER_COLUMNoimirieoeeeeeeeeeseesseeesseseeeesesseesssseessssseeeeeessssssessseeeee 25-25
ALL_REPPRIORITY ooocoooeeeeseeeeeeeeessesesssssessesseesssseessssssssssssessseessssssessssssssssssesssesssssseeeeses 25-26
ALL_REPPRIORITY_GROUP ...oovocooooeeeeeeeeeeveeeeesesssssessssessessssessssssessssssssssessesssesessssssesnens 25-27
ALL_REPPROP ..o eeeeeeseeesseeesss s sseseese e s essssseesesssesssseessssseeeseeseseseesseseees 25-28
ALL_REPRESOL_STATS_CONTROL wecorvvvveeeeeereeesseeseeeeeeossseesessssessssseesesssesssesssssseeeesens 25-29
ALL_REPRESOLUTION w.oooeooveeeeeoeeesseeesseseeeesesesssssssssssssesssesessssssssssssssssssesssessssssssessenns 25-30
ALL_REPRESOLUTION_METHODiiriooeeeeeeoeeeeesseeeeseseeeeesssessssesssssseeeseesssssseesseseee 25-31
ALL_REPRESOLUTION_STATISTICS ovvvvveeeoeereeeseeeseeeeeeesseessssssessssseeeesssesssesssssseeesses 25-32
ALL_REPSITES ovovvvveeeooeeeseeeessesseesssessesssssessssssessssessssssssssssssssssesesssssssssssssssssesssessssssssessennons 25-33
DBA_REPCAT REFRESH_TEMPLATESocooeenieeeeeeeeeeesesssessseesesssseesesssssssessseseeeesss 25-34
DBA_REPCAT_TEMPLATE_OBIECTS .ovvvveooeereeeeeeeseeeeeessesssesssessssssseessessesssesssssseeenes 25-34
DBA_REPCAT_TEMPLATE_PARMS ...oovvvvoooeoeeeeeeeesseseseesssssessseesssssseessessssssesssssseeesss 25-34
DBA_REPCAT _TEMPLATE_SITES w.eeooovvoveeeeeereesesseeeseeeeeeesessssssssesesssseeesesssesssessseseeeeis 25-35
DBA_REPCAT_USER_AUTHORIZATIONSiiiorveeeeeererseesssesseseseeeeessesssessseseeeeis 25-35
DBA_REPCAT _USER_PARM _VALUESocoiioroereeeeeeeeeeciosssessseesesssseesessesssesssssseeens 25-35
DBA_REPCATLOG .coooreeeeeeeeeeeooseeeseeeeeesseseeseseessssesessssseeesesssessssesssssseeeseessesssessseseeees 25-35
DBA_REPCOLUMN ..oooeeeeeeeeecooeseeesseeeseeseeeeseeessssssesssssessssssessssssssssseessessesssesssssseeenss 25-36
DBA_REPCOLUMN_GROUPcooommeeoeeeeeeeeriesssssessssssseesssesssssssssssssssesssssssssesssssseensss 25-36

DBA_REPCONFLICT oo s 25-36

DBA_REPDDL ..ottt 25-36
DBA_REPEXTENSIONS ..ottt 25-36
DBA_REPGENOBIECTS ..ot 25-39
DBA_REPGROUP ..o et 25-39
DBA_REPGROUP_PRIVILEGESccoiiiiietietnese e 25-39
DBA_REPGROUPED_COLUMN ... 25-39
DBA_REPKEY_COLUMNS ...t 25-39
DBA_REPOBIECT ..ottt et 25-40
DBA_REPPARAMETER_COLUMN ..ot 25-40
DBA_REPPRIORITY .ottt et sne s 25-40
DBA_REPPRIORITY_GROUP ..ottt 25-40
DBA_REPPROP ..o e 25-40
DBA_REPRESOL_STATS_CONTROLcoociiiiiiieieieicere e 25-41
DBA_REPRESOLUTIONooiiiiiiiiieii ettt 25-41
DBA_REPRESOLUTION_METHODccocoiiiiiiiiic e 25-41
DBA_REPRESOLUTION_STATISTICS ..o 25-41
DBA_REPSITES ... oottt 25-41
DBA_REPSITES_INEW. ..ot 25-42
USER_REPCAT_REFRESH_TEMPLATES ..ottt 25-43
USER_REPCAT_TEMPLATE_OBIECTS ..ot 25-44
USER_REPCAT_TEMPLATE_PARMS ..o 25-44
USER_REPCAT_TEMPLATE_SITEScoiiiiee s 25-44
USER_REPCAT_USER_AUTHORIZATIONociiiieiicineeneenre e 25-44
USER_REPCAT_USER_PARM_VALUES ..o 25-45
USER_REPCATLOG ...ttt 25-45
USER_REPCOLUMN ..ot 25-45
USER_REPCOLUMNMN_GROUPcciiiiiiiiiiic s 25-45
USER_REPCONFLICT ..ottt 25-46
USER_REPDDL ..ottt e 25-46
USER_REPGENOBIECTS ...ttt 25-46
USER_REPGROUP ..ottt 25-46
USER_REPGROUP_PRIVILEGES ..ot 25-46
USER_REPGROUPED_COLUMNooiiiiiiiiiii s 25-46
USER_REPKEY_COLUMNS ...t 25-47

XV

USER_REPOBIECT ..ot 25-47

USER_REPPARAMETER_COLUMNooccoooeeseeeeeeeeeeeoeseessesesssssssessesssssssesssssseessessssssees 25-47
USER_REPPRIORITY ..coovovoeeceeeeeseseeeeeeveeeeseseeseseeesesesseesseseessesessssseaessssesesseessssseeeseesessseees 25-47
USER_REPPRIORITY_GROUP ...ecoovvoveeeeeeeeeseseesseseeeeeoesesssssesssssssesssssssssssssssseesseeesesseeees 25-48
USER_REPPROPooooereeeeveveeeeoseseesseeesssssseesesessessessessssssssssesssesesssssssesssssssssesssssseessesesessseee 25-48
USER_REPRESOL_STATS_CONTROL. ...ccoomerieieereeeeeeeseesseseseeeeeeesessesesssessssseeeeseesessneee 25-48
USER_REPRESOLUTION .oovcccoooeeeeseeeseeeeeeosesessesseeseseseeessesesssssesssssesessesssssssessssseessesesessssee 25-48
USER_REPRESOLUTION_METHOD .ovvcooooeeeseeeseseeeeeoesesssesessessseessssssssssssssssseesseeesssseees 25-49
USER_REPRESOLUTION_STATISTICS .ccoooreeeveveeeeeeesessseseseeeseeesssssesssessssseeesssesessneee 25-49
USER_REPSITES ..coovereeeeeeeveveeessesesssssessesseessesesssssesssssssssssssesssssesssssssessesseessssssssseeeseessssssses 25-49

26 Replication Dynamic Performance Views

VEMVREFRESH ..ottt bbb 26-2
VEREPLPROP ...ttt bbb bbbt b bbbttt 26-2
VEREPLQUEUE ..ottt 26-4

27 Deferred Transaction Views

DEFCALL o 27-2
DEFCALLDEST ..ot e 27-2
DEFDEFAULTDEST ..ottt et 27-2
DEFERRCOUNT ..ottt 27-3
DEFERROR ..o e 27-3
DEFLOB ...ttt 27-3
DEFPROPAGATOR ..ottt 27-4
DEFSCHEDULE ...t 27-4
DEFTRADN et r e et et n e nre s 27-6
DEFTRANDEST ...ttt 27-7

28 Materialized View and Refresh Group Views
Part V Appendixes
A Security Options

Security Setup for Multimaster Replication............cccoovoviiviii i A-2

XVi

Trusted Compared With Untrusted SECUFILYccoiiiiiiiiniieeee e A-3
Security Setup for Materialized View Replicationcccooiiiiiniiniineeeeee e A-7
Trusted Compared With Untrusted SECUNITYcccvvviiiirine e A-8

B User-Defined Conflict Resolution Methods

User-Defined Conflict Resolution Methods ... B-2
Conflict Resolution Method Parameters...........ccvceieiiie e B-2
ResoIVING UPAate CONFHCES. ..ot B-3
Resolving Uniqueness CONTIICES ..o B-3
ResolIVIiNg Delete CONTIICESccuviice e B-4
Multitier Materialized Views and User-Defined Conflict Resolution Methods.................. B-4
Restrictions for User-Defined Conflict Resolution Methods...........ccocoovveveiciciicv e B-5
Examples of User-Defined Conflict Resolution Method ..o B-6

User-Defined Conflict Notification Methods.............cccooi i B-8
Creating a Conflict NOtIfiCation LOQ......cccooveieieiicicese e B-8
Creating a Conflict Notification Package..........ccccevviiiiieeie i B-9

Viewing Conflict Resolution INFOrmMation ... B-12

Index

XVii

Xviii

Send Us Your Comments

Oracle9 j Replication Management API Reference, Release 2 (9.2)

Part No. A96568-01

Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this document. Your input is an important part of the information
used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?

What features did you like most?

If you find any errors or have any other suggestions for improvement, please
indicate the document title and part number, and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

Electronic mail: infodev_us@oracle.com
FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op1l
Redwood Shores, CA 94065

USA

Xix

XX

If you would like a reply, please give your name, address, telephone number, and
(optionally) electronic mail address.

If you have problems with the software, please contact your local Oracle Support
Services.

Preface

Oracle9i Replication Management API Reference contains information that
describes the features and functionality of the replication management API.
Specifically, the Oracle9i Replication Management API Reference contains reference
information for the packages in the replication management API, as well as
examples of their use.

In addition, Oracle9i Replication Management API Reference contains reference
information about the replication catalog and other data dictionary views that are
important for replication.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

XXi

Audience

Organization

XXii

Oracle9i Replication Management API Reference is intended for database
administrators and application developers who develop and maintain replication
environments. These administrators and application developers perform one or
more of the following tasks:

« Configure replication sites

= Create master groups

« Create deployment templates

« Create materialized view groups

« Configure conflict resolution

« Manage replication environments

« Use the replication management API

= Monitor replication environments using data dictionary views
« Plan and configure security options

To use this document, you need to be familiar with relational database concepts,
distributed database administration, PL/SQL (if using procedural replication), and
the operating system under which you run an Advanced Replication environment.

This document contains:

Part |, "Configuring Your Replication Environment"

Includes instructions on using the replication management API to set up both
multimaster replication and materialized view replication. This part also contains
instructions for configuring conflict resolution methods and instructions for
managing your replication environment using the replication management API.

Chapter 1, "Replication Overview"

Provides an overview of the process for building a replication environment with the
replication management API. This chapter also contains some prerequisites for
building a replication environment.

Chapter 2, "Create Replication Site"

Describes in detail the process of setting up both a master and materialized view
site. Consult this chapter when building a new replication environment and when
adding either a new master or materialized view site to an established replication
environment.

Chapter 3, "Create a Master Group"

Describes how to build a master group for use with multimaster replication or as a
master for a materialized view site. Chapter 3 builds a master group that replicates
data between the three master sites that were set up in Chapter 2.

Chapter 4, "Create a Deployment Template"

Describes how to build a materialized view environment with deployment
templates, which are the most effective method of distributing a materialized view
environment to any number of materialized view sites.

Chapter 5, "Create Materialized View Group"

Describes how to build a materialized view environment with materialized view
groups. If deployment templates do not meet your requirements, then Chapter 5
describes in detail how to build a materialized view environment at the
materialized view site.

Chapter 6, "Configure Conflict Resolution"

Describes the conflict resolution methods that can help your data converge at all
sites when a data conflict arises.

Part Il, "Managing and Monitoring Your Replication Environment"

Includes instructions on managing a replication environment using the replication
management API.

Chapter 7, "Managing a Master Replication Environment"

Describes many of the management tasks that you may need to perform to manage
a multimaster replication environment. Topics include adding new master sites,
master group management, and more.

Chapter 8, "Managing a Materialized View Replication Environment"

Describes many of the management tasks that you may need to perform to manage
a materialized view replication environment. Topics include using a group owner,
managing materialized view logs, offline instantiation, and more.

XXili

Chapter 9, "Managing Replication Objects and Queues”

Describes many of the management tasks that you may need to perform to manage
your replication environment. Topics include altering replicated objects, managing
the deferred transactions queue, managing the error queue, and more.

Chapter 10, "Monitoring a Replication Environment"

Describes many of the queries you can run to monitor your replication
environment.

Part lll, "Replication Management API Packages Reference"

Includes reference information about the replication management API, including:
the procedures and functions in each package, the parameters for each packaged
procedure and function, and exceptions that each procedure or function can raise.

Chapter 11, "Introduction to the Replication Management API Reference"
Introduces the replication management API and includes examples for its use.

Chapter 12, "DBMS_DEFER"
Describes the procedures in the DBMS_DEFERackage.

Chapter 13, "DBMS_DEFER_QUERY"
Describes the procedures and functions in the DBMS_DEFER_QUER4ckage.

Chapter 14, "DBMS_DEFER_SYS"
Describes the procedures and functions in the DBMS_DEFER_SYRackage.

Chapter 15, "DBMS_MVIEW"
Describes the procedures and functions in the DBMS_MVIEWackage.

Chapter 16, "DBMS_OFFLINE_OG"
Describes the procedures in the DBMS_OFFLINE_O@ackage.

Chapter 17, "DBMS_OFFLINE_SNAPSHOT"
Describes the procedures in the DBMS_OFFLINE_SNAPSHQ3Jackage.

Chapter 18, "DBMS_RECTIFIER_DIFF"
Describes the procedures in the DBMS_RECTIFIER_DIFF package.

XXiV

Chapter 19, "DBMS_REFRESH"
Describes the procedures in the DBMS_REFRESphckage.

Chapter 20, "DBMS_REPCAT"
Describes the procedures and functions in the DBMS_REPCApackage.

Chapter 21, "DBMS_REPCAT_ADMIN"
Describes the procedures in the DBMS_REPCAT_ADMIpackage.

Chapter 22, "DBMS_REPCAT_INSTANTIATE"

Describes the procedures and functions in the DBMS_REPCAT_INSTANTIATE
package.

Chapter 23, "DBMS_REPCAT_RGT"
Describes the procedures and functions in the DBMS_REPCAT_RGackage.

Chapter 24, "DBMS_REPUTIL"
Describes the procedures and functions in the DBMS_REPUTILpackage.

Part IV, "Replication Data Dictionary Reference"

Describes data dictionary views that provide information about your replication
environment.

Chapter 25, "Replication Catalog Views"

Describes the replication catalog, which contains data dictionary views that are
used by master and materialized view sites to determine such information as what
objects are being replicated, where they are being replicated, and if any errors have
occurred during replication.

Chapter 26, "Replication Dynamic Performance Views"

Describes the dynamic performance views that are used by master and materialized
view sites to determine such information as which materialized views are being
refreshed currently and statistics about the deferred transaction queue.

XXV

XXVi

Chapter 27, "Deferred Transaction Views"

Describes the data dictionary views that contain information about deferred
transactions. These views provide information about each deferred transaction,
such as the transaction destinations, the deferred calls that make up the
transactions, and any errors encountered during attempted execution of the
transaction.

Chapter 28, "Materialized View and Refresh Group Views"

Describes data dictionary views that provide information about materialized views
and materialized view refresh groups.

Part V, "Appendixes"
Includes the following appendixes:

Appendix A, "Security Options"
Describes setting up security for multimaster and materialized view replication
using the replication management API.

Appendix B, "User-Defined Conflict Resolution Methods"

Describes building user-defined conflict resolution methods and notification
functions using the replication management API.

Related Documentation
For more information, see these Oracle resources:
« Oracle9i Replication
« Oracle9i Database Concepts
» Oracle9i Database Administrator’s Guide
« Oracle9i SQL Reference
« PL/SQL User’s Guide and Reference (if you plan to use procedural replication)

You may find more information about a particular topic in the other documents in
the Oracle9i documentation set.

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http/Amww.oraclebookshop.conv

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/accountimembership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit
http:/ahiti.oracle.com

XXVil

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
« Conventions in Code Examples

« Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.
(fixed-width) elements include parameters, privileges, .
font datatypes, RMAN keywords, SQL You can back up the database by using the

XXViii

keywords, SQL*Plus or utility commands, BACKURommand.
packages and methods, as well as Query the TABLE_NAMEolumn in the USER _
system-supplied column names, database TABLESdata dictionary view.

?gf:gts and structures, usernames, and . yhe pEMS_STATSENERATE_STATS
' procedure.

Convention

Meaning Example

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates Enter sqlplus to open SQL*Plus.
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database Back up the datafiles and control files in the
names, net service names, and connect /diskl/oracle/dbs directory.
identifiers, as well as user-supplied .

database objects and structures, column z:g %eg:gweigt—'d c o’lgrielasrgp: ?r:_tﬂzme '
names, packages and classes, usernames hr.departmeﬁts table.

and roles, program units, and parameter
values. Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

The password is specified in the orapwd file.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Connect as oe user.
The JRepUtil class implements these

methods.
lowercase Lowercase italic monospace font You can specify the parallel_clause
;%/;7305 o represents placeholders or variables. Run Uold_release .SQL where old_
(fixed- va idth) release refers to the release you installed
font prior to upgrading.
Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:
SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,
The following table describes typographic conventions used in code examples and
provides examples of their use.
Convention Meaning Example
[Brackets enclose one or more optional DECIMAL (digits [, precision)
items. Do not enter the brackets.
{3 Braces enclose two or more items, one of {ENABLE | DISABLE}

which is required. Do not enter the braces.

A vertical bar represents a choice of two {ENABLE | DISABLE}

or more options within brackets or braces. [COMPRESS|NOCOMPRESS]
Enter one of the options. Do not enter the
vertical bar.

XXiX

Convention

Meaning

Example

Other notation

Italics

UPPERCASE

lowercase

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

CREATETABLE..AS subquery ;

SELECT coll
employees;

coz .., coln FROM

SQL> SELECT NAME FROM V$DATAFILE;
NAME

fislidbsts_01.dbf
fisl/dbsftbs_02.dbf

fislidbstbs_09.dbf
9 rows selected.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER®) :=3;

CONNECT SYSTEMY/stem_password
DB_NAME = database _name

SELECT last_name, employee_id FROM
employees;

SELECT *FROM USER_TABLES;
DROP TABLE hr.employees,

SELECT last_name, employee_id FROM
employees;

sqlplus hrr

CREATE USER mjones IDENTIFIED BY ty3MU9;

XXX

Conventions for Windows Operating Systems

The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory File and directory names are not case cwinnt\'system32 is the same as
names sensitive. The following special characters C\WINNT\SYSTEM32

are not allowed: left angle bracket (<),

right angle bracket (>), colon (:), double

quotation marks ("), slash (/), pipe (]),

and dash (-). The special character

backslash (\) is treated as an element

separator, even when it appears in quotes.

If the file name begins with \\, then

Windows assumes it uses the Universal

Naming Convention.

C:\> Represents the Windows command C.\oracle\oradata>
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (©). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

Special characters The backslash (\) special character is C:>exp scottftiger TABLES=emp
sometimes required as an escape QUERY=\'WHERE job="SALESMAN and
character for the double quotation mark sg<1600\"
(") special character at the Windows C\Simp SYSTEM/ password FROMUSER=scott

command prompt. Parentheses and the _

single quotation mark (') do not require TABLES=(emp, dep)
an escape character. Refer to your

Windows operating system

documentation for more information on

escape and special characters.

HOME_NAME Represents the Oracle home name. The C\> net start Oracle HOME_NAMNSListener
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

XXXi

Convention Meaning Example

ORACLE_HOME In releases prior to Oracle8i release 8.1.3, Go to the ORACLE_BASEORACLE
and ORACLE _ when you installed Oracle components, HOM¥Edbms\admin directory.
BASE all subdirectories were located under a

top level ORACLE_HOMfirectory that by

default used one of the following names:

. C:\orant for Windows NT
« C:orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOMtirectory. There is a
top level directory called ORACLE _BASE
that by default is C:\oracle . If you
install Oraclei release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90 . The Oracle home
directory is located directly under
ORACLE BASE

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http/Amww.oracle.com/accessibility/

XXX

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Xxxiii

XXXIV

Part |

Configuring Your Replication Environment

Part | contains instructions for using the replication management API to set up both
multimaster replication and materialized view replication. This part also contains
instructions for configuring conflict resolution methods using the replication
management API.

Part | contains the following chapters:

Chapter 1, "Replication Overview"

Chapter 2, "Create Replication Site"
Chapter 3, "Create a Master Group"
Chapter 4, "Create a Deployment Template”

Chapter 5, "Create Materialized View Group'
Chapter 6, "Configure Conflict Resolution”

1

Replication Overview

This chapter reviews the process of building a replication environment with the
replication management API.

This chapter contains these topics:
« Creating a Replication Environment Overview

« Before You Start

Replication Overview 1-1

Creating a Replication Environment Overview

Creating a Replication Environment Overview

Figure 1-1 illustrates the basic steps required to build a replication environment.
Regardless of the type of replication site or sites that you are building, you begin by
setting up the replicated site.

After you have set up your replication sites, you are ready to begin building your
master groups and materialized view groups. After you have built your replication
environment, make sure that you review Chapter 6 and the chapters in Part 11,
"Managing and Monitoring Your Replication Environment"”, to learn about conflict
resolution and managing your replication environment.

1-2 Oracle9i Replication Management AP| Reference

Creating a Replication Environment Overview

Figure 1-1 Create Replication Environment Process

START

Master

What type
of replication
site?

Set Up Master Sites
(Chapter 2)

Create Master Group
(Chapter 3)

v

Materialized
View

Does
master for
materialized view site
exist?

Set Up Materialized View
(Chapter 2)

Are
data conflicts
possible?

Configure Conflict Resolution
Methods on Master
(Chapter 6)

Template

At Master site with
Deployment

At Materialized
View
Site

How do
you want to build the
environment?

Create a Deployment

Create Materialized View Group
(Chapter 5)

(Chapter 4)

©

(Chapter 4)

Package for Instantiation and
Instantiate Deployment Template

!

END

\A 4

Replication Overview 1-3

Before You Start

Before You Start

Before you begin setting up your replication site, make sure you plan your
replication environment so that it meets your needs. Planning considerations
include:

Designing your replicated database objects

Deciding on the settings of initialization parameters that are important for
replication

Deciding whether you want to create a multimaster replication environment or
a materialized view replication environment, or if you want to combine both
types of replication environments into a hybrid environment

Deciding how you want to configure your scheduled links

Deciding how you want to configure your scheduled purges

Deciding whether you want to use serial or parallel propagation

If you use parallel propagation, then deciding on the degree of parallelism

If you plan to create a materialized view environment, then deciding whether
you want to use deployment templates to create the environment

Analyzing your environment for possible conflicts and, if conflicts are possible,
then deciding which conflict resolution methods to use

Configuring security for your replication environment

Designing your replication environment for survivability

See Also: Oracle9i Replication for more information planning your
replication environment

1-4 Oracle9i Replication Management AP| Reference

2

Create Replication Site

This chapter illustrates how to set up both a master site and a materialized view
replication site using the replication management API.

This chapter contains these topics:

« Overview of Setting Up Replication Sites
« Setting Up Master Sites

« Setting Up Materialized View Sites

Create Replication Site 2-1

Overview of Setting Up Replication Sites

Overview of Setting Up Replication Sites

Before you build your replication environment, you need to set up the sites that will
participate in the replication environment. As illustrated in Figure 2-2 and

Figure 2-3, there are separate processes for setting up a master site versus setting up
a materialized view site.

The examples in this chapter, and in other chapters, use the following nine
databases:

« orcl.world
« orc2.world
« orc3.world
« orcd.world
« orc5.world
« mvl.world
« mv2.world
« mv3.world

« mv4d.world

2-2 Oracle9i Replication Management API Reference

Overview of Setting Up Replication Sites

Chapters 2 - 6 work with the replication environment illustrated in Figure 2-1. You
start to create this environment using the instructions in this chapter. Notice that
mv2.world is a materialized view based on the mvl.world materialized view,
creating a multitier materialized view environment. The arrows in Figure 2-1
represent database links.

Figure 2-1 Three Master Sites and Two Materialized View Sites

orcl.world orc2.world
<
Master
Site

Materialized
View
Site

Materialized
View
Site

mv2.world mvZ1l.world orc3.world

Follow the procedures identified in Figure 2-2 when you build a new master site or
in Figure 2-3 when you build a new materialized view site.

Create Replication Site 2-3

Overview of Setting Up Replication Sites

Figure 2-2 Setting Up Master Sites

START

v

Connect as System at
> Master Site

Create Replication

Administrator ¢

Grant Privileges to Replication Create Database Links
Administrator Between Master Sites
Register Propagator Create Scheduled Links
Register Receiver END

v

Schedule Purge at Master Site

v

Add
Materialized View
Support?

Create Proxy Master Site Users

Add
another site?*

* Multiple master sites (multimaster replication) can be
used only with the Enterprise Edition of Oracle.

2-4 Oracle9i Replication Management API Reference

Setting Up Master Sites

Setting Up Master Sites

The following sections contain step-by-step instructions for setting up the three
master sites in our sample replication environment: orcl.world , orc2.world
and orc3.world

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 2-36 into a text editor and then edit
the text to create a script for your environment.

frekiiakeaetck BEGINNING OF SCRIPT

Setting Up orc1.world

Complete the following steps to set up the orcl.world master site.

Step 1 Connectas SYSTEMat a master site at orcl.world

Connect as SYSTEMo the database that you want to set up for replication. After
you set up orcl.world , begin again with Step 1 for site orc2.world on page 2-10
and Step 1 for site orc3.world on page 2-15.

*

SETECHOON

SPOOL setup_masters.out

CONNECT system/manager@orc1.world

I

Step 2 Create replication administrator at orcl.world.

The replication administrator must be granted the necessary privileges to create and
manage a replication environment. The replication administrator must be created at
each database that participates in the replication environment.

*

CREATE USER repadmin IDENTIFIED BY repadmin;

Create Replication Site 2-5

Setting Up Master Sites

Step 3 Grant privileges to replication administrator at orc1.world by
completing the following steps:

a.

Execute the GRANT_ADMIN_ANY_SCHEM¥Focedure to grant the
replication administrator powerful privileges to create and manage a
replicated environment.

gl
BEGIN
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
usemame => repadmin’);

END;
/

I

If you want your repadmin to be able to create materialized view logs for
any replicated table, then grant COMMENT ANY TABRERd LOCK ANY TABLE
to repadmin :

*

GRANT COMMENT ANY TABLE TO repadmin;
GRANT LOCK ANY TABLE TO repadmin;

I

If you want your repadmin to be able to connect to the Replication
Management tool, then grant SELECT ANY DICTIONARYo repadmin :

*
GRANT SELECT ANY DICTIONARY TO repadmin;

I

Step 4 Register propagator at orcl.world

The propagator is responsible for propagating the deferred transaction queue to
other master sites.

*

2-6 Oracle9i Replication Management API Reference

Setting Up Master Sites

BEGIN
DBMS_DEFER_SYS.REGISTER PROPAGATOR (
usemame => 'repadmin’);
END;
/

I

Step 5 Register receiver at orcl.world

The receiver receives the propagated deferred transactions sent by the propagator
from other master sites.

*

BEGIN
DBMS_REPCAT ADMIN.REGISTER USER _REPGROUP (
usemame => "repadmin’,
privilege_type => receiver’,
list_of_gnames=>NULL);
END;
/

I

Step 6 Schedule purge at master site orcl.world

In order to keep the size of the deferred transaction queue in check, you should
purge successfully completed deferred transactions. The SCHEDULE_PURGE
procedure automates the purge process for you. You must execute this procedure as
the replication administrator.

Note: Date expressions are used for the NEXT_DATEand
INTERVAL parameters. For example:

« Now is specified as: SYSDATE
=« Aninterval of one hour is specified as: SYSDATE + 1/24
« Aninterval of seven days could be specified as: SYSDATE + 7

*

Create Replication Site 2-7

Setting Up Master Sites

CONNECT repadmin/frepadmin@orcl.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PURGE (
next_date =>SYSDATE,
interval =>'SYSDATE + 1/24',
delay_seconds=>0);
END;
/

I

See Also: Oracle9i Database Administrator’s Guide and Oracle9i SQL
Reference for more information about date expressions

Step 7 If you plan to create materialized view sites based on this master site,
then create proxy master site usersat orcl.world that correspond to users at
the materialized view site by completing the following steps:

a. Create proxy materialized view administrator.

The proxy materialized view administrator performs tasks at the target
master site on behalf of the materialized view administrator at the
materialized view site.

*
CONNECT SYSTEMMANAGER@orc1.world

CREATE USER proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;

2-8 Oracle9i Replication Management API Reference

Setting Up Master Sites

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
usemame =>'proxy_mviewadmin',
privilege_type =>‘proxy_snapadmin’,
list_of_gnames=>NULL);
END;
/

—Place GRANT SELECT _CATALOG_ROLE statement here if necessary.
I

If you want your materialized view administrator at materialized view sites
to be able to perform administrative operations using the Replication
Management tool, then grant SELECT_CATALOG_ROLil proxy
mviewadmin :

GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;

Granting this privilege to the proxy_mviewadmin is not required if you
do not plan to use the Replication Management tool. However, if you plan
to use the Replication Management tool, then move the GRANTstatement to
the line directly after the previous REGISTER_USER_REPGROSkatement.

See Also: "Security Setup for Materialized View Replication” on
page A-7

Create proxy refresher.

The proxy refresher performs tasks at the master site on behalf of the
refresher at the materialized view site.

*
CREATE USER proxy_refresher IDENTIFIED BY proxy_refresher;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy._refresher;

I

Create Replication Site 2-9

Setting Up Master Sites

Setting Up orc2.world

Complete the following steps to set up the orc2.world master site.

Step 1 Connectas SYSTEMat orc2.world

Note: Multiple master sites (multimaster replication) can only be
used with Oracle Enterprise Edition. If you are not using Oracle
Enterprise Edition, then skip to "Setting Up Materialized View
Sites" on page 2-24.

You must connect as SYSTEMo the database that you want to set up for replication.
After you set up orc2.world , begin with Step 1 for site orc3.world on
page 2-15.

*
CONNECT system/manager@orc2.world

I

Step 2 Create replication administrator at ~ orc2.world

The replication administrator must be granted the necessary privileges to create and
manage a replication environment. The replication administrator must be created at
each database that participates in the replication environment.

*
CREATE USER repadmin IDENTIFIED BY repadmin;

I

Step 3 Grant privileges to replication administrator at orc2.world by
completing the following steps:

a. Execute the GRANT_ADMIN_ANY_SCHEM~Focedure to grant the
replication administrator powerful privileges to create and manage a
replicated environment.

*

2-10 Oracle9i Replication Management AP| Reference

Setting Up Master Sites

BEGIN
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
usemame => repadmin’);
END;
/

I

b. If you want your repadmin to be able to create materialized view logs for
any replicated table, then grant COMMENT ANY TABBERd LOCK ANY TABLE
privileges to repadmin :

*

GRANT COMMENT ANY TABLE TO repadmin;
GRANT LOCK ANY TABLE TO repadmin;

I

c. Ifyou want your repadmin to be able to connect to the Replication
Management tool, then grant SELECT ANY DICTIONARYo repadmin :
*
GRANT SELECT ANY DICTIONARY TO repadmin;

I

Step 4 Register propagator at orc2.world

The propagator is responsible for propagating the deferred transaction queue to
other master sites.

el

BEGIN
DBMS_DEFER _SYS.REGISTER PROPAGATOR (
usemame => 'repadmin’);
END;
/

I

Create Replication Site 2-11

Setting Up Master Sites

Step 5 Register receiver at orc2.world

The receiver receives the propagated deferred transactions sent by the propagator
from the other master sites.

*

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
usemame => repadmin,
privilege_type =>receiver’,
list_of_gnames=>NULL);
END;
/

F

Step 6 Schedule purge at master site at orc2.world

In order to keep the size of the deferred transaction queue in check, you should
purge successfully completed deferred transactions. The SCHEDULE_PURGE
procedure automates the purge process for you. You must execute this procedure as
the replication administrator.

#
CONNECT repadmin/frepadmin@orc2.world

BEGIN
DBMS_DEFER SYS.SCHEDULE PURGE (
next_date => SYSDATE,
interval =>'SYSDATE + 1/24,
delay_seconds=>0);
END;
/

I

Step 7 If you plan to create materialized view sites based on this master site,
then create proxy master site usersat orc2.world that correspond to users at
the materialized view site by completing the following steps:

a. Create proxy materialized view administrator.

2-12 Oracle9i Replication Management AP| Reference

Setting Up Master Sites

The proxy materialized view administrator performs tasks at the target
master site on behalf of the materialized view administrator at the
materialized view site.

*
CONNECT SYSTEM/MANAGER@orc2.world

CREATE USER proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;

Create Replication Site 2-13

Setting Up Master Sites

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
usemame =>proxy_mviewadmin,
privilege_type =>'proxy_snapadmin’,
list_of_gnames=>NULL);
END;
/

—Place GRANT SELECT _CATALOG_ROLE statement here if necessary.
I

If you want your materialized view administrator at materialized view sites
to be able to perform administrative operations using the Replication
Management tool, then grant SELECT_CATALOG_ROLifs proxy_
mviewadmin :

*
GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;
I

Granting this privilege to the proxy_mviewadmin is not required if you
do not plan to use the Replication Management tool. However, if you plan
to use the Replication Management tool, then move the GRANTstatement to
the line directly after the previous REGISTER_USER_REPGROMatement.

See Also: "Security Setup for Materialized View Replication" on
page A-7

Create proxy refresher.

The proxy refresher performs tasks at the master site on behalf of the
refresher at the materialized view site.

#
CREATE USER proxy_refresher IDENTIFIED BY proxy_refresher;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy_refresher;

I

2-14 Oracle9i Replication Management AP| Reference

Setting Up Master Sites

Setting Up orc3.world

Complete the following steps to set up the orc3.world master site.

Step 1 Connectas SYSTEMat orc3.world

Note: Multiple master sites (multimaster replication) can be used
only with Oracle Enterprise Edition. If you are not using Oracle
Enterprise Edition, then skip to "Setting Up Materialized View
Sites" on page 2-24.

You must connect as SYSTEMo the database that you want to set up for replication.
*
/

CONNECT system/manager@orc3.world

I

Step 2 Create replication administrator at ~ orc3.world

The replication administrator must be granted the necessary privileges to create and
manage a replication environment. The replication administrator must be created at
each database that participates in the replication environment.

*
CREATE USER repadmin IDENTIFIED BY repadmin;

I

Step 3 Grant privileges to replication administrator at orc3.world by
completing the following steps:

a. Execute the GRANT_ADMIN_ANY_SCHEM~Focedure to grant the
replication administrator powerful privileges to create and manage a
replicated environment.

*

BEGIN
DBMS_REPCAT_ADMIN.GRANT ADMIN_ANY_SCHEMA (

Create Replication Site 2-15

Setting Up Master Sites

usemame => repadmin’);
END;
/

I

If you want your repadmin to be able to create materialized view logs for
any replicated table, then grant COMMENT ANY TABBRRd LOCK ANY TABLE
to repadmin :

¥

GRANT COMMENT ANY TABLE TO repadmin;
GRANT LOCK ANY TABLE TO repadmin;

I

If you want your repadmin to be able to connect to the Replication
Management tool, then grant SELECT ANY DICTIONARYo repadmin :

*
GRANT SELECT ANY DICTIONARY TO repadmin;

I

Step 4 Register propagator at orc3.world
The propagator is responsible for propagating the deferred transaction queue to
other master sites.

*

BEGIN
DBMS _DEFER_SYS.REGISTER PROPAGATOR (
usemame => repadmin’);
END;

/

I

2-16 Oracle9i Replication Management AP| Reference

Setting Up Master Sites

Step 5 Register receiver at orc3.world

The receiver receives the propagated deferred transactions sent by the propagator
from the other master sites.

*

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
usemame => repadmin’,
privilege_type => receiver’,
list_of_gnames=>NULL);
END;
/

I

Step 6 Schedule purge at master site at orc3.world

In order to keep the size of the deferred transaction queue in check, you should
purge successfully completed deferred transactions. The SCHEDULE_PURGAEPI
automates the purge process for you. You must execute this procedure as the
replication administrator.

*
CONNECT repadmin/repadmin@orc3.world

BEGIN
DBMS_DEFER SYS.SCHEDULE PURGE (
next_date => SYSDATE,
interval =>'SYSDATE + 1/24,
delay_seconds=>0);
END;
/

I

Step 7 If you plan to create materialized view sites based on this master site,
then create proxy master site usersat orcl.world that correspond to users at
the materialized view site by completing the following steps:

a. Create proxy materialized view administrator.

Create Replication Site 2-17

Setting Up Master Sites

The proxy materialized view administrator performs tasks at the target
master site on behalf of the materialized view administrator at the
materialized view site.

¥
CONNECT SYSTEMMANAGER@orc3.world

CREATE USER proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;

2-18 Oracle9i Replication Management AP| Reference

Setting Up Master Sites

BEGIN
DBMS REPCAT ADMIN.REGISTER_USER REPGROUP (
usemame =>"proxy_mviewadmin,
privilege_type =>‘proxy_snapadmin’,
list_of_gnames=>NULL);
END;
/

—Place GRANT SELECT _CATALOG_ROLE statement here if necessary.
I

If you want your materialized view administrator at materialized view sites
to be able to perform administrative operations using the Replication
Management tool, then grant SELECT_CATALOG_ROLil proxy
mviewadmin :

*/
GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;
I

Granting this privilege to the proxy_mviewadmin is not required if you
do not plan to use the Replication Management tool. However, if you plan
to use the Replication Management tool, then move the GRANTstatement to
the line directly after the previous REGISTER_USER_REPGROSkatement.

See Also: "Security Setup for Materialized View Replication” on
page A-7

Create proxy refresher.

The proxy refresher performs tasks at the master site on behalf of the
refresher at the materialized view site.

*
CREATE USER proxy_refresher IDENTIFIED BY proxy_refresher;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy_refresher;

Create Replication Site 2-19

Setting Up Master Sites

Creating Scheduled Links Between the Master Sites

Complete the following steps to create scheduled links between the master sites.

Step 1 Create database links between master sites.

The database links provide the necessary distributed mechanisms to allow the
different replication sites to replicate data among themselves. Before you create any
private database links, you must create the public database links that each private
database link will use. You then must create a database link between all replication
administrators at each of the master sites that you have set up.

See Also: Oracle9i Database Administrator’s Guide for more
information about database links

*

CONNECT SYSTEM/MANAGER@orc1.world
CREATE PUBLIC DATABASE LINK orc2.world USING ‘orc2.world);
CREATE PUBLIC DATABASE LINK orc3.world USING ‘orc3.world);

CONNECT repadmin/repadmin@orcl.world
CREATE DATABASE LINK orc2.world CONNECT TO repadmin IDENTIFIED BY repadmin;
CREATE DATABASE LINK orc3.world CONNECT TO repadmin IDENTIFIED BY repadmin;

CONNECT SYSTEM/MANAGER@orc2.world
CREATE PUBLIC DATABASE LINK orc1.world USING ‘orcl.world’;
CREATE PUBLIC DATABASE LINK orc3.world USING ‘orc3.world’;

CONNECT repadmin/repadmin@orc2.world
CREATE DATABASE LINK orcl.world CONNECT TO repadmin IDENTIFIED BY repadmin;
CREATE DATABASE LINK orc3.world CONNECT TO repadmin IDENTIFIED BY repadmin;

CONNECT SYSTEM/MANAGER@orc3.world

CREATE PUBLIC DATABASE LINK orc1.world USING ‘orc1.world;

CREATE PUBLIC DATABASE LINK orc2world USING ‘orc2.world;

CONNECT repadmin/frepadmin@orc3.world

CREATE DATABASE LINK orc1.world CONNECT TO repadmin IDENTIFIED BY repadmin;
CREATE DATABASE LINK orc2.world CONNECT TO repadmin IDENTIFIED BY repadmin;

I

2-20 Oracle9i Replication Management AP| Reference

Setting Up Master Sites

Step 2 Define a schedule for each database link to create scheduled links.

Create a scheduled link by defining a database link when you execute the
SCHEDULE_PUSPIrocedure. The scheduled link determines how often your
deferred transaction queue is propagated to each of the other master sites. You need
to execute the SCHEDULE_PUSpIrocedure for each database link that you created
in Step 1. The database link is specified in the destination parameter of the
SCHEDULE_PUSHIrocedure.

Even when using Oracle’s asynchronous replication mechanisms, you can configure
a scheduled link to simulate continuous, real-time replication. The scheduled links
in this example simulate continuous replication.

See Also: Oracle9i Replication for more information about
simulating continuous replication

*
CONNECT repadmin/frepadmin@orcl.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE PUSH (
destination =>‘orc2.world),
interval =>'SYSDATE + (1/144),
next_date => SYSDATE,
parallelism=>1,
execution_seconds => 1500,
delay_seconds =>1200);
END;
/

BEGIN
DBMS_DEFER_SYS.SCHEDULE PUSH (
destination => 'orc2.world',
interval =>'SYSDATE + (1/144),
next_date =>SYSDATE,
parallelism=>1,
execution_seconds => 1500,
delay_seconds =>1200);
END;
/

BEGIN

DBMS_DEFER_SYS.SCHEDULE PUSH (
destination => 'orc3.world,

Create Replication Site 2-21

Setting Up Master Sites

interval =>'SYSDATE + (1/144),
next_date => SYSDATE,
paralelism=>1,
execution_seconds => 1500,
delay_seconds =>1200);

END;

/

CONNECT repadmin/frepadmin@orc2.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE PUSH (
destination => 'orc1.world,
interval =>'SYSDATE + (1/144),
next_date => SYSDATE,
paralelism=>1,
execution_seconds => 1500,
delay_seconds =>1200);
END;
/

BEGIN
DBMS_DEFER_SYS.SCHEDULE PUSH (
destination => ‘orc3.world,
interval =>'SYSDATE + (1/144),
next_date => SYSDATE,
paralelism=>1,
execution_seconds => 1500,
delay_seconds =>1200);
END;
/

CONNECT repadmin/repadmin@orc3.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE PUSH (
destination =>'orc1.world),
interval =>'SYSDATE + (1/144),
next_date => SYSDATE,
paralelism=>1,
execution_seconds => 1500,
delay_seconds =>1200);
END;
/

2-22 Oracle9i Replication Management AP| Reference

Setting Up Master Sites

BEGIN
DBMS_DEFER SYS.SCHEDULE_PUSH (
destination => 'orc2 world,
interval =>'SYSDATE + (1/144),
next_date => SYSDATE,
paralelism=>1,
execution_seconds => 1500,
delay_seconds =>1200);
END;
/

SET ECHO OFF

SPOOL OFF

/ END OF SCRIPT /

Create Replication Site 2-23

Setting Up Materialized View Sites

Setting Up Materialized View Sites

Figure 2-3 Setting Up Materialized View Sites

START

v

Connect as System at ¢
Materialized View Site

<

Create Materialized View
Site Users

<

Create Database Links
to Master

<+

Schedule Purge At Materialized
View Site

<+

Schedule Push at Materialized
View Site

<

Create Proxy Users

v

Add
another
site?

YES

END

2-24 Oracle9i Replication Management AP| Reference

Setting Up Materialized View Sites

Setting Up mv1.world

Complete the following steps to set up the mvl.world master materialized view
site. mvl.world is a master materialized view site because mv2.world will be
based on it.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 2-36 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Step 1 Connectas SYSTEMat materialized view site at mvi.world

You must connect as SYSTEMo the database that you want to set up as a
materialized view site.

*

SETECHOON

SPOOL setup_mvs.out

CONNECT SYSTEMMANAGER@mv1.word

P

Step 2 Create materialized view site users at mvl.world
Several users must be created at the materialized view site. These users are:

« Materialized view administrator
« Propagator
« Refresher

« Receiver (if the site will serve as a master materialized view site for other
materialized views, as mv1l.world is)

Complete the following steps to create these users.

Create Replication Site 2-25

Setting Up Materialized View Sites

a. Create materialized view administrator.

The materialized view administrator is responsible for creating and
managing the materialized view site. Execute the GRANT_ADMIN_ANY _
SCHEM/#rocedure to grant the materialized view administrator the
appropriate privileges.

ol
CREATEUSER mviewadmin IDENTIFIED BY mviewadmin;

BEGIN
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
usemame => ‘mviewadmin’);
END;
/

GRANT COMMENT ANY TABLE TO mviewadmin;
GRANT LOCK ANY TABLE TO mviewadmin;
I

b. If you want your mviewadmin to be able to connect to the Replication
Management tool, then grant SELECT ANY DICTIONARYo mviewadmin :
*
GRANT SELECT ANY DICTIONARY TO mviewadmin;
I

c. Create propagator.

The propagator is responsible for propagating the deferred transaction
gueue to the target master site.

*
CREATE USER propagator IDENTIFIED BY propagator;

BEGIN
DBMS_DEFER_SYS.REGISTER PROPAGATOR (
usemame => ‘propagator);
END;
/

2-26 Oracle9i Replication Management AP| Reference

Setting Up Materialized View Sites

I

Create refresher.

The refresher is responsible for "pulling" changes made to the replicated
tables at the target master site to the materialized view site. This user
refreshes one or more materialized views. If you want the mviewadmin
user to be the refresher, then this step is not required.

*

CREATE USER refresher IDENTIFIED BY refresher;
GRANT CREATE SESSION TO refresher;

GRANT ALTER ANY MATERIALIZED VIEW TO refresher,
I

Register receiver.

The receiver receives the propagated deferred transactions sent by the
propagator from materialized view sites. The receiver is necessary only if
the site will function as a master materialized view site for other
materialized view sites.

*

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
usemame => mviewadmin’,
privilege_type => receiver’,
list_of gnames =>NULL);
END;
/

I

Step 3 Create database links to the master site by completing the following

steps.
a.

Create public database link.
¥

Create Replication Site 2-27

Setting Up Materialized View Sites

CONNECT SYSTEMMANAGER@mv1.world
CREATE PUBLIC DATABASE LINK orc1.world USING ‘orc1.world;;
I

b. Create materialized view administrator database link.

You need to create a database link from the materialized view administrator
at the materialized view site to the proxy materialized view administrator
at the master site.

Wl
CONNECT mviewadmin/mviewadmin@mv1.world;

CREATE DATABASE LINK orcl.world
CONNECT TO proxy_mviewadmin IDENTIFIED BY proxy _mviewadmin;

I

c. Create propagator/receiver database link.

You need to create a database link from the propagator at the materialized
view site to the receiver at the master site. The receiver was defined when
you created the master site.

*
CONNECT propagator/propagator@mvl.word

CREATE DATABASE LINK orcl.world
CONNECT TO repadmin IDENTIFIED BY repadmin;

I

See Also: Step 5 on page 2-12

Step 4 Schedule purge atthe mvl.world materialized view site.

In order to keep the size of the deferred transaction queue in check, you should
purge successfully completed deferred transactions. The SCHEDULE_PURGE
procedure automates the purge process for you. If your materialized view site only
contains "read-only" materialized views, then you do not need to execute this
procedure.

2-28 Oracle9i Replication Management AP| Reference

Setting Up Materialized View Sites

i
CONNECT mviewadmin/mviewadmin@mv1.world

BEGIN
DBMS_DEFER SYS.SCHEDULE _PURGE (
next_date => SYSDATE,
interval =>'SYSDATE + 1/24,
delay_seconds=>0,
rollback_segment=>");
END;
/

I

Step 5 If the materialized view site has a constant connection to its master

site, then you can optionally schedule push at the

mvl.world materialized

view site. If the materialized view site is disconnected from its master site for
extended periods of time, then it is typically better not to schedule push and
refresh on demand, which pushes changes to the master site.

The SCHEDULE_PUSHIrocedure schedules when the deferred transaction queue

should be propagated to the target master site.

*
CONNECT mviewadmin/mviewadmin@mvl.world

BEGIN
DBMS_DEFER SYS.SCHEDULE_PUSH (
destination =>‘orc1.world),
interval =>'SYSDATE + 1/24,
next_date => SYSDATE,
stop_on_emor =>FALSE,
delay_seconds=>0,
paralelism =>0);
END;
/

I

Create Replication Site 2-29

Setting Up Materialized View Sites

Step 6 Create proxy users atthe mvl.world materialized view site by
completing the following steps.

a. Create proxy materialized view administrator.

The proxy materialized view administrator performs tasks at the target
master materialized view site on behalf of the materialized view
administrator at the materialized view sites based on this materialized view
site. This user is not required if the site will not function as a master
materialized view site for other materialized view sites.

*
CONNECT SYSTEMMANAGER@mv1.word

CREATE USER proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
usemame =>‘proxy_mviewadmin',
privilege_type =>‘proxy_snapadmin’,
list of gnames=>NULL);
END;
/

—Place GRANT SELECT_CATALOG_ROLE statement here if necessary.

I

2-30 Oracle9i Replication Management AP| Reference

Setting Up Materialized View Sites

If you want your materialized view administrator at materialized view sites
based on this materialized view site to be able to perform administrative
operations using the Replication Management tool, then grant SELECT _
CATALOG_ROLB proxy_mviewadmin

GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;
Granting this privilege to the proxy_mviewadmin is not required if you
do not plan to use the Replication Management tool. However, if you plan

to use the Replication Management tool, then move the GRANTstatement to
the line directly after the previous REGISTER_USER_REPGROSkatement.

Create proxy refresher.

The proxy refresher performs tasks at the master materialized view site on
behalf of the refresher at the materialized view sites based on this
materialized view site. This user is not required if the site will not function
as a master materialized view site for other materialized view sites.

*
CREATE USER proxy_refresher IDENTIFIED BY proxy_refresher;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy._refresher;

I

See Also: "Security Setup for Materialized View Replication” on
page A-7

Create Replication Site 2-31

Setting Up Materialized View Sites

Setting Up mv2.world

Complete the following steps to set up the mv2.world materialized view site.
mv2.world is part of a multitier materialized view configuration because it is
based on mvl.world , another materialized view.

Step 1 Connectas SYSTEMat level 2 materialized view site mv2.world

You must connect as SYSTEMo the database that you want to set up as a level 2
materialized view site. This site, mv2.world , will be a materialized view site that is
based on mvi.world.

*
CONNECT SYSTEMMANAGER@mv2.world

I

Step 2 Create level 2 materialized view site users at mv2.world
Several users must be created at the level 2 materialized view site. These users are:

« Materialized view administrator
« Propagator
« Refresher
Complete the following steps to create these users.
a. Create materialized view administrator.

The materialized view administrator is responsible for creating and
managing the level 2 materialized view site. Execute the GRANT_ADMIN_
ANY_SCHEMArocedure to grant the materialized view administrator the
appropriate privileges.

*
CREATEUSER mviewadmin IDENTIFIED BY mviewadmin;

BEGIN
DBMS_REPCAT ADMIN.GRANT ADMIN_ANY_SCHEMA (
usemame =>"mviewadmin’);
END;
/

2-32 Oracle9i Replication Management AP| Reference

Setting Up Materialized View Sites

I

If you want your mviewadmin to be able to connect to the Replication
Management tool, then grant SELECT ANY DICTIONARYo mviewadmin :

*
GRANT SELECT ANY DICTIONARY TO mviewadmin;
F

Create propagator.

The propagator is responsible for propagating the deferred transaction
gueue to the target master materialized view site.

*
CREATE USER propagator IDENTIFIED BY propagator;

BEGIN
DBMS_DEFER_SYS.REGISTER PROPAGATOR (
usemame => ‘propagator);
END;
/

I

Create refresher.

The refresher is responsible for "pulling" changes made to the replicated
materialized views at the target master materialized view site to the level 2
materialized view site.

*
CREATE USER refresher IDENTIFIED BY refresher;

GRANT CREATE SESSION TO refresher;
GRANT ALTER ANY MATERIALIZED VIEW TO refresher,

I

Create Replication Site 2-33

Setting Up Materialized View Sites

Step 3 Create database links to master materialized view site by completing
the following steps.

a. Create public database link.
*
CONNECT SYSTEM/MANAGER@mv2.world
CREATE PUBLIC DATABASE LINK mvLworld USING 'mv1.world',

I

b. Create materialized view administrator database link.

You need to create a database link from the materialized view administrator
at the level 2 materialized view site to the proxy materialized view
administrator at the master materialized view site.

i
CONNECT mviewadmin/mviewadmin@mv2.world;

CREATE DATABASE LINK mv1.world
CONNECT TO proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;

I

c. Create propagator/receiver database link.

You need to create a database link from the propagator at the level 2
materialized view site to the receiver at the master materialized view site.
The receiver was defined when you created the master materialized view
site.

¥
CONNECT propagator/propagator@mv2.world

CREATE DATABASE LINK mv1.world
CONNECT TO mviewadmin IDENTIFIED BY mviewadmin;

I

2-34 Oracle9i Replication Management AP| Reference

Setting Up Materialized View Sites

Step 4 Schedule purge at level 2 materialized view site at mv2.world

In order to keep the size of the deferred transaction queue in check, you should
purge successfully completed deferred transactions. The SCHEDULE_PURGE
procedure automates the purge process for you. If your level 2 materialized view
site only contains "read-only" materialized views, then you do not need to execute
this procedure.

*
CONNECT mviewadmin/mviewadmin@mv2.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PURGE (

next_date => SYSDATE,
interval =>'SYSDATE + 1/24,
delay_seconds=>0,
rollback_segment =>");

END;

/

I

Step 5 If the materialized view site has a constant connection to its master
materialized view site, then you can optionally schedule push at the

mv2.world materialized view site. If the materialized view site is disconnected
from its master materialized view site for extended periods of time, then it is
typically better not to schedule push and refresh on demand, which pushes
changes to the master materialized view site.

The SCHEDULE_PUSprrocedure schedules when the deferred transaction queue
should be propagated to the target master materialized view site.

*
CONNECT mviewadmin/mviewadmin@mv2.world

BEGIN
DBMS DEFER_SYS.SCHEDULE PUSH (
destination =>"'mv1.world),
interval =>'SYSDATE + 1/24',
next_date =>SYSDATE,
stop_on_emor =>FALSE,
delay_seconds=>0,

parallelism => 0);

Create Replication Site 2-35

Setting Up Materialized View Sites

END;
/

SET ECHO OFF

SPOOL OFF

rekkkbaseetck END OF SCRIPT

2-36 Oracle9i Replication Management AP| Reference

3

Create a Master Group

This chapter illustrates how to create a master group at a master replication site.
This chapter contains these topics:

« Overview of Creating a Master Group

« Creating a Master Group

Create a Master Group 3-1

Overview of Creating a Master Group

Overview of Creating a Master Group

After you have set up your master sites, you are ready to build a master group. As
illustrated in Figure 3-2, you need to follow a specific sequence to successfully
build a replication environment.

See Also: "Create Replication Site" on page 2-1 for information
about setting up master sites

In this chapter, you create the hr_repg master group and replicate the objects
illustrated in Figure 3-1.

Figure 3-1 Replicate the Tables in the hr Schema Between All Sites

hr_mg hr_mg
hr.employees hr.employees
hr.departments hr.departments
hr.locations <+ hr.locations
hr.countries —] hr.countries
hr.job_history hr.job_history
hr.jobs hr.jobs
hr.regions hr.regions
orc3.world
hr_mg

hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs

3-2 Oracle9i Replication Management API Reference

Overview of Creating a Master Group

Before You Start

In order for the script in this chapter to work as designed, it is assumed that the hr
schema exists at orcl.world , orc2.world , and orc3.world . The hr schema
includes the following database objects:

« countries table

« departments table

« employees table

« jobs table

« job_history table

« locations table

« regions table

« dept_location_ix index

« emp_department_ix index
« emp_job_ix index

« emp_manager_ix index

« jhist_department_ix index
« jhist_employee_ix index

« jhist_job_ix index

« loc_country_ix index

The indexes listed are the indexes based on foreign key columns in the hr schema.
When replicating tables with foreign key referential constraints, Oracle Corporation
recommends that you always index foreign key columns and replicate these
indexes, unless no updates and deletes are allowed in the parent table. Indexes are
not replicated automatically.

By default, the hr schema is installed automatically when you install Oracle9i. The
example script in this chapter assumes that the hr schema exists at all master sites
and that the schema contains all of these database objects at each site. The example
script also assumes that the tables contain the data that is inserted automatically
during Oracle installation. If the hr schema is not installed at your replication sites,
then you can install it manually.

Create a Master Group 3-3

Overview of Creating a Master Group

See Also: Oracle9i Sample Schemas for information about the hr
schema and the other sample schemas, and for information about
installing the sample schemas manually

3-4 Oracle9i Replication Management API Reference

Overview of Creating a Master Group

Figure 3-2 Creating a Master Group

START

v

Create Schema At Master Sites

v

Create Master Group

v

Add objects to Master Group

Add
another object?

?Add Additional Master Sites

4

Add
another master
site?

No Are

data conflicts

Repeat
STEP 6 for
each object
that was
added during
STEP 3.

?Generate Replication Support

More
Support?

TResume Replication

v

END

Yes

possible?

Configure Confilict Resolution
Methods

Create a Master Group 3-5

Creating a Master Group

Creating a Master Group

Complete the following steps to create the hr_repg master group.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 3-15 into a text editor and then edit
the text to create a script for your environment.

frekktidkkaetck BEGINNING OF SCRIPT

Step 1 Create schema at master sites.

If the schema does not already exist at all of the master sites participating in the
master group, then create the schema now and grant it all of the necessary
privileges. This example uses the hr schema, which is one of the sample schemas
that are installed by default when you install Oracle. So, the hr schema should exist
at all master sites.

*

SETECHOON

SPOOL create_mg.out

PAUSE Press <RETURN> to continue when the schema exists at all master sites.

I

Step 2 Create master group.

Use the CREATE_MASTER_REPGRGQWBcedure to define a new master group.
When you add an object to your master group or perform other replication
administrative tasks, you reference the master group name defined during this step.
This step must be completed by the replication administrator.

*
CONNECT repadmin/frepadmin@orcl.world

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPGROUP (

3-6 Oracle9i Replication Management API Reference

Creating a Master Group

gname =>"hr_repg);
END;
/

I

Step 3 Add objects to master group.

Use the CREATE_MASTER_REPOBJE@focedure to add an object to your master
group. In most cases, you probably will be adding tables and indexes to your
master group, but you can also add procedures, views, synonyms, and so on.

*

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>hr_repd,
type =>TABLE,
oname =>'countries,
sname =>'hr,
use_existing_object=>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repd’,
type =>TABLE,
oname => departments),
sname =>'hr,
use_existing_object=>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repgd’,
type =>TABLE,
oname =>‘employees,
sname =>'hr,
use_existing_object=>TRUE,
copy_rows =>FALSE);

Create a Master Group 3-7

Creating a Master Group

END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>'hr_repd’,
type =>TABLE,
oname =>jobs),
sname =>"hr,
use_existing_object=>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repd’,
type => TABLE,
oname =>fjob_history,
sname =>'hr,
use_existing_object=>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repg,
type => TABLE,
oname =>locations,
sname =>'hr,
use_existing_object =>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>'hr_repg,
type =>TABLE,
oname => regions,
sname =>'hr,
use_existing_object =>TRUE,
copy_rows =>FALSE);
END;

3-8 Oracle9i Replication Management API Reference

Creating a Master Group

/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repd’,
type =>'INDEX,
oname =>'dept_location iX,
sname =>'hr,
use_existing_object=>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repg,
type =>'INDEX,
oname =>'emp_department_ix,
sname =>'hr,
use_existing_object =>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repg,
type =>'INDEX,
oname =>'emp_job_iX,
sname =>'hr,
use_existing_object =>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repd’,
type =>INDEX,
oname =>'emp_manager_ix,
sname =>'hr,
use_existing_object =>TRUE,
copy_rows =>FALSE);
END;
/

Create a Master Group 3-9

Creating a Master Group

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repg,
type =>'INDEX,
oname => jhist_department_ix,
sname =>'hr,
use_existing_object =>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repd’,
type =>'INDEX,
oname =>jhist_employee_iX,
sname =>'hr,
use_existing_object =>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repd’,
type =>'INDEX,
oname => jhist_job _ix,
sname =>'hr,
use_existing_object =>TRUE,
copy_rows =>FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repd,
type =>'INDEX,
oname =>'loc_country_iX,
sname =>'hr,
use_existing_object=>TRUE,
copy_rows =>FALSE);
END;
/

3-10 Oracle9i Replication Management AP| Reference

Creating a Master Group

Step 4 Add additional master sites.

After you have defined your master group at the master definition site (the site
where the master group was created becomes the master definition site by default),
you can define the other sites that will participate in the replication environment.
You might have guessed that you will be adding the orc2.world and

orc3.world sites to the replication environment. This example creates the master
group at all master sites, but you have the option of creating the master group at
one master site now and adding additional master sites later without quiescing the
database. In this case, you can skip this step.

See Also: "Adding New Master Sites Without Quiescing the
Master Group" on page 7-4 for more information

In this example, the use_existing_objects parameter in the ADD_MASTER _
DATABASHBrocedure is set to TRUEbecause it is assumed that the hr schema
already exists at all master sites. In other words, it is assumed that the objects in the
hr schema are precreated at all master sites. Also, the copy_rows parameter is set
to FALSEbecause it is assumed that the identical data is stored in the tables at each
master site.

Note: When adding a master site to a master group that contains
tables with circular dependencies or a table that contains a
self-referential constraint, you must precreate the table definitions
and manually load the data at the new master site. The following is
an example of a circular dependency: Table A has a foreign key
constraint on table B, and table B has a foreign key constraint on
table A.

*

BEGIN
DBMS_REPCAT.ADD MASTER _DATABASE (
gname =>"hr_repd’,
master =>‘orc2.world,
use_existing_objects => TRUE,
copy_rows =>FALSE,
propagation_mode =>'ASYNCHRONOUS));

Create a Master Group 3-11

Creating a Master Group

END;

*

Note: You should wait until orc2.world appears in the DBA_
REPSITES view before continuing. Execute the following SELECT
statement in another SQL*Plus session to make sure that
orc2.world has appeared:

SELECT DBLINK FROM DBA_REPSITES WHERE GNAME ='HR_REPG;

PAUSE Press <RETURN> to continue.

BEGIN

DBMS_REPCAT.ADD MASTER DATABASE (
gname =>"hr_repg,
master =>'orc3.world),
use_existing_objects => TRUE,
copy_rows =>FALSE,
propagation_mode =>'ASYNCHRONOUS);

END;
/

I

*

Note: You should wait until orc3.world appears in the DBA _
REPSITES view before continuing. Execute the following SELECT
statement in another SQL*Plus session to make sure that
orc3.world has appeared:

SELECT DBLINK FROM DBA_REPSITES WHERE GNAME ='HR_REPG;

PAUSE Press <RETURN> to continue.

I

3-12 Oracle9i Replication Management AP| Reference

Creating a Master Group

Step 5 If conflicts are possible, then configure conflict resolution methods.

Caution: If you added one or more tables to a master group
during creation of the group, then do not resume replication
activity immediately. First consider the possibility of replication
conflicts, and configure conflict resolution for the replicated tables
in the group.

See Also: Chapter 6, "Configure Conflict Resolution" for
information about configuring conflict resolution methods

*

PAUSE Press <RETURN> to continue after configuring confiict resolution methods
or if no confiict resolution methods are required.

I

Step 6 Generate replication support.
*

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr,
oname =>'countries),
type =>TABLE,
min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>"hr,
oname =>'departments),
type =>TABLE,
min_communication => TRUE);
END;
/

BEGIN

DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr,

Create a Master Group 3-13

Creating a Master Group

oname =>'employees,
type =>TABLE,
min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>"hr,
oname => jobs,
type => TABLE,
min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr’,
oname =>job_history,
type =>TABLE,
min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>"hr,
oname =>locations;,
type => TABLE,
min_communication =>TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
shame =>'hr,
oname =>regions’,
type =>TABLE,
min_communication => TRUE);
END;
/

I

3-14 Oracle9i Replication Management AP| Reference

Creating a Master Group

Note: You should wait until the DBA_REPCATLO@Giew is empty
before resuming master activity. Execute the following SELECT
statement to monitor your DBA_REPCATLOGiew:

SELECT COUNT(*) FROM DBA_REPCATLOG WHERE GNAME ='HR_REPG;

i
PAUSE Press <RETURN> to continue.

I

Step 7 Start replication.

After creating your master group, adding replication objects, generating replication
support, and adding additional master databases, you need to start replication
activity. Use the RESUME_MASTER_ACTIVITrocedure to "turn on" replication
for the specified master group.

#
BEGIN
DBMS_REPCAT.RESUME_MASTER _ACTIVITY (
gname =>"hr_repg);

END;
/

SET ECHO OFF

SPOOL OFF

reRkkbaseaesk END OF SCRIPT /

Create a Master Group 3-15

Creating a Master Group

3-16 Oracle9i Replication Management AP| Reference

A

Create a Deployment Template

This chapter illustrates how to build a deployment template using the replication
managment API. This chapter contains these topics:

Oracle Deployment Templates Concepts

Before Creating the Deployment Template

Creating a Deployment Template

Packaging a Deployment Template for Instantiation

Instantiating a Deployment Template

Before you build materialized view environments, you must set up your master
site, create a master group, and set up your intended materialized view sites. Also,
if conflicts are possible at the master site due to activity at the materialized view
sites you are creating, then configure conflict resolution for the master tables of the
materialized views before you create the materialized view group.

See Also:

« "Setting Up Master Sites" on page 2-5

« "Overview of Creating a Master Group" on page 3-2
« "Setting Up Materialized View Sites" on page 2-24

« Chapter 6, "Configure Conflict Resolution"

Create a Deployment Template 4-1

Oracle Deployment Templates Concepts

Oracle Deployment Templates Concepts

Oracle offers deployment templates to allow the database administrator to package
a materialized view environment for easy, custom, and secure distribution and
installation. A deployment template can be simple (for example, it can contain a
single materialized view with a fixed data set), or complex (for example, it can
contain hundreds of materialized views with a dynamic data set based on one or
more variables). The goal is to define the environment once and deploy the
deployment template as often as necessary. Oracle deployment templates feature:

« Central control

« Repeated deployment of a materialized view environment

« Data subsetting at remote sites using template parameters

« Authorized user list to control template instantiation and data access

To prepare a materialized view environment for deployment, the DBA creates a
deployment template at the master site. This template stores all of the information
needed to deploy a materialized view environment, including the DDL to create the
objects at the remote site and the target refresh group. This template also maintains
links to user security information and template parameters for custom materialized
view creation.

You cannot use deployment templates to instantiate the following types of objects:
« User-defined types

« User-defined type bodies

« User-defined operators

« Indextypes

Nor can you use deployment templates to instantiate any objects based on these
types of objects.

See Also: Oracle9i Replication for more conceptual information
about deployment templates

4-2 Oracle9i Replication Management AP| Reference

Creating a Deployment Template

Before Creating the Deployment Template

If you want one of your master sites to support a materialized views that can be fast
refreshed, then you need to create materialized view logs for each master table that
is replicated to a materialized view.

The example in this chapter uses the hr sample schema. Enter the following to
create materialized view logs for the tables in the hr schema:

CONNECT hrhr@orc3.world

CREATE MATERIALIZED VIEW LOG ON hr.counties;
CREATE MATERIALIZED VIEW LOG ON hr.departments;
CREATE MATERIALIZED VIEW LOG ON hr.employees;
CREATE MATERIALIZED VIEW LOG ON hrjobs;
CREATE MATERIALIZED VIEW LOG ON hrjob_history;
CREATE MATERIALIZED VIEW LOG ON hr.locations;
CREATE MATERIALIZED VIEW LOG ON hrregions;

See Also: The CREATE MATERIALIZED VIEW LO&atement in
the Oracle9i SQL Reference for detailed information about this SQL
statement

Creating a Deployment Template

This section contains a complete script example of how to construct a deployment
template using the replication management API.

See Also: Oracle9i Replication for conceptual and architectural
information about deployment templates

Create a Deployment Template 4-3

Creating a Deployment Template

Figure 4-1 Creating a Deployment Template

START

v

Create Deployment Template

v

Add Objects to Template

Add
another object?

?Define Parameter Defaults

4

Define
another
parameter?

No

?Define User Parameter Values

Define
another
parameter?

Authorize
users?

v

?Authorize Users for Private

Template

4

Authorize
additional users?

4-4 Oracle9i Replication Management AP| Reference

»| END

Creating a Deployment Template

Be sure to read the comments contained within the scripts, as they contain
important and useful information about building templates with the replication
management API.

Note: You must use the Replication Management tool if you want
to create materialized views with a subset of the columns their
master tables. See Oracle9i Replication and the Replication
Management tool online help for more information about column
subsetting.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 4-12 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

This script creates a private deployment template that contains four template
objects, two template parameters, a set of user parameter values, and an authorized
user. Complete the following steps to build a template:

Step 1 Create deployment template.

Before assembling the components of your deployment template, use the CREATE_
RERESH_TEMPLAT@rocedure to define the name of your deployment template,
along with several other template characteristics (Public/Private status, target
refresh group, and owner).

*
SETECHOON
SPOOL create_dt.out
CONNECT repadmin/frepadmin@orc3.world
DECLARE
aNUMBER;
BEGIN

a= DBMS_REPCAT_RGT.CREATE_REFRESH TEMPLATE (
owner=>'hr,

Create a Deployment Template 4-5

Creating a Deployment Template

refresh_group_name =>'hr_refg,

refresh_template_name =>'hr_refg_dt,

template_comment =>"Human Resources Deployment Template',
public_template =>'NY);

END;
/

I

Step 2 Add objects to template by completing the following steps.

a.

Create countries._ mv materialized view.
#

DECLARE
tempstring VARCHAR2(3000);
aNUMBER,;
BEGIN
tempstring := 'CREATE MATERIALIZED VIEW hr.countriies_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
country_id, country_name, region_id
FROM hr.countries@:dblink’;
ar= DBMS_REPCAT_RGT.CREATE _TEMPLATE_OBJECT (
refresh_template_name =>'hr_refg_dt,
object_name =>'countries_mv,
object_type =>'SNAPSHOT,
ddl_text=>tempstring,
master_rollback_seg =>'ths));
END;
/

I

Whenever you create a materialized view, always specify the schema name
of the table owner in the query for the materialized view. In the example
above, hr is specified as the owner of the countries table.

4-6 Oracle9i Replication Management AP| Reference

Creating a Deployment Template

Create departments_mv materialized view.
¥

DECLARE
tempstring VARCHAR2(3000);
aNUMBER,;
BEGIN
tempstring :='CREATE MATERIALIZED VIEW hr.departments_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
department id, department_name, manager _id, location id
FROM hr.deparments@:dblink;
a= DBMS_REPCAT_RGT.CREATE _TEMPLATE_OBJECT (
refresh_template_name =>'hr_refg_dt,
object_name =>'departments_mv/,
object_type =>"'SNAPSHOT,
ddl_text=>tempstriing,
master_rollback_seg =>'ths));
END;
/

I

Create employees_mv materialized view.
*

DECLARE
tempstring VARCHAR2(3000);
aNUMBER,;
BEGIN
tempstring :='CREATE MATERIALIZED VIEW hremployees_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
employee_id, first_name, last_name, email, phone_number,
hire_date, job_id, salary, commission_pct, manager_id,
department_id
FROM hr.employees@:dblink WHERE department _id = :dept;
a= DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
refresh_template_name =>'hr_refg_dt,
object_name =>'employees_mv,
object_type =>"'SNAPSHOT,
ddl_text =>tempstring,
master_rollback_seg =>ths));
END;

Create a Deployment Template 4-7

Creating a Deployment Template

I

d. Create jobs_mv materialized view.
¥

DECLARE
tempstring VARCHAR2(3000);
aNUMBER,;
BEGIN
tempstring :='CREATE MATERIALIZED VIEW hrjobs_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
job_id, job_title, min_salary, max_salary
FROM hr.jobs@:dblink’;
a= DBMS_REPCAT RGT.CREATE_TEMPLATE_OBJECT (
refresh_template_name =>'hr_refg_dt,
object_name =>jobs_ mv,
object_type =>'SNAPSHOT,
ddl_text=>tempstring,
master_rollback_seg => 'tbs);
END;
/

I

e. Create job_history mv materialized view.
*

DECLARE
tempstring VARCHAR2(3000);
aNUMBER,;
BEGIN
tempstring := 'CREATE MATERIALIZED VIEW hrjob_history_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
employee_id, start_date, end_date, job_id, department_id
FROM hr.job_history@:dblink;
a= DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
refresh_template_name =>'hr_refg_dt,
object_name =>job_history_mv,
object_type =>"'SNAPSHOT,
ddl_text=>tempstring,
master_rollback_seg =>ths));
END;

4-8 Oracle9i Replication Management AP| Reference

Creating a Deployment Template

I

Create locations_mv ~ materialized view.

*

DECLARE
tempstring VARCHAR2(3000);
aNUMBER,;
BEGIN
tempstring :='CREATE MATERIALIZED VIEW hr.locations_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
location_id, street_address, postal_code, city,
state_province, country_id
FROM hr.locations@:dblink;
a= DBMS_REPCAT_RGT.CREATE_TEMPLATE _OBJECT (
refresh_template_name =>'hr_refg_dt,
object_name =>locations_mv/,
object_type =>"'SNAPSHOT,
ddl_text =>tempstring,
master_rollback_seg =>'ths);
END;
/

I

Create regions_mv materialized view.
¥

DECLARE
tempstring VARCHAR2(3000);
aNUMBER,;
BEGIN
tempstring :='CREATE MATERIALIZED VIEW hrregions_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
region_id, region_name
FROM hr.regions@:dblink;
a= DBMS_REPCAT_RGT.CREATE _TEMPLATE_OBJECT (
refresh_template_name =>'hr_refg_dt,
object_name =>regions_mv,
object _type =>"'SNAPSHOT,
ddl_text=>tempstriing,
master_rollback_seg =>'ths));
END;

Create a Deployment Template 4-9

Creating a Deployment Template

Step 3 Define parameter defaults.

Rather than using the CREATE_*functions and procedures as in the other steps, use
the ALTER_TEMPLATE_PARptocedure to define a template parameter value and
prompt string. You use the ALTER_* procedure because the actual parameter was
created in Step 1b and 1c. Recall that you defined the :dblink and :dept template
parameters in the ddl_text = parameter. Oracle detects these parameters in the
DDL and automatically creates the template parameter. Use the ALTER _
TEMPLATE_PARMrocedure to define the remainder of the template parameter
information (that is, default parameter value and prompt string).

Complete the following steps to define parameter defaults.
a. Define the default value for the dept parameter.
*

BEGIN
DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM (

refresh_template_name =>'hr_refg_dt,
parameter_name => 'dept,
new_default_ parm_value =>'30,
new_prompt_string => 'Enter your department number?',
new_user_overide =>"YY);

END;

/

I

b. Define the default value for the dblink parameter.
*

BEGIN
DBMS_REPCAT RGTALTER TEMPLATE_PARM (

refresh_template_name =>'hr_refg_dt,
parameter_name => 'dblink,
new_default parm_value =>‘orc3.world',
new_prompt_string => 'Enter your master site?,
new_user_overide =>"YY);

END;

/

4-10 Oracle9i Replication Management API Reference

Creating a Deployment Template

I

Step 4 Define user parameter values.

To automate the instantiation of custom data sets at individual remote materialized
view sites, you can define user parameter values that will be used automatically

when the specified user instantiates the target template. The CREATE_USER_PARM_
VALUEprocedure enables you to assign a value to a parameter for a user.

Complete the following steps to define user parameter values.
a. Define dept user parameter value for user hr.
*

DECLARE
aNUMBER,;
BEGIN
a= DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE (
refresh_template_name =>'hr_refg_dt,
parameter_name =>'dept,
user_name=>'hr,
parm_value =>"20);
END;
/

I

b. Define dblink user parameter value for user hr.
¥

DECLARE
aNUMBER;
BEGIN
a= DBMS_REPCAT RGT.CREATE_USER PARM VALUE (
refresh_template_name =>'hr_refg_dt,
parameter_name =>'dblink,
user_name =>'hr,
parm_value =>'orc3.world);
END;
/

I

Create a Deployment Template 4-11

Packaging a Deployment Template for Instantiation

Step 5 Authorize users for private template.

Because this is a private template (public_template =>'n' in the DBMS_
REPCAT_RGT.CREATE_REFRESH_TEMPLATEction defined in Step on
page 4-3), you need to authorize users to instantiate the dt_personnel
deployment template. Use the CREATE_USER_AUTHORIZATIONNction in the
DBMS_REPCAT_RG¥ackage to create authorized users.

*

DECLARE
aNUMBER;
BEGIN
a= DBMS REPCAT RGT.CREATE USER AUTHORIZATION (
USER NAME =>',
REFRESH_TEMPLATE_NAME =>'hr_refg_dt);
END;
/

COMMIT;
SET ECHO OFF

SPOOL OFF

etttk END OF SCRIPT /

Packaging a Deployment Template for Instantiation

After building your deployment template, you need to package the template for
instantiation. This example illustrates how to use both the online and offline
instantiation procedures. Notice that the instantiation procedures are very similar:
you simply use either the INSTANTIATE_ONLINE function or INSTANTIATE_
OFFLINE function according to your needs. This section describes two tasks: create
the instantiation script and save the instantiation script to a file.

4-12 Oracle9i Replication Management API Reference

Packaging a Deployment Template for Instantiation

Figure 4-2 Packaging and Instantiating a Deployment Template

START

v

Package Template

v

Save Instantiation Script to File

v

Distribute Files

eUse SQL*Plus to Instantiate
Deployment Template

v

Online Was template
instantiated online

or offline?

Use Replication Management tool
or Replication Management API
(PL/SQL) to Refresh After
Instantiation

»| END

Create a Deployment Template 4-13

Packaging a Deployment Template for Instantiation

Packaging a Deployment Template

When you execute either the INSTANTIATE_OFFLINE or the INSTANTIATE_
ONLINE function, Oracle populates the USER_REPCAT_TEMP_OUTPUdta
dictionary view with the script to create the remote materialized view environment.
Both online and offline scripts contain the SQL statements to create the objects
specified in the deployment template. The difference is that an offline instantiation
script also contains the data to populate the objects. The online instantiation script
does not contain the data. Rather, during online instantiation, the materialized view
site connects to the master site to download the data.

Complete the steps in either the "Packaging a Deployment Template for Offline
Instantiation” or "Packaging a Deployment Template for Online Instantiation™
according to your needs. These sections only apply to packaging templates for
materialized view sites running Oracle Enterprise Edition, Oracle Standard Edition,
or Oracle Personal Edition.

Note: If you need to execute either the INSTANTIATE_OFFLINE
or the INSTANTIATE_ONLINE function more than once for a
particular materialized view site, then run the DROP_SITE _
INSTANTIATION procedure in the DBMS_REPCAT_RGckage
before you attempt to repackage a template for the site. Otherwise,
Oracle returns an error stating that there is a duplicate template
site.

Packaging a Deployment Template for Offline Instantiation

The INSTANTIATE_OFFLINE function creates a script that creates the materialized
view environment according to the contents of a specified deployment template. In
addition to containing the DDL (CREATEstatements) to create the materialized
view environment, this script also contains the DML (INSERT statements) to
populate the materialized view environment with the appropriate data set.

Note: If you are packaging your template at the same master site
that contains the target master objects for your deployment
template, then you must create a loopback database link.

4-14 Oracle9i Replication Management API Reference

Packaging a Deployment Template for Instantiation

-Use the INSTANTIATE_OFFLINE function to package the
—template for offiine instantiation by a remote materialized view
—site. Executing this procedure both creates a script that
—creates that materialized view environment and populates the
—environment with the proper data set. This script s stored

—in the temporary USER_REPCAT_TEMP_OUTPUT view.

CONNECT repadmin/frepadmin@orc3.world

SET SERVEROUTPUT ON
DECLARE
dt_num NUMBER;
BEGIN
dt num:= DBMS_REPCAT _RGT.INSTANTIATE_OFFLINE(
refresh_template_name =>'hr_refg_dft,
user_name =>'hr,
site_name =>"'mv4.world,
next_date => SYSDATE,
interval =>'SYSDATE + (1/144));
DBMS_OUTPUT.PUT_LINE(Template ID =" || dt_num);
END;
/
COMMIT;
/

Make a note of the number that is returned for the dt_num variable. You must use
this number when you select from the USER_REPCAT_TEMP_OUTPUata
dictionary view to retrieve the generated script. Be sure that you complete the steps
in "Saving an Instantiation Script to File" on page 4-16 after you complete this
section. This script is unique to an individual materialized view site and cannot be
used for other materialized view sites.

Packaging a Deployment Template for Online Instantiation

The INSTANTIATE_ONLINE function creates a script that creates the materialized
view environment according to the contents of a specified deployment template.
When this script is executed at the remote materialized view site, Oracle creates the
materialized view site according to the DDL (CREATEstatements) in the script and
populates the environment with the appropriate data set from the master site. This
requires that the remote materialized view site has a "live" connection to the master
site.

See Also: Oracle9i Replication for additional materialized view site
requirements

Create a Deployment Template 4-15

Packaging a Deployment Template for Instantiation

—Use the INSTANTIATE_ONLINE function to "package” the
—template for online instantiation by a remote materialized view

—site. Executing this procedure creates a script which can

—then be used to create a materialized view environment. This script
—is stored in the temporary USER_REPCAT_TEMP_OUTPUT view.

CONNECT repadmin/frepadmin@orc3.world

SET SERVEROUTPUT ON
DECLARE
dt_num NUMBER,;
BEGIN
dt num:= DBMS_REPCAT RGT.INSTANTIATE_ONLINE(
refresh_template_name =>'hr_refg_dt,
user_name =>'hr,
site_name =>"'mv4.world,
next_date => SYSDATE,
interval =>'SYSDATE + (1/144));
DBMS_OUTPUT.PUT_LINE(Template ID =" || dt_num);
END;
/
COMMIT;
/

Make a note of the number that is returned for the dt_num variable. You must use
this number when you select from the USER_REPCAT_TEMP_OUTPUata
dictionary view to retrieve the generated script. Be sure that you complete the steps
in "Saving an Instantiation Script to File" after you complete this task.

Saving an Instantiation Script to File

The best way to save the contents of the USER_REPCAT_TEMP_OUTPUata
dictionary view is to use the UTL_FILE package to save the contents of the TEXT
column in the USER_REPCAT_TEMP_OUTPUiEw to a file.

Note: The following action must be performed immediately after
you have called either the INSTANTIATE_OFFLINE or
INSTANTIATE_ONLINE functions, because the contents of the
USER_REPCAT_TEMP_OUTPUata dictionary view are temporary.
If you have not completed the steps in "Packaging a Deployment
Template" on page 4-14, then do so now and then complete the

following action.

4-16 Oracle9i Replication Management API Reference

Packaging a Deployment Template for Instantiation

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about the UTL_FILE package

Enter the following to save the deployment template script to a file.

DECLARE
th UTL_FILEFILE TYPE;
CURSOR ddlcursor(myid NUMBER) IS
SELECT TEXT FROM USER_REPCAT TEMP_OUTPUT WHERE OUTPUT_ID = myid ORDER BY LINE;
BEGIN
fh:=UTL_FILEFOPEN (file_location V' fle_ name W),
UTL_FILE.;PUT_LINE (fh, 'SET ECHO OFF:);
FOR myrec IN ddicursor(template_id) LOOP
UTL_FILE.PUT_LINE(th, myrec.text);
END LOOP;
UTL_FLE.PUT_LINE (fh, SET ECHO ON;);
UTL_FILE FFLUSH(h);
UTL_FILE.FCLOSE(fh);
END;
/

Notice that file_location , file_name , and template_id are placeholders.
Substitute the correct values for your environment:

« Replace the file_location placeholder with the full directory path where
you want to save the template script.

Note: The location you specify for the template script must be a
location listed in the UTL_FILE_DIR initialization parameter. If
you specify a location that is not listed in the UTL_FILE_DIR
initialization parameter, then Oracle returns errors when you try to
save the template script to a file. See Oracle9i Replication for more
information about UTL_FILE DIR .

« Replace the file_name placeholder with name you want to use for the
template script.

« Replace the template_id placeholder with the number returned by the
INSTANTIATE_OFFLINE or INSTANTIATE_ONLINE function when you
packaged the template previously.

Create a Deployment Template 4-17

Packaging a Deployment Template for Instantiation

For example, suppose you have the following values:

Placeholder Value

file _location /home/gen_files/
file_name sf.sql

template _id 18

Given these values, connect to the master site as the replication administrator and
run the following procedure to save the template script to a file:

CONNECT repadmin/frepadmin@orc3.world

DECLARE
th UTL_FILEFILE TYPE;
CURSOR ddlcursor(myid NUMBER) IS
SELECT TEXT FROM USER_REPCAT_TEMP_OUTPUT WHERE OUTPUT_ID =myid
ORDER BY LINE;
BEGIN
fh:= UTL_FILE.FOPEN (homelgen files!, 'sf.sqfl, W);
UTL_FILE.PUT _LINE (fh,'SET ECHO OFF;);
FOR myrec IN ddicursor(18) LOOP
UTL_FILEPUT_LINE(fh, myrec.text);
END LOOP;
UTL_FILE.PUT_LINE (fh,'SET ECHO ON;);
UTL_FILE.FFLUSH(fh);
UTL_FILE.FCLOSE(fh);
END;
/

Distributing Instantiation Files

After creating the instantiation script and saving it to a file, you must distribute this
file to the remote materialized view sites that need to instantiate the template. You
can distribute this file by posting the file on an FTP site or saving the file to a
CD-ROM, floppy disk, or other distribution medium.

4-18 Oracle9i Replication Management API Reference

Packaging a Deployment Template for Instantiation

Instantiating a Deployment Template

After the instantiation script has been distributed to the remote materialized view
sites, you are ready to instantiate the deployment template at the remote
materialized view site. Make sure you have set up the materialized view site before
you instantiate the deployment template.

See Also:

« Oracle9i Replication for materialized view site requirements that
must be met before instantiating your deployment template

« "Setting Up Materialized View Sites" on page 2-24
The following script demonstrates how to complete the instantiation process at a

remote materialized view site with Oracle Enterprise Edition, Oracle Standard
Edition, or Oracle Personal Edition installed.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 4-21 into a text editor and then edit
the text to create a script for your environment.

ket BEGINNING OF SCRIPT

Step 1 If it does not already exist, create the schema at the materialized view
site.

Before executing the instantiation script at the remote materialized view site, you
must create the schema that contains the replicated objects.

The following illustrates creating the hr schema. This schema may already exist in
your database.

*

SETECHOON

SPOOL instant_mv.out

CONNECT system/manager@mv4.world

CREATE TABLESPACE demo_mv
DATAFILE ‘demo_mv.dbf SIZE 10M AUTOEXTEND ON

Create a Deployment Template 4-19

Packaging a Deployment Template for Instantiation

EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv
TEMPFILE temp_mv.dbf SIZE 5M AUTOEXTEND ON,;

CREATE USER hr IDENTIFIED BY hr,

ALTER USER hr DEFAULT TABLESPACE demo_mv
QUOTA UNLIMITED ON demo_mv;

ALTER USER hr TEMPORARY TABLESPACE temp_mv;,

GRANT
CREATE SESSION,
CREATE TABLE,
CREATE PROCEDURE,
CREATE SEQUENCE,
CREATE TRIGGER,
CREATE VIEW,
CREATE SYNONYM,
ALTER SESSION,
CREATE MATERIALIZED VIEW,
ALTER ANY MATERIALIZED VIEW,
CREATE DATABASE LINK
TOhr,

F

Step 2 If they do not already exist, create the database links for the replicated
schema.

Before instantiating the deployment template, you must make sure that the
necessary database links exist for the replicated schema. The owner of the
materialized views needs a database link pointing to the proxy_refresher that
was created when the master site was set up.

*
CREATE PUBLIC DATABASE LINK orc3.world USING ‘orc3.world',
CONNECT hrhr@mv4.world

CREATE DATABASE LINK orc3.world
CONNECT TO proxy_refresher IDENTIFIED BY proxy_refresher;

4-20 Oracle9i Replication Management API Reference

Packaging a Deployment Template for Instantiation

See Also: Step 7 on page 2-8 for more information about creating
proxy master site users

Step 3 Execute the instantiation script.
*
/

@d\sf.sql

SET ECHO OFF
SPOOL OFF

I

Depending on the size of the materialized view environment created and the
amount of data loaded, the instantiation procedure may take a substantial amount
of time.

END OF SCRIPT /

Refreshing a Refresh Group After Instantiation

If you have just instantiated a deployment template using the offline instantiation
method, then you should perform a refresh of the refresh group as soon as possible
by issuing the following execute statement:

CONNECT hrhr@mv4.world

EXECUTEDBMS_REFRESH.REFRESHT_refg);

Create a Deployment Template 4-21

Packaging a Deployment Template for Instantiation

4-22 Oracle9i Replication Management API Reference

D

Create Materialized View Group

This chapter illustrates how to create a materialized view group at a remote
materialized view replication site. This chapter contains these topics:

« Overview of Creating a Materialized View Group
« Creating a Materialized View Group

Before you build materialized view environments, you must set up your master
site, create a master group, and set up your intended materialized view sites. Also,
if conflicts are possible at the master site due to activity at the materialized view
sites you are creating, then configure conflict resolution for the master tables of the
materialized views before you create the materialized view group.

See Also:

« "Setting Up Master Sites" on page 2-5

« "Overview of Creating a Master Group" on page 3-2
« "Setting Up Materialized View Sites" on page 2-24

« Chapter 6, "Configure Conflict Resolution"

Create Materialized View Group 5-1

Overview of Creating a Materialized View Group

Overview of Creating a Materialized View Group

After setting up your materialized view site and creating at least one master group,
you are ready to create a materialized view group at a remote materialized view
site. Figure 5-1 illustrates the process of creating a materialized view group.

See Also: Chapter 2, "Create Replication Site" for information
about setting up a materialized view site, and see Chapter 3,
"Create a Master Group" for information about creating a master

group.

5-2 Oracle9i Replication Management API Reference

Overview of Creating a Materialized View Group

Figure 5-1 Creating a Materialized View Group

START

v

Create Materialized View Logs
at Master

Create Replicated Schema
and Links

Create Materialized View Group

v

Create Refresh Group

v

Add Objects to Materialized
View Group

Add
another
object?

NO

TAdd Objects to Refresh Group

v

Add
another
object?

Repeat STEP 6 for
each object that
was added during
STEP 5.

END

Create Materialized View Group 5-3

Creating a Materialized View Group

Creating a Materialized View Group

This chapter guides you through the process of creating two materialized view
groups at two different materialized view sites: mvl.world and mv2.world

« The materialized view group at mvl.world is based on the objects in the hr_
repg master group at the orcl.world master site.

« The materialized view group at mv2.world is based on the objects in the hr_
repg materialized view group at the mvl.world materialized view site.

Therefore, the examples in this chapter illustrate how to create a multitier
materialized view environment, where one or more materialized views are based on
other materialized views.

Complete the following steps to create these two materialized view groups.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 5-19 into a text editor and then edit
the text to create a script for your environment.

frekkidkaetck BEGINNING OF SCRIPT

Creating the Materialized View Group at mv1.world

Complete the following steps to create the hr_repg materialized view group at the
mvl.world materialized view site. This materialized view group is based on the
hr_repg master group at the orcl.world master site.

Step 1 Create materialized view logs at the master site.

If you want one of your master sites to support a materialized view site, then you
need to create materialized view logs for each master table that is replicated to a
materialized view. Recall from Figure 2-1 on page 2-3 that orcl.world serves as
the target master site for the mvl.world materialized view site. The required
materialized view logs must be created at orc1.world

*
SETECHOON

SPOOL create_mv_group.out

5-4 Oracle9i Replication Management API Reference

Creating a Materialized View Group

CONNECT hrhr@orcl.world

CREATE MATERIALIZED VIEW LOG ON hr.countries;
CREATE MATERIALIZED VIEW LOG ON hr.departments;
CREATE MATERIALIZED VIEW LOG ON hremployees,
CREATE MATERIALIZED VIEW LOG ON hr.jobs;
CREATE MATERIALIZED VIEW LOG ON hrjob_history;
CREATE MATERIALIZED VIEW LOG ON hr.locations;
CREATE MATERIALIZED VIEW LOG ON hr.regions;

I

See Also: The CREATE MATERIALIZED VIEW LO&atement in
the Oracle9i SQL Reference for detailed information about this SQL
statement

Step 2 If they do not already exist, then create the replicated schema its
database link by completing the following steps. Before building your
materialized view group, you must make sure that the replicated schema exists
at the remote materialized view site and that the necessary database links
have been created.

a. If the hr schema does not exist, then create the schema. For this example, if
the hr schema already exists at the materialized view site, then go to Step b.

¥

CONNECT system/manager@mv1.world

CREATE TABLESPACE demo_mv1

DATAFILE 'demo_mv1.dbf SIZE 10M AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv1
TEMPFILE temp_mv1.dbf SIZE 5M AUTOEXTEND ON;

CREATE USER hr IDENTIFIED BY hr,

ALTER USER hr DEFAULT TABLESPACE demo_mv1
QUOTA UNLIMITED ON demo_mv1;

ALTER USER hr TEMPORARY TABLESPACE temp_mv1,

GRANT
CREATE SESSION,

Create Materialized View Group 5-5

Creating a Materialized View Group

CREATE TABLE,

CREATE PROCEDURE,
CREATE SEQUENCE,

CREATE TRIGGER,

CREATE VIEW,

CREATE SYNONYM,

ALTER SESSION,

CREATE MATERIALIZED VIEW,
ALTER ANY MATERIALIZED VIEW,
CREATE DATABASE LINK
TOr,

I

b. If it does not already exist, then create the database link for the replicated
schema.

Before building your materialized view group, you must make sure that the
necessary database links exist for the replicated schema. The owner of the
materialized views needs a database link pointing to the proxy

refresher that was created when the master site was set up.

¥
CONNECT hrhhr@mvl1.world

CREATE DATABASE LINK orc1.world
CONNECT TO proxy_refresher IDENTIFIED BY proxy_refresher;

I

See Also: Step 7 on page 2-8 for more information about creating
proxy master site users

Step 3 Create the materialized view group.
The following procedures must be executed by the materialized view administrator
at the remote materialized view site.

*
CONNECT mviewadmin/mviewadmin@mvl.word

I

5-6 Oracle9i Replication Management API Reference

Creating a Materialized View Group

The master group that you specify in the gname parameter must match the name of
the master group that you are replicating at the target master site.
*
BEGIN
DBMS_REPCAT.CREATE_MVIEW _REPGROUP (

gname =>"hr_repg,

master =>'orcl.world),

propagation_mode =>'ASYNCHRONOUSY);
END,;
/

I

Step 4 Create the refresh group.

All materialized views that are added to a particular refresh group are refreshed at
the same time. This ensures transactional consistency between the related
materialized views in the refresh group.

*

BEGIN
DBMS_REFRESH.MAKE (

name =>'mviewadmin.hr_refg,
list=>",
next_date => SYSDATE,
interval =>'SYSDATE + 1/24,
implicit_destroy =>FALSE,
rollback _seg=>",
push_deferred_rpc=>TRUE,
refresh_after_errors =>FALSE);

END;

/

I

Step 5 Add objects to the materialized view group by completing the following
steps.

a. Create the materialized views based on the master tables.

Whenever you create a materialized view, always specify the schema name
of the table owner in the query for the materialized view. In the examples
below, hr is specified as the owner of the table in each query.

*

Create Materialized View Group 5-7

Creating a Materialized View Group

CREATE MATERIALIZED VIEW hr.countries_mv1
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.countries@orc1.world;

CREATE MATERIALIZED VIEW hr.departments_mv1
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.departments@orc1.world;

CREATE MATERIALIZED VIEW hr.employees mv1l
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.employees@orcl.world;

CREATE MATERIALIZED VIEW hrjobs mv1
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.jobs@orc1.world;

CREATE MATERIALIZED VIEW hrjob_history mv1
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.job_history@orc1.world;

CREATE MATERIALIZED VIEW hr.locations_mv1.
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.locations@orc1.world;

CREATE MATERIALIZED VIEW hrregions_mv1,
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.regions@orc1.world;

I

b. Add the objects to the materialized view group.
*

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd’,
sname =>'hr,
oname =>'countries_mvy,
type =>'SNAPSHQT,
min_communication => TRUE);
END;
/

5-8 Oracle9i Replication Management API Reference

Creating a Materialized View Group

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repg,
sname =>'hr,
oname =>'departments_mv1,
type =>'SNAPSHOT,
min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd’,
sname =>'hr’,
oname =>'employees_mv1,
type =>'SNAPSHQOT,
min_communication =>TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd’,
sname =>'hr’,
oname =>fjobs_mv1,
type =>'SNAPSHOT,
min_communication => TRUE);
END,;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repg,
sname =>"hr,
oname =>fob_history_mv1,,
type =>'SNAPSHQOT,
min_communication => TRUE);
END;
/

Create Materialized View Group 5-9

Creating a Materialized View Group

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd’,
sname =>'hr,
oname =>locations_mv1,,
type =>'SNAPSHOT,
min_communication =>TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd,
sname =>'hr,
oname =>regions_mv1/,
type =>'SNAPSHOT,
min_communication => TRUE);
END;
/

I

Step 6 Add objects to refresh group.

All of the materialized view group objects that you add to the refresh group are
refreshed at the same time to preserve referential integrity between related
materialized views.

*

BEGIN
DBMS_REFRESH.ADD (
name =>"mviewadmin.hr_refg’,
list=>"hr.countries_mv1/,
lax=>TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (
name =>mviewadmin.hr_refg,
list =>'hr.departments_mv1',
lax=>TRUE);
END;
/

5-10 Oracle9i Replication Management AP| Reference

Creating a Materialized View Group

BEGIN
DBMS_REFRESH.ADD (
name =>"mviewadmin.hr_refg’,
list=>"hr.employees_mv1,,
lax=>TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (
name =>'mviewadmin.hr_refg,
list=>"hrjobs_mv1'
lax=>TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (
name =>'mviewadmin.hr_refg’,
list=>"hrjob_history mv1,
lax =>TRUE),
END;
/

BEGIN
DBMS_REFRESH.ADD (
name =>"mviewadmin.hr_refg’,
list=>hr.locations_mv1/,
lax=>TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (
name =>'mviewadmin.hr_refg,
list=>"hr.regions_mv1,
lax=>TRUE);
END;
/

I

Create Materialized View Group 5-11

Creating a Materialized View Group

Creating the Materialized View Group at mv2.world

Complete the following steps to create the hr_repg materialized view group at the
mv2.world materialized view site. This materialized view group is based on the
hr_repg materialized view group at the mvl.world materialized view site.

Step 1 Create materialized view logs at the master materialized view site.

If you want one of your master materialized view sites to support another
materialized view site, then you need to create materialized view logs for each
materialized view that is replicated to another materialized view site. Recall from
Figure 2-1 on page 2-3 that mv1l.world serves as the target master internalized
view site for the mv2.world materialized view site. The required materialized view
logs must be created at mv1.world

*
CONNECT hrhr@mv1.world

CREATE MATERIALIZED VIEW LOG ON hr.countries_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.departments_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.employees mv1;
CREATE MATERIALIZED VIEW LOG ON hr,jobs_mv1;
CREATE MATERIALIZED VIEW LOG ON hrjob_history_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.locations_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.regions_mv1;

I

See Also: The CREATE MATERIALIZED VIEW LOS&atement in
the Oracle9i SQL Reference for detailed information about this SQL
statement

Step 2 If they do not already exist, then create the replicated schema its
database link by completing the following steps. Before building your
materialized view group, you must make sure that the replicated schema exists
at the remote materialized view site and that the necessary database links
have been created.
a. For this example, if the hr schema does not exist, then create the schema. If
the hr schema already exists at the materialized view site, then go to Step b.

*

CONNECT system/manager@mv2.world

5-12 Oracle9i Replication Management AP| Reference

Creating a Materialized View Group

CREATE TABLESPACE demo_mv2
DATAFILE ‘demo_mv2.dbf SIZE 10M AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv2
TEMPFILE temp_mv2.dbf SIZE 5M AUTOEXTEND ON,;

CREATE USER hr IDENTIFIED BY hr,

ALTER USER hr DEFAULT TABLESPACE demo_mv2
QUOTA UNLIMITED ON demo_mvz;

ALTER USER hr TEMPORARY TABLESPACE temp_mv2;

GRANT
CREATE SESSION,
CREATE TABLE,
CREATE PROCEDURE,
CREATE SEQUENCE,
CREATE TRIGGER,
CREATE VIEW,
CREATE SYNONYM,
ALTER SESSION,
CREATE MATERIALIZED VIEW,
ALTER ANY MATERIALIZED VIEW,
CREATE DATABASE LINK
TOhr;

I

If it does not already exist, then create the database link for the replicated
schema.

Before building your materialized view group, you must make sure that the
necessary database links exist for the replicated schema. The owner of the
materialized views needs a database link pointing to the proxy

refresher that was created when the master materialized view site was

set up.
i
CONNECT hrhr@mv2.world

CREATE DATABASE LINK mv1.worid
CONNECT TO proxy._refresher IDENTIFIED BY proxy_refresher;

Create Materialized View Group 5-13

Creating a Materialized View Group

I

See Also: Step 6 on page 2-30 for more information about creating
proxy master materialized view site users

Step 3 Create the materialized view group.

The following procedures must be executed by the materialized view administrator
at the remote materialized view site.

ol
CONNECT mviewadmin/mviewadmin@mv2.world
P

The replication group that you specify in the gname parameter must match the
name of the replication group that you are replicating at the target master
materialized view site.

*

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
gname =>"hr_repd’,
master =>'mv1.world),
propagation_mode =>'ASYNCHRONOUS);
END;
/

I

Step 4 Create the refresh group.

All materialized views that are added to a particular refresh group are refreshed at
the same time. This ensures transactional consistency between the related
materialized views in the refresh group.

*
BEGIN
DBMS_REFRESH.MAKE (

name =>'mviewadmin.hr_refg’,
list=>",

5-14 Oracle9i Replication Management AP| Reference

Creating a Materialized View Group

next_date => SYSDATE,
interval =>'SYSDATE + 1/24,,
implicit_destroy =>FALSE,
rollback _seg=>",
push_deferred_rpc=>TRUE,
refresh_after_errors =>FALSE);

END;
/

I

Step 5 Add objects to the materialized view group by completing the following

steps.
a.

Create the materialized views based on the master materialized views.

Whenever you create a materialized view that is based on another
materialized view, always specify the schema name of the materialized
view owner in the query for the materialized view. In the examples below,
hr is specified as the owner of the materialized view in each query.

*

CREATE MATERIALIZED VIEW hr.countries_mv2
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.countries_mvi@mv1.word;

CREATE MATERIALIZED VIEW hr.departments_mv2
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.departments_mvi@mvl.world;

CREATE MATERIALIZED VIEW hr.employees_mv2
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.employees_mvi@mvl.word;

CREATE MATERIALIZED VIEW hrjobs_mv2
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.jobs_mvi@mv1.word;

CREATE MATERIALIZED VIEW hrjob_history mv2
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.job_history mvi@mvi1.world;

CREATE MATERIALIZED VIEW hrlocations_mv2
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.locations_mvi@mv1.world;

Create Materialized View Group 5-15

Creating a Materialized View Group

CREATE MATERIALIZED VIEW hrregions_mv2
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.regions_mv1@mvl.wond;

I

b. Add the materialized views to the materialized view group.
*
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>'hr_repd’,
sname =>'hr,
oname =>'countries_mv2,
type =>'SNAPSHQOT,
min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repg,
sname =>'hr,
oname =>'departments_mv2,
type =>'SNAPSHOT,
min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd’,
sname =>"hr,
oname =>'employees_mv2,
type =>'SNAPSHQOT,
min_communication => TRUE);
END;
/

5-16 Oracle9i Replication Management AP| Reference

Creating a Materialized View Group

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repg,
sname =>'hr,
oname =>jobs_mv2,
type =>'SNAPSHQOT,
min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd,
sname =>'hr,
oname =>job_history_mv2,
type =>'SNAPSHOT,
min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd’,
sname =>'hr’,
oname =>locations_mv2,
type =>'SNAPSHOT,
min_communication => TRUE);
END,;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repg,
sname =>"hr,
oname =>'regions_mv2,
type =>'SNAPSHQOT,
min_communication => TRUE);
END;
/

I

Create Materialized View Group 5-17

Creating a Materialized View Group

Step 6 Add objects to refresh group.

All of the materialized view group objects that you add to the refresh group are
refreshed at the same time to preserve referential integrity between related
materialized views.

*

BEGIN
DBMS_REFRESH.ADD (
name =>"mviewadmin.hr_refg’,
list=>hr.countries_mv2,
lax=>TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (
name =>'mviewadmin.hr_refg,
list=>"hr.departments_mv2,
lax=>TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (
name =>'mviewadmin.hr_refg’,
list=>"hr.employees_mv2,
lax =>TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (
name =>"mviewadmin.hr_refg’,
list=>"hrjobs_mv2,
lax=>TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (
name =>'mviewadmin.hr_refg,
list=>"hrjob_history_mv2,
lax=>TRUE);
END;

5-18 Oracle9i Replication Management AP| Reference

Creating a Materialized View Group

/

BEGIN
DBMS_REFRESH.ADD (
name =>'mviewadmin.hr_refg,
list=>'hr.locations_mv2,
lax=>TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (
name =>'mviewadmin.hr_refg’,
list=>"hr.regions_mv2,
lax =>TRUE),
END;
/

SET ECHO OFF
SPOOL OFF

fperrerttiddadaeees END OF SCRIPT

Create Materialized View Group 5-19

Creating a Materialized View Group

5-20 Oracle9i Replication Management AP| Reference

6

Configure Conflict Resolution

This chapter illustrates how to define conflict resolution methods for your
replication environment. This chapter contains these topics:

Preparing for Conflict Resolution

Creating Conflict Resolution Methods for Update Conflicts
Creating Conflict Resolution Methods for Uniqueness Conflicts
Creating Conflict Avoidance Methods for Delete Conflicts
Using Dynamic Ownership Conflict Avoidance

Auditing Successful Conflict Resolution

Configure Conflict Resolution 6-1

Preparing for Conflict Resolution

Preparing for Conflict Resolution

Though you may take great care in designing your database and front-end
application to avoid conflicts that may arise between multiple sites in a replication
environment, you may not be able to completely eliminate the possibility of
conflicts. One of the most important aspects of replication is to ensure data
convergence at all sites participating in the replication environment.

When data conflicts occur, you heed a mechanism to ensure that the conflict is
resolved in accordance with your business rules and that the data converges
correctly at all sites.

Advanced Replication lets you define a conflict resolution system for your database
that resolves conflicts in accordance with your business rules. If you have a unique
situation that Oracle’s pre-built conflict resolution methods cannot resolve, then you
have the option of building and using your own conflict resolution methods.

Before you begin implementing conflict resolution methods for your replicated
tables, analyze the data in your system to determine where the most conflicts may
occur. For example, static data such as an employee number may change very
infrequently and is not subject to a high occurrence of conflicts. An employee’s
customer assignments, however, may change often and would therefore be prone to
data conflicts.

After you have determined where the conflicts are most likely to occur, you need to
determine how to resolve the conflict. For example, do you want the latest change
to have precedence, or should one site have precedence over another?

As you read each of the sections describing the different conflict resolution
methods, you will learn what each method is best suited for. So, read each section
and then think about how your business would want to resolve any potential
conflicts.

After you have identified the potential problem areas and have determined what
business rules would resolve the problem, use Oracle’s conflict resolution methods
(or one of your own) to implement a conflict resolution system.

See Also: Oracle9i Replication for conceptual information about

conflict resolution methods and detailed information about data
convergence for each method

6-2 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts

Creating Conflict Resolution Methods for Update Conflicts

The most common data conflict occurs when the same row at two or more different
sites are updated at nearly the same time, or before the deferred transaction from
one site was successfully propagated to the other sites.

One method to avoid update conflicts is to implement a synchronous replication
environment, though this solution requires large network resource.

The other solution is to use the Oracle conflict resolution methods to deal with
update conflicts that may occur when the same row receives two or more updates.

Creating Conflict Resolution Methods and Quiescing: The
instructions in the following sections specify that you must quiesce
your master group to add conflict resolution methods. However, if
your master site is running Oracle release 8.1.7 or higher in a single
master environment, then you may not need to quiesce the master
group to add conflict resolution methods. See the "What’s New in
Replication?" section at the beginning of Oracle9i Replication for
information about when quiesce is not required.

Overwrite and Discard Conflict Resolution Methods

The overwrite and discard methods ignore the values from either the originating or
destination site and therefore can never guarantee convergence with more than one
master site. These methods are designed to be used by a single master site and
multiple materialized view sites, or with some form of a user-defined notification
facility.

The overwrite method replaces the current value at the destination site with the
new value from the originating site. Conversely, the discard method ignores the
new value from the originating site.

See Also: "ADD_conflicttype_ RESOLUTION Procedure” on
page 20-17 and Oracle9i Replication for more information about
overwrite and discard

Complete the following steps to create an overwrite or discard conflict resolution
method. This example illustrates the use of the discard conflict resolution method at
the master site. Therefore, in the event of a conflict, the data from a materialized
view site is discarded and the master site data remains.

Configure Conflict Resolution 6-3

Creating Conflict Resolution Methods for Update Conflicts

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 6-6 into a text editor and then edit
the text to create a script for your environment.

frrrerttidddaaikeeee: BEGINNING OF SCRIPT

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.

*

/

SET ECHOON
SPOOL discard_conflictres.out
CONNECT repadmin/frepadmin@orc1.world

I

Step 2 Before you define overwrite or discard conflict resolution methods,
quiesce the master group that contains the table to which you want to apply
the conflict resolution method. In a single master replication environment,
quiescing the master group may not be required. See "Creating Conflict
Resolution Methods and Quiescing” on page 6-3 for more information.

*

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
gname =>'hr_repqg);
END;
/

I

Step 3 Create a column group for your target table by using the DBMS
REPCAT.MAKE_COLUMN_GRQuécedure. All Oracle conflict resolution
methods are based on logical column groupings called column groups.

¥

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (

6-4 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts

sname =>"hr,

oname =>'departments,

column_group =>'dep_cd’,

list_of column_names =>'manager_id,location_id);
END;
/

I

Step 4 Use the DBMS_REPCAT.ADD_UPDATE_RESOLUTIf@Ncedure to define
the conflict resolution method for a specified table. This example creates an
OVERWRITEonNflict resolution method.

*

BEGIN
DBMS_REPCAT.ADD UPDATE_RESOLUTION (

sname =>'hr’,

oname =>'departments,

column_group =>'dep_cd’,

sequence_no=>1,

method =>'DISCARD,

parameter_column_name =>'manager_id,location_idY);
END;
/

I

Step 5 Regenerate replication support for the table that received the conflict
resolution method.

*

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>"hr,
oname =>'departments,
type =>TABLE,
min_communication => TRUE);
END;
/

I

Configure Conflict Resolution 6-5

Creating Conflict Resolution Methods for Update Conflicts

Step 6 Resume master activity after replication support has been regenerated.
%
/

BEGIN
DBMS_REPCAT.RESUME_MASTER _ACTIVITY (
gname =>'hr_repg);
END;
/

SET ECHO OFF

SPOOL OFF

fperrrrttiddadakeees END OF SCRIPT]

Minimum and Maximum Conflict Resolution Methods

When Advanced Replication detects a conflict with a column group and calls either
the minimum or maximum value conflict resolution methods, it compares the new
value from the originating site with the current value from the destination site for a
designated column in the column group. You must designate this column when you
define your conflict resolution method.

If the new value of the designated column is less than or greater than (depending on
the method used) the current value, then the column group values from the origi-
nating site are applied at the destination site, assuming that all other errors were
successfully resolved for the row. Otherwise the rows remain unchanged.

Complete the following steps to create an maximum or minimum conflict resolution
method.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 6-9 into a text editor and then edit
the text to create a script for your environment.

frrridsidaaees BEGINNING OF SCRIPT
Step 1 Connect as the replication administrator. The procedures in the

following steps must be executed by the replication administrator.
*
/

6-6 Oracle9/ Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts

SETECHOON
SPOOL min_confiictres.out
CONNECT repadmin/frepadmin@orcl.world

I

Step 2 Before you define maximum or minimum conflict resolution methods,
guiesce the master group that contains the table to which you want to apply
the conflict resolution method. In a single master replication environment,
quiescing the master group may not be required. See "Creating Conflict
Resolution Methods and Quiescing” on page 6-3 for more information.

*

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
gname =>"hr_repg);
END;
/

I

Step 3 Create a column group for your target table by using the DBMS_
REPCAT.MAKE_COLUMN_GRQuécedure. All Oracle conflict resolution
methods are based on logical column groupings called column groups.

*

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (
sname =>'hr,
oname =>jobs),
column_group =>job_minsal_cg),
list_of column_names =>'min_salary);
END;
/

I

Configure Conflict Resolution 6-7

Creating Conflict Resolution Methods for Update Conflicts

Step 4 Use the DBMS_REPCAT.ADD_UPDATE_RESOLUTIf@Ncedure to define
the conflict resolution method for a specified table. This example creates a
MINIMUMconflict resolution method.

*

BEGIN
DBMS_REPCAT.ADD _UPDATE_RESOLUTION (
sname =>"hr,
oname => jobs,
column_group =>job_minsal_cg),
sequence_no=>1,
method =>'MINIMUM,
parameter_column_name =>'min_salary);
END;
/

I

Step 5 Regenerate replication support for the table that received the conflict
resolution method.

*

/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr,
oname =>jobs),
type =>TABLE,
min_communication => TRUE);
END;
/

I

Step 6 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*

BEGIN
DBMS_REPCAT.RESUME_MASTER ACTIVITY (
gname =>'hr_repg);
END;
/

SET ECHO OFF

6-8 Oracle9/ Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts

SPOOL OFF

ekttt END OF SCRIPT /

Timestamp Conflict Resolution Methods

The earliest timestamp and latest timestamp methods are variations on the
minimum and maximum value methods. To use the timestamp method, you must
designate a column in the replicated table of type DATE When an application
updates any column in a column group, the application must also update the value
of the designated timestamp column with the local SYSDATEFor a change applied
from another site, the timestamp value should be set to the timestamp value from
the originating site.

Two elements are needed to make timestamp conflict resolution work well:
« Synchronized time settings between computers
« Timestamp field and trigger to automatically record timestamp

Complete the following steps to create a timestamp conflict resolution method.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 6-13 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.

*

/

SETECHOON
SPOOL timestamp_conflictres.out
CONNECT repadmin/frepadmin@orcl.world

I

Configure Conflict Resolution 6-9

Creating Conflict Resolution Methods for Update Conflicts

Step 2 Before defining timestamp conflict resolution methods, quiesce the
master group that contains the table to which you want to apply the conflict
resolution method. In a single master replication environment, quiescing the
master group may not be required. See "Creating Conflict Resolution Methods
and Quiescing” on page 6-3 for more information.

*

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
gname =>'hr_repg);
END;
/

I

Step 3 If the target table does not already contain a timestamp field, then add

an additional column to your table to record the timestamp value when a row is
inserted or updated. You must use the ALTER_MASTER_REPOBJE®@focedure
to apply the DDL to the target table. Simply issuing the DDL may cause the
replicated object to become invalid.

*

BEGIN
DBMS_REPCATALTER_MASTER_REPOBJECT (

sname =>'hr,

oname => ‘countries’,

type =>TABLE,

ddl_text=>'ALTER TABLE hr.countries ADD (timestamp DATE));
END;
/

I

Step 4 Regenerate replication support for altered table.
¥

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr,
oname =>'countries,
type =>TABLE,
min_communication => TRUE);
END;

6-10 Oracle9i Replication Management AP| Reference

Creating Conflict Resolution Methods for Update Conflicts

/

I

Step 5 Create a trigger that records the timestamp when a row is either
inserted or updated. This recorded value is used in the resolution of conflicts
based on the Timestamp method. Instead of directly executing the DDL, you
should use the DBMS_REPCAT.CREATE_MASTER_REPOBJPB@Etedure to
create the trigger and add it to your master group.

Note: You cannot use columns of datetime and interval
datatypes for priority group conflict resolution.

*

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repg,
type =>TRIGGER,
oname =>'insert_time,
sname =>'hr’,
ddl_text=>'CREATE TRIGGER hr.insert_time
BEFORE
INSERT OR UPDATE ON hr.countries FOR EACH ROW
BEGIN
IF DBMS_REPUTILFROM_REMOTE =FALSE THEN
NEW.TIMESTAMP = SYSDATE;
ENDIF;
END;);
END;
/

I

Step 6 Create a column group for your target table by using the DBMS_
REPCAT.MAKE_COLUMN_GRQuécedure. All Oracle conflict resolution
methods are based on logical column groupings called column groups.

¥

BEGIN

DBMS_REPCAT.MAKE_COLUMN_GROUP (
sname =>"hr,

Configure Conflict Resolution 6-11

Creating Conflict Resolution Methods for Update Conflicts

oname =>'countries,
column_group =>‘countries_timestamp_cg;,
list_of_column_names =>'country_name,region_id,timestamp));
END;
/

I

Step 7 Use the DBMS_REPCAT.ADD_UPDATE_RESOLUTIfNcedure to define
the conflict resolution method for a specified table. This example specifies the
LATEST TIMESTAMRonflict resolution method using the timestamp column
that you created earlier.

*

BEGIN
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (

sname =>'hr,
oname => ‘countries’,
column_group =>'countries_timestamp_cg,
sequence_no=>1,
method =>'LATEST TIMESTAMP,
parameter_column_name => timestamp);

END;

/

I

Step 8 Regenerate replication support for the table that received the conflict
resolution method.
*

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr,
oname =>'countries,
type =>TABLE,
min_communication => TRUE);
END;
/

I

6-12 Oracle9i Replication Management AP| Reference

Creating Conflict Resolution Methods for Update Conflicts

Step 9 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
¥

BEGIN
DBMS_REPCATRESUME_MASTER ACTIVITY (
gname =>"hr_repg);
END;
/

SET ECHO OFF

SPOOL OFF

fperrrrttiddadaeees END OF SCRIPT]

Additive and Average Conflict Resolution Methods

The additive and average methods work with column groups consisting of a single
numeric column only. Instead of "accepting” one value over another, this conflict
resolution method either adds the two compared values together or takes an aver-
age of the two compared values.

Complete the following steps to create an additive or average conflict resolution
method. This example averages the commission percentage for an employee in the
event of a conflict.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 6-15 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.

*

/

SETECHOON

SPOOL average_conflictres.out

Configure Conflict Resolution 6-13

Creating Conflict Resolution Methods for Update Conflicts

CONNECT repadmin/frepadmin@orcl.world

P

Step 2 Before you define additive and average conflict resolution methods,
guiesce the master group that contains the table to which you want to apply
the conflict resolution method. In a single master replication environment,
quiescing the master group may not be required. See "Creating Conflict
Resolution Methods and Quiescing” on page 6-3 for more information.

*

BEGIN
DBMS_REPCAT.SUSPEND MASTER ACTIVITY (
gname =>"hr_repg);
END;
/

I

Step 3 Create a column group for your target table by using the DBMS
REPCAT.MAKE_COLUMN_GRQu#cedure. All Oracle conflict resolution
methods are based on logical column groupings called column groups.

*

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (
sname =>"hr,
oname =>'employees,
column_group =>‘commission_average cg,
list_of column_names =>'commission_pct);
END;
/

I

Step 4 Use the DBMS_ REPCAT.ADD_UPDATE_RESOLUTI@cedure to define
the conflict resolution method for a specified table. This example specifies the
ADDITIVE conflict resolution method using the sal column.

¥

BEGIN

DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
sname =>"hr,

6-14 Oracle9i Replication Management AP| Reference

Creating Conflict Resolution Methods for Update Conflicts

oname =>‘employees,
column_group =>‘commission_average _cd,
sequence_no=>1,
method =>'AVERAGE,
parameter_column_name =>'commission_pct);
END;
/

I

Step 5 Regenerate replication support for the table that received the conflict
resolution method.

*

/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr,
oname =>'employees,
type =>TABLE,
min_communication => TRUE);
END;
/

I

Step 6 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
gname =>'hr_repqg);
END;
/

SET ECHO OFF

SPOOL OFF

reRkkcbaseeaesk END OF SCRIPT /

Configure Conflict Resolution 6-15

Creating Conflict Resolution Methods for Update Conflicts

Priority Groups Conflict Resolution Methods

Priority groups allow you to assign a priority level to each possible value of a
particular column. If Oracle detects a conflict, then Oracle updates the table whose
"priority” column has a lower value using the data from the table with the higher
priority value.

Complete the following steps to create a priority groups conflict resolution method.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 6-20 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.

*

SETECHOON

SPOOL priority_groups_conflictres.out
CONNECT repadmin/frepadmin@orcl.world

I

Step 2 Before you define a priority groups conflict resolution method, quiesce
the master group that contains the table to which you want to apply the
conflict resolution method. In a single master replication environment,
quiescing the master group may not be required. See "Creating Conflict
Resolution Methods and Quiescing” on page 6-3 for more information.

*

BEGIN
DBMS REPCAT.SUSPEND MASTER ACTMITY (
gname =>"hr_repg);
END;
/

I

6-16 Oracle9i Replication Management AP| Reference

Creating Conflict Resolution Methods for Update Conflicts

Step 3 Make sure thatthe job column is part of the column group for which
your site priority conflict resolution mechanism is used. Use the ADD_
GROUPED_COLUMMcedure to add this field to an existing column group. If
you do not already have a column group, then you can create a new column
group using the DBMS_REPCAT.MAKE_COLUMN_GR@tdBedure.

*

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (

sname =>'hr,

oname =>'employees,

column_group =>'employees_priority_cg/,

list_of column_names =>'manager_idhire_date salary,job_id);
END;
/

I

Step 4 Before you begin assigning a priority value to the values in your table,
create a priority group that holds the values you defined.
¥

BEGIN
DBMS_REPCAT.DEFINE_PRIORITY_GROUP (
gname =>'hr_repgd’,

pgroup =>job_pg,
datatype => VARCHAR?),
END;

/

I

Step 5 The DBMS_REPCAT.ADD_PRIORITYdatatype procedure is available in
several different versions. There is a version for each available datatype
(NUMBERVARCHARZ2and so on). Execute this procedure as often as necessary
until you have defined a priority value for all possible table values.

See Also: "ADD_PRIORITY_datatype Procedure" on page 20-14
for more information

*

BEGIN

Configure Conflict Resolution 6-17

Creating Conflict Resolution Methods for Update Conflicts

DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
gname =>"hr_repd’,
pgroup =>'job_pg;
value =>'ad_pres,
priority => 100);
END;
/

BEGIN
DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
gname =>"hr_repd,
pgroup =>job_pg,
value =>'sa_man,
priority => 80);
END;
/

BEGIN
DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
gname =>"hr_repd’,
pgroup =>job_pg,
value =>'sa_rep,
priority => 60);
END;
/

BEGIN
DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
gname =>'hr_repg,
pgroup =>job_pg,
value =>"pu_clerk,
priority => 40);
END;
/

BEGIN
DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
gname =>"hr_repd’,
pgroup =>fob_pg,
value =>'st_clerk,
priority => 20);
END;
/

I

6-18 Oracle9i Replication Management AP| Reference

Creating Conflict Resolution Methods for Update Conflicts

Step 6 Add the PRIORITY GROUResolution method to your replicated table.
The following example shows that it is the second conflict resolution method
for the specified column group (sequence_no parameter).

¥

BEGIN
DBMS_REPCAT.ADD UPDATE_RESOLUTION (

sname =>'hr,
oname =>'employees,
column_group =>'employees_priority_cg/,
sequence_no=>2,
method =>PRIORITY GROUP,
parameter_column_name =>job_id),
priority_group =>job_pg);

END;

/

I

Step 7 Regenerate replication support for the table that received the conflict
resolution method.

*

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr,
oname =>'employees,
type =>TABLE,
min_communication => TRUE);
END;
/

I

Step 8 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
¥

BEGIN
DBMS_REPCATRESUME_MASTER_ACTIVITY (
gname =>"hr_repg);
END;
/

Configure Conflict Resolution 6-19

Creating Conflict Resolution Methods for Update Conflicts

SET ECHO OFF

SPOOL OFF

fperrerttiiddaaaeees END OF SCRIPT]

Site Priority Conflict Resolution Methods

Site priority is a specialized form of a priority group. Therefore, many of the
procedures associated with site priority behave similarly to the procedures
associated with priority groups. Instead of resolving a conflict based on the priority
of a field’s value, the conflict is resolved based on the priority of the sites involved.

For example, if you assign orc2.world a higher priority value than orcl.world
and a conflict arises between these two sites, then the value from orc2.world is
used.

Complete the following steps to create a site priority conflict resolution method.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 6-25 into a text editor and then edit
the text to create a script for your environment.

fperrrrtiiddddadakkeeek BEGINNING OF SCRIPT

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.
¥

SETECHOON
SPOOL site_priority_conflictres.out
CONNECT repadmin/frepadmin@orcl.world

I

Step 2 Before you define a site priority conflict resolution method, quiesce the
master group that contains the table to which you want to apply the conflict
resolution method. In a single master replication environment, quiescing the

6-20 Oracle9i Replication Management AP| Reference

Creating Conflict Resolution Methods for Update Conflicts

master group may not be required. See "Creating Conflict Resolution Methods
and Quiescing" on page 6-3 for more information.

*

BEGIN
DBMS_REPCAT.SUSPEND_MASTER _ACTIVITY (
gname =>"hr_repg);
END;
/

I

Step 3 Add a site column to your table to store the site value. Use the DBMS
REPCAT.ALTER_MASTER_REPOBJE@focedure to apply the DDL to the target
table. Simply issuing the DDL may cause the replicated object to become

invalid.

*

BEGIN
DBMS_REPCATALTER_MASTER_REPOBJECT (

sname =>'hr,

oname => regions,

type => TABLE,

ddl_text =>'ALTER TABLE hr.regions ADD (site VARCHAR2(20)));
END;
/

I

Step 4 Regenerate replication support for the affected object.
¥

BEGIN
DBMS_REPCAT.GENERATE._REPLICATION_SUPPORT (
sname =>'hr,
oname => regions,
type =>TABLE,
min_communication => TRUE);
END;
/

I

Configure Conflict Resolution 6-21

Creating Conflict Resolution Methods for Update Conflicts

Step 5 Create a trigger that records the global name of the site when a row is
either inserted or updated. This recorded value is used in the resolution of
conflicts based on the site priority method. Instead of directly executing the
DDL, you should use the DBMS_REPCAT.CREATE_MASTER_REPOBJECT
procedure to create the trigger and add it to your master group.

*

BEGIN
DBMS_REPCAT.CREATE_MASTER REPOBJECT (
gname =>"hr_repd’,
type = TRIGGER,,
oname =>'insert_site’,
sname =>'hr,
ddl_text =>'CREATE TRIGGER hr.insert_site
BEFORE
INSERT OR UPDATE ON hr.regions FOR EACH ROW
BEGIN
IFDBMS_REPUTILFROM_REMOTE = FALSE THEN
SELECT global_name INTO :NEW.SITE FROM GLOBAL_NAME;
ENDIF;
END;);
END;
/

I

Step 6 Make sure the new column is part of the column group for which your

site priority conflict resolution mechanism is used. Use the ADD_GROUPED_
COLUMNNrocedure to add this column to an existing column group. If you do

not already have a column group, then you can create a new column group

using the DBMS_REPCAT.MAKE_COLUMN_GR@tdPedure.

¥

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (

sname =>"hr,

oname =>regions’,

column_group =>'regions_sitepriority_cg’,

list_of column_names =>'region_id,region_name,stte);
END;
/

I

6-22 Oracle9i Replication Management AP| Reference

Creating Conflict Resolution Methods for Update Conflicts

Step 7 Before assigning a site priority value to the sites in your replicated
environment, create a site priority group that holds the values you defined.
%
/

BEGIN
DBMS_REPCAT.DEFINE_SITE_PRIORITY (
gname =>"hr_repg,
name => 'regions_sitepriority_pg);
END;
/

I

Step 8 Define the priority value for each of the sites in your replication
environment using the DBMS_REPCAT.ADD_SITE_PRIORITY_SITEprocedure.
Execute this procedure as often as necessary until you have defined a site

priority value for each of the sites in our replication environment.

¥

BEGIN
DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
gname =>'hr_repg,
name =>'regions_sitepriority_pg,
site => ‘orcL.world),
priority =>100);
END;
/

BEGIN
DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
gname =>"hr_repd’,
name =>'regions_sitepriority_pg,
site =>'orc2. world',
priority =>50);
END;
/

BEGIN
DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
gname =>"hr_repg,
name =>'regions_sitepriority_pg,
site =>‘orc3.world,
priority => 25);
END;

Configure Conflict Resolution 6-23

Creating Conflict Resolution Methods for Update Conflicts

/

P

Step 9 After assigning your site priority values, add the SITE PRIORITY
resolution method to your replicated table. The following example shows that
it is the third conflict resolution method for the specified column group
(sequence_no parameter).

¥

BEGIN
DBMS_REPCAT.ADD UPDATE_RESOLUTION (
sname =>'hr,
oname => regions,
column_group =>regions_sitepriority_cd,
sequence_no=>1,
method =>'SITE PRIORITY’,
parameter_column_name =>'site,
priority_group => 'regions_sitepriority_pg);
END;
/

I

Step 10 Regenerate replication support for the table that received the conflict
resolution method.

*

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>"hr,
oname => regions,
type => TABLE,
min_communication =>TRUE);
END;
/

I

Step 11 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
¥

6-24 Oracle9i Replication Management AP| Reference

Creating Conflict Resolution Methods for Uniqueness Conflicts

BEGIN
DBMS_REPCATRESUME_MASTER ACTIVITY (
GNAME =>"hr_repg);
END;
/

SET ECHO OFF

SPOOL OFF

fperrrrttidddadaeees END OF SCRIPT]

Creating Conflict Resolution Methods for Uniqueness Conflicts

In a replication environment, you may have situations where you encounter a
conflict on a unique constraint, often resulting from an insert. If your business rules
allow you to delete the duplicate row, then you can define a resolution method with
Oracle’ s pre-built conflict resolution methods.

More often, however, you probably want to modify the conflicting value so that it
no longer violates the unique constraint. Modifying the conflicting value ensures
that you do not lose important data. Oracle’s pre-built uniqueness conflict
resolution method can make the conflicting value unique by appending a site name
or a sequence number to the value.

An additional component that accompanies the uniqueness conflict resolution
method is a notification facility. The conflicting information is modified by Oracle so
that it can be inserted into the table, but you should be notified so that you can
analyze the conflict to determine whether the record should be deleted, or the data
merged into another record, or a completely new value be defined for the
conflicting data.

A uniqueness conflict resolution method detects and resolves conflicts encountered
on columns with a UNIQUEconstraint. The example in this section uses the
employees table in the hr sample schema, which has the unique constraint emp__
email_uk on the email column.

Note: To add unique conflict resolution method for a column, the
name of the unique index on the column must match the name of
the unique or primary key constraint.

Configure Conflict Resolution 6-25

Creating Conflict Resolution Methods for Uniqueness Conflicts

Complete the following steps to create a uniqueness conflict resolution method.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 6-31 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Step 1 Connect as the replication administrator.
¥

SETECHOON
SPOOL unique_conflictres.out
CONNECT repadmin/repadmin@orc1.world

P

Step 2 Before you define a uniqueness conflict resolution method, quiesce the
master group that contains the table to which you want to apply the conflict
resolution method.

*

BEGIN
DBMS REPCAT.SUSPEND_MASTER_ACTMITY (
gname =>"hr_repg);
END,;
/

I

Step 3 Create a table that stores the messages received from your notification
facility. In this example, the table name is conf_report
¥

BEGIN
DBMS_REPCAT.EXECUTE_DDL (
gname =>"hr_repd,
ddl_text=>"'CREATE TABLE hr.conf_report (

6-26 Oracle9i Replication Management AP| Reference

Creating Conflict Resolution Methods for Uniqueness Conflicts

line NUMBER(2),
txt VARCHAR2(80),
timestamp DATE,
table_name VARCHAR2(30),
table_owner VARCHAR2(30),
conflict_type VARCHAR2(7)));
END;
/

I

Step 4 Connect as the owner of the table you created in Step 3.
¥

CONNECT hr/hr@orcl.world

I

Step 5 Create a package that sends a notification to the conf_report table
when a conflict is detected. In this example, the package name is notify

See Also: Appendix B, "User-Defined Conflict Resolution
Methods" describes the conflict resolution notification package that
is created in this script

*

CREATE OR REPLACE PACKAGE notify AS
FUNCTION emp_unique_violation (email IN OUT VARCHAR2,
discard_new_values IN OUT BOOLEAN)
RETURN BOOLEAN,;
END notify;
/

CREATE OR REPLACE PACKAGE BODY notify AS
TYPE message_table IS TABLE OF VARCHAR2(80) INDEX BY BINARY_INTEGER;
PROCEDURE report_conflict(conflict_report INMESSAGE_TABLE,
report_length IN NUMBER,
conflict_time IN DATE,
confiict_table IN VARCHARZ,
table_owner IN VARCHAR2,
conflict_type INVARCHAR?) IS
BEGIN

Configure Conflict Resolution 6-27

Creating Conflict Resolution Methods for Uniqueness Conflicts

FORidxIN 1.report_length LOOP
BEGIN
INSERT INTO hr.conf_report
(line, txt, imestamp, table_name, table_owner, conflict_type)
VALUES (idx, SUBSTR(conflict_report(idx),1,80), confiict_time,
conflict_table, table_owner, conflict_type);
EXCEPTION WHEN cthers THEN NULL;
END;
END LOOP;
END report_conflict;
FUNCTION emp_unique_violation(email IN OUT VARCHAR?2,
discard_new_values IN OUT BOOLEAN)
RETURN BOOLEANIS
local_node VARCHAR2(128);
conf_report MESSAGE_TABLE;
conf_time DATE := SYSDATE;
BEGIN
BEGIN
SELECT global_name INTO local_node FROM global_name;
EXCEPTION WHEN others THEN local_node =7
END;
conf_report(1) :='UNIQUENESS CONFLICT DETECTED IN EMPLOYEES ON' ||
TO_CHAR(conf_time, MM-DD-YYYY HH24:MI:SS);
conf_report(2) :=' AT NODE'|| local_node;
conf_report(3) :='ATTEMPTING TO RESOLVE CONFLICT USING' ||
' APPEND SITE NAME METHOD;
conf_report(4) :='EMAIL: ' || emall;
conf_report(5) := NULL;
report_conflict(conf_report,5,conf_time,'employees’,'hr,'UNIQUE);
discard_new_values :=FALSE;
RETURN FALSE;
END emp_unique_violation;
END notify;
/

I

Step 6 Connect as the replication administrator.
*
/

CONNECT repadmin/repadmin@orc1.world

I

6-28 Oracle9i Replication Management AP| Reference

Creating Conflict Resolution Methods for Uniqueness Conflicts

Step 7 Replicate the package you created in Step 5 to all of the master sites in
your replication environment, which ensures that the notification facility is
available at all master sites.

*

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>'hr_repg,
type => 'PACKAGE,
oname => 'notify/,
sname =>'hr’);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repd’,
type => 'PACKAGE BODY’,
oname =>'notify’,
sname =>'hr);
END;
/

I

Step 8 Add the notification facility as one of your conflict resolution methods,
even though it only notifies of a conflict. The following example demonstrates
adding the notification facility asa USER FUNCTION

*

BEGIN
DBMS_REPCAT.ADD UNIQUE_RESOLUTION(
sname =>'hr,
oname =>'employees,
constraint_name =>'emp_email_uk,
sequence_no=>1,
method =>"USER FUNCTION,
comment =>'Notify DBA,
parameter_column_name =>'emall,
function_name =>hr.notify.emp_unique_violation));
END;
/

Configure Conflict Resolution 6-29

Creating Conflict Resolution Methods for Uniqueness Conflicts

I

Step 9 Add the actual conflict resolution method to your table. The following
example demonstrates adding the ~ APPEND SITE NAMEniqueness conflict
resolution method to your replicated table.

*

BEGIN
DBMS_REPCAT.ADD _UNIQUE_RESOLUTION(

sname =>'hr,
oname =>'employees,
constraint_name =>'emp_email_uk,
sequence_no=>2,
method =>'APPEND SITE NAME,
parameter_column_name =>'email);

END;

/

I

Step 10 Regenerate replication support for the table that received the conflict
resolution methods.

*

/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr,
oname =>‘employees,
type =>TABLE,
min_communication => TRUE);
END;
/

I

Step 11 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.

*

BEGIN

DBMS_REPCAT.RESUME_MASTER _ACTIVITY (
gname =>"hr_repg);

6-30 Oracle9i Replication Management AP| Reference

Creating Conflict Avoidance Methods for Delete Conflicts

END;
/

SET ECHO OFF

SPOOL OFF

rekcbasedick END OF SCRIPT /

Creating Conflict Avoidance Methods for Delete Conflicts

Unlike update conflicts, where there are two values to compare, simply deleting a
row makes the update conflict resolution methods described in the previous section
ineffective because only one value would exist.

The best way to deal with deleting rows in a replication environment is to avoid the
conflict by marking a row for deletion and periodically purging the table of all
marked records. Because you are not physically removing this row, your data can
converge at all master sites if a conflict arises because you still have two values to
compare, assuming that no other errors have occurred. After you are sure that your
data has converged, you can purge marked rows using a replicated purge
procedure.

When developing the front-end application for your database, you probably want

to filter out the rows that have been marked for deletion, because doing so makes it
appear to your users as though the row was physically deleted. Simply exclude the
rows that have been marked for deletion in the SELECTstatement for your data set.

For example, a select statement for a current employee listing might be similar to
the following:

SELECT * FROM hr.locations WHERE remove_date IS NULL;
This section describes how to prepare your replicated table to avoid delete conflicts.

You also learn how to use procedural replication to purge those records that have
been marked for deletion.

Complete the following steps to create a conflict avoidance method for delete
conflicts.

Configure Conflict Resolution 6-31

Creating Conflict Avoidance Methods for Delete Conflicts

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 6-35 into a text editor and then edit
the text to create a script for your environment.

rrererrttiaddaaeeee: BEGINNING OF SCRIPT

Step 1 Connect as the replication administrator at the master definition site.
*

SET ECHOON
SPOOL delete_conflictres.out
CONNECT repadmin/repadmin@orcl.world

I

Step 2 Quiesce the master group that contains the table to which you want to
apply the conflict resolution method.
*

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
gname =>"hr_repgd);
END;
/

I

Step 3 Add a column to the replicated table that stores the mark for deleted

records. It is advisable to use a timestamp to mark your records for deletion
(timestamp reflects when the record was marked for deletion). Because you

are using a timestamp, the new column canbea DATEdatatype. Use the DBMS
REPCAT.ALTER_MASTER_ REPOBJE@®focedure to add the remove_date

column to your existing replicated table.

¥

BEGIN

DBMS_REPCATALTER_MASTER REPOBJECT (
sname =>'hr,

6-32 Oracle9i Replication Management AP| Reference

Creating Conflict Avoidance Methods for Delete Conflicts

oname => locations,

type =>TABLE,

ddl_text=>"ALTER TABLE hr.locations ADD (remove_date DATE));
END;
/

I

Step 4 Regenerate replication support for the altered table.
*

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr,
oname =>locations;,
type =>TABLE,
min_communication => TRUE);
END;
/

I

Step 5 Create a package that is replicated to all of the master sites in your
replication environment. This package purges all marked records from the
specified table.

¥

BEGIN
DBMS_REPCAT.CREATE_MASTER REPOBJECT (
gname =>"hr_repg,
type =>'PACKAGE,
oname =>'purge’,
sname =>"hr,
ddl_text =>'CREATE OR REPLACE PACKAGE hr.purge AS
PROCEDURE remove_locations(purge_date DATE);
END;);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repg,
type =>'PACKAGE BODY",
oname =>'purge’,

Configure Conflict Resolution 6-33

Creating Conflict Avoidance Methods for Delete Conflicts

sname =>'hr,
ddl_text=>"'CREATE OR REPLACE PACKAGE BODY hr.purge AS
PROCEDURE remove_locations(purge_date IN DATE) IS
BEGIN
DBMS_REPUTILREPLICATION_OFF;
LOCK TABLE hr.locations IN EXCLUSIVE MODE;
DELETE hr.locations WHERE remove_date IS NOT NULL
AND remove_date < purge_date;
DBMS_REPUTILREPLICATION_ON;

EXCEPTION WHEN others THEN
DBMS_REPUTILREPLICATION_ON,;
END;
END;);
END;
/
I

Step 6 Generate replication support for each package and package body. After
generating replication support, a synonym is created for you and added to

your master group as a replicated object. This synonym is labeled as defer_
purge.remove_locations

*

BEGIN
DBMS_REPCAT.GENERATE._REPLICATION_SUPPORT (
sname =>'hr,
oname =>purge’,
type =>'PACKAGE,
min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>"hr,
oname =>'purge’,
type = PACKAGE BODY,
min_communication => TRUE);
END;
/

I

6-34 Oracle9i Replication Management AP| Reference

Using Dynamic Ownership Conflict Avoidance

Step 7 In a separate terminal window, manually push any administrative
requests at all other master sites. You may need to execute the DO_DEFERRED _
REPCAT_ADMINbrocedure in the DBMS_REPCApackage several times,
because some administrative operations have multiple steps. The following is
an example:
BEGIN
DBMS_REPCAT.DO_DEFERRED REPCAT_ADMIN (

gname =>"hr_repd’,

all_sites =>FALSE);
END,;
/

*

PAUSE Press <RETURN> to continue when you have verified that there are no
pending administrative requests in the DBA REPCATLOG data dictionary view.

I

Step 8 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*

BEGIN
DBMS_REPCAT.RESUME_MASTER _ACTIVITY (
gname =>"hr_repg);
END;
/

SET ECHO OFF

SPOOL OFF

reRkkbasedesk END OF SCRIPT /

Using Dynamic Ownership Conflict Avoidance

This section describes a more advanced method of designing your applications to
avoid conflicts. This method, known as token passing, is similar to the workflow
method described below. Although this section describes how to use this method to
control the ownership of an entire row, you can use a modified form of this method
to control ownership of the individual column groups within a row.

Configure Conflict Resolution 6-35

Using Dynamic Ownership Conflict Avoidance

Workflow

Both workflow and token passing allow dynamic ownership of data. With dynamic
ownership, only one site at a time is allowed to update a row, but ownership of the
row can be passed from site to site. Both workflow and token passing use the value
of one or more "identifier" columns to determine who is currently allowed to
update the row.

With workflow partitioning, you can think of data ownership as being "pushed”
from site to site. Only the current owner of the row is allowed to push the
ownership of the row to another site, by changing the value of the "identifier"
columns.

Take the simple example of separate sites for ordering, shipping, and billing. Here,
the identifier columns are used to indicate the status of an order. The status
determines which site can update the row. After a user at the ordering site has
entered the order, the user updates the status of this row to ship . Users at the
ordering site are no longer allowed to modify this row — ownership has been
pushed to the shipping site.

After shipping the order, the user at the shipping site updates the status of this row
to bill , thus pushing ownership to the billing site, and so on.

To successfully avoid conflicts, applications implementing dynamic data ownership
must ensure that the following conditions are met:

« Only the owner of the row can update the row.
« The row is never owned by more than one site.
« Ordering conflicts can be successfully resolved at all sites.

With workflow partitioning, only the current owner of the row can push the
ownership of the row to the next site by updating the "identifier" columns. No site is
given ownership unless another site has given up ownership; thus ensuring there is
never more than one owner.

Because the flow of work is ordered, ordering conflicts can be resolved by applying
the change from the site that occurs latest in the flow of work. Any ordering
conflicts can be resolved using a form of the priority conflict resolution method,
where the priority value increases with each step in the work flow process. The
priority conflict resolution method successfully converges for more than one master
site as long as the priority value is always increasing.

6-36 Oracle9i Replication Management AP| Reference

Using Dynamic Ownership Conflict Avoidance

Token Passing

Token passing uses a more generalized approach to meeting these criteria. To
implement token passing, instead of the "identifier" columns, your replicated tables
must have owner and epoch columns. The owner column stores the global database
name of the site currently believed to own the row.

Once you have designed a token passing mechanism, you can use it to implement a
variety of forms of dynamic partitioning of data ownership, including workflow.

You should design your application to implement token passing for you
automatically. You should not allow the owner or epoch columns to be updated
outside this application.

Whenever you attempt to update a row, your application should:

Step 1 Locate the current owner of the row.

Step 2 Lock the row to prevent updates while ownership is changing.

Step 3 Establish ownership of the row.

Step 4 Perform the update. Oracle releases the lock when you commit your

transaction.

For example, Figure 6-1 illustrates how ownership of employee 100 passes from
the acct_sf database to the acct ny database.

Configure Conflict Resolution 6-37

Using Dynamic Ownership Conflict Avoidance

Figure 6-1

Step 1. Identify True Owner

acct_ny.ny.com

Grabbing the Token

acct_hqg.hg.com

empno | ename | deptno | onner

100 Jones 10 acct_hq.hg.com

101 Kim 20 acct_hqg.hg.com

/

acct_sf.sf.com /

empno | ename | deptno | onner

100 Jones 10 acct_sf.sf.com

101 Kim 20 acct_hqg.hg.com

Step 2. Grab Ownership and Broadcast Change

acct_ny.ny.com

empno | ename | deptno | onner
100 Jones 10 acct_ny.ny.com {
101 Kim 20 acct_hg.hg.com
A
synchronous
acct_sf.sf.com
v
empno | ename | deptno | onner
100 Jones 10 acct_ny.ny.com
101 Kim 20 acct_hq.hg.com

6-38 Oracle9i Replication Management AP| Refere

empno | ename | deptno | onner
P 100 Jones 10 acct_sf.sf.com
101 Kim 20 acct_hqg.hg.com
acct_la.la.com
empno | ename | deptno | onner
100 Jones 10 acct_hqg.hg.com
101 Kim 20 acct_hg.hg.com
acct_hg.hg.com
empno | ename | deptno | onner
» 100 Jones 10 acct_sf.sf.com
101 Kim 20 acct_hg.hg.com
b}
acct_la.la.com
empno | ename | deptno | onner
100 Jones 10 acct_hqg.hg.com
101 Kim 20 acct_hqg.hg.com

nce

Using Dynamic Ownership Conflict Avoidance

Locating the Owner of a Row

To obtain ownership, the acct_ny database uses a simple recursive algorithm to
locate the owner of the row. The sample code for this algorithm is shown below:

— Sample code for locating the token owner.

- Thisis for a table TABLE_NAME with primary key PK.

— Initial call should initialize loc_epochto 0 and loc_owner

—to the local global name.

get_owner(PK IN primary_key _type, loc_epoch IN OUT NUMBER,
loc_owner IN OUT VARCHAR?2)

{

- use dynamic SQL (dbms_sq) to perform a select similar to
—the following:
SELECT owner, epoch into rmt_owner, mt_epoch
FROM TABLE_NAME@loc_owner
WHERE primary_key =PK FOR UPDATE;
IF mt_owner =loc_owner AND mt_epoch >=loc_epoch THEN
loc_owner :=mt_owner,
loc_epoch :=mmt_epoch;
RETURN,;
ELSIF mt_epoch >=loc_epoch THEN
get_owner(PK, mt_epoch, mt_owner);
loc_owner :=mt_owner,
loc_epoch :=mt_epoch;
RETURN,;
ELSE
raise_application_error(-20000, 'No owner for row);
ENDIF;
}

Obtaining Ownership

After locating the owner of the row, the acct_ny site gets ownership from the
acct_sf site by completing the following steps:

Step 1 Lock the row at the sf site to prevent any changes from occurring
while ownership is being exchanged.

Step 2 Synchronously update the owner information at both the sf and ny
sites. This operation ensures that only one site considers itself to be the

owner at all times. The update atthe sf site should not be replicated using
DBMS_REPUTIL.REPLICATION_OFEThe replicated change of ownership at the

Configure Conflict Resolution 6-39

Using Dynamic Ownership Conflict Avoidance

ny site in Step 4 will ultimately be propagated to all other sites in the
replication environment, including the sf site, where it will have no effect.

Step 3 Update the row information at the new owner site, ny, with the
information from the current owner site, sf . This data is guaranteed to be the
most recent. This time, the change atthe ny site should not be replicated. Any
gueued changes to this data at the sf site are propagated to all other sites in
the usual manner. When the sf change is propagated to ny, it is ignored
because of the values of the epoch numbers, as described in the next bullet
point.

Step 4 Update the epoch number at the new owner site to be one greater than
the value at the previous site. Perform this update at the new owner only, and
then asynchronously propagate this update to the other master sites.
Incrementing the epoch number at the new owner site prevents ordering

conflicts.

When the sf changes (that were in the deferred queue in Step 2 above) are
ultimately propagated to the ny site, the ny site ignores them because they have a
lower epoch number than the epoch number at the ny site for the same data.

As another example, suppose the hq site received the sf changes after receiving the
ny changes, the hq site would ignore the sf changes because the changes applied
from the ny site would have the greater epoch number.

Applying the Change
You should design your application to implement this method of token passing for
you automatically whenever you perform an update. You should not allow the
owner or epoch columns to be updated outside this application. The lock that you
grab when you change ownership is released when you apply your actual update.
The changed information, along with the updated owner and epoch information,
are asynchronously propagated to the other sites in the usual manner.

6-40 Oracle9i Replication Management AP| Reference

Auditing Successful Conflict Resolution

Auditing Successful Conflict Resolution

Whenever Oracle detects and successfully resolves an update, delete, or uniqueness
conflict, you can view information about what method was used to resolve the
conflict by querying the ALL_ REPRESOLUTION_STATISTICSdata dictionary view.
This view is updated only if you have enabled conflict resolution statistics gathering
for the table involved in the conflict.

See Also: The ALL_REPRESOLUTION_STATISTICSview on
page 25-32 for more information

Collecting Conflict Resolution Statistics

Use the REGISTER_STATISTICS procedure in the DBMS_REPCApackage to
collect information about the successful resolution of update, delete, and
uniqueness conflicts for a table. The following example gathers statistics for the
employees table in the hr schema:

BEGIN
DBMS_REPCAT.REGISTER_STATISTICS (
sname =>'hr,
oname =>'employees);
END;
/

Viewing Conflict Resolution Statistics

After calling REGISTER_STATISTICS for a table, each conflict that is successfully
resolved for that table is logged in the ALL_ REPRESOLUTION_STATISTICSdata
dictionary view. Information about unresolved conflicts is always logged in the
DEFERRORiew, whether the object is registered or not.

See Also: The ALL_REPRESOLUTION_STATISTICSview on

page 25-32 and the DEFERRORiew on page 27-3 for more
information

Configure Conflict Resolution 6-41

Auditing Successful Conflict Resolution

Canceling Conflict Resolution Statistics

Use the CANCEL_STATISTICSprocedure in the DBMS_REPCAjackage if you no
longer want to collect information about the successful resolution of update, delete,
and uniqueness conflicts for a table. The following example cancels statistics
gathering on the employees table in the hr schema:

BEGIN
DBMS_REPCAT.CANCEL_STATISTICS (
sname =>'hr,
oname =>'employees);
END,;
/

Clearing Statistics Information

If you registered a table to log information about the successful resolution of
update, delete, and uniqueness conflicts, then you can remove this information
from the DBA_REPRESOLUTION_STATISTICSlata dictionary view by calling the
PURGE_STATISTICSprocedure in the DBMS_REPCApackage.

The following example purges the statistics gathered about conflicts resolved due to
inserts, updates, and deletes on the employees table between January 1 and
March 31:

BEGIN
DBMS_REPCAT.PURGE_STATISTICS (
sname =>'hr,
oname =>'employees,
start_date =>'01-JAN-2001,
end_date =>'31-MAR-2001);
END;
/

6-42 Oracle9i Replication Management AP| Reference

Part ||

Managing and Monitoring Your Replication
Environment

Part Il contains instructions on using the replication management API to manage
your replication environment, as well as instructions on using the data dictionary to
monitor your replication environment.

Part Il contains the following chapters:

« Chapter 7, "Managing a Master Replication Environment"

« Chapter 8, "Managing a Materialized View Replication Environment"
« Chapter 9, "Managing Replication Objects and Queues"

« Chapter 10, "Monitoring a Replication Environment"

v

Managing a Master Replication
Environment

As your data delivery needs change due to growth, shrinkage, or emergencies, you
are undoubtedly going to need to change the configuration of your replication
environment. This chapter discusses managing the master sites of your replication
environment. Specifically, this section describes altering and reconfiguring your
master sites.

This chapter contains these topics:

Changing the Master Definition Site

Adding New Master Sites

Removing a Master Site from a Master Group

Updating the Comments Fields in Data Dictionary Views

Using Procedural Replication

Managing a Master Replication Environment 7-1

Changing the Master Definition Site

Changing the Master Definition Site

Many replication administrative tasks can be performed only from the master
definition site. Use the RELOCATE_MASTERDIpFocedure in the DBMS_REPCAT
package to move the master definition site to another master site. This APl is
especially useful when the master definition site becomes unavailable and you need
to specify a new master definition site (see "Option 2: The Old Master Definition
Site Is Not Available" on page 7-3).

Option 1: All Master Sites Are Available

Perform the actions in this section to change the master definition site if all master
sites are available. Meet the following requirements to complete these actions:

Executed As: Replication Administrator
Executed At: Any Master Site
Replication Status: Running Normally (Not Quiesced)

Complete the following steps:

Step 1 Connect to a master site as the replication administrator.
CONNECT repadmin/frepadmin@orc1.word

Step 2 Relocate the master definition site.

BEGIN
DBMS_REPCAT.RELOCATE_MASTERDEF (

gname =>"hr_repd’,
old_masterdef=>'orcL.world),
new_masterdef =>orc2.world,
notify_masters => TRUE,
include_old_masterdef => TRUE);

END;

/

7-2 Oracle9i Replication Management API Reference

Changing the Master Definition Site

Option 2: The Old Master Definition Site Is Not Available

Perform the actions in this section to change the master definition site if the old
master definition site is not available. Meet the following requirements to complete
these actions:

Executed As: Replication Administrator
Executed At: Any Master Site
Replication Status: Normal

Complete the following steps:

Step 1 Connect to a master site as the replication administrator.
CONNECT repadminfrepadmin@orc4.world

Step 2 Relocate the master definition site.

BEGIN
DBMS_REPCAT.RELOCATE_MASTERDEF (

gname =>"hr_repd’,
old_masterdef=>'orcLworld!,
new_masterdef =>‘orc2.world,
notify_masters = TRUE,
include_old_masterdef => FALSE);

END;

/

Managing a Master Replication Environment 7-3

Adding New Master Sites

Adding New Master Sites

As your replication environment expands, you may need to add new master sites to
a master group. You can either add new master sites to a master group that is
running normally or to a master group that is quiesced. If the master group is not
quiesced, then users can perform data manipulation language (DML) operations on
the data while the new master sites are being added. However, more administrative
actions are required when adding new master sites if the master group is not
quiesced.

Note: When adding a master site to a master group that contains
tables with circular dependencies or a table that contains a
self-referential constraint, you must precreate the table definitions
and manually load the data at the new master site. The following is
an example of a circular dependency: Table A has a foreign key
constraint on table B, and table B has a foreign key constraint on
table A.

Follow the instructions in the appropriate section to add new master sites to a
master group:

« Adding New Master Sites Without Quiescing the Master Group
« Adding New Master Sites to a Quiesced Master Group

Adding New Master Sites Without Quiescing the Master Group

This section contains procedures for adding new master sites to an existing master
group that is not quiesced. These new sites may or may not already be replication
sites (master sites or materialized view sites) in other replication groups.

You can use one of the following methods when you are adding a new master site
without quiescing the master group:

« Use full database export/import or change-based recovery to add a new master
site that does not currently have any replication groups. See "Using Full
Database Export/Import or Change-Based Recovery" on page 7-9 for
instructions.

« Use object-level export/import to add a new master site that already has other
replication groups or to add a new master site that does not currently have any
replication groups. See "Using Object-Level Export/Import" on page 7-20 for
instructions.

7-4 Oracle9i Replication Management API Reference

Adding New Master Sites

Use full database export/import and change-based recovery to add all of the
replication groups at the master definition site to the new master sites. When you
use this method, the following conditions apply:

« The new master sites cannot have any existing replication groups.
« The master definition site cannot have any materialized view groups.

« The master definition site must be the same for all of the master groups. If one
or more of these master groups have a different master definition site, then do
not use full database export/import or change-based recovery. Use object-level
export/import instead.

« The new master site must include all of the replication groups in the master
definition site when the extension process is complete. That is, you cannot add a
subset of the master groups at the master definition site to the new master site.
All of the groups must be added.

Note: To use change-based recovery, the existing master site and
the new master site must be running under the same operating
system, although the release of the operating system can differ. This
condition does not apply to full database export/import.

If your environment does not meet all of these conditions, then you must use
object-level export/import to add the new master sites. Figure 7-1 summarizes
these conditions.

Managing a Master Replication Environment 7-5

Adding New Master Sites

Figure 7-1 Determining Which Method to Use When Adding Master Sites

Yes

v

Do the
new master sites

Yes

have one or more existing
replication groups?

Does the
master definition site

Yes

have any materialized view
groups?

Do any of
the master groups
have a different master

Yes

definition site?

Do you
want to add a subset

v

Use object-level export / import
to add new master sites.

Set up new master sites for
multimaster replication.

of the master groups to the

new master sites?

END

v

Use full database export / import
or change-based recovery to add
new databases.

7-6 Oracle9i Replication Management API Reference

Adding New Master Sites

Use object-level export/import to add a master group to master sites that already
have other replication groups or to add a master group to master sites that do not
currently have any replication groups. This method can add one or more master
groups to new master sites at a time, and you can choose a subset of the master
groups at the master definition site to add to the new master sites during the
operation.

If you use object-level export/import and there are integrity constraints that span
more than one master group, then you must temporarily disable these integrity
constraints on the table being added to a new master site, if the other tables to
which these constraints refer already exist at the new master site. Initially, there are
two rows in the DEFSCHEDULHata dictionary view that refer to the new master
sites. When propagation is caught up, there is one row in this view, and when
propagation from all the master sites to the new master site is caught up, you can
re-enable the integrity constraints you disabled.

Again, the two methods for adding new master sites without quiescing the master
groups are the following:

« Full database export/import or change-based recovery
« Object-level export/import

When you use either method, propagation of deferred transactions to the new
master site is partially or completely disabled while the new master sites are being
added. Therefore, make sure each existing master site has enough free space to store
the largest unpropagated deferred transaction queue that you may encounter.

In addition, the following restrictions apply to both methods:

« All affected master groups must be using asynchronous replication.
Synchronous replication is not allowed.

« All scheduled links must use parallel propagation with parallelism set to 1 or
higher.

« Either the database links of all affected master groups must have no connection
gualifier or they must all have the same connection qualifier.

= After you begin the process of adding new master sites to one or more master
groups, you must wait until these new master sites are added before you begin
to add another set of master sites to any of the affected master groups. If there is
information about an affected master group in the DBA_NEW_REPSITESata
dictionary view at the master definition site, then the process is started and is
not yet complete for that master group.

Managing a Master Replication Environment 7-7

Adding New Master Sites

After you begin the process of adding new master sites to one or more master
groups, you cannot relocate the master definition site for these master groups
until the new master sites are added. If there is information about an affected
master group in the DBA_NEW_REPSITES8ata dictionary view, then the
process is started and is not yet complete for that master group.

Only one add master site request at a time is allowed at a master site. For
example, if hgl.world is the master definition site for mgroupl and
hg2.world is the master definition site for mgroup2 , then you cannot add
hgl.world tomgroup2 and hg2.world to mgroupl atthe same time.

All master sites must be at 9.0.0 or higher compatibility level. You control the
compatibility level with the COMPATIBLHENitialization parameter. If any master
sites are lower than 9.0.0 compatibility level, then the master group must be
guiesced to extend it with new master sites. In this case, follow the instructions
in "Adding New Master Sites to a Quiesced Master Group" on page 7-31.

If you are using object-level or full database export/import, then make sure
there is enough space in your rollback segments or undo tablespace for the
export.

Also, before adding new master sites with either method, make sure you properly
set up your new master sites for multimaster replication.

Note: If progress appears to stop during one of the procedures
described in the following sections, then check your trace files and
the alert log for messages.

See Also:

« "Setting Up Master Sites" on page 2-5 for information about
setting up your new master sites for multimaster replication

« Oracle9i Database Administrator’s Guide for more information
about trace files and the alert log

« Oracle9i Database Administrator’s Guide for information about
managing undo space

7-8 Oracle9i Replication Management API Reference

Adding New Master Sites

Using Full Database Export/Import or Change-Based Recovery

Figure 7-2 shows the major steps for using full database export/import or
change-based recovery to add new master sites to a master group without
quiescing. The following example script adds the new master sites orc4.world

and orcb.world to the hr_repg master group. In this example, orc4.world is
added using full database export/import and orc5.world is added using
change-based recovery.

Managing a Master Replication Environment 7-9

Adding New Master Sites

7-10

Figure 7-2 Using Full Database Export/Import or Change-Based Recovery

Full database
export / import

START

v

Specify new master sites for
each master group.

v

Add new master sites.

v

Perform full database export of
master database.

v

Resume propagation to master

definition site.

Transfer export dump file to
new master sites.

v

Perform full database import.

v

Allow new masters to receive
deferred transactions.

v

Are you
using full database
export / import or change-
based recovery?

Change-based
recovery

v

Perform change-based recovery.

v

Allow new masters to receive
deferred transactions.

p| END |«

Oracle9/ Replication Management API Reference

Adding New Master Sites

Meet the following requirements to complete these actions:
Executed As: Replication Administrator

Executed At:

« Step 1 at Each New Master Site

« Steps 2 - 6b at Master Definition Site

« Step 6¢ requires a file transfer between sites.

« Steps 6d - 9 at Each New Master Site

Replication Status: Running Normally (Not Quiesced)

Complete the following steps to use full database export/import or change-based
recovery to add sites to a master group.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 7-20 into a text editor and then edit
the text to create a script for your environment.

ekttt BEGINNING OF SCRIPT

Step 1 If you are using full database export/import, then create the databases
that you want to add to the master group.

This step is not required if you are using change-based recovery.

See Also: Oracle9i Database Administrator’s Guide for information
about creating a database

#

SETECHOON

SPOOL add_masters_full.out

PAUSE Press <RETURN>when the databases for the new master sites are created.

I

Managing a Master Replication Environment 7-11

Adding New Master Sites

Step 2 Set up each new master site as a replication site. Remember that you
need to configure the following:

« The replication administrator at each new master site
« A scheduled link from each existing master site to each new master site
« Ascheduled link from each new master site to each existing master site
« A schedule purge job at each new master site

*

PAUSE Press <RETURN> to continue the new master sites have been setup and the
required scheduled links have been created.

I

See Also:

« Oracle9i Replication for information about scheduled links

« "Setting Up Master Sites" on page 2-5

» "Creating Scheduled Links Between the Master Sites" on

page 2-20

Step 3 Connect as the replication administrator to the master definition site.
gl
CONNECT repadmin/repadmin@orcl.world

I

Step 4 Specify new master sites for each master group.

Before you begin, create the required scheduled links between existing master sites
and each new master site if they do not already exist.

See Also:
« Oracle9i Replication for information about scheduled links

« "Creating Scheduled Links Between the Master Sites" on
page 2-20 for examples

*

BEGIN

7-12 Oracle9i Replication Management AP| Reference

Adding New Master Sites

DBMS_REPCAT.SPECIFY_NEW_MASTERS (
gname =>'HR_REPG,
master_list =>orc4.world,orc5.world);
END;
/

f*
You can begin to track the extension process by querying the following data
dictionary views in another SQL*Plus session:
. DBA REPSITES NEW
. DBA_REPEXTENSIONS
*
PAUSE Press <RETURN>when you have completed the these steps.

I

Step 5 Add the new master sites.

Before running the following procedure, ensure that there are an adequate number
of background jobs running at each new master site. If you are using full database

export/import, then make sure there is enough space in your rollback segments or
undo tablespace for the export before you run this procedure.

See Also:

« Oracle9i Replication for information about setting the JOB_
QUEUE_PROCESSHAtialization parameter properly for a
replication environment

« Oracle9i Database Administrator’s Guide for information about
managing undo space

*

VARIABLE masterdef_flashback_scn NUMBER;
VARIABLE extension_id VARCHAR2(32);
BEGIN
DBMS_REPCAT.ADD _NEW_MASTERS (
export_required =>true,
available_master_list=>NULL,
masterdef _flashback scn => masterdef flashback scn,

Managing a Master Replication Environment 7-13

Adding New Master Sites

extension_id => :extension id,
break trans to masterdef =>false,
break frans_to_new_masters =>false,
percentage_for_catchup_mdef=>80,
cycle_seconds_mdef=>60,
percentage_for_catchup_new=>80,
cycle_seconds_new =>60);

END;

/

I

The values for masterdef_flashback _scn and extension_id are saved into
variables to be used later in the process. To see these values, you can query the
DBA_REPSITES_NEWnd DBA_REPEXTENSIONB8ata dictionary views.

#
PAUSE Press <RETURN>when you have completed the these steps.

I

If you need to undo the changes made to a particular master site by the SPECIFY_
NEW_MASTERSd ADD_NEW_MASTER®ocedures, then use the DBMS_
REPCAT.UNDO_ADD_NEW_MASTERS_REQUES&Edure.

For the export_required parameter, true is specified because orc4.world s
being added using full database export/import. Although orc5.world is using
change-based recovery, the true setting is correct because at least one new master
site is added using export/import.

After successfully executing this procedure, monitor its progress by querying the
DBA_REPCATLOG@ata dictionary view in another SQL*Plus session. Do not proceed
to Step 6 until there is no remaining information in this view about adding the new
master sites. Assuming no extraneous information exists in DBA_REPCATLO&Gom
other operations, you can enter the following statement:

SELECT COUNT(*) FROM DBA REPCATLOG,;

All of the processing is complete when this statement returns zero (0).
*

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

I

7-14 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Step 6 Perform the following substeps for the master sites being added using
full database export/import. For master sites being added using change-based
recovery, these substeps are not required and you can proceed to Step 7 on
page 7-17.

a.

Perform full database export of master definition database. Use the system
change number (SCN) returned by the masterdef_flashback_scn
parameter in Step 5 for the FLASHBACK_SCMxport parameter.

You can query the DBA_REPEXTENSIONGSata dictionary view for the
FLASHBACK_SCNalue:

SELECT FLASHBACK_SCN FROM DBA_REPEXTENSIONS,;

In this example, orc4.world is using full database export/Zimport.
Therefore, perform the full database export of the master definition
database so that it can be imported into orc4.world during a later step.
However, the orc5.world database is using change-based recovery.
Therefore, the export would not be required if you were adding only
orc5.world

The following is an example of an export statement:

exp system/manager FILE=fulldb_orc1.dmp FULL=y DIRECT=n
GRANTS=y ROWS=y COMPRESS=y STATISTICS=compute LOG=exp_orcl.log
FLASHBACK_SCN=124723

Note: You can also perform database exports by entering exp
system/manager at the command line prompt and then
answering the subsequent prompts

Consider the following when you run the Export utility:

— Only users with the DBArole or the EXP_FULL_DATABASEKOole can
export in full database mode.

— Make sure the UNDO_RETENTIOMitialization parameter is set
correctly before performing the export.

— Do not use the CONSISTENTexport parameter.

Managing a Master Replication Environment 7-15

Adding New Master Sites

See Also:

« Oracle9i Database Utilities for information about performing a
full database export

« Oracle9i Database Administrator’s Guide for information about
managing undo space and setting this parameter

*

PAUSE Press <RETURN> to continue when the export is complete.

I

Resume propagation to the master definition site.

Running the following procedure indicates that export is effectively
finished and propagation can be enabled for both extended and unaffected
master groups at the master sites.

*
BEGIN
DBMS_REPCAT.RESUME_PROPAGATION_TO_MDEF (
extension_id => :extension _id);

END;
/

I

You can find the extension_id by querying the DBA_REPSITES_NEW
data dictionary view.
Transfer the export dump file to the new master sites.

Using FTP or some other method, transfer the export dump file to the other
new master sites that are being added with full database export/import.
You will need this export dump file at each new site to perform the import
described in the next step.

#
PAUSE Press <RETURN> to continue after transfening the dump file.

I

7-16 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Set the JOB_QUEUE_PROCESSH#%tialization parameter to zero for each
new master site.

*

PAUSE Press <RETURN> to continue after JOB_ QUEUE_PROCESSES is setto
zero at each new master site.

I

Step 7 Perform import or change-based recovery at each new master site.

If you are using full database export/import, then complete the full
database import of the database you exported in Step 6a at each new master
site that is being added with full database export/import.

The following is an example of an import statement:

imp system/manager FILE=fulldb_orc1.dmp FULL=y BUFFER=30720
IGNORE=y GRANTS=y ROWS=y DESTROY=y COMMIT=y LOG=importlog

Note: You can also perform database imports by entering imp
system/manager at the command line prompt and then
answering the subsequent prompts.

Only users with the DBA role or the IMP_FULL_DATABASEole can import
in full database mode.

See Also: Oracle9i Database Utilities for information about
performing a full database import

*
PAUSE Press <RETURN> to continue when the import is complete.
P

If you are using change-based recovery, then perform change-based
recovery using the system change number (SCN) returned by the
masterdef_flashback scn parameter in Step 5. You can query the
DBA_REPEXTENSIONGS8ata dictionary view for the masterdef
flashback _scn value.

Managing a Master Replication Environment 7-17

Adding New Master Sites

You can perform a change-based recovery in one of the following ways:

* Using the SQL*Plus RECOVERommand. See the Oracle9i User-Managed
Backup and Recovery Guide for instructions.

* Using the Recovery Manager (RMAN) DUPLICATEcommand. See the
Oracle9i Recovery Manager User’s Guide for instructions.

Connect to the site where you will perform the change-based recovery:
¥
CONNECT repadminfrepadmin@orc5.world

PAUSE Press <RETURN> to continue when the change-based recovery is
complete. You can use a separate terminal window to perform the
change-based recovery.

P

Step 8 Configure the new sites for multimaster replication by completing the
following steps:

a.

Ensure that the database structures, such as the datafiles, exist for the
replicated schemas at each new master site. In this example, the replicated
schemais hr.

Set the global name for each new master site. The global name for each new
master site must match the global names specified in the SPECIFY_NEW _
MASTER®rocedure that you ran in Step 4. You can query the DBLINK
column in the DBA_REPSITES_NEWlata dictionary view to see the global
name for each new master site.

You can set the global name using the ALTER DATABASEtatement, as in
the following example:

ALTER DATABASE RENAME GLOBAL NAME TO orc4.WORLD;

Create the appropriate scheduled links between the new master sites and
the existing master sites, including the master definition site.

See Also: "Creating Scheduled Links Between the Master Sites"
on page 2-20 for information

*

PAUSE Press <RETURN>when you have completed the these steps.

7-18 Oracle9i Replication Management AP| Reference

Adding New Master Sites

I

Step 9 Allow new masters to receive deferred transactions.

The following procedure enables the propagation of deferred transactions from
other prepared new master sites and existing master sites to the invocation master
site. This procedure also enables the propagation of deferred transactions from the
invocation master site to the other new master sites and existing master sites.

Caution: Do not invoke this procedure until instantiation
(export/Zimport or change-based recovery) of the new master site is
complete.

Do not allow any data manipulation language (DML) statements
directly on the objects in the extended master group in the new
master site until execution of this procedure returns successfully,
because these DML statements may not be replicated.

¥
CONNECT repadmin/repadmin@orc4.world
BEGIN
DBMS_REPCAT.PREPARE_INSTANTIATED MASTER (
extension_id =>:extension _id);
END;
/
CONNECT repadmin/repadmin@orcS.world
BEGIN
DBMS_REPCAT.PREPARE_INSTANTIATED MASTER (
extension_id =>:extension_id);
END;
/
SET ECHO OFF
SPOOL OFF

I

Managing a Master Replication Environment 7-19

Adding New Master Sites

Note: You can find the extension_id by querying the DBA_
REPSITES_NEWiata dictionary view.

END OF SCRIPT /

Using Object-Level Export/Import

Figure 7-3 shows the major steps for using object-level export/import to add new
master sites to a master group without quiescing. The following example procedure
adds the new master sites orc4.world and orc5.world to the hr_repg master
group. An object-level export/import involves exporting and importing the tables
in a master group. When you export and import the tables, other dependent
database objects, such as indexes, are exported and imported as well.

If you have an integrity constraint that spans two master groups, then you have a
child table in one master group (the child master group) and a parent table in a
different master group (the parent master group). In this case, Oracle Corporation
recommends that you add new master sites to both master groups at the same time.
However, if you cannot do this, then you must quiesce the child master group
before adding new master sites to it. Here, the child table includes a foreign key,
which makes it dependent on the values in the parent table. If you do not quiesce
the child master group, then conflicts may result when you add master sites to it.
You can still add master sites to the parent master group without quiescing it.

7-20 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Figure 7-3

Using Object-Level Export/Import

START

v

Specify new master sites for
each master group.

v

Add new master sites.

v

Perform object-level export of
each table in master groups.

v

Resume propagation to the
master definition site.

v

Transfer export dump file to
new master sites.

v

Perfom object-level imports of
all exported tables.

v

Allow new masters to receive
deferred transactions.

v

END

Managing a Master Replication Environment

7-21

Adding New Master Sites

Meet the following requirements to complete these actions:
Executed As: Replication Administrator

Executed At:

« Steps 1 -8 at Master Definition Site

« Step 9 requires a file transfer between sites.

» Steps 10 - 11 at Each New Master Site

Replication Status: Running Normally (Not Quiesced)

Complete the following steps to use object-level export/import to add sites to a
master group.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 7-30 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Step 1 If the users for the replicated schemas do not exist at the new master

sites, then create them now. In this example, the replicated schema is hr . This
schema probably already exist at the new master sites because it is a sample
schema that is typically installed when you install Oracle.

See Also: Oracle9i Sample Schemas for general information about
the sample schemas and for information about installing them

*
SETECHOON
SPOOL add_masters_object.out

PAUSE Press <RETURN> to continue when the users are created at the new master
sites.

I

7-22 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Step 2 If any of the tables in the master group have circular dependencies,
then precreate these tables at the new master sites. Failure to precreate these
tables will result in errors later in the procedure. If there are no circular
dependencies, then this step is not required, and you can proceed to Step 3.

Some of the tables in the hr schema contain circular dependencies. Therefore, in
this example, the tables in the hr schema must be precreated at each new master
site. Again, the hr schema tables are typically created during Oracle installation
and so may already exist at the new master sites.

If you need to precreate tables, then disable referential integrity constraints for these
tables at the new master sites before the import. Referential integrity constraints can
cause errors when you import data into existing tables. This example disables the
referential integrity constraints for the precreated tables in the hr schema at the new
master site orc4.world

Further, the precreated tables at the new master sites should not contain any data.
This example truncates the tables in the hr schema at the new master site
orcd.world to ensure that they do not contain any data.

See Also:

« The note under "Adding New Master Sites" on page 7-4 for
more information about circular dependencies

« Oracle9i Database Utilities for information about importing data
into existing tables

*

PAUSE Press <RETURN> to continue when the tables are precreated at the new
master sites, if table precreation is required. After the tables are precreated,
the following statements disable the referential integrity constraints in the hr
schema and truncate the tables in the hr schema at the new site.

CONNECT hrhr@orc4.world

ALTER TABLE hr.countries
DISABLE CONSTRAINT countr_reg fk;

ALTER TABLE hr.departments
DISABLE CONSTRAINT dept_mgr_fk
DISABLE CONSTRAINT dept_loc_fk;

ALTER TABLE hr.employees

Managing a Master Replication Environment 7-23

Adding New Master Sites

DISABLE CONSTRAINT emp_dept fk
DISABLE CONSTRAINT emp_job_fk
DISABLE CONSTRAINT emp_manager_fk;

ALTER TABLE hrjob_history
DISABLE CONSTRAINT jhist_job_fk
DISABLE CONSTRAINT jhist_emp_fk
DISABLE CONSTRAINT jhist_dept fk;

ALTER TABLE hr.locations
DISABLE CONSTRAINT loc ¢ id fk;

TRUNCATE TABLE hr.countries;
TRUNCATE TABLE hr.departments;
TRUNCATE TABLE hr.employees;
TRUNCATE TABLE hr jobs;
TRUNCATE TABLE hr.job_history;
TRUNCATE TABLE hr.locations;
TRUNCATE TABLE hr.regions;

I

Step 3 Set up each new master site as a replication site. Remember that you
need to configure the following:

« The replication administrator at each new master site
« A scheduled link from each existing master site to each new master site
« A scheduled link from each new master site to each existing master site
« A schedule purge job at each new master site

*

PAUSE Press <RETURN> to continue the new master sites have been setup and the
required scheduled links have been created.

I

See Also:
« Oracle9i Replication for information about scheduled links
« "Setting Up Master Sites" on page 2-5

« "Creating Scheduled Links Between the Master Sites" on
page 2-20

7-24 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Step 4 Connect to the master definition site as the replication administrator.
¥

CONNECT repadmin/repadmin@orc1.world

I

Step 5 Specify new master sites for each master group.
*
BEGIN
DBMS_REPCAT.SPECIFY NEW_MASTERS (
gname =>"hr_repg,
master_list=>"orc4.world,orc5.world);

END;
/

I

You can begin to track the extension process by querying the following data
dictionary views in another SQL*Plus session:
« DBA_REPSITES_NEW

« DBA_REPEXTENSIONS

Step 6 Add the new master sites.
Before running the following procedure, ensure that there are an adequate number
of background jobs running at each new master site. Also, make sure there is
enough space in your rollback segments or undo tablespace for the export before
you run this procedure.

See Also:

« Oracle9i Replication for information about setting the JOB_
QUEUE_PROCESSH#tialization parameter properly for a
replication environment

« Oracle9i Database Administrator’s Guide for information about
managing undo space

*

VARIABLE masterdef flashback scn NUMBER;

Managing a Master Replication Environment 7-25

Adding New Master Sites

VARIABLE extension_id VARCHAR2(32);
BEGIN
DBMS_REPCAT.ADD _NEW_MASTERS (

export_required =>true,
available_master_list =>'orc4.world,orc5.word,
masterdef _flashback scn => :masterdef flashback scn,
extension_id => :extension id,
break trans to masterdef =>false,
break trans_to_new_masters =>false,
percentage_for_catchup_mdef=>80,
cycle_seconds_mdef=>60,
percentage_for_catchup_new=>80,
cycle_seconds_new =>60);

END;

/

I
The sites specified for the available_master_list parameter must be same as
the sites specified in the SPECIFY_NEW_MASTERSocedure in Step 5.

The values for masterdef_flashback _scn and extension_id are saved into
variables to be used later in the process. To see these values, you can also query the
DBA_REPSITES_NEWnd DBA_REPEXTENSIONB8ata dictionary views.

If you need to undo the changes made to a particular master site by the SPECIFY_
NEW_MASTERS)d ADD_NEW_MASTERS®ocedures, then use the UNDO_ADD_NEW _
MASTERS_REQUESFocedure.

After successfully executing this procedure, monitor its progress by querying the
DBA_REPCATLOG@ata dictionary view in another SQL*Plus session. Do not proceed
to Step 7 until there is no remaining information in this view about adding the new
master sites. Assuming there is no extraneous information in DBA_REPCATLOG
from other operations, you can enter the following statement:

SELECT COUNT(*) FROM DBA_REPCATLOG;

All of the processing is complete when this statement returns zero (0).
¥

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

I

7-26 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Step 7 Perform object-level export of tables at master definition database.

At the master definition database, perform an object-level export for each master
table in the master groups that will be created at the new master sites. An
object-level export includes exports performed in table mode, user mode, or
tablespace mode.

Use the system change number (SCN) returned by the masterdef flashback_
scn parameter in Step 6 for the FLASHBACK_SCHRXxport parameter. You can query
the DBA_REPEXTENSIONGS8ata dictionary view for the FLASHBACK_SCNalue:

SELECT FLASHBACK_SCN FROM DBA_REPEXTENSIONS;
The following is an example of an object-level export that exports the entire hr
schema in user mode:

exp system/manager FILE=hr_schema.dmp OWNER=hr DIRECT=n GRANTS=y
ROWS=y COMPRESS=y INDEXES=y CONSTRAINTS=y STATISTICS=compute
FLASHBACK_SCN=3456871

Note: You can also perform database exports by entering exp
system/manager at the command line prompt and then
answering the subsequent prompts.

When you export tables, their indexes are exported automatically.
Consider the following when you run the Export utility:

« Make sure the UNDO_RETENTIOMitialization parameter is set correctly
before performing the export.

« Do not use the CONSISTENTexport parameter.

See Also:

« Oracle9i Database Utilities for information about performing an
object-level database export

« Oracle9i Database Administrator’s Guide for information about
managing undo space and setting the UNDO_RETENTION
initialization parameter

*

PAUSE Press <RETURN> to continue when the export is complete.

Managing a Master Replication Environment 7-27

Adding New Master Sites

I

Step 8 Resume propagation to the master definition site.

Running the following procedure indicates that export is effectively finished and
propagation can be enabled for both extended and unaffected master groups at the
master sites.

*

BEGIN
DBMS_REPCAT.RESUME_PROPAGATION_TO_MDEF (
extension_id => :extension _id);
END;
/

I

You can find the extension_id by querying the DBA REPSITES_NEWata
dictionary view.

Step 9 Transfer the export dump files to the new master sites.

Using FTP or some other method, transfer the export dump files to the other new
master sites that are being added with object-level export/import. You will need
these export dump files at each new site to perform the import described in the next
step.

*

PAUSE Press <RETURN> to continue when the export dump files have been
transfered to the new master sites that are being added with object-level

exportimport.
I

Step 10 Perform object-level imports at each new master site of each object
you exported in Step 7.

The following is an example of an object-level import that imports the entire hr
schema:

imp system/manager FILE=hr_schema.dmp FROMUSER=hr BUFFER=30720 IGNORE=y
GRANTS=y ROWS=y DESTROY=y COMMIT=y

7-28 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Note: You can also perform database exports and imports by
entering exp system/manager at the command line prompt and
then answering the subsequent prompts.

Other objects, such as the indexes based on the tables, are imported automatically.

See Also: Oracle9i Database Utilities for information about
performing object-level imports

Connect to the site where you will perform the object-level imports and then
perform the imports at each site:

*
CONNECT repadmin/repadmin@orc4.world

PAUSE Press <RETURN> to continue when the imports are complete at this site. You
can use a separate terminal window to perform the object-level imports.

CONNECT repadmin/repadmin@orc5.world

PAUSE Press <RETURN> to continue when the imports are complete at this site. You
can use a separate terminal window to perform the object-level imports.

I

Step 11 Allow new masters to receive deferred transactions.

The following procedure enables the propagation of deferred transactions from
other prepared new master sites and existing master sites to the invocation master
site. This procedure also enables the propagation of deferred transactions from the
invocation master site to the other new master sites and existing master sites.

Caution: Do not invoke this procedure until object-level
export/import for the new master site is complete.

Do not allow any data manipulation language (DML) statements
directly on the objects in the extended master group in the new
master site until execution of this procedure returns successfully,
because these DML statements may hot be replicated.

Managing a Master Replication Environment 7-29

Adding New Master Sites

#
CONNECT repadminfrepadmin@orc4.world

BEGIN
DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (
extension_id =>:extension _id);
END;
/

CONNECT repadminfrepadmin@orc5.word
BEGIN
DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (

extension_id =>:extension_id);

END;

/

SET ECHO OFF

SPOOL OFF

I

Note: You can find the extension_id by querying the DBA _
REPSITES_ NEWata dictionary view.

Fekkidakkaaieekaeek END OF SCRIPT /

7-30 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Adding New Master Sites to a Quiesced Master Group

You can add new master sites to a quiesced master group in one of the following
ways:

« Adding New Master Sites Using the ADD_MASTER_DATABASE Procedure
« Adding New Master Sites with Offline Instantiation Using Export/Import

Typically, you should only use the ADD_MASTER_DATABAS¥ocedure if you have
a relatively small master group or if you plan to precreate the replication tables and
load the data into them at the new master sites. If this is not the case, the ADD _
MASTER_DATABASHErocedure may not be a good option because the entire master
group is copied over the network. For larger master groups, either precreate the
objects in the master group at the new master sites or use offline instantiation.

Adding New Master Sites Using the ADD_MASTER_DATABASE Procedure

You can use the ADD_MASTER_DATABAS¥ocedure to add additional master sites
to an existing master group that is quiesced. Executing this procedure replicates
existing master objects to the new site. If any master site is lower than 9.0.0
compatibility level, then you must use the following procedure. That is, the master
group must be quiesced to extend it with new master sites. You control the
compatibility level of a database with the COMPATIBLHENitialization parameter.

Meet the following requirements to complete these actions:
Executed As: Replication Administrator

Executed At: Master Definition Site

Replication Status: Quiesced

Complete the following steps to use the ADD_MASTER_DATABAS¥ocedure to add
sites to a master group.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 7-34 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Managing a Master Replication Environment 7-31

Adding New Master Sites

Step 1 Set up the new master site.

Make sure the appropriate schema and database links have been created before
adding your new master site. Be sure to create the database links from the new
master site to each of the existing masters sites. Also, create a database link from
each of the existing master sites to the new master site. After the database links
have been created, make sure that you also define the scheduled links for each of
the new database links.

See Also:
« "Setting Up Master Sites" section on page 2-5

» "Creating Scheduled Links Between the Master Sites" on
page 2-20

*

SETECHOON

SPOOL add_masters_quiesced.out

PAUSE Press <RETURN> to the new master site has been set up.

I

Step 2 Connect to the master definition site as the replication administrator.
*

CONNECT repadmin/repadmin@orc1.world

F

Step 3 If the replication status is normal, then change the status to quiesced.
*
/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
gname =>"hr_repg);
END,;
/

I

7-32 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Step 4 Use the ADD_MASTER_DATABASEocedure to add the new master
sites.
This example assumes that the replicated objects do not exist at the new master site.
Therefore, the copy_rows parameter is set to true to copy the rows in the
replicated objects at the master definition site to the new master site, and the use_
existing_objects parameter is set to false so that Advanced Replication
creates the replicated objects at the new site. If the replicated objects already exist at
the new site but do not contain any data, then set use_existing_objects to
true .
*
BEGIN
DBMS_REPCAT.ADD MASTER DATABASE (

gname =>'hr_repg,

master =>'orc4.world,

use_existing_objects => FALSE,

copy_rows => TRUE,

propagation_mode =>'ASYNCHRONOUS);
END;
/

I

You should wait until the DBA_REPCATLOGew is empty. This view has temporary
information that is cleared after successful execution. Execute the following SELECT
statement in another SQL*Plus session to monitor the DBA_ REPCATLOGiew:

SELECT COUNT(*) FROM DBA_REPCATLOG WHERE GNAME ='HR_REPG;

All of the processing is complete when this statement returns zero (0).
¥
PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

I

Step 5 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
¥

BEGIN

Managing a Master Replication Environment 7-33

Adding New Master Sites

DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
gname =>"hr_repg);
END;
/

SET ECHO OFF

SPOOL OFF

ekttt END OF SCRIPT

7-34 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Adding New Master Sites with Offline Instantiation Using Export/Import

Expanding established replication environments can cause network traffic when

you add a new master site to your replication environment using the ADD_MASTER _
DATABASHrocedure. This is caused by propagating the entire contents of the table
or materialized view through the network to the new replicated site.

To minimize such network traffic, you can expand your replication environment by
using the offline instantiation procedure. Offline instantiation takes advantage of
Oracle’s Export and Import utilities, which allow you to create an export file and
transfer the data to the new site through another storage medium, such as
CD-ROM, tape, and so on.

The following script is an example of how to perform an offline instantiation of a
master site. This script can potentially eliminate large amounts of network traffic
caused by the normal method of adding a new master site to an existing master

group.
Meet the following requirements to complete these actions:
Executed As: Replication Administrator

Executed At: Master Definition Site and New Master Site
Replication Status: Quiesced and Partial

Complete the following steps to use offline instantiation to add sites to a master
group.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 7-41 into a text editor and then edit
the text to create a script for your environment.

frekkidkkaetck BEGINNING OF SCRIPT

Step 1 Set up the new master site.

Make sure the appropriate schema and database links have been created before
performing the offline instantiation of your new master site. Be sure to create the
database links from the new master site to each of the existing masters sites. Also,
create a database link from each of the existing master sites to the new master site.
After the database links have been created, make sure that you also define the
scheduled links for each of the new database links.

Managing a Master Replication Environment 7-35

Adding New Master Sites

See Also:
« "Setting Up Master Sites" section on page 2-5

« "Creating Scheduled Links Between the Master Sites" on
page 2-20

#

SETECHOON

SPOOL add_masters_instant.out

PAUSE Press <RETURN> to the new master site has been set up.

I

Step 2 Connect to the master definition site as the replication administrator.
*

CONNECT repadmin/repadmin@orc1.world

I

Step 3 Suspend master activity.
You need to suspend master activity for the existing master sites before exporting
your master data and beginning the offline instantiation process.

*
BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
gname =>"hr_repg);

END;
/

I

7-36 Oracle9i Replication Management AP| Reference

Adding New Master Sites

Step 4 Verify that there are no pending transactions in a separate SQL*Plus
session.

This includes pushing any outstanding deferred transactions, resolving any error
transactions, and pushing any administrative transactions. This step must be
performed at each of the existing master sites.

Check the error transaction queue.

SELECT * FROM DEFERROR,;

If any deferred transactions have been entered into the error queue, then you need
to resolve the error situation and then manually reexecute the deferred transaction.
The following is an example:

BEGIN
DBMS_DEFER_SYS.EXECUTE _ERROR (
deferred _tran_id =>'128323,
destination => ‘orc1.world);
END;
/

Check for outstanding administrative requests.
SELECT *FROM DBA REPCATLOG,;

If any administrative requests remain, then you can manually push these
transactions or wait for them to be executed automatically. You may need to execute
the DBMS_REPCAT.DO_DEFERRED_REPCAT_ADpt¢edure several times,
because some administrative operations have multiple steps. The following is an
example:

BEGIN
DBMS_REPCAT.DO_DEFERRED REPCAT_ADMIN (
gname =>"hr_repd’,
all_sites =>TRUE);
END;
/

*

PAUSE Press <RETURN> to continue when you have verified that there are no
pending requests.

I

Managing a Master Replication Environment 7-37

Adding New Master Sites

Step 5 Begin offline instantiation procedure.
*

BEGIN
DBMS_OFFLINE_OG.BEGIN_INSTANTIATION (
gname =>"hr_repd’,
new_site => ‘orc4.world);
END;
/

I

You should wait until the DBA_REPCATLOGew is empty. This view has temporary
information that is cleared after successful execution. Execute the following SELECT
statement in another SQL*Plus session to monitor the DBA_REPCATLOGiew:

SELECT * FROM DBA_REPCATLOG WHERE GNAME ='HR_REPG;
*
PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

I

Step 6 In a separate terminal window, connectas hr/hr to export.

Use the Oracle Export utility to generate the export file that you will transfer to the
new master site. The export file contains the replicated objects to be added at the
new master site.

See Also: Oracle9i Database Utilities for additional information

The following is an example of an export command for the hr schema:

exp hrhr@orc1.world

Note: You can also perform database exports by entering exp
system/manager at the command line prompt and then
answering the subsequent prompts.

*

PAUSE Press <RETURN> to continue when the export is complete.

7-38 Oracle9i Replication Management AP| Reference

Adding New Master Sites

I

Step 7 Resume partial replication activity.

Because it may take some time to complete the offline instantiation process, you can
resume replication activity for the remaining master sites (excluding the new master
site) by executing the RESUME_SUBSET_OF_MASTE®RScedure in the DBMS_
OFFLINE_OGpackage after the export is complete. In the example below,
replication activity is resumed at all master sites except the new master site --
orc4.world

*

BEGIN
DBMS_OFFLINE_OG.RESUME_SUBSET OF MASTERS (
gname =>'hr_repg,
new_site => ‘orc4.world);
END;
/

I

Step 8 Connect to the new master site as the replication administrator.
¥

CONNECT repadmin/repadmin@orc4.world

I

Step 9 Prepare new master site.

After transferring the export file from the master definition site to the new master
site, you must prepare the new site to import the data in your export file. Make sure
you execute the following procedure at the new master site.

*

BEGIN
DBMS_OFFLINE_OG.BEGIN_LOAD (
gname =>"hr_repd’,
new_site => ‘orc4.world);
END;
/

Managing a Master Replication Environment 7-39

Adding New Master Sites

I

Step 10 In a separate terminal window, import data from export file.

After importing the export file that you generated earlier, you have transferred the
data from your master definition site to your new master site.

The following is an example of an import command for the hr schema:
imp hrhr@orc4.world FULL=y IGNORE=y

Note: You can also perform database imports by entering imp
system/manager at the command line prompt and then
answering the subsequent prompts.

*
PAUSE Press <RETURN> to continue when the import is complete.

I

Step 11 Complete load process at new master site.

After importing the export file, you are ready to complete the offline instantiation
process at the new master site. Executing the DBMS_OFFLINE_OG.END_LOAD
procedure prepares the new site for normal replication activity.

*
BEGIN
DBMS_OFFLINE_OG.END_LOAD (
gname =>"hr_repd’,
new_site => ‘orc4.world);

END;
/

I

Step 12 Connect to the master definition site as the replication administrator.
*

CONNECT repadmin/repadmin@orc1.world

7-40 Oracle9i Replication Management AP| Reference

Removing a Master Site from a Master Group

I

Step 13 Complete instantiation process.

After completing the steps at the new master site, you are ready to complete the
offline instantiation process. Executing the END_INSTANTIATION procedure in the
DBMS_OFFLINE_O@ackage completes the process and resumes normal replication
activity at all master sites. Make sure you execute the following procedure at the
master definition site.

*

BEGIN
DBMS_OFFLINE_OG.END_INSTANTIATION (
gname =>"hr_repd’,
new_site => ‘orc4.world);
END;
/

SET ECHO OFF

SPOOL OFF

fperrrrttidddadaeees END OF SCRIPT]

Removing a Master Site from a Master Group

When it becomes necessary to remove a master site from a master group, use the
REMOVE_MASTER_DATABASHScedure to drop one or more master sites.

Meet the following requirements to complete these actions:
Executed As: Replication Administrator

Executed At: Master Definition Site

Replication Status: Quiesced

Complete the following steps to remove a master site.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 7-43 into a text editor and then edit
the text to create a script for your environment.

Managing a Master Replication Environment 7-41

Removing a Master Site from a Master Group

frkitidkaetck BEGINNING OF SCRIPT

Step 1 Connect to the master definition site as the replication administrator.
*

SETECHOON
SPOOL remove_masters.out
CONNECT repadmin/repadmin@orc1.world

I

Step 2 If the replication status is normal for the master group, then change the
status to quiesced.

*

/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
gname =>"hr_repg);
END;
/

I

Step 3 Remove the master site using the REMOVE_MASTER_DATABASES
procedure.
*

BEGIN
DBMS_REPCAT.REMOVE_MASTER_DATABASES (
gname =>"hr_repd’,
master_list=> ‘orc4.world);
END;
/

I
You should wait until the DBA_REPCATLO®@Giew is empty. Execute the following

SELECTstatement in another SQL*Plus session to monitor the DBA_REPCATLOG
view:

SELECT *FROM DBA REPCATLOG WHERE GNAME ='HR_REPG;

7-42 Oracle9i Replication Management AP| Reference

Removing a Master Site from a Master Group

¥

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty for the master
group.

I

Step 4 Resume master activity for the master group.
*
/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
gname =>"hr_repg);
END;
/

SET ECHO OFF

SPOOL OFF

ekttt END OF SCRIPT /

Managing a Master Replication Environment 7-43

Removing a Master Site from a Master Group

Removing an Unavailable Master Site

The sites being removed from a master group do not have to be accessible. When a
master site will not be available for an extended period of time due to a system or
network failure, you might decide to drop the master site from the master group.

However, because the site is unavailable, you most likely cannot suspend
replication activity for the master group. You can use the REMOVE_MASTER _
DATABASE$rocedure in the DBMS_REPCApackage to remove master sites from a
master group, even if the master group is not quiesced.

If this is the case, you are responsible for:
« Cleaning the deferred transaction queue
« Removing any data inconsistencies

Specifically, the next time that you suspend replication activity for a master group,
you must complete the following steps as soon as possible after the unavailable
master sites are removed:

Step 1 Suspend replication activity for the master group. See "SUSPEND _
MASTER_ACTIVITY Procedure" on page 20-102 for information.

Step 2 Delete all deferred transactions from each master site where the
destination for the transaction is a removed master site. See "DELETE_TRAN
Procedure" on page 14-7 for information.

Step 3 Remove all deferred transactions from removed master sites. See
"DELETE_TRAN Procedure"” on page 14-7 for information.

Step 4 Reexecute or delete all error transactions at each remaining master

site. See "Managing the Error Queue" on page 9-18 for information about
reexecuting error transactions, and see "DELETE_TRAN Procedure” on
page 14-7 for information about removing error transactions.

Step 5 Ensure that no deferred or error transactions exist at each remaining
master. If you cannot remove one or more deferred transactions from a

7-44 Oracle9i Replication Management AP| Reference

Updating the Comments Fields in Data Dictionary Views

remaining master, execute the DBMS_DEFER_SYS.DELETE_TRAMocedure at
the master site.

Step 6 Ensure that all replicated data is consistent. See Chapter 18, "DBMS _
RECTIFIER_DIFF" for information about determining and correcting
differences.

Step 7 Resume replication activity for the master group. See "RESUME_
MASTER_ACTIVITY Procedure" on page 20-93 for information.

Note: After dropping an unavailable master site from a master
group, you should also remove the master group from the dropped
site to finish the cleanup.

Updating the Comments Fields in Data Dictionary Views

Several procedures in the DBMS_REPCApackage enable you to update the
comment information in the various data dictionary views associated with
replication. Table 7-1 lists the appropriate procedure to call for each view.

Table 7-1 Updating Comments in Advanced Replication Facility Views

View DBMS_REPCAT Procedure See for Parameter Information

DBA REPGROUP COMMENT_ON_REPGROUP("COMMENT_ON_REPGROUP
gname IN VARCHAR2, Procedure" on page 20-39.
comment INVARCHAR2)

DBA REPOBJECT COMMENT_ON_REPOBJECT("COMMENT_ON_REPOBJECT
sname IN VARCHAR?2, Procedure" on page 20-40.

oname IN VARCHAR?2,
type INVARCHAR?2,
comment INVARCHAR2)

DBA REPSITES COMMENT_ON_REPSITES("COMMENT_ON_REPSITES
gname IN VARCHAR?2, Procedure” on page 20-41.
master INVARCHAR,
comment IN VARCHAR?2)

Managing a Master Replication Environment 7-45

Updating the Comments Fields in Data Dictionary Views

Table 7-1 Updating Comments in Advanced Replication Facility Views (Cont.)

View

DBMS_REPCAT Procedure See for Parameter Information

DBA REPCOLUMN_GROUP

DBA_REPPRIORITY_GROUP

DBA REPPRIORITY_GROUP
(Site priority group)

DBA REPRESOLUTION
(uniqueness conflicts)

DBA REPRESOLUTION
(update conflicts)

DBA REPRESOLUTION
(delete conflicts)

COMMENT_ON_COLUMN_GROUP("COMMENT_ON_COLUMN_
shame INVARCHAR2, GROUP Procedure" on page 20-36.
oname IN VARCHAR?2,
column_group IN VARCHAR2,
comment IN VARCHAR?2)

COMMENT_ON_PRIORITY_GROUP("COMMENT_ON_PRIORITY_

gname INVARCHARZ, GROUP/COMMENT_ON_SITE_
pgroup IN VARCHAR?) PRIORITY Procedures” on
comment INVARCHAR?) page 20-38.
COMMENT_ON_SITE._PRIORITY("COMMENT_ON_PRIORITY_
gname IN VARCHAR?2, GROUP/COMMENT_ON_SITE_
name IN VARCHAR?2, PRIORITY Procedures" on
comment INVARCHAR?) page 20-38.
COMMENT_ON_UNIQUE_RESOLUTION(The parameters for the COMMENT _
shame INVARCHAR?2, ON_UNIQUE_RESOLUTION
oname IN VARCHAR?2, procedures are described in
constraint_name IN VARCHAR?2, "COMMENT_ON_conflicttype_
sequence no INNUMBER, RESOLUTION Procedure" on
comment INVARCHAR?) page 20-43.
COMMENT_ON_UPDATE_RESOLUTION(The parameters for the COMMENT_
shame IN VARCHAR?2, ON_UNIQUE_RESOLUTION
oname IN VARCHAR2, procedures are described in
column_group IN VARCHARZ, "COMMENT_ON_conflicttype_
sequence_no INNUMBER, RESOLUTION Procedure" on
comment INVARCHAR?) page 20-43.
COMMENT_ON_DELETE _RESOLUTION(The parameters for the COMMENT_
sname INVARCHAR2, ON_UNIQUE_RESOLUTION
oname INVARCHAR?2, procedures are described in
sequence_no INNUMBER, "COMMENT_ON_conflicttype_
comment INVARCHAR?) RESOLUTION Procedure" on

page 20-43.

7-46 Oracle9i Replication Management AP| Reference

Using Procedural Replication

Using Procedural Replication

Procedural replication can offer performance advantages for large batch-oriented
operations operating on large numbers of rows that can be run serially within a
replication environment.

A good example of an appropriate application is a purge operation, also referred to
as an archive operation, that you run infrequently (for example, once in each
guarter) during off hours to remove old data, or data that was "logically" deleted
from the online database. An example using procedural replication to purge deleted
rows is described in the "Avoiding Delete Conflicts" section in Chapter 5, "Conflict
Resolution Concepts and Architecture", of Oracle9i Replication.

Restrictions on Procedural Replication

All parameters for a replicated procedure must be IN parameters; OUTand IN/OUT
modes are not supported. The following datatypes are supported for these

parameters:

« VARCHAR2
« NVARCHAR2
« NUMBER

« DATE

« RAW

« ROWID

« CHAR

« NCHAR

« Binary LOB (BLOB

« Character LOB (CLOB

« National character LOB (NCLOB
« User-defined datatypes

Oracle cannot detect update conflicts produced by replicated procedures.
Replicated procedures must detect and resolve conflicts themselves. Because of the
difficulties involved in writing your own conflict resolution routines, it is best to
simply avoid the possibility of conflicts altogether.

Managing a Master Replication Environment 7-47

Using Procedural Replication

Adhering to the following guidelines helps you ensure that your tables remain
consistent at all sites when you plan to use procedural replication:

You must disable row-level replication within the body of the deferred
procedure. See "Updating the Comments Fields in Data Dictionary Views" on
page 7-45.

Only one replicated procedure should be run at a time, as described in
"Serializing Transactions" on page 7-50.

Deferred transactions should be propagated serially. For more information
about guidelines for scheduled links, see Oracle9i Replication.

The replicated procedure must be packaged and the package cannot contain
any functions. Standalone deferred procedures and standalone or packaged
deferred functions are not currently supported.

The deferred procedures must reference only locally owned data.

The procedures should not use locally generated fields, values, or
environmentally dependent SQL functions. For example, the procedure should
not call SYSDATE

Your data ownership should be statically partitioned. That is, ownership of a
row should not change between sites.

If you have multiple master groups at a master site, and one or more master
groups are quiesced, then you cannot perform procedural replication on any
master group at the master site. This restriction is enforced because a procedure
in one master group may update objects in another master group. You can only
perform procedural replication when all of the master groups on a master site
are replicating data normally (that is, when none of the master groups is
guiesced).

For example, if you have a procedure named sal_raise in master group A on
master site db1, then you cannot run the sal_raise procedure if master group B
on master site dbl is quiesced, even if master group A is replicating normally.

When using procedural replication, a procedure call is only propagated to
master replication sites. The procedure call is not propagated to materialized
view sites. However, procedural replication can be initiated at a materialized
view site. In this case, the procedure call is propagated to all of the master sites
in the replication environment, but the procedure call is not propagated to any
other materialized view sites. Other materialized view sites must pull changes
made at the master site by performing a materialized view refresh.

7-48 Oracle9i Replication Management AP| Reference

Using Procedural Replication

For example, suppose a replication environment includes two master sites named
msitel and msite2 and two materialized view sites named mviewl and mview?2 .
If procedural replication is initiated at mview1 , then the procedure is run at mviewl
and the procedure call is propagated to the two master sites, msitel and msite2 ,
where the procedure is also run. However, the procedure call is not propagated to
mview2 . Therefore, during the next refresh, mview2 pulls down all of the changes
made by the procedure at its master site.

User-Defined Types and Procedural Replication

When using procedural replication, the user-defined types and the objects
referenced in the procedure must meet the following conditions:

« For an object type, all replication sites must agree about the order of attributes
in the object type. You establish the attribute order when you create the object
type. Consider the following object type:

CREATE TYPE cust_address_typ AS OBJECT
(street_address VARCHAR2(40),
postal code VARCHAR2(10),
city VARCHAR2(30),
state_province VARCHAR2(10),
country id CHAR(2));

/

At all replication sites, street_address must be the first attribute, postal_code
must be the second attribute, city must be the third attribute, and so on.

« For an Oracle object, all replication sites must have the same object identifier
(OID), schema owner, and type name for each replicated object type.

You can meet these conditions by always using distributed schema management to
create or modify any replicated object, including object types, tables with column
objects, and object tables. If you do not use distributed schema management to
create and modify object types, then replication errors may result.

See Also: Oracle9i Replication for more information about type
agreement at replication sites

Managing a Master Replication Environment 7-49

Using Procedural Replication

Serializing Transactions

Serial execution ensures that your data remains consistent. The replication facility
propagates and executes replicated transactions one at a time. For example, assume
that you have two procedures, A and B, that perform updates on local data. Now
assume that you perform the following actions, in order:

Step 1 Execute A and B locally.
Step 2 Queue requests to execute other replicas of A and B on other nodes.

Step 3 Commit.

The replicas of A and B on the other nodes are executed completely serially, in the
same order that they were committed at the originating site. If A and B execute
concurrently at the originating site, however, then they may produce different
results locally than they do remotely. Executing A and B serially at the originating
site ensures that all sites have identical results. Propagating the transaction serially
ensures that A and B are executing in serial order at the target site in all cases.

Alternatively, you could write the procedures carefully, to ensure serialization. For
example, you could use SELECT... FOR UPDATE for queries to ensure serialization
at the originating site and at the target site if you are using parallel propagation.

Generating Support for Replicated Procedures

You must disable row-level replication support at the start of your procedure, and
then re-enable support at the end. This operation ensures that any updates that
occur as a result of executing the procedure are not propagated to other sites.
Row-level replication is enabled and disabled by calling the following procedures,
respectively:

« DBMS_REPUTIL.REPLICATION_ON
« DBMS_REPUTIL.REPLICATION_OFF

See Also:

« "Disabling Replication" on page 9-5

« "REPLICATION_ON Procedure" on page 24-3
« "REPLICATION_OFF Procedure" on page 24-3

7-50 Oracle9i Replication Management AP| Reference

Using Procedural Replication

When you generate replication support for your replicated package, Oracle creates
a wrapper package in the schema of the replication propagator.

Note: Unregistering the current propagator drops all existing
generated wrappers in the propagator’s schema. Replication
support for wrapped stored procedures must be regenerated after
you register a new propagator.

The wrapper package has the same name as the original package, but its name is
prefixed with the string you supply when you generate replication support for the
procedure. If you do not supply a prefix, then Oracle uses the default prefix,

defer_ . The wrapper procedure has the same parameters as the original, along
with two additional parameters: call_local and call_remote . These two CHAR
parameters determine where the procedure is executed. When call_local is'Y' |
the procedure is executed locally. When call_remote is'Y' , the procedure will
ultimately be executed at all other master sites in the replication environment.

The remote procedures are called directly if you are propagating changes
synchronously, or calls to these procedures are added to the deferred transaction
gueue if you are propagating changes asynchronously. By default, call_local is
‘N' ,and call_remote is'Y"

Oracle generates replication support for a package in two phases. The first phase
creates the package specification at all sites. Phase two generates the package body
at all sites. These two phases are necessary to support synchronous replication.

For example, suppose you create the package emp_mgmtcontaining the procedure
new_dept , which takes one argument, email . To replicate this package to all
master sites in your system, you can use the Replication Management tool to add
the package to a master group and then generate replication support for the object.
After completing these steps, an application can call procedure in the replicated
package as follows:

BEGIN

defer_emp_mgmtnew_dept(emall =>jones,
cal local =,
cal_remote =>"YY);

END;

/

Managing a Master Replication Environment 7-51

Using Procedural Replication

See Also: The Replication Management tool’s online help for
more information about managing master groups and replicated
objects using the Replication Management tool

As shown in Figure 7-4, the logic of the wrapper procedure ensures that the
procedure is called at the local site and subsequently at all remote sites. The logic of
the wrapper procedure also ensures that when the replicated procedure is called at
the remote sites, call remote isfalse ,ensuring that the procedure is not further
propagated.

If you are operating in a mixed replication environment with static partitioning of
data ownership (that is, if you are not preventing row-level replication), then
Advanced Replication preserves the order of operations at the remote node, because
both row-level and procedural replication use the same asynchronous queue.

7-52 Oracle9i Replication Management AP| Reference

Using Procedural Replication

Figure 7-4 Asynchronous Procedural Replication

defer_emp_mgmt.new_dept('Jones' 'Y, 'Y")

\

]

new_dept(args...)

if call_local="Y"

call new_dept(Jones)
if call_remote="Y"
build call to new_dept
for deferred queue
with call_remote="N'

Wrapper

Deferred Transaction Queue

packagename ‘ procname

update(oldargs newargs)
insert(newargs)
update(oldargs newargs)
delete(oldargs)

$» | new_dept(Jones)

—r» new_dept(argl)
BEGIN

lock table in EXCLUSIVE mode
disable row-level replication

update employees
enable row-level replication
END;

A

new_dept(argl)
BEGIN

lock table in EXCLUSIVE mode
disable row-level replication
update employees

enable row-level replication
END;

Employees table

Employees table

employee_id | last_name | department_id employee_id | last_ name | department_id
> 100 Jones 20 100 Jones 20 <
101 Kim 20 101 Kim 20
102 Braun 20 102 Braun 20
Site A

Site B

Managing a Master Replication Environment 7-53

Using Procedural Replication

7-54 Oracle9i Replication Management AP| Reference

Managing a Materialized View Replication
Environment

Materialized view replication provides the flexibility to build data sets to meet the
needs of your users and front-end applications, while still meeting the requirements
of your security configuration. This chapter describes how to manage materialized
view sites with the replication management API.

This chapter contains these topics:

« Refreshing Materialized Views

« Changing a Materialized View Group’s Master Site
« Dropping Materialized View Groups and Objects

« Managing Materialized View Logs

« Performing an Offline Instantiation of a Materialized View Site Using
Export/Import

« Using a Group Owner for a Materialized View Group

Managing a Materialized View Replication Environment 8-1

Refreshing Materialized Views

Refreshing Materialized Views

Refreshing a materialized view synchronizes the data in the materialized view’s
master(s) and the data in the materialized view. You can either refresh all of the
materialized views in a refresh group at once, or you can refresh materialized views
individually. If you have applications that depend on more than one materialized
view at a materialized view site, then Oracle Corporation recommends using
refresh groups so that the data is transactionally consistent in all of the materialized
views used by the application.

The following example refreshes the hr_refg refresh group:
EXECUTEDBMS_REFRESH.REFRESHT refg);

The following example refreshes the hr.departments_mv materialized view:

BEGIN
DBMS_MVIEW.REFRESH (
list => 'hr.departments_mv,
method => ?Y);
END;
/

Changing a Materialized View Group’s Master Site

To change the master site of a materialized view group at a level 1 materialized
view site to another master site, call the SWITCH_MVIEW_MASTHE#Rocedure in the
DBMS_REPCApackage, as shown in the following example:

BEGIN
DBMS_REPCAT.SWITCH MVIEW_MASTER (
gname =>"hr_repg,
master =>'orc3.world);
END;
/

In this example, the master site for the hr_repg replication group is changed to the
orc3.world master site. You must call this procedure at the materialized view site
whose master site you want to change. The new database must be a master site in
the replication environment. When you call this procedure, Oracle uses the new
master to perform a full refresh of each materialized view in the local materialized
view group. Make sure you have set up the materialized view site to use the new
master site before you run the SWITCH_MVIEW_MASTH#Rocedure.

8-2 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects

The entries in the SYS.SLOG$table at the old master site for the switched
materialized view are not removed. As a result, the materialized view log (MLOG$
table) of the switched updatable materialized view at the old master site has the
potential to grow indefinitely, unless you purge it by calling DBMS_MVIEW.PURGE_
LOG

Note: You cannot switch the master of materialized views that are
based on other materialized views (level 2 and greater materialized
views). Such a materialized view must be dropped and re-created if
you want to base it on a different master.

See Also: "Setting Up Materialized View Sites" on page 2-24

Dropping Materialized View Groups and Objects

You may need to drop replication activity at a materialized view site for a number
of reasons. Perhaps the data requirements have changed or an employee has left the
company. In any case, as a DBA you will need to drop the replication support for
the target materialized view site.

This section contains the following sections:
« Dropping a Materialized View Groups Created with a Deployment Template
« Dropping a Materialized View Group or Objects Created Manually

« Cleaning Up a Master Site or Master Materialized View Site

Managing a Materialized View Replication Environment 8-3

Dropping Materialized View Groups and Objects

Dropping a Materialized View Groups Created with a Deployment Template

If a materialized view group was created with a deployment template, then, before
you drop the materialized view group at the remote materialized view site, you
need to execute the DROP_SITE_INSTANTIATION procedure at the target master
site of the materialized view group. In addition to removing the metadata relating
to the materialized view group, this procedure also removes the related deployment
template data regarding this site.

The DROP_SITE_INSTANTIATION procedure has a public and a private version.
The public version allows the owner of the materialized view group to drop the
materialized view site, while the private version allows the replication
administrator to drop a materialized view site on behalf of the materialized view
group owner.

Using the Public Version of DROP_SITE_INSTANTIATION
Meet the following requirements to complete these actions:

Executed As:

« Materialized View Group Owner at Master Site

« Materialized View Administrator at Materialized View Site
Executed At:

« Master Site for Target Materialized View Site

« Materialized View Site

Replication Status: Normal

Complete the following steps to drop a materialized view group created with a
deployment template.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 8-6 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Step 1 Connect to the master site as the materialized view group owner.
¥

8-4 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects

SETECHOON
SPOOL drop_mv_group_public.out
CONNECT hrhr@orc3world

I

Step 2 Drop the instantiated materialized view site from the master site.
¥

BEGIN
DBMS_REPCAT_INSTANTIATE.DROP_SITE _INSTANTIATION(
refresh_template_name => ‘hr_refg_dt,
site_name =>"orc3.world);
END;
/

I

Step 3 Connect to the remote materialized view site as the materialized view
administrator.

*
CONNECT mviewadmin/mviewadmin@mv4.world
*

If you are not able to connect to the remote materialized view site, then the target
materialized view group cannot refresh, but the existing data still remains at the
materialized view site.

Step 4 Drop the materialized view group.
*

BEGIN
DBMS_REPCAT.DROP_MVIEW_REPGROUP (
gname =>"hr_repd’,
drop_contents => TRUE);
END;
/

I

Managing a Materialized View Replication Environment 8-5

Dropping Materialized View Groups and Objects

If you want to physically remove the contents of the materialized view group from
the materialized view database, then be sure that you specify TRUEfor the drop__
contents parameter.

Step 5 Remove the refresh group.
*

BEGIN
DBMS_REFRESH.DESTROY (
name =>'hr_refg);

END;

/

SET ECHO OFF

SPOOL OFF

ekt END OF SCRIPT /

Using the Private Version of DROP_SITE_INSTANTIATION

The following steps are to be performed by the replication administrator on behalf
of the materialized view group owner. Meet the following requirements to complete
these actions:

Executed As:

« Replication Administrator at Master Site

« Materialized View Administrator at Materialized View Site
Executed At:

« Master Site for Target Materialized View Site

« Materialized View Site

Replication Status: Normal

Complete the following steps to drop a materialized view group created with a
deployment template.

8-6 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 8-8 into a text editor and then edit
the text to create a script for your environment.

rrrerrkiidddkeeee: BEGINNING OF SCRIPT

Step 1 Connect to the master site as the replication administrator.
*

SET ECHOON
SPOOL drop_mv_group_private.out
CONNECT repadmin/repadmin@orcl.world

I

Step 2 Drop the instantiated materialized view site from the master site.
*

BEGIN
DBMS_REPCAT RGT.DROP_SITE_INSTANTIATION (
refresh_template_name => 'hr_refg_dt,
user name=>"r,
site_name =>‘orc3.world);
END;
/

I

Step 3 Connect to the remote materialized view site as the materialized view
administrator.

*

CONNECT mviewadmin/mviewadmin@mv4.world

F

If you are unable to connect to the remote materialized view site, then the target

materialized view group cannot refresh, but the existing data still remains at the
materialized view site.

Managing a Materialized View Replication Environment 8-7

Dropping Materialized View Groups and Objects

Step 4 Drop the materialized view group.
*

BEGIN
DBMS_REPCAT.DROP_MVIEW_REPGROUP (
gname =>"hr_repd’,
drop_contents => TRUE
gowner =>'hr);
END;
/

I

If you want to physically remove the contents of the materialized view group from
the materialized view database, then be sure that you specify TRUEfor the drop_
contents parameter.

Step 5 Remove the refresh group.
¥

BEGIN
DBMS_REFRESH.DESTROY (
name =>'hr_refg);

END;

/

SET ECHO OFF

SPOOL OFF

kit END OF SCRIPT /

Dropping a Materialized View Group or Objects Created Manually

The most secure method of removing replication support for a materialized view
site is to physically drop the replicated objects or groups at the materialized view
site. The following two sections describe how to drop these objects and groups
while connected to the materialized view group.

Ideally, these procedures should be executed while the materialized view is
connected to its target master site or master materialized view site. A connection
ensures that any related metadata at the master site or master materialized view site
is removed. If a connection to the master site or master materialized view site is not

8-8 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects

possible, then be sure to complete the procedure described in "Cleaning Up a
Master Site or Master Materialized View Site" on page 8-10 to manually remove the
related metadata.

Dropping a Materialized View Group Created Manually

When it becomes necessary to remove a materialized view group from a
materialized view site, use the DROP_MVIEW_REPGROpi@ecedure to drop a
materialized view group. When you execute this procedure and are connected to
the target master site or master materialized view site, the metadata for the target
materialized view group at the master site or master materialized view site is
removed. If you cannot connect, then see "Cleaning Up a Master Site or Master
Materialized View Site" on page 8-10 for more information.

Meet the following requirements to complete these actions:
Executed As: Materialized View Administrator

Executed At: Remote Materialized View Site

Replication Status: N/A

Complete the following steps to drop a materialized view group at a materialized
view site:

Step 1 Connect to the materialized view site as the materialized view
administrator.
CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Drop the materialized view group.
BEGIN
DBMS_REPCAT.DROP_MVIEW_REPGROUP (
gname =>"hr_repd’,
drop_contents =>TRUE);
END;
/

If you want to physically remove the contents of the materialized view group from

the materialized view database, then be sure that you specify TRUEfor the drop_
contents parameter.

Managing a Materialized View Replication Environment 8-9

Dropping Materialized View Groups and Objects

Dropping Objects at a Materialized View Site

When it becomes necessary to remove an individual materialized view from a
materialized view site, use the DROP_MVIEW_REPOBJE@focedure API to drop a
materialized view. When you execute this procedure and are connected to the target
master site or master materialized view site, the metadata for the target
materialized view at the master site or master materialized view site is removed. If
you cannot connect, then see "Cleaning Up a Master Site or Master Materialized
View Site" on page 8-10 for more information.

Meet the following requirements to complete these actions:
Executed As: Materialized View Administrator

Executed At: Remote Materialized View Site

Replication Status: N/A

Complete the following steps to drop an individual materialized view at a
materialized view site.

Step 1 Connect to the materialized view site as the materialized view
administrator.
CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Drop the materialized view.

BEGIN
DBMS_REPCAT.DROP_MVIEW_REPOBJECT (
sname =>"hr,
oname =>'employees_mv1',
type =>'SNAPSHOT,
drop_objects =>TRUE);
END;
/

If you want to physically remove the contents of the materialized view from the
materialized view database, then be sure that you specify TRUEfor the drop_
contents parameter.

Cleaning Up a Master Site or Master Materialized View Site

If you are unable to drop a materialized view group or materialized view object
while connected to the target master site or master materialized view site, then you
must remove the related metadata at the master site or master materialized view
site manually. Cleaning up the metadata also ensures that you are not needlessly

8-10 Oracle9i Replication Management AP| Reference

Dropping Materialized View Groups and Objects

maintaining master table or master materialized view changes to a materialized
view log. The following sections describe how to clean up your master site or
master materialized view site after dropping a materialized view group or object.

Cleaning Up After Dropping a Materialized View Group

If you have executed the steps described in "Dropping a Materialized View Group
Created Manually" on page 8-9 and were not connected to the master site or master
materialized view site, then you are encouraged to complete the following steps to
clean up the target master site or master materialized view site.

Meet the following requirements to complete these actions:
Executed As: Replication Administrator

Executed At: Master Site or Master Materialized View Site for Target Materialized
View Site

Replication Status: Normal

Complete the following steps to clean up a master site or master materialized view
site after dropping a materialized view group:

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 8-13 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Step 1 Connect to the master site or master materialized view site as the
replication administrator.
¥

SETECHOON
SPOOL cleanup_masterl.out
CONNECT repadmin/frepadmin@orcl.world

P

Managing a Materialized View Replication Environment 8-11

Dropping Materialized View Groups and Objects

Step 2 Unregister the materialized view groups.
*

BEGIN
DBMS_REPCAT.UNREGISTER_MVIEW_REPGROUP (
gname =>"hr_repd’,
mviewsite =>'mv1.world);
END;
/

I

Step 3 Purge the materialized view logs of the entries that were marked for the
target materialized views. Execute the PURGE_MVIEW_FROM_L@®cedure for
each materialized view that was in the materialized view groups you

unregistered in Step 2.

Note: If for some reason unregistering the materialized view
group fails, then you should still complete this step.

*

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
mviewowner =>'hr,
mviewname =>‘countries_mv1',
mviewsite =>'mv1.world);
END;
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
mviewowner =>hr,
mviewname =>'departments_mv1/,
mviewsite =>'mv1.world);
END,;
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM LOG (
mviewowner =>'hr’,
mviewname =>'employees_mv1,
mviewsite =>'mv1.world);
END;

8-12 Oracle9i Replication Management AP| Reference

Dropping Materialized View Groups and Objects

/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
mviewowner =>'hr’,
mviewname =>jobs_mv1,
mviewsite =>'mv1.world);
END;
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
mviewowner =>'hr,
mviewname =>job_history_mv1,
mviewsite =>'mv1.world);
END;
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
mviewowner =>'hr,
mviewname =>locations_mv1/,
mviewsite =>'mv1.world);
END;
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
mviewowner =>'hr’,
mviewname =>'regions_mv1,
mviewsite =>'mv1.world);
END;
/

SET ECHO OFF

SPOOL OFF

etttk END OF SCRIPT

Cleaning Up Individual Materialized View Support

If you have executed the steps described in "Dropping Objects at a Materialized
View Site" on page 8-10 and were not connected to the master site or master

Managing a Materialized View Replication Environment

8-13

Dropping Materialized View Groups and Objects

materialized view site, then you are encouraged to complete the following steps to
clean up the target master site or master materialized view site.

Meet the following requirements to complete these actions:
Executed As: Replication Administrator

Executed At: Master Site or Master Materialized View Site for Target Materialized
View Site

Replication Status: Normal

Complete the following steps to clean up a master site or master materialized view
site after dropping an individual materialized view.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 8-15 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Step 1 Connect to the master site or master materialized view site as the
replication administrator.
¥

SETECHOON
SPOOL cleanup_master2.out
CONNECT repadmin/frepadmin@orcl.world

I

Step 2 Unregister the materialized view.
¥

BEGIN
DBMS_MVIEW.UNREGISTER_MVIEW (
mviewowner =>hr,
mviewname =>‘employees_mv1,
mviewsite =>'mv1.world);
END,;
/

8-14 Oracle9i Replication Management AP| Reference

Dropping Materialized View Groups and Objects

I

Step 3 Purge the associated materialized view log of the entries that were
marked for the target materialized views.

Note: If for some reason unregistering the materialized view fails,
then you should still complete this step.

*

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
mviewowner =>'hr,
mviewname =>‘employees_mv1,
mviewsite =>'mv1.world);
END;
/

SET ECHO OFF

SPOOL OFF

fperrrrttiddadakeees END OF SCRIPT]

Managing a Materialized View Replication Environment 8-15

Managing Materialized View Logs

Managing Materialized View Logs
The following sections explain how to manage materialized view logs:
« Altering Materialized View Logs
« Managing Materialized View Log Space
« Reorganizing Master Tables that Have Materialized View Logs

« Dropping a Materialized View Log

Altering Materialized View Logs

After creating a materialized view log, you can alter its storage parameters and
support for corresponding materialized views. The following sections explain more
about altering materialized view logs. Only the following users can alter a
materialized view log:

« The owner of the master table or master materialized view

« Auser with the SELECTprivilege for the master table or master materialized
view and ALTERprivilege on the MLOG$master_name, where master_name is the
name of the master for the materialized view log. For example, if the master
table is employees , then the materialized view log table name is MLOG$_
employees .

Altering Materialized View Log Storage Parameters

To alter a materialized view log’s storage parameters, use the ALTER
MATERIALIZED VIEW LOGtatement. For example, the following statement alters a
materialized view log on the employees table in the hr schema:

ALTER MATERIALIZED VIEW LOG ON hr.employees
PCTFREE 25
PCTUSED 40;

Altering a Materialized View Log to Add Columns

To add new columns to a materialized view log, use the SQL statement ALTER
MATERIALIZED VIEW LOGFor example, the following statement alters a
materialized view log on the customers table in the sales schema:

ALTER MATERIALIZED VIEW LOG ON hr.employees
ADD (department _id);

8-16 Oracle9i Replication Management AP| Reference

Managing Materialized View Logs

See Also: Oracle9i Replication for more information about adding
columns to a materialized view log

Managing Materialized View Log Space

Oracle automatically tracks which rows in a materialized view log have been used
during the refreshes of materialized views, and purges these rows from the log so
that the log does not grow endlessly. Because multiple simple materialized views
can use the same materialized view log, rows already used to refresh one
materialized view may still be needed to refresh another materialized view. Oracle
does not delete rows from the log until all materialized views have used them.

For example, suppose two materialized views were created against the customers
table in a master site. Oracle refreshes the customers materialized view at the
spdbl database. However, the server that manages the master table and associated
materialized view log does not purge the materialized view log rows used during
the refresh of this materialized view until the customers materialized view at the
spdb2 database also refreshes using these rows.

Because Oracle must wait for all dependent materialized views to refresh before
purging rows from a materialized view log, unwanted situations can occur that
cause a materialized view log to grow indefinitely when multiple materialized
views are based on the same master table or master materialized view. For example,
such situations can occur when more than one materialized view is based on a
master table or master materialized view and one of the following conditions is
true:

« One materialized view is not configured for automatic refreshes and has not
been manually refreshed for a long time.

« One materialized view has an infrequent refresh interval, such as every year
(365 days).

« A network failure has prevented an automatic refresh of one or more of the
materialized views based on the master table or master materialized view.

« A network or site failure has prevented a master table or master materialized
view from becoming aware that a materialized view has been dropped.

Note: If you purge or TRUNCATE materialized view log before a
materialized view has refreshed the changes that were deleted, then
the materialized view must perform a complete refresh.

Managing a Materialized View Replication Environment 8-17

Managing Materialized View Logs

Purging Rows from a Materialized View Log

Always try to keep a materialized view log as small as possible to minimize the
database space that it uses. To remove rows from a materialized view log and make
space for newer log records, you can perform one of the following actions:

« Refresh the materialized views associated with the log so that Oracle can purge
rows from the materialized view log.

« Manually purge records in the log by deleting rows required only by the nth
least recently refreshed materialized views.

To manually purge rows from a materialized view log, execute the PURGE_LOG
procedure of the DBMS_MVIEWackage at the database that contains the log. For

example, to purge entries from the materialized view log of the customers table
that are necessary only for the least recently refreshed materialized view, execute
the following procedure:

BEGIN
DBMS_MVIEW.PURGE_LOG (
master =>hr.employees,

num =>1,
flag =>'DELETE);
END;

/

Only the owner of a materialized view log or a user with the EXECUTHprivilege for
the DBMS_MVIEMWdackage can purge rows from the materialized view log by
executing the PURGE_LO@rocedure.

Truncating a Materialized View Log

If a materialized view log grows and allocates many extents, then purging the log of
rows does not reduce the amount of space allocated for the log. In such cases, you
should truncate the materialized view log. Only the owner of a materialized view
log or a user with the DELETE ANY TABLEystem privilege can truncate a
materialized view log.

8-18 Oracle9i Replication Management AP| Reference

Managing Materialized View Logs

To reduce the space allocated for a materialized view log by truncating it, complete
the following steps:

Step 1 Acquire an exclusive lock on the master table or master materialized
view to prevent updates from occurring during the following process. For
example, issue a statement similar to the following:

LOCK TABLE hr.employees IN EXCLUSIVE MODE;

Step 2 Using a second database session, copy the rows in the materialized
view log (in other words, the MLOG#%base table) to a temporary table. For
example, issue a statement similar to the following:

CREATE TABLE hrtemplog AS SELECT * FROM hrMLOG$_employees;

Step 3 Using the second session, truncate the log using the SQL statement
TRUNCATEFor example, issue a statement similar to the following:
TRUNCATE hr.MLOG$ employees;

Step 4 Using the second session, reinsert the old rows so that you do not
have to perform a complete refresh of the dependent materialized views. For
example, issue statements similar to the following:

INSERT INTO hrMLOG$_employees SELECT * FROM hr.templog;

DROP TABLE hr.templog;

Step 5 Using the first session, release the exclusive lock on the master table
or master materialized view by performing a rollback:
ROLLBACK;

Note: Any changes made to the master table or master
materialized view between the time you copy the rows to a new
location and when you truncate the log do not appear until after
you perform a complete refresh.

Managing a Materialized View Replication Environment 8-19

Managing Materialized View Logs

Reorganizing Master Tables that Have Materialized View Logs

To improve performance and optimize disk use, you can periodically reorganize
master tables. This section describes how to reorganize a master and preserve the
fast refresh capability of associated materialized views.

Note: These sections do not discuss online redefinition of tables.
Online redefinition is not allowed on master tables with
materialized view logs, master materialized views, or materialized
views. Online redefinition is allowed only on master tables that do
not have materialized view logs. See the Oracle9i Database
Administrator’s Guide for more information about online redefinition
of tables.

Reorganization Notification

When you reorganize a table, any ROWIDinformation of the materialized view log
must be invalidated. Oracle detects a table reorganization automatically only if the
table is truncated as part of the reorganization.

If the table is not truncated, then Oracle must be notified of the table reorganization.
To support table reorganizations, two procedures in the DBMS_MVIEWackage,
BEGIN_TABLE_REORGANIZATIONNd END_TABLE_REORGANIZATIQMotify
Oracle that the specified table has been reorganized. The procedures perform
clean-up operations, verify the integrity of the logs and triggers that the fast refresh
mechanism needs, and invalidate the ROWIDinformation in the table’s materialized
view log. The inputs are the owner and name of the master to be reorganized. There
is no output.

See Also: "Method 2 for Reorganizing Table employees” on
page 8-22

Truncating Masters

When a table is truncated, its materialized view log is also truncated. However, for
primary key materialized views, you can preserve the materialized view log,
allowing fast refreshes to continue. Although the information stored in a
materialized view log is preserved, the materialized view log becomes invalid with
respect to rowids when the master is truncated. The rowid information in the
materialized view log will seem to be newly created and cannot be used by rowid
materialized views for fast refresh.

8-20 Oracle9i Replication Management AP| Reference

Managing Materialized View Logs

The PRESERVE MATERIALIZED VIEW LOdgption is the default. Therefore, if you
specify the PRESERVE MATERIALIZED VIEW LOdgption or no option, then the
information in the master’s materialized view log is preserved, but current rowid
materialized views can use the log for a fast refresh only after a complete refresh has
been performed.

Note: To ensure that any previously fast refreshable materialized
view is still refreshable, follow the guidelines in "Methods of
Reorganizing a Database Table" on page 8-21.

If the PURGE MATERIALIZED VIEW LOGption is specified, then the materialized
view log is purged along with the master.

Examples Either of the following two statements preserves materialized view log
information when the master table named orders is truncated:

TRUNCATE TABLE hr.employees PRESERVE MATERIALIZED VIEW LOG;
TRUNCATE TABLE hremployees;

The following statement truncates the materialized view log along with the master
table:

TRUNCATE TABLE hr.employees PURGE MATERIALIZED VIEW LOG;

Methods of Reorganizing a Database Table

Oracle provides four table reorganization methods that preserve the capability for
fast refresh. These appear in the following sections. Other reorganization methods
require an initial complete refresh to enable subsequent fast refreshes.

Note: Do not use Direct Loader during a reorganization of a
master. Direct Loader can cause reordering of the columns, which
could invalidate the log information used in subquery and LOB
materialized views.

Managing a Materialized View Replication Environment 8-21

Managing Materialized View Logs

Method 1 for Reorganizing Table employees ~ Complete the following steps:

Step 1 Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATIGbt table
employees .

Step 2 Rename table employees to employees old
Step 3 Create table employees as SELECT * FROM employees_old

Step 4 Call DBMS_MVIEW.END_TABLE_REORGANIZATI@N new table
employees .

Caution: When a table is renamed, its associated PL/SQL triggers
are also adjusted to the new name of the table.

Ensure that no transaction is issued against the reorganized table between calling
BEGIN_TABLE_REORGANIZATIONNd END_TABLE_REORGANIZATIQON

Method 2 for Reorganizing Table employees ~ Complete the following steps:

Step 1 Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATIGbt table
employees .

Step 2 Export table employees .

Step 3 Truncate table employees with PRESERVE MATERIALIZED VIEW LOG
option.

Step 4 Import table employees using conventional path.

Step 5 Call DBMS_MVIEW.END_TABLE_REORGANIZATI@M new table
employees .

Caution: When you truncate masters as part of a reorganization,
you must use the PRESERVE MATERIALIZED VIEW LOgkause of
the truncate table DDL.

8-22 Oracle9i Replication Management AP| Reference

Managing Materialized View Logs

Ensure that no transaction is issued against the reorganized table between calling
BEGIN_TABLE_REORGANIZATIONNd END_TABLE_REORGANIZATIQN

Method 3 for Reorganizing Table employees ~ Complete the following steps:

Step 1 Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATIGbt table
employees .

Step 2 Export table employees .
Step 3 Rename table employees to employees old
Step 4 Import table employees using conventional path.

Step 5 Call DBMS_MVIEW.END_TABLE REORGANIZATI@M new table
employees .

Caution: When a table is renamed, its associated PL/SQL triggers
are also adjusted to the new name of the table.

Ensure that no transaction is issued against the reorganized table between calling
BEGIN_TABLE_REORGANIZATIONd END_TABLE_REORGANIZATIQN

Method 4 for Reorganizing Table employees ~ Complete the following steps:

Managing a Materialized View Replication Environment 8-23

Managing Materialized View Logs

Step 1 Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATIGbt table
employees .

Step 2 Select contents of table employees to a flat file.

Step 3 Rename table employees to employees old

Step 4 Create table employees with the same shape as employees_old
Step 5 Run SQL*Loader using conventional path.

Step 6 Call DBMS_MVIEW.END_TABLE_REORGANIZATI@N new table
employees .

Caution: When atable is renamed, its associated PL/SQL triggers
are also adjusted to the new name of the table.

Ensure that no transaction is issued against the reorganized table between calling
BEGIN_TABLE_REORGANIZATIONNd END_TABLE_REORGANIZATIQN

See Also:
« "BEGIN_TABLE_REORGANIZATION Procedure" on page 15-3
« "END_TABLE_REORGANIZATION Procedure" on page 15-3

Dropping a Materialized View Log

You can delete a materialized view log regardless of its master or any existing
materialized views. For example, you might decide to drop a materialized view log
if one of the following conditions is true:

« All materialized views of a master have been dropped.

« All materialized views of a master are to be completely refreshed, not fast
refreshed.

« A master no longer supports materialized views that require fast refreshes.

Here, a master can be a master table or a master materialized view. To delete a
materialized view log, execute the DROP MATERIALIZED VIEW LO&atement in

8-24 Oracle9i Replication Management AP| Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

SQL*Plus. For example, the following statement deletes the materialized view log
for a table named customers in the sales schema:

DROP MATERIALIZED VIEW LOG ON hr.employees;

Only the owner of the master or a user with the DROP ANY TABLEystem privilege
can drop a materialized view log.

Performing an Offline Instantiation of a Materialized View Site Using
Export/Import

Expanding established replication environments can cause network traffic when
you add a new materialized view site to your replication environment. This is
caused by propagating the entire contents of the table or materialized view through
the network to the new replicated site.

To minimize such network traffic, you can expand your replication environment by
using the offline instantiation procedure. Offline instantiation takes advantage of
Oracle’s Export and Import utilities, which allow you to create an export file and
transfer the data to the new site through another storage medium, such as
CD-ROM, tape, and so on.

For the same reasons that you might want to perform an offline instantiation of a
master site, you may also want to create a new materialized view group at a
materialized view site using the offline instantiation process. In some cases, it is
even more useful for materialized views considering that the target computer could
very well be a laptop using a modem connection.

The following script performs an offline instantiation for a new materialized view
group. Meet the following requirements to complete these actions:

Executed As:

« Replication Administrator at Master Site

« Materialized View Administrator at New Materialized View Site
Executed At:

« Master Site for Target Materialized View Site

« New Materialized View Site

Replication Status: Normal

Managing a Materialized View Replication Environment 8-25

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

Complete the following steps to perform an offline instantiation of a materialized
view site using export/import.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 8-35 into a text editor and then edit
the text to create a script for your environment.

etttk BEGINNING OF SCRIPT

Step 1 In a separate terminal window, set up the new materialized view site.

Make sure that the appropriate schema and database links have been created before
you perform the offline instantiation of your materialized view.

See Also: "Setting Up Materialized View Sites" on page 2-24
#
SETECHOON
SPOOL offine_instant_mv.out
PAUSE Press <RETURN> to continue the new materialized view site is set up.

P

Step 2 Connect to the master site as the replication administrator.
¥

CONNECT repadmin/frepadmin@orcl.world

I

Step 3 Create the necessary materialized view logs.

If materialized view logs do not already exist for the target master tables, then
create them at the target master site.

*

CREATE MATERIALIZED VIEW LOG ON hr.countries;
CREATE MATERIALIZED VIEW LOG ON hr.departments;

8-26 Oracle9i Replication Management AP| Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

CREATE MATERIALIZED VIEW LOG ON hr.employees;
CREATE MATERIALIZED VIEW LOG ON hrjobs;
CREATE MATERIALIZED VIEW LOG ON hrjob_history;
CREATE MATERIALIZED VIEW LOG ON hr.locations;
CREATE MATERIALIZED VIEW LOG ON hrregions;

I

Step 4 Create temporary materialized views at the master site. These
materialized views contain the data that you transfer to your new materialized
view site using the export file.

Note: If you added any of the conflict resolution routines
described in Chapter 6, "Configure Conflict Resolution”, then you
may have additional columns in your tables. Be certain to include
these additional columns in the SELECTstatements below.
Updatable materialized views require that you explicitly select all
columns in the master table. So, do not use SELECT * statements.

*

CREATE MATERIALIZED VIEW hr.countries_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
country_id, country_name, region_id
FROM hr.countries;

CREATE MATERIALIZED VIEW hr.departments_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
department_id, department_name, manager _id, location_id
FROM hr.departments;

CREATE MATERIALIZED VIEW hremployees mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
employee_id, first_name, last_name, email, phone_number,
hire_date, job_id, salary, commission_pct, manager_id,
department_id
FROM hr.employees;

CREATE MATERIALIZED VIEW hrjobs_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
job_id, job_title, min_salary, max_salary
FROM hr jobs;

Managing a Materialized View Replication Environment 8-27

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

CREATE MATERIALIZED VIEW hr.job_history mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
employee_id, start_date, end_date, job_id, department _id
FROM hrjob_history;

CREATE MATERIALIZED VIEW hr.locations_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
location id, street_address, postal_code, city,
state_province, country_id
FROM hr.locations;

CREATE MATERIALIZED VIEW hr.regions_mv
REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
region_id, region_name
FROM hr.regions;

I

Step 5 In a separate terminal window, connect as the owner of the materialized
views to export the temporary materialized views you created in Step 4.
Use the Oracle Export utility to generate the export file that you will transfer to the

new materialized view site. The export file will contain the base tables of your
temporary materialized views.

Note: The following example is for Oracle8i and higher databases
only. Base tables in database versions earlier than Oracle8i are
preceded by the SNAP$prefix (that is, SNAP$_employees_mv).

See Also: Oracle9i Database Utilities for additional information
about exporting

The following is an example of an export command for the hr schema.

exp hrhr@orcl.world TABLES='countries_mV,departments_mv,;employees_mv/,
jobs_mv,job_history_mv/,locations_mv',regions_mv’

*
PAUSE Press <RETURN> to continue when the export is complete.

I

8-28 Oracle9i Replication Management AP| Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

Step 6 Connect to the new materialized view site as ~ SYSTEMuser.
¥

CONNECT system/manager@mview.world

I

Step 7 Create necessary schema and database link at the materialized view
site, if they do not exist.

Before you perform the offline instantiation of your materialized views, create the
schema that will contain the materialized views at the new materialized view site
and the database link from the materialized view site to the master site. The
materialized views must be in the same schema that contains the master objects at
the master site.

*

CREATE TABLESPACE demo_mview
DATAFILE ‘demo_mview.dbf SIZE 10M AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mview
TEMPFILE temp_mview.dbf SIZE 5M AUTOEXTEND ON,;

CREATE USER hr IDENTIFIED BY hr,

ALTER USER hr DEFAULT TABLESPACE demo_mview
QUOTA UNLIMITED ON demo_mview;

ALTER USER hr TEMPORARY TABLESPACE temp_mview;,

GRANT
CREATE SESSION,
CREATE TABLE,
CREATE PROCEDURE,
CREATE SEQUENCE,
CREATE TRIGGER,
CREATE VIEW,
CREATE SYNONYM,
ALTER SESSION,
CREATE MATERIALIZED VIEW,
ALTER ANY MATERIALIZED VIEW,
CREATE DATABASE LINK,
TOr,

Managing a Materialized View Replication Environment 8-29

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

CONNECT hrhr@mview.world
CREATE DATABASE LINK orc1.worldd CONNECT TO hr IDENTIFIED by hr;

I

Step 8 Connect to the new materialized view site as the materialized view
administrator.
¥

CONNECT mviewadmin/mviewadmin@mview.world

I

Step 9 Create an empty materialized view group.

Run the DBMS_REPCAT.CREATE_MVIEW_REPGR@téeedure at the new
materialized view site to create an empty materialized view group to which you
will add your materialized views.

*

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
gname =>"hr_repd’,
master =>'orc1.world),
propagation_mode =>'ASYNCHRONOUS));
END;
/

I

Step 10 Prepare the materialized view site for offline instantiation.

The DBMS_OFFLINE_SNAPSHOT.BEGIN_LOA®ocedure creates the necessary
support mechanisms for the new materialized views. This step also adds the new
materialized views to the materialized view group that you created in the previous
step. Be sure to execute the BEGIN_LOADprocedure for each materialized view that
you will be importing.

*

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (

8-30 Oracle9i Replication Management AP| Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

gname =>"hr_repd’,
sname =>'hr,
master_site =>‘orc1.world),
shapshot_oname =>‘countries_mvY);
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (
gname =>"hr_repg,
sname =>'hr,
master_site => ‘orc1.world’,
snapshot_oname => 'departments_mv);
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (
gname =>"hr_repd,
sname =>'hr,
master_site => ‘orc1.world’,
snapshot_oname =>'employees_mv);
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (
gname =>"hr_repd’,
sname =>'hr,
master_site => ‘orc1.world’,
snapshot_oname =>‘jobs_mvy);
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (
gname =>"hr_repd,
sname =>'hr,
master_site => ‘orc1.world’,
snapshot_oname =>'job_history_mv’);
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (

Managing a Materialized View Replication Environment

8-31

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

gname =>"hr_repd’,
sname =>'hr,
master_site =>‘orc1.world),
snapshot_oname =>'locations_mv);
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (
gname =>"hr_repg,
sname =>'hr,
master_site => ‘orc1.world’,
snapshot_oname => regions_mv);
END;
/

I

Step 11 In a separate terminal window, connect as the owner of the
materialized views to import at the new materialized view site.

Use the Oracle Import utility to import the file that you exported in Step 5. Make
sure that you import your data as the same user who exported the data. This user
hr in the following example:

imp hrhr@mview.world FULL=y IGNORE=y
*
PAUSE Press <RETURN> to continue when the import is complete.

I

Step 12 Complete the offline instantiation.

Execute the DBMS_OFFLINE_SNAPSHOT.END_LOAiBocedure to finish the offline
instantiation of the imported materialized views.

*

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (
gname =>"r_repd’,
sname =>'hr,
snapshot_oname =>‘countries_mvY);
END;

8-32 Oracle9i Replication Management AP| Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (
gname =>"hr_repd’,
sname =>'hr,
snapshot_oname => 'departments_mv);
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (
gname =>"hr_repd,
sname =>'hr,
snapshot_oname =>'employees_mv);
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (
gname =>"hr_repg,
sname =>'hr,
snapshot_oname =>jobs_mvY);
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (
gname =>"hr_repd’,
sname =>'hr,
snapshot_oname =>job_history_mv);
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END _LOAD (
gname =>"hr_repd,
sname =>'hr,
snapshot_oname => locations_mv);
END,;
/

BEGIN

DBMS_OFFLINE_SNAPSHOT.END_LOAD (
gname =>"hr_repg,

Managing a Materialized View Replication Environment 8-33

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

sname =>'hr,

snapshot_oname => regions_mv);
END;
/

I

Step 13 Connect as the owner of the materialized views at the materialized
view site.
*

CONNECT hrhr@mview.world

I

Step 14 Refresh materialized views to register them at master site.

In addition to retrieving the latest changes from the master tables, refreshing the
materialized views at the new materialized view site registers the offline
instantiated materialized views at the target master site.

*

BEGIN

DBMS_ MVIEW.REFRESHgounties mv);
END;
/

BEGIN
DBMS_MVIEW.REFRESHdepartments_mv);

END;

/

BEGIN

DBMS_ MVIEW.REFRESHémployees mv);
END;
/

BEGIN
DBMS_MVIEW.REFRESHjobs_mv);

END;

/

BEGIN
DBMS_MVIEW.REFRESHjob_history_mv);

8-34 Oracle9i Replication Management AP| Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

END;
/

BEGIN
DBMS_MVIEW.REFRESHI(cations_mv);

END;

/

BEGIN
DBMS_MVIEW.REFRESHegions_mv);

END;

/

I

Step 15 Connect to the master site as the replication administrator.
¥

CONNECT repadmin/frepadmin@orcl.world

I

Step 16 Delete the temporary materialized views you created in Step 4 at the
master site.

*

DROP MATERIALIZED VIEW hr.countries_mv;
DROP MATERIALIZED VIEW hr.departments_mv;
DROP MATERIALIZED VIEW hr.employees_mv;
DROP MATERIALIZED VIEW hr.jobs_mv;

DROP MATERIALIZED VIEW hr.job_history_mv;
DROP MATERIALIZED VIEW hr.locations_mv;
DROP MATERIALIZED VIEW hr.regions_mv;

SET ECHO OFF

SPOOL OFF

ket END OF SCRIPT /

Managing a Materialized View Replication Environment 8-35

Using a Group Owner for a Materialized View Group

Using a Group Owner for a Materialized View Group

Specifying a group owner when you define a new materialized view group and its
related objects enables you to create multiple materialized view groups based on
the same replication group at a single materialized view site. At a materialized view
site, specifying group owners enables you to create multiple materialized view
groups that are based on the same replication group at a master site or master
materialized view site. You accomplish this by creating the materialized view
groups under different schemas at the materialized view site.

Complete the following steps to use a group owner.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 8-41 into a text editor and then edit
the text to create a script for your environment.

See Also: Oracle9i Replication for a complete description of using
group owners and the advantages of using multiple data sets

etttk BEGINNING OF SCRIPT

Step 1 Connect to the materialized view site as the materialized view
administrator.

*

SETECHOON

SPOOL mv_group_owner.out

CONNECT mviewadmin/mviewadmin@mv1.world

I

Step 2 Create materialized view group with group owner (gowner) bob using
the CREATE_MVIEW_REPGROp®Bcedure.

The replication group that you specify in the gname parameter must match the
name of the replication group that you are replicating at the target master site or
master materialized view site. The gowner parameter enables you to specify an
additional identifier that lets you create multiple materialized view groups based
on the same replication group at the same materialized view site.

8-36 Oracle9i Replication Management AP| Reference

Using a Group Owner for a Materialized View Group

In this example, materialized view groups are created for the group owners bob
and jane , and these two materialized view groups are based on the same
replication group.

*

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
gname =>"hr_repd’,
master =>'orc1.world,
propagation_mode =>'ASYNCHRONOUS,
gowner =>'bob);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
gname =>"hr_repd’,
master =>'orcl.world),
propagation_mode =>'ASYNCHRONOUS,
gowner =>jane);
END;
/

I

Step 3 Create the materialized views owned by bob.

The gowner value used when creating your materialized view objects must match
the gowner value specified when you created the materialized view group in the
previous procedures. After creating the materialized view groups, you can create
materialized views based on the same master in the hr_repg materialized view
group owned by bob and jane .

Caution: Each object must have a unique name. When using a
gowner to create multiple materialized view groups, duplicate
object names could become a problem. To avoid any object-naming
conflicts, you may want to append the gowner value to the end of
the object name that you create, as illustrated in the following
procedures (that is, CREATEMATERIALIZED VIEW hr.countries_
bob). Such a naming method ensures that you do not create any
objects with conflicting names.

Managing a Materialized View Replication Environment 8-37

Using a Group Owner for a Materialized View Group

Whenever you create a materialized view, always specify the schema name of the
table owner in the query for the materialized view. In the examples below, hr is
specified as the owner of the table in each query.

¥

CREATE MATERIALIZED VIEW hr.countries_bob
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.countries@orc1.world;

CREATE MATERIALIZED VIEW hr.departments_bob
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.departments@orc1.world;

CREATE MATERIALIZED VIEW hr.employees_bob
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.employees@orcl.world;

CREATE MATERIALIZED VIEW hr,jobs_bob
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.jobs@orc1.worid,;

CREATE MATERIALIZED VIEW hr.job_history_bob
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.job_history@orc1.world;

CREATE MATERIALIZED VIEW hr.locations_bob
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.locations@orc1.world;

CREATE MATERIALIZED VIEW hr.regions_bob
REFRESH FAST WITH PRIMARY KEY FOR UPDATE
AS SELECT * FROM hr.regions@orc1.world;

I

Step 4 Create the materialized views owned by jane .
ol
CREATE MATERIALIZED VIEW hr.departments_jane

REFRESH FAST WITH PRIMARY KEY FOR UPDATE

AS SELECT * FROM hr.departments@orc1.world;

CREATE MATERIALIZED VIEW hremployees_jane
REFRESH FAST WITH PRIMARY KEY FOR UPDATE

8-38 Oracle9i Replication Management AP| Reference

Using a Group Owner for a Materialized View Group

AS SELECT * FROM hr.employees@orcl.world;

I

Step 5 Add the materialized views owned by bob to the materialized view
group.
¥

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repg,
sname =>'hr,
oname =>'countries_bab,
type =>'SNAPSHOT,
min_communication => TRUE,
gowner =>'hob);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repg,
sname =>'hr,
oname =>'departments_baob,
type =>'SNAPSHQOT,
min_communication => TRUE,
gowner =>'bob);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd’,
sname =>'hr,
oname =>'employees_hab),
type =>'SNAPSHQOT,
min_communication => TRUE,
gowner =>'bob);
END;
/

BEGIN

DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd’,

Managing a Materialized View Replication Environment 8-39

Using a Group Owner for a Materialized View Group

sname =>'hr,
oname =>jobs_bob',
type =>'SNAPSHOT,
min_communication => TRUE,
gowner =>'hob);

END;

/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd’,
sname =>'hr,
oname =>job_history _bob,
type =>'SNAPSHOT,
min_communication => TRUE,
gowner =>'hob);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repg,
sname =>'hr,
oname =>locations_bob,
type =>'SNAPSHOT,
min_communication => TRUE,
gowner =>'hob);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repg,
sname =>'hr,
oname =>regions_baob',
type =>'SNAPSHOT,
min_communication => TRUE,
gowner =>'bob);
END;
/

I

8-40 Oracle9i Replication Management AP| Reference

Using a Group Owner for a Materialized View Group

fprrrerttiidaaakeees END OF SCRIPT

Step 6 Add the materialized views owned by

group.

BEGIN

DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repg,
sname =>'hr,
oname =>'departments_jane),
type =>'SNAPSHQOT,
min_communication => TRUE,
gowner => fjane);

END;

BEGIN

DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
gname =>"hr_repd’,
sname =>"hr,
oname =>‘employees_jane),
type =>'SNAPSHQOT,
min_communication =>TRUE,
gowner => fjane);

END;

SET ECHO OFF

SPOOL OFF

Step 7 Add your materialized views to a refresh group.

See Also: Chapter 5, "Create Materialized View Group" (Step 6)
for more information about adding materialized views to a refresh

group

to the materialized view

Managing a Materialized View Replication Environment

8-41

Using a Group Owner for a Materialized View Group

8-42 Oracle9i Replication Management AP| Reference

9

Managing Replication Objects and Queues

This chapter illustrates how to manage the replication objects and queues in your
replication environment using the replication management API. This chapter
contains these topics:

« Altering a Replicated Object

« Modifying Tables without Replicating the Modifications

« Converting a LONG Column to a LOB Column in a Replicated Table
« Determining Differences Between Replicated Tables

« Managing the Deferred Transactions Queue

« Managing the Error Queue

Managing Replication Objects and Queues 9-1

Altering a Replicated Object

Altering a Replicated Object

As your database needs change, you may need to modify the characteristics of your
replicated objects. It is important that you do not directly execute DDL to alter your
replicated objects. Doing so may cause your replication environment to fail.

Altering a Replicated Object in a Quiesced Master Group

Use the ALTER_MASTER_REPOBJE@Focedure in the DBMS_REPCAjackage to
alter the characteristics of your replicated objects in a quiesced master group. From
the example below, notice that you simply include the necessary DDL within the
procedure call (see the ddl_text parameter).

If any master site is lower than 9.0.0 compatibility level, then you must use the
following procedure. That is, the master group must be quiesced to modify a
replicated object. You control the compatibility level of a database with the
COMPATIBLENiItialization parameter.

Meet the following requirements to complete these actions:
Executed As: Replication Administrator

Executed At: Master Definition Site

Replication Status: Quiesced

Complete the following steps to alter a replicated object in a quiesced master group.

Note:

« If your master site is running Oracle release 8.1.7 or higher in a
single master environment and you are making a safe change to
a replicated object, then you may not need to quiesce the
master group. See the "ALTER_MASTER_REPOBJECT
Procedure” on page 20-25 for information about when quiesce
is not required.

« If you are viewing this document online, then you can copy the
text from the "BEGINNING OF SCRIPT" line on this page to the
"END OF SCRIPT" line on page 9-5 into a text editor and then
edit the text to create a script for your environment.

freikiidakeaetck BEGINNING OF SCRIPT

9-2 Oracle9i Replication Management API Reference

Altering a Replicated Object

Step 1 Connect to the master definition site as the replication administrator.
¥

SETECHOON
SPOOL alter_rep_objectout
CONNECT repadmin/repadmin@orcl.world

I

Step 2 If necessary, then quiesce the master group. See the "ALTER_
MASTER_REPOBJECT Procedure" on page 20-25 for information about when
guiesce is not required.

*

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTMITY (
gname =>"hr_repg);
END;
/

I

Step 3 In a separate SQL*Plus session, check the status of the master group
you are quiescing, and do not proceed until the group’s status is QUIESCED

To check the status, run the following query:
SELECT GNAME, STATUS FROM DBA_REPGROUP;

*
PAUSE Press <RETURN> to continue when the master group’s status is QUIESCED.

I

Step 4 Alter the replicated object.
¥

BEGIN
DBMS_REPCATALTER MASTER REPOBJECT (
sname =>'hr,
oname =>'employees,
type =>TABLE,

Managing Replication Objects and Queues 9-3

Altering a Replicated Object

ddl_text =>'ALTER TABLE hr.employees ADD (timestamp DATE);;
END;
/

I

Step 5 Regenerate replication support for the altered object.
*

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'hr,
oname =>‘employees,
type =>TABLE,
min_communication => TRUE);
END;
/

I

Step 6 In a separate SQL*Plus session, check if DBA_REPCATLO{ empty, and
do not proceed until it is empty.

Execute the following SELECTstatement in another SQL*Plus session to monitor
the DBA_REPCATLO@Gew:

SELECT *FROM DBA_REPCATLOG WHERE GNAME ='HR_REPG;
*
PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

I

Step 7 Resume replication activity.
¥

BEGIN
DBMS_REPCATRESUME_MASTER_ACTIVITY (
GNAME =>"hr_repg);
END;
/

SET ECHO OFF

9-4 Oracle9i Replication Management API Reference

Modifying Tables without Replicating the Modifications

SPOOL OFF

etttk END OF SCRIPT /

Modifying Tables without Replicating the Modifications

You may have a situation in which you need to modify a replicated object, but you
do not want this modification replicated to the other sites in the replication
environment. For example, you may want to disable replication in the following
situations:

« When you are using procedural replication to propagate a change, always
disable row-level replication at the start of your procedure.

=« You may need to disable replication in triggers defined on replicated tables to
avoid replicating trigger actions multiple times. See "Ensuring That Replicated
Triggers Fire Only Once" on page 9-7.

« Sometimes when you manually resolve a conflict, you may not want to replicate
this modification to the other copies of the table.

You may need to do this, for example, if you need to correct the state of a record at
one site so that a conflicting replicated update will succeed when you reexecute the
error transaction. Or, you may use an unreplicated modification to undo the effects
of a transaction at its origin site because the transaction could not be applied at the
destination site. In this example, you can use the Replication Management tool to
delete the conflicting transaction from the destination site.

To modify tables without replicating the modifications, use the REPLICATION_ON
and REPLICATION_OFFprocedures in the DBMS_REPUTILpackage. These
procedures take no arguments and are used as flags by the generated replication
triggers.

Note: To enable and disable replication, you must have the
EXECUTHBrivilege on the DBMS_REPUTILpackage.

Disabling Replication
The DBMS_REPUTIL.REPLICATION_OFFprocedure sets the state of an internal
replication variable for the current session to false . Because all replicated triggers
check the state of this variable before queuing any transactions, modifications made

to the replicated tables that use row-level replication do not result in any queued
deferred transactions.

Managing Replication Objects and Queues 9-5

Modifying Tables without Replicating the Modifications

Caution: Turning replication on or off affects only the current
session. That is, other users currently connected to the same server

are not restricted from placing committed changes in the deferred
transaction queue.

If you are using procedural replication, then call REPLICATION_OFFat the start of
your procedure, as shown in the following example. This ensures that the

replication facility does not attempt to use row-level replication to propagate the
changes that you make.

CREATE OR REPLACE PACKAGE update AS

PROCEDURE update_emp(adjustment IN NUMBER);
END;
/

CREATE OR REPLACE PACKAGE BODY update AS
PROCEDURE update_emp(adjustment IN NUMBER) IS
BEGIN
—tum off row-level replication for set update
DBMS_REPUTILREPLICATION_OFF;
UPDATEemp.. ;

—re-enable replication
DBMS_REPUTIL.REPLICATION_ON;
EXCEPTION WHEN OTHERS THEN

DBMS_REPUTIL.REPLICATION_ON;
END;

END;

/

Reenabling the Replication Facility

After resolving any conflicts, or at the end of your replicated procedure, be certain
to call DBMS_REPUTIL.REPLICATION_ONo resume normal replication of changes
to your replicated tables or materialized views. This procedure takes no arguments.
Calling REPLICATION_ONsets the internal replication variable to true .

9-6 Oracle9i Replication Management API Reference

Converting a LONG Column to a LOB Column in a Replicated Table

Ensuring That Replicated Triggers Fire Only Once

If you have defined a replicated trigger on a replicated table, then you may need to
ensure that the trigger fires only once for each change that you make. Typically, you
only want the trigger to fire when the change is first made, and you do not want the
remote trigger to fire when the change is replicated to the remote site.

You should check the value of the DBMS_REPUTIL.FROM_REMOTackage
variable at the start of your trigger. The trigger should update the table only if the
value of this variable is false

Alternatively, you can disable replication at the start of the trigger and re-enable it
at the end of the trigger when modifying rows other than the one that caused the
trigger to fire. Using this method, only the original change is replicated to the
remote sites. Then the replicated trigger fires at each remote site. Any updates
performed by the replicated trigger are not pushed to any other sites.

Using this approach, conflict resolution is not invoked. Therefore, you must ensure
that the changes resulting from the trigger do not affect the consistency of the data.

Converting a LONG Column to a LOB Column in a Replicated Table

LOB columns can be replicated, but LONGcolumns cannot be replicated. You can
convert the datatype of a LONGcolumn to a CLOBcolumn and the datatype of a
LONG_RAWblumn to a BLOBcolumn.

Converting a LONCGcolumn to a LOB column can result in increased network
bandwidth requirements because the data in such a column is replicated after
conversion. Make sure you have adequate network bandwidth before completing
the procedure in this section.

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs) for more information about applications and LONGio LOB
conversion

Complete the following steps to convert a LONGcolumn to a LOB column in a
replicated table:

Step 1 Make sure the data in the LONGcolumn is consistent at all replication
sites.

If a table containing a LONGcolumn is configured as a master table, then Oracle
does not replicate changes to the data in the LONCGcolumn. Therefore, the data in the
LONCGecolumn may not match at all of your replication sites. You must make sure the
data in the LONGcolumn matches at all master sites before proceeding.

Managing Replication Objects and Queues 9-7

Converting a LONG Column to a LOB Column in a Replicated Table

Step 2 Connect to the master definition site as the replication administrator.
For example:
CONNECT repadminfrepadmin@orc1.word

Step 3 If the replication status is normal, then change the status to quiesced.
For example:
BEGIN
DBMS_REPCAT.SUSPEND MASTER ACTIVITY (
gname =>'sales_mg);
END;
/

Step 4 Runthe ALTER_MASTER_REPOBJE@focedure inthe DBMS_REPCAT
package to convert the LONGcolumn to a LOB column. For example:

BEGIN
DBMS_REPCATALTER_MASTER_REPOBJECT (

sname =>'staff,

oname =>positions),

type =>TABLE,

ddl_text =>'ALTER TABLE positions MODIFY (job_desc CLOBY));
END;
/

A LONG_RAWblumn can be converted to a BLOBcolumn using a similar ALTER
TABLEstatement.

Step 5 Regenerate replication support for the altered master table. For
example:

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname =>'staff,
oname =>positions’,
type =>TABLE,
min_communication =>TRUE);
END;
/

Step 6 Resume replication. For example:
BEGIN
DBMS_REPCAT.RESUME_MASTER _ACTIVITY (
GNAME =>'sales_mg);
END;

9-8 Oracle9i Replication Management API Reference

Determining Differences Between Replicated Tables

Step 7 If materialized views are based on the altered table at any of the master
sites, then rebuild these materialized views.

Determining Differences Between Replicated Tables

It is possible for the differences to arise in replicated tables. When administering a
replication environment, you may want to check, periodically, whether the contents
of two replicated tables are identical. The following procedures in the DBMS _
RECTIFIER_DIFF package let you identify, and optionally rectify, the differences
between two tables when both sites are Oracle release 7.3 or higher.

Using the DIFFERENCES Procedure

The DIFFERENCESprocedure compares two replicas of a table, and determines all
rows in the first replica that are not in the second and all rows in the second that are
not in the first. The output of this procedure is stored in two user-created tables. The
first table stores the values of the missing rows, and the second table is used to
indicate which site contains each row.

Using the RECTIFY Procedure

The RECTIFY procedure uses the information generated by the DIFFERENCES
procedure to rectify the two tables. Any rows found in the first table and not in the
second are inserted into the second table. Any rows found in the second table and
not in the first are deleted from the second table.

To restore equivalency between all copies of a replicated table, complete the
following steps:

Step 1 Select one copy of the table to be the "reference" table. This copy will
be used to update all other replicas of the table as needed.

Step 2 Determine if it is necessary to check all rows and columns in the table

for differences, or only a subset.

For example, it may not be necessary to check rows that have not been updated
since the last time that you checked for differences. Although it is not necessary to
check all columns, your column list must include all columns that make up the
primary key (or that you designated as a substitute identity key) for the table.

Managing Replication Objects and Queues 9-9

Determining Differences Between Replicated Tables

Step 3 After determining which columns you will be checking in the table,
create two tables to hold the results of the comparison.

You must create one table that can hold the data for the columns being compared.
For example, if you decide to compare the employee_id , salary ,and
department_id columns of the employees table, then your CREATEstatement
would need to be similar to the following:

CREATE TABLE hr.missing_rows_data (
employee_id NUMBER(6),

salary NUMBER(8.2),
department_id NUMBER(4));

You must also create a table that indicates where the row is found. This table must
contain three columns with the datatypes shown in the following example:

CREATE TABLE hr.missing_rows_location (
present VARCHAR2(128),

absent VARCHAR2(128),

rid ROWID);

Step 4 Suspend replication activity for the replication group containing the
tables that you want to compare. Although suspending replication activity for
the group is not a requirement, rectifying tables that were not quiesced first
can result in inconsistencies in your data.
BEGIN

DBMS_REPCAT.SUSPEND_MASTER_ACTMITY (

gname =>"hr_repg);
END;
/

Step 5 At the site containing the "reference" table, call the DIFFERENCES
procedure in the DBMS_RECTIFIER_DIFF package.

For example, if you wanted to compare the employees tables at the New York and
San Francisco sites, then your procedure call would look similar to the following:

BEGIN
DBMS_RECTIFIER_DIFF.DIFFERENCES (
snamel = 'hr,
onamel => 'employees,
reference site => ‘ny.world),
sname2 => hr,
oname2 => 'employees,

comparison_site => 'mv4world,
where_clause => "

9-10 Oracle9i Replication Management AP| Reference

Determining Differences Between Replicated Tables

column_list => ‘employee_id,salary,department_id',
missing_rows_sname => ‘hr,
missing_rows_onamel => ‘'missing_rows_data’,
missing_rows_oname2 => 'missing_rows_location,
missing_rows_site => "ny.world,
max_missing => 500,
commit_rows => 50);

END;

/

Figure 9-1 shows an example of two replicas of the employee table and what the

resulting missing rows tables would look like if you executed the DIFFERENCES
procedure on these replicas.

Managing Replication Objects and Queues 9-11

Determining Differences Between Replicated Tables

Figure 9—1 Determining Differences Between Replicas

employees Table at NY.COM

employee_id ‘ Iast_name‘ department_id ‘ salary ‘ commission_pct

100 Jones 20 55,000 | .4

101 Kim 20 62,000 | .25

102 Braun 20 43500 | .1
I ———— _ Replicas

employees Table at SF.COM

employee_id ‘ Iast_name‘ department _id ‘ salary ‘ commission_pct

100 ‘ Jones ‘ 20 ‘ 55,000 ‘ 4

101 | Kim | 20 | 62,000 | .3
| 102 | Braun | 20 | 43,500 | .1

103 | Rama | 20 | 48,750 | .35
L—

missing_rows_data Table missing_rows_location Table

employee_id ‘ salary ‘ commission_pct | rowid

present absent r_id
101 62,000 | .25 000015E8.0000.0002 ny.com sf.com 000015E8.0000.0002
101 62,000 | .3 000015E8.0001.0002 sf.com ny.com 000015E8.0001.0002
103 48,750 | .35 000015E8.0002.0002 sf.com ny.com 000015E8.0002.0002

Notice that the two missing rows tables are related by the ROWIDand r_id
columns.

Step 6 Rectify the table at the "comparison" site to be equivalent to the table

at the "reference” site by callingthe = RECTIFY procedure in the as shown in the
DBMS_RECTIFIER_DIFF package following example:

BEGIN
DBMS_RECTIFIER_DIFF.RECTIFY (
snamel = ‘hr,
onamel => 'employees,

9-12 Oracle9i Replication Management AP| Reference

Determining Differences Between Replicated Tables

reference_site => ‘ny.world,
sname2 = 'hr,
oname2 => 'employees,
comparison_site => 'mv4.world,
column_list => 'employee_id,salary,department_id',
missing_rows_sname => 'hr’,
missing_rows_onamel => 'missing_rows_data,
missing_rows_oname2 => 'missing_rows_location’,
missing_rows_site => 'ny.world,
commit rows => 50);

END;

/

The RECTIFY procedure temporarily disables replication at the "comparison” site
while it performs the necessary insertions and deletions, as you would not want to
propagate these changes. RECTIFY first performs all of the necessary DELETE
operations and then performs all of the INSERT operations. This ensures that there
are no violations of a PRIMARY KEYonstraint.

After you have successfully executed the RECTIFY procedure, your missing rows
tables should be empty.

Caution: If you have any additional constraints on the
"comparison” table, then you must ensure that they are not violated
when you call RECTIFY. You may need to update the table directly
using the information in the missing rows table. If so, then be sure
to DELETEthe appropriate rows from the missing rows tables.

Step 7 Repeat Steps 5 and 6 for the remaining copies of the replicated table.
Remember to use the same "reference" table each time to ensure that all
copies are identical when you complete this procedure.

Step 8 Resume replication activity for the master group.
BEGIN
DBMS_REPCATRESUME_MASTER ACTIVITY (
gname =>"hr_repg);
END;
/

Managing Replication Objects and Queues 9-13

Managing the Deferred Transactions Queue

Managing the Deferred Transactions Queue

Typically, Advanced Replication is configured to push and purge the deferred
transaction queue automatically. At times, however, you may need to push or purge
the deferred transaction queue manually. The process for pushing the deferred
transaction queue is the same at master sites and materialized view sites.

Pushing the Deferred Transaction Queue

Master sites are configured to push the deferred transaction queue automatically at
set intervals. At materialized view sites, if you do not automatically propagate the
transactions in your deferred transaction queue during the refresh of your
materialized view, then you must complete the following steps to propagate
changes made to the updatable materialized view to its master table or master
materialized view.

This example illustrates pushing the deferred transaction queue at a materialized
view site, but the process is the same at master sites and materialized view sites.

Executed As: Materialized View Administrator
Executed At: Materialized View Site

Complete the following steps:

Step 1 Connect to the materialized view site as the materialized view
administrator.

CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Execute the following SELECTstatement to view the deferred
transactions and their destinations. Propagation of the deferred transaction
gueue is based on the destination of the transaction. Each distinct destination
and the number of transactions pending for the destination will be displayed.

SELECT DISTINCT(dblink), COUNT(deferred_tran_id)
FROM deftrandest GROUP BY dblink;

Step 3 Execute the DBMS_DEFER_SYS.PUSHction for each site that is listed
as a destination for a deferred transaction.

DECLARE
temp INTEGER,
BEGIN
temp = DBMS_DEFER_SYS.PUSH (

destination =>'orc1.world’,
Stop_on_emor =>FALSE,
delay_seconds=>0,

9-14 Oracle9i Replication Management AP| Reference

Managing the Deferred Transactions Queue

parallelism => Q);
END;
/

Run the PUSHprocedure for each destination that was returned in the SELECT
statement you ran in Step 2.

Purging the Deferred Transaction Queue

If your system is not set to automatically purge the successfully propagated
transactions in your deferred transaction queue periodically, then you must
complete the following steps to purge them manually.

This example illustrates purging the deferred transaction queue at a materialized
view site, but the process is the same at master sites and materialized view sites.

Executed As: Materialized View Administrator

Executed At: Materialized View Site

Complete the following steps:

Step 1 Connect to the materialized view site as the materialized view
administrator.

CONNECT mviewadmin/mviewadmin@mvl.world

Step 2 Purge the deferred transaction queue.

DECLARE
temp INTEGER,
BEGIN
temp:= DBMS_DEFER_SYS.PURGE (
purge_method =>dbms_defer_sys.purge_method_quick);
END;

/

Note: If you use the purge_method _quick parameter, deferred
transactions and deferred procedure calls that have been
successfully pushed may remain in the DEFTRANand DEFCALL
data dictionary views for longer than expected before they are
purged. See the "Usage Notes" for DBMS_DEFER_SYS.PURGH
page 14-13 for details.

Managing Replication Objects and Queues 9-15

Managing the Deferred Transactions Queue

Using the AnyData Type to Determine the Value of an Argument in a Deferred Call

If you are using column objects, collections, or REFs in a replicated table, then you
can use the GET_AnyData_ARGfunction in the DBMS_DEFER_QUER4ckage to
determine the value of an argument in a deferred call that involves one of these
user-defined types.

The following example illustrates how to use the GET_AnyData_ARGfunction. This
example uses the following user-defined types in the oe sample schema.

CREATE TYPE phone_list typ AS VARRAY(5) OF VARCHAR2(25);
/

CREATE TYPE warehouse_typ AS OBJECT
(warehouse_id NUMBER(3),
warehouse_name VARCHAR2(35),
locaion_id ~ NUMBER(4)

)

/

CREATE TYPE inventory_typ AS OBJECT
(product_id NUMBER(6),
warehouse warehouse_typ,
quantity on_hand NUMBER(8)
)

/

CREATE TYPE inventory list typ AS TABLE OF inventory_typ;
/

The following procedure retrieves the argument value for collection, object, and

REFinstances of calls stored in the deferred transactions queue. This procedure
assumes that the call number and transaction id are available.

9-16 Oracle9i Replication Management AP| Reference

Managing the Deferred Transactions Queue

The user who creates the procedure must have EXECUTHBprivilege on the DBMS _
DEFER_QUERJackage and must have CREATE PROCEDUREVvilege. This
example uses the oe sample schema. Therefore, to run the example, you must grant
the oe user these privileges.

CONNECT system/manager as sysdba

GRANT EXECUTE ON DBMS_DEFER_QUERY TO 0g;
GRANT CREATE PROCEDURE TO 0g;

CONNECT oe/oe@orcl.world

CREATE OR REPLACE PROCEDURE get _userdef_arg AS
cal no NUMBER :=0;
tn_id VARCHAR2(128) := XXXX.XX;
anydata_val Sys AnyData;
t SYS.AnyType;
data pl phone_list typ; -varay
data ntt inventory _list_typ; — nested table type
data p warehouse_typ; - objecttype
refl REFinventory_typ; — REFtype
rval PLS INTEGER; —retumvalue
fc PLS INTEGER; -retumvalue
prec PLS INTEGER; - precision
scale PLS INTEGER; -—scale
len PLS INTEGER; -—length
csid PLS INTEGER; - charactersetid
csfim PLS_INTEGER; - character setform
cnt PLS INTEGER; - countof varray elements or number of
— object attrbutes
sname VARCHAR2(35); -schemaname
type_name VARCHAR2(35); -typename
version VARCHAR2(35);
BEGIN
FORIiIN1.5LO0P
anydata_val =DBMS_DEFER_QUERY.GET_AnyData. ARG(call_no, i, txn_id);
- Get the type information, including type name.
tc = anydata_val.GetType(t);
tc =t Getlnfo(prec, scale, len, csid, csfrm, sname, type_name,
version, cnt);
- Based on the type name, convert the anydata value to the appropriate
— user-defined types.
IFtype_name ='PHONE_LIST_TYP' THEN
—The anydata_val contains phone_list_typ varray instance.

Managing Replication Objects and Queues 9-17

Managing the Error Queue

rval ;= anydata_val.GetCollection(data_pl);
— Do something with data._pl.

ELSIFtype_name ='INVENTORY_LIST_TYP' THEN
—anydata_val contains inventory _list typ nested table instance.
rval .= anydata_val.GetCollection(data_ntt);

— Do something with data,_ntt.

ELSIFtype_name ='WAREHOUSE_TYP' THEN
- The anydata_val contains warehouse_typ object instance.
rval = anydata.val GetObject(data._p);

— Do something with data_p.

ELSIFtype_name ='INVENTORY_TYP' THEN
—The anydata_val contains a reference to inventory_typ object instance.
rval := anydata val.GetRef(refl);

— Do something with refl.

END IF;

END LOOP;
END;
/

See Also:

« "GET_datatype ARG Function" on page 13-7

« Oracle9i SQL Reference and Oracle9i Application Developer’s Guide
- Object-Relational Features for more information about the

AnyData datatype

Managing the Error Queue

As an administrator of a replication environment, you should regularly monitor the
error queue to determine if any deferred transactions were not successfully applied

at the target master site.

To check the error queue, issue the following SELECTstatement (as the replication

administrator) when connected to the target master site:
SELECT * FROM deferror;

If the error queue contains errors, then you should resolve the error condition and
reexecute the deferred transaction. You have two options when reexecuting a
deferred transaction: you can reexecute in the security context of the user who
received the deferred transaction, or you can reexecute the deferred transaction

with an alternate security context.

9-18 Oracle9i Replication Management AP| Reference

Managing the Error Queue

Caution: If you have multiple error transactions and you want to
make sure they are reexecuted in the correct order, then you can
specify NULL for the deferred_tran_id parameter in the
procedures in the following sections. If you do not specify NULL,
then reexecuting individual transactions in the wrong order can
cause conflicts.

Reexecuting Error Transaction as the Receiver

The following procedure reexecutes a specified deferred transaction in the security
context of the user who received the deferred transaction. This procedure should
not be executed until the error situation has been resolved.

Meet the following requirements to complete these actions:
Executed As: Replication Administrator

Executed At: Site Containing Errors

Replication Status: Normal

Complete the following steps:

Step 1 Connect to the master site as the replication administrator.
CONNECT repadmin/repadmin@orc2.world

Step 2 Reexecute the error transaction.

BEGIN
DBMS_DEFER_SYS.EXECUTE_ERROR (
deferred_tran_id =>"1.12.2904',
destination =>"orc2.world);
END;
/

Managing Replication Objects and Queues 9-19

Managing the Error Queue

Reexecuting Error Transaction as Alternate User

The following procedure reexecutes a specified deferred transaction in the security
context of the currently connected user. This procedure should not be executed until
the error situation has been resolved.

Meet the following requirements to complete these actions:
Executed As: Connected User

Executed At: Site Containing Errors

Replication Status: Normal

Complete the following steps:

Step 1 Connect to the master site as the alternate user.
CONNECT hrhr@orc2.world

Step 2 Reexecute the error transaction.

BEGIN
DBMS_DEFER SYSEXECUTE _ERROR_AS USER (
deferred tran id=>"1.12.2904,
destination =>orc2.world);
END;
/

9-20 Oracle9i Replication Management AP| Reference

10

Monitoring a Replication Environment

This chapter illustrates how to monitor a replication a replication environment
using the data dictionary. This chapter contains these topics:

Monitoring Master Replication Environments
Monitoring Materialized View Sites

Monitoring Administrative Requests

Monitoring the Deferred Transactions Queue
Monitoring the Error Queue

Monitoring Performance in a Replication Environment

Monitoring Performance in a Replication Environment

Note: The Replication Management tool in Oracle Enterprise
Manager is also an excellent way to monitor a replication
environment. Most of the information obtained by the queries in
this chapter can be found in the reports available in the Replication
Management tool. See the Replication Management tool online help
for more information.

Monitoring a Replication Environment

10-1

Monitoring Master Replication Environments

Monitoring Master Replication Environments

This section contains queries that you can run to display information about a master
replication environment. The replication environment can be a multimaster
environment, a master materialized view environment, or a hybrid environment
that includes multiple master sites and materialized views.

Monitoring Master Sites

This section contains queries that you can run to display information about master
sites.

Listing General Information About a Master Site

You can find the following general information about a master site by running the
query in this section:

« The number of administrative requests
« The number of administrative request errors

« The number of unpropagated deferred transaction-destination pairs. Each
deferred transaction may have multiple destinations to which it will be
propagated, and each destination is a single deferred transaction-destination
pair.

For example, if there are ten deferred transactions and each one must be propagated
to three sites, then there are 30 deferred transaction-pairs returned by this query.
After some time, if the first deferred transaction is propagated to two of the three
destination sites, then there are still ten deferred transactions, but there are two
fewer deferred-transaction pairs, and this query returns 28 unpropagated deferred
transaction-pairs. In this case, the first deferred transaction only has one
transaction-pair remaining.

« The number of deferred transaction errors (error transactions)

« The number of successfully propagated transactions that are still in the queue.
These transactions should be purged from the queue.

10-2 Oracle9i Replication Management AP| Reference

Monitoring Master Replication Environments

Run the following query to list this information for the current master site:

COLUMN GLOBAL_NAME HEADING 'Database’' FORMAT A25
COLUMN ADMIN_REQUESTS HEADING ‘Admin|Regests' FORMAT 9999
COLUMN STATUS HEADING 'Admin|Errors' FORMAT 9999

COLUMN TRAN HEADING Def|Trans|Pairs' FORMAT 9999

COLUMN ERRORS HEADING 'Def|Trans|Errors' FORMAT 9999
COLUMN COMPLETE HEADING 'Propagated| Trans' FORMAT 9999

SELECT G.GLOBAL_NAME, D.ADMIN_REQUESTS, E.STATUS, DT.TRAN, DE.ERRORS, C.COMPLETE
FROM (SELECT GLOBAL_NAME FROM GLOBAL NAVME) G,
(SELECT COUNT(ID) ADMIN_REQUESTS FROM DBA_REPCATLOG)D,
(SELECT COUNT(STATUS) STATUS FROM DBA_REPCATLOG WHERE STATUS = ERROR) E,
(SELECT COUNT(*) TRAN FROM DEFTRANDEST) DT,
(SELECT COUNT(*) ERRORS FROM DEFERROR) DE,
(SELECT COUNT(ADEFERRED_TRAN_ID) COMPLETE FROM DEFTRAN A
WHERE ADEFERRED_TRAN_IDNOT IN(
SELECT BDEFERRED TRAN_ID FROM DEFTRANDEST B)) C;

Your output looks similar to the following:

Def Def
Admin Admin Trans Trans Propagated
Database Regests Errors Pairs Erors - Trans
mv4.world 5 03 0 53

Note: This query can be expensive if you have a large number of
transactions in the deferred transactions queue.

Monitoring Master Groups

This section contains queries that you can run to display information about the
master groups at a replication site.

Listing the Master Sites Participating in a Master Group

Run the following query to list the master sites for each master group at a
replication site and indicate which master site is the master definition site for each
master group:

COLUMN GNAME HEADING 'Master Group' FORMAT A20

COLUMN DBLINK HEADING 'Sites' FORMAT A25
COLUMN MASTERDEF HEADING ‘Master|Definition|Site? FORMAT A10

Monitoring a Replication Environment 10-3

Monitoring Master Replication Environments

SELECT GNAME, DBLINK, MASTERDEF
FROM DBA_REPSITES
WHERE MASTER =Y
AND GNAME NOT IN (SELECT GNAME FROM DBA_REPSITES WHERE SNAPMASTER ="Y")
ORDER BY GNAME;

The subquery in the SELECTstatement ensures that materialized view groups do
not appear in the output. Your output looks similar to the following:

Master

Definition
Master Group Sites Site?
HR_RG mv4.worid Y
HR_RG NY.WORLD N

This list indicates that mv4.world is the master definition site for the hr_rg master
group.

Listing General Information About Master Groups

You can use the query in this section to list the following general information about
the master groups at a master site:

« The name of each master group

« The number of unpropagated deferred transaction-destination pairs. Each
deferred transaction may have multiple destinations to which it will be
propagated, and each destination is a single deferred transaction-destination
pair.

For example, if there are ten deferred transactions and each one must be propagated
to three sites, then there are 30 deferred transaction-pairs returned by this query.
After some time, if the first deferred transaction is propagated to two of the three
destination sites, then there are still ten deferred transactions, but there are two
fewer deferred-transaction pairs, and this query returns 28 unpropagated deferred
transaction-pairs. In this case, the first deferred transaction only has one
transaction-pair remaining.

« The number of deferred transaction errors (error transactions) for each master
group

« The number of administrative requests for each master group

« The number of administrative request errors for each master group

10-4 Oracle9i Replication Management AP| Reference

Monitoring Master Replication Environments

Run the following query to list this information:

COLUMN GNAME HEADING 'Master Group' FORMAT A15

COLUMN deftran HEADING 'Number ofiDeferred| Transaction|Pairs' FORMAT 9999
COLUMN defiranerror HEADING 'Number ofDeferred|Transaction|Errors' FORMAT 9999
COLUMN adminreq HEADING 'Number offAdministrative| Requests' FORMAT 9999
COLUMN adminregerror HEADING ‘Number ofjAdministrative|Request/Ernors'

COLUMN adminregerror FORMAT 9999

SELECT G.GNAME,
NVL(T.CNT1, 0) deftran,
NVL(IE.CNT2, 0) deftranerror,
NVL(A.CNT3, 0) adminreq,
NVL(B.CNT4, 0) adminregerror
FROM
(SELECT DISTINCT GNAME FROM DBA_REPGROUP WHERE MASTER=Y') G,
(SELECT DISTINCT RO.GNAME, COUNT(DISTINCT D.DEFERRED_TRAN_ID) CNT1
FROM DBA REPOBJECT RO, DEFCALL D, DEFTRANDEST TD
WHERE RO.SNAME = D.SCHEMANAME
AND RO.ONAME = D.PACKAGENAME
AND RO.TYPE IN (TABLE, PACKAGE, 'SNAPSHOT)
AND TD.DEFERRED_TRAN_ID =D.DEFERRED_TRAN_ID
GROUP BY RO.GNAME) T,
(SELECT DISTINCT RO.GNAME, COUNT(DISTINCT E.DEFERRED_TRAN_ID) CNT2
FROM DBA_REPOBJECT RO, DEFCALL D, DEFERROR E
WHERE RO.SNAME = D.SCHEMANAME
AND RO.ONAME = D.PACKAGENAME
AND RO.TYPE IN (TABLE, PACKAGE!, 'SNAPSHOT)
AND E.DEFERRED_TRAN_ID =D.DEFERRED_TRAN_ID
AND E.CALLNO =D.CALLNO
GROUP BY RO.GNAME) IE,
(SELECT GNAME, COUNT(*) CNT3 FROM DBA_REPCATLOG GROUP BY GNAME) A,
(SELECT GNAME, COUNT(*) CNT4 FROM DBA_REPCATLOG
WHERE STATUS ='ERROR'
GROUP BY GNAME) B WHERE G.GNAME = IE.GNAME (+)
AND G.GNAME = T.GNAME (+)
AND G.GNAME = A.GNAME (+)
AND G.GNAME =B.GNAME (+) ORDER BY G.GNAME;

Monitoring a Replication Environment 10-5

Monitoring Master Replication Environments

Your output looks similar to the following:

Number of Number of Number of

Deferred Deferred Number of Administrative

Transaction Transaction Administrative ~ Request
Master Group Pairs Emors Requests Emors

HR RG 54 0 0 0
OE RG 3B 1 5 0

Note: This query can be expensive if you have a large number of
transactions waiting to be propagated.

Monitoring Masters

A master can be either a master site or a master materialized view site. This section
contains queries that you can run to display information about masters.

Listing Information About Materialized Views Based on a Master

If you have materialized view sites based on a master, then you can use the query in
this section to list the following information about the master:

« The number of replication groups at a master. The replication groups can be
either master groups or materialized view groups.

« The number of registered materialized view groups based on the replication
groups at the master

« The number of registered materialized views based on objects at the master. The
objects can be either master tables or master materialized views.

« The number of materialized view logs at the master
« The number of deployment templates at the master
Run the following query to list this information:

COLUMN repgroup HEADING ‘Number of[Replication|Groups' FORMAT 9999
COLUMN mvgroup HEADING 'Number of|Registered|MV Groups' FORMAT 9999
COLUMN mv HEADING Number ofRegistered MVs' FORMAT 9999

COLUMN mviog HEADING 'Number oMV Logs' FORMAT 9999

COLUMN template HEADING ‘Number ofiTemplates' FORMAT 9999

10-6 Oracle9i Replication Management AP| Reference

Monitoring Master Replication Environments

SELECT AREPGROUP repgroup,
B.MVGROUP mvgroup,
CMVmv,
D.MVLOG mviog,
E.TEMPLATE template
FROM (SELECT COUNT(G.GNAME) REPGROUP
FROM DBA_REPGROUP G, DBA_REPSITES S
WHERE GMASTER="Y"
AND SMASTER =Y
AND G.GNAME = S.GNAME
AND SMY_DBLINK="Y) A,
(SELECT COUNT(*) MVGROUP
FROM DBA_REGISTERED_MVIEW_GROUPS) B,
(SELECT COUNT(*) MV
FROM DBA_REGISTERED _MVIEWS)C,
(SELECT COUNT(*) MVLOG
FROM (SELECT 1 FROM DBA_MVIEW_LOGS
GROUP BY LOG_OWNER, LOG_TABLE)) D,
(SELECT COUNT(¥) TEMPLATE FROM DBA_REPCAT_REFRESH_TEMPLATES) E;

Your output looks similar to the following:

Number of Number of
Replication Registered Number of Number of Number of
Groups MV Groups Registered MVs MV Logs Templates

1 5 27 6 3

Listing Information About the Materialized View Logs at a Master

A materialized view log enables you to fast refresh materialized views based on a
master. A master can be a master table or a master materialized view. If you have
materialized view logs based at a master, then you can use the query in this section
to list the following information about them:

« The name of each log table that stores the materialized view log data

« The owner of each materialized view log

« The master on which each materialized view log is based

« Whether a materialized view log is a row id materialized view log

« Whether a materialized view log is a primary key materialized view log
« Whether the materialized view log is an object id materialized view log

« Whether a materialized view log has filter columns

Monitoring a Replication Environment 10-7

Monitoring Master Replication Environments

Run the following query to list this information:

COLUMN LOG_TABLE HEADING 'Log Table' FORMAT A20

COLUMN LOG_OWNER HEADING 'Log|Owner FORMAT A5
COLUMN MASTER HEADING 'Master FORMAT A15

COLUMN ROWIDS HEADING ‘Row{ID? FORMAT A3

COLUMN PRIMARY_KEY HEADING 'Primary|Key? FORMAT A7
COLUMN OBJECT_ID HEADING 'Object{ID? FORMAT A6

COLUMN FILTER_COLUMNS HEADING 'Fitter|Columns? FORMAT A8

SELECT DISTINCT LOG_TABLE,

LOG_OWNER,
MASTER,
ROWIDS,
PRIMARY_KEY,
OBJECT_ID,
FILTER_COLUMNS

FROM DBA_MVIEW_LOGS

ORDERBY 1;

Your output looks similar to the following:

Log Row Primary Object Fitter
Log Table Owner Master ID?Key? ID? Columns?
MLOG$ COUNTRIES HR COUNTRIES NO YES NO NO
MLOG$ DEPARTMENTS HR DEPARTMENTS NO YES NO NO
MLOG$ EMPLOYEES HR EMPLOYEES NO YES NO NO
MLOG$ JOBS HR JOBS NO YES NO NO
MLOG$_JOB HISTORY HR JOB _HISTORY NO YES NO NO
MLOG$ _LOCATIONS HR LOCATIONS NO YES NO NO

See Also: Oracle9i Replication for information about materialized
view logs

Listing the Materialized Views That Use a Materialized View Log

More than one materialized view can use a materialized view log. If you have
materialized view logs based at a master, then you can use the query in this section
to list the following the materialized views that use each log:

« The name of each log table that stores the materialized view log data
« The owner of each materialized view log

« The master on which each materialized view log is based

10-8 Oracle9i Replication Management AP| Reference

Monitoring Master Replication Environments

« The materialized view identification number of each materialized view that
uses the materialized view log

« The name of each materialized view that uses the materialized view log
Run the following query to list this information:

COLUMN LOG_TABLE HEADING 'Mview|Log Table' FORMAT A20
COLUMN LOG_OWNER HEADING 'Mview|Log Owner' FORMAT A10
COLUMN MASTER HEADING 'Master FORMAT A20

COLUMN MVIEW_ID HEADING 'Mview|ID' FORMAT 9999

COLUMN NAME HEADING 'Mview Name' FORMAT A20

SELECTLLOG_TABLE, LLOG_OWNER, BMASTER, BMVIEW_ID, RNAME
FROMALL MVIEW_LOGSL,ALL BASE TABLE MVIEWS B, ALL_REGISTERED MVIEWSR
WHERE BMVIEW_ID=RMVIEW_ID

AND BOWNER=LLOG_OWNER

AND BMASTER = LMASTER;

Your output looks similar to the following:

Mview Mview

Log Table Owner Master ID Mview Name

MLOG$ COUNTRIES HR COUNTRIES 24 COUNTRIES_MVIEW1
MLOG$ COUNTRIES HR COUNTRIES 31 COUNTRIES_MVIEW2

MLOG$ DEPARTMENTS HR DEPARTMENTS 19 DEPARTMENTS_MVIEW1
MLOG$ DEPARTMENTS HR DEPARTMENTS 64 DEPARTMENTS_MVIEW2
MLOG$ DEPARTMENTS HR DEPARTMENTS 15 DEPARTMENTS_MVIEW3

Listing Information About the Deployment Templates at a Master

Deployment templates enable you to create multiple materialized view
environments quickly. They also enable you to use variables to customize each
materialized view environment for its individual needs. You can use the query in
this section to list the following information about the deployment templates at a
master:

« The name of each deployment template
« The owner of each deployment template
« Whether a deployment template is public

« The number of instantiated materialized view sites based on each deployment
template

« The comment associated with each deployment template

Monitoring a Replication Environment 10-9

Monitoring Materialized View Sites

Run the following query to list this information:

COLUMN REFRESH_TEMPLATE_NAME HEADING Template|]Name' FORMAT A10
COLUMN OWNER HEADING 'Owner FORMAT A10

COLUMN PUBLIC_TEMPLATE HEADING 'Public? FORMAT A7

COLUMN INSTANTIATED HEADING ‘Number offinstantiated|Sites' FORMAT 9999
COLUMN TEMPLATE_COMMENT HEADING '‘Comment FORMAT A35

SELECT DISTINCT RT.REFRESH_TEMPLATE_NAME,
OWNER,
PUBLIC_TEMPLATE,
RS.INSTANTIATED,
RT.TEMPLATE_COMMENT

FROM DBA REPCAT_REFRESH_TEMPLATESRT,

(SELECT Y.REFRESH_TEMPLATE_NAME, COUNT(X.STATUS) INSTANTIATED
FROM DBA REPCAT_TEMPLATE_SITES X, DBA REPCAT_REFRESH TEMPLATESY
WHERE X REFRESH_TEMPLATE_NAME(+) = Y.REFRESH_TEMPLATE_NAME
GROUP BY Y.REFRESH_TEMPLATE_NAME) RS
WHERE RT.REFRESH_TEMPLATE_NAME(+) = RS.REFRESH_TEMPLATE_NAME
ORDERBY 1,

Your output looks similar to the following:

Number of
Template Instantiated
Name Owner Public? Sites Comment

HR_REFG_DTHR N 2 Human Resources Deployment Template

The Nin the Public? column means that the deployment template is private.
Therefore, it can only be instantiated by authorized users. A Y in this column means
that the deployment template is public. Any user can instantiate a public
deployment template.

Monitoring Materialized View Sites

This section contains queries that you can run to display information about the
materialized view sites.

Listing General Information About a Materialized View Site

You can use the query in this section to list the following general information about
the current materialized view site:

10-10 Oracle9i Replication Management AP| Reference

Monitoring Materialized View Sites

Listing General

« The number of materialized view groups at the site
« The number of materialized views at the site

« The number of refresh groups at the site

Run the following query to list this information:

COLUMN MVGROUP HEADING 'Number ofMaterialized|View Groups' FORMAT 9999
COLUMN MV HEADING 'Number offMaterialized|Views' FORMAT 9999
COLUMN RGROUP HEADING Number ofRefresh Groups' FORMAT 9999

SELECT AMVGROUP, BMV, CRGROUP
FROM
(SELECT COUNT(S.GNAME) MVGROUP
FROM DBA REPSITES S
WHERE S.SNAPMASTER ="Y) A,
(SELECT COUNT() MV
FROM DBA_MVIEWS) B,
(SELECT COUNT(*) RGROUP
FROM DBA_REFRESH)C;

Your output looks similar to the following:

Number of Number of
Materialized Materialized ~ Number of
ViewGroups Views Refresh Groups

5 25 5

Information About Materialized View Groups

You can use the query in this section to list the following general information about
the materialized view groups at the current materialized view site:

« The name of each materialized view group
« The master of each materialized view group

« The method of propagation to a materialized view group’ s master, either
asynchronous or synchronous

« The comment associated with each materialized view group
Run the following query to list this information:

COLUMN GNAME HEADING ‘Group Name' FORMAT A10
COLUMN DBLINK HEADING 'Master FORMAT A25

Monitoring a Replication Environment 10-11

Monitoring Materialized View Sites

COLUMN Propagation HEADING 'Propagation|Method' FORMAT A12
COLUMN SCHEMA_COMMENT HEADING ‘Comment FORMAT A30

SELECT SGNAVE,
SDBLINK,
DECODE(S.PROP_UPDATES,
0, ASYNCHRONOUS,
1,"'SYNCHRONOUS) Propagation,
G.SCHEMA COMMENT
FROM DBA_REPSITES S, DBA_ REPGROUP G
WHERE S.GNAME = G.GNAME
AND S.SNAPMASTER ='Y"

Your output looks similar to the following:

Propagation
Group Name Master Method Comment
HR_RG mv4.world ASYNCHRONOUS Human Resources Group

Listing Information About Materialized Views

This section contains queries that you can run to display information about the

materialized views at a replication site.

Listing Master Information For Materialized Views

The following query shows the master for each materialized view at a replication
site and whether the materialized view can be fast refreshed:

COLUMN MVIEW_NAME HEADING ‘Materialized|View Name' FORMAT A15

COLUMN OWNER HEADING 'Owner FORMAT A10
COLUMN MASTER_LINK HEADING 'Master Link FORMAT A30
COLUMN Fast_Refresh HEADING 'Fast|Refreshable? FORMAT A16

SELECT MVIEW_NAME,
OWNER,
MASTER_LINK,
DECODE(FAST_REFRESHABLE,
'NO,'NO,
‘DML, 'YES,
'DIRLOAD, DIRECT LOAD ONLY’,
'DIRLOAD_DML, 'YES,
'DIRLOAD_LIMITEDDML', LIMITED) Fast_Refresh
FROM DBA MVIEWS,;

10-12 Oracle9i Replication Management AP| Reference

Monitoring Materialized View Sites

Your output looks similar to the following:

Materialized Fast

ViewName Owner MasterLink Refreshable?
DEPARTMENTS_MV HR @mv4.world YES
EMPLOYEES MV HR @mv4.world YES
JOBS MV HR @mv4.world YES
JOB_HISTORY_MV HR @mva.world YES
LOCATIONS_ MV HR @mva.world YES

Listing the Properties of Materialized Views

You can use the query in this section to list the following information about the
materialized views at the current replication site:

=« The name of each materialized view
=« The owner of each materialized view

« The refresh method used by each materialized view: COMPLETH-FORCEFAST,
or NEVER

« Whether a materialized view is updatable
« The last date on which each materialized view was refreshed
Run the following query to list this information:

COLUMN MVIEW_NAME HEADING ‘Materialized|View Name' FORMAT A15
COLUMN OWNER HEADING ‘Owner' FORMAT A10

COLUMN REFRESH_METHOD HEADING 'Refresh|Method FORMAT A10
COLUMN UPDATABLE HEADING 'Updatable? FORMAT A10

COLUMN LAST_REFRESH_DATE HEADING 'Last|Refresh|Date’

COLUMN LAST_REFRESH_TYPE HEADING 'Last|Refresh[Type' FORMAT A15

SELECT MVIEW_NAME,
OWNER,
REFRESH_METHOD,
UPDATABLE,

LAST REFRESH_DATE,
LAST REFRESH_TYPE
FROM DBA MVIEWS;

Your output looks similar to the following:

Monitoring a Replication Environment 10-13

Monitoring Materialized View Sites

Last Last
Materialized Refresh Refresh Refresh
ViewName Owner Method Updatable? Date Type

DEPARTMENTS_ MV HR FORCE Y 22-JAN01 FAST
EMPLOYEES MV HR FAST Y 22-JAN-01 COMPLETE
JOBS MV HR COMPLETE Y 22-JAN-O1 COMPLETE
JOB HISTORY MVHR FAST Y 22-JAN-01 FAST
LOCATIONS MV HR FAST Y 22-JAN0O1 FAST

Listing Information About the Refresh Groups at a Materialized View Site

Each refresh group at a materialized view site is associated with a refresh job that
refreshes the materialized views in the refresh group at a set interval. You can query
the DBA_REFRESIdata dictionary view to list the following information about the
refresh jobs at a materialized view site:

« The name of the refresh group

« The owner of the refresh group

« Whether the refresh job is broken

« The next date and time when the refresh job will run

« The current interval setting for the refresh job. The interval setting specifies the
amount of time between the start of a job and the next start of the same job.

The following query displays this information:

COLUMN RNAME HEADING 'Refresh|Group|Name' FORMAT A10
COLUMN ROWNER HEADING 'Refresh|Group|Owner' FORMAT A10
COLUMN BROKEN HEADING 'Broken? FORMAT A7

COLUMN next_refresh HEADING 'Next Refresh'

COLUMN INTERVAL HEADING 'Intervall FORMAT A20

SELECT RNAME,
ROWNER,
BROKEN,
TO_CHAR(NEXT_DATE, DD-MON-YYYY HH:MI:SS AM) next_refresh,
INTERVAL
FROM DBA_REFRESH
ORDERBY 1;

10-14 Oracle9i Replication Management AP| Reference

Monitoring Materialized View Sites

Your output looks similar to the following:

Refresh Refresh
Group Group
Name Owner Broken? Next Refresh Interval

HR_REFG MVIEWADMINN 01-JAN-4000 12:00:00 AM SYSDATE + 1/24

The Nin the Broken? column means that the job is not broken. Therefore, the
refresh job will run at the next start time. A Y in this column means that the job is
broken.

Determining the Job ID for Each Refresh Job at a Materialized View Site

You can use the query in this section to list the following information about the
refresh jobs at a materialized view site:

« The job identification number of each refresh job. Each job created by the DBMS _
JOBSpackage is assigned a unique identification number.

« The privilege schema, which is the schema whose default privileges apply to
the job

« The schema that owns each refresh job. Typically, the materialized view
administrator owns a refresh job. A common username for the materialized
view administrator is mviewadmin .

« The name of the refresh group that the job refreshes
« The status of the refresh job, either normal or broken
The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999

COLUMN PRIV_USER HEADING 'Privilege|Schema FORMAT A10
COLUMN RNAME HEADING 'Refresh|Group|Name' FORMAT A10
COLUMN ROWNER HEADING 'Refresh|Group|Owner FORMAT A10
COLUMN BROKEN HEADING 'Broken? FORMAT A7

SELECT JJOB,
JPRIV_USER,
RROWNER,
R.RNAME,
J.BROKEN
FROM DBA REFRESH R, DBA JOBSJ
WHERER.JOB=J.JOB
ORDERBY 1;

Monitoring a Replication Environment 10-15

Monitoring Administrative Requests

Your output looks similar to the following:

Refresh Refresh
Priviege Group Group
JobIDSchema Owner Name Broken?

21 MVIEWADMIN MVIEWADMIN HR_REFG N

The Nin the Broken? column means that the job is not broken. Therefore, the job
will run at the next start time. A Y in this column means that the job is broken.

Determining Which Materialized Views Are Currently Refreshing
The following query shows the materialized views that are currently refreshing:

COLUMN SID HEADING 'Session|ldentifier FORMAT 9999

COLUMN SERIAL# HEADING 'Serial[Number FORMAT 999999
COLUMN CURRMVOWNER HEADING 'Owner FORMAT A15
COLUMN CURRMVNAME HEADING 'Materialized|View FORMAT A25

SELECT * FROM V$MVREFRESH,;

Your output looks similar to the following:

Session Serial Materialized
Identifier Number Owner View
19 233HR COUNTRIES_MV
5 647HR EMPLOYEES MV

Note: The V$MVREFRESHynamic performance view does not
contain information about updatable materialized views when the
materialized views’ deferred transactions are being pushed to its
master.

Monitoring Administrative Requests

This section contains queries that you can run to display information about the
administrative requests at a master site.

10-16 Oracle9i Replication Management AP| Reference

Monitoring Administrative Requests

Listing General Information About Administrative Requests

You can use the query in this section to list the following general information about
the administrative requests at a master site:

« The identification number of each administrative request
« The action requested by each administrative request

« The status of each request

« The master site where the request is being executed

The following query displays this information:

COLUMN ID HEADING 'Admin|Reguest|iD' FORMAT 999999
COLUMN REQUEST HEADING 'Request FORMAT A25
COLUMN STATUS HEADING 'Status' FORMAT A15
COLUMN MASTER HEADING 'Master|Site' FORMAT A25

SELECT ID, REQUEST, STATUS, MASTER FROM DBA_REPCATLOG,;

Your output looks similar to the following:

Admin
Request Master
ID Request Status Site

44 RESUME_MASTER_ACTIVITY AWAIT_CALLBACK NY.WORLD

Determining the Cause of Administrative Request Errors

You can determine the cause of an administrative request error by displaying its
error message. The following query displays the error message for each
administrative request that resulted in an error:

COLUMN ID HEADING 'Admin|Reguest|iD' FORMAT 999999
COLUMN REQUEST HEADING 'Request FORMAT A30
COLUMN ERRNUM HEADING "ErrorfNumber’ FORMAT 999999
COLUMN MESSAGE HEADING ‘Error|Message' FORMAT A32

SELECT ID, REQUEST, ERRNUM, MESSAGE
FROM DBA REPCATLOG WHERE STATUS ="ERROR;,

Monitoring a Replication Environment 10-17

Monitoring Administrative Requests

Your output looks similar to the following:

Admin
Request Emor Error
ID Request Number Message

70 CREATE_MASTER_REPOBJECT -2292 ORA-02292: integrity constrain
t(HR.DEPT_LOC_FK) violated -
child record found
ORA-02266: unique/primary keys
in table referenced by enable
d foreign keys

71 GENERATE_INTERNAL PKG_SUPPORT -23308 ORA-23308: object HR.LOCATIONS
does not exist or is invalid

Listing General Information About the Job that Executes Administrative Requests

Each master group is associated with a do_deferred_repcat_admin job that
executes administrative requests. You can query the DBA _JOBSdata dictionary
view to list the following information about this job at a replication site:

« Thejob identification number of each do_deferred repcat_admin job. Each
job created by the DBMS_JOB®ackage is assigned a unique identification
number.

« The privilege schema, which is the schema whose default privileges apply to
the job

« The status of each do_deferred_repcat_admin job, either normal or broken

« The next date and time when each do_deferred_repcat_admin job will run

« The current interval setting for each do_deferred_repcat_admin job. The

interval setting specifies the amount of time between the start of a job and the
next start of the same job.

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999

COLUMN PRIV_USER HEADING 'Privilege|Schema FORMAT A10
COLUMN BROKEN HEADING 'Broken? FORMAT A7

COLUMN next_start HEADING 'Next Start

COLUMN INTERVAL HEADING 'Intervall FORMAT A20

SELECT JOB,
PRIV_USER,

10-18 Oracle9i Replication Management AP| Reference

Monitoring the Deferred Transactions Queue

BROKEN,
TO_CHAR(NEXT_DATE,DD-MON-YYYY HH:MI:SS AM) next_start,
INTERVAL
FROM DBA_JOBS
WHERE WHAT LIKE %dbms _repcatdo_deferred_repcat_admin%e
ORDERBY 1;

Your output looks similar to the following:

Privilege
Job ID Schema Broken? Next Start Interval

3REPADMIN N 02-FEB-2001 04:34:36 PM SYSDATE + (1/144)

The Nin the Broken? column means that the job is not broken. Therefore, the job
will run at the next start time. A Y in this column means that the job is broken.

Checking the Definition of Each do_deferred_repcat_admin Job

You can query the DBA_JOBSdata dictionary view to show the definition of each
do_deferred_repcat_admin job at a replication site. The following query shows
the definitions:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN WHAT HEADING "Definitions of Admin Req Jobs' FORMAT A70

SELECT JOB, WHAT
FROM DBA _JOBS
WHERE WHAT LIKE %dbms_repcatdo_deferred repcat admin%o'
ORDERBY 1,

Your output looks similar to the following:
Job ID Definitions of Admin Req Jobs

321 dbms_repcatdo_deferred_repcat_admin("HR_RG", FALSE);
342 dbms_repcatdo_deferred_repcat_admin("OE_RG", FALSE);

Monitoring the Deferred Transactions Queue

This section contains queries that you can run to display information about the
deferred transactions queue at a replication site.

Monitoring a Replication Environment 10-19

Monitoring the Deferred Transactions Queue

Monitoring Transaction Propagation

This section contains queries that you can run to display information about
propagation of transactions in the deferred transactions queue.

Listing the Number of Deferred Transactions for Each Destination Master Site

You can find the number of unpropagated deferred transactions for each destination
master site by running the query in this section. This query shows each master site
to which the current master site is propagating deferred transactions and the
number of deferred transactions to be propagated to each destination site.

Run the following query to see the number of deferred and error transactions:

COLUMN DEST HEADING "Destination’ FORMAT A45
COLUMN TRANS HEADING 'Def Trans' FORMAT 9999

SELECT DBLINK DEST, COUNT(*) TRANS
FROM DEFTRANDEST D
GROUP BY DBLINK;

Your output looks similar to the following:

Destination Def Trans
NY.WORLD 27
mv4.world 44

Note: This query can be expensive if you have a large number of
transactions waiting to be propagated.

Listing General Information About the Push Jobs at a Replication Site

Each scheduled link at a replication site is associated with a push job that
propagates deferred transactions in the deferred transaction queue to a destination
site. You can use the query in this section to list the following information about the
push jobs at a replication site:

« The job identification number of each push job. Each job created by the DBMS _
JOBSpackage is assigned a unique identification number.

« The privilege schema, which is the schema whose default privileges apply to
the job

« The destination site where the deferred transactions are pushed

10-20 Oracle9i Replication Management AP| Reference

Monitoring the Deferred Transactions Queue

« The status of the push job, either normal or broken
The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999

COLUMN PRIV_USER HEADING 'Privilege|Schema FORMAT A10
COLUMN DBLINK HEADING "Destination' FORMAT A40

COLUMN BROKEN HEADING 'Broken? FORMAT A7

SELECT J.JOB,
JPRIV_USER,
S.DBLINK,
J.BROKEN
FROM DEFSCHEDULE S, DBA JOBSJ
WHERE S.DBLINK = (SELECT GLOBAL_NAME FROM GLOBAL_NAME)
AND S.JOB=J.JOB
ORDERBY 1;

Your output looks similar to the following:

Privilege
Job ID Schema Destination Broken?
2 REPADMIN NY.WORLD N

The Nin the Broken? column means that the job is not broken. Therefore, the job
will run at the next start time. A Y in this column means that the job is broken.

Determining the Next Start Time and Interval for the Push Jobs

Each scheduled link at a replication site is associated with a push job that
propagates deferred transactions in the deferred transaction queue to a destination
site. You can query the DEFSCHEDULEBNd DBA_JOBSdata dictionary views to list
the following information about the push jobs at a replication site:

« The job identification number of each push job. Each job created by the DBMS _
JOBSpackage is assigned a unique identification number.

« The destination site where the deferred transactions are pushed
« The next date and time when the push job will run

« The current interval setting for the push job. The interval setting specifies the
amount of time between the start of a job and the next start of the same job.

The following query displays this information:
COLUMN JOB HEADING ‘Job ID' FORMAT 999999

Monitoring a Replication Environment 10-21

Monitoring the Deferred Transactions Queue

COLUMN DBLINK HEADING ‘Destination' FORMAT A22
COLUMN next_start HEADING 'Next Start
COLUMN INTERVAL HEADING 'Interval FORMAT A25

SELECT JOB,

DBLINK,
TO_CHAR(NEXT _DATE, DD-MON-YYYY HH:MI:SS AM) next._start,
INTERVAL

FROM DEFSCHEDULE

WHERE DBLINK = (SELECT GLOBAL_NAME FROM GLOBAL_NAME)

AND JOB IS NOT NULL

ORDERBY 1;

Your output looks similar to the following:
Job ID Destination Next Start Interval

2NY.WORLD 02-FEB-2001 04:44:39 PM SYSDATE + 10/ (24 * 60)

Determining the Total Number of Transactions Queued for Propagation

Run the following query to display the total number of transactions in the deferred
transaction queue that are waiting to be propagated:

SELECT COUNT(DISTINCT DEFERRED_TRAN_ID) "Transactions Queued"
FROM DEFTRANDEST;

Your output looks similar to the following:

Transactions Queued

37

Note: This query can be expensive if you have a large number of
transactions waiting to be propagated.

Monitoring Purges of Successfully Propagated Transactions

This section contains queries that you can run to display information about purges
of successfully propagated transactions from the deferred transactions queue.

Listing General Information About the Purge Job

During standard setup of a replication site, you configure a purge job to remove
successfully propagated transactions from the deferred transactions queue. You can

10-22 Oracle9i Replication Management AP| Reference

Monitoring the Deferred Transactions Queue

qguery the DBA_JOBSdata dictionary view to list the following information about
the purge job at a replication site:

« The job identification number of the purge job. Each job created by the DBMS _
JOBSpackage is assigned a unique identification number.

« The privilege schema, which is the schema whose default privileges apply to
the job

« The status of the job, either normal or broken
« The next date and time when the purge job will run

« The current interval setting for the purge job. The interval setting specifies the
amount of time between the start of a job and the next start of the same job.

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999

COLUMN PRIV_USER HEADING 'Privilege|Schema FORMAT A10
COLUMN BROKEN HEADING 'Broken? FORMAT A7

COLUMN next_start HEADING 'Next Start

COLUMN INTERVAL HEADING 'Interval FORMAT A25

SELECT JOB,

PRIV_USER,
BROKEN,
TO_CHAR(NEXT_DATE, DD-MON-YYYY HH:MI:SS AM) next_start,
INTERVAL

FROM DBA_JOBS

WHERE WHAT LIKE %dbms_defer_sys.purge%s

ORDERBY 1;

Your output looks similar to the following:

Privilege
Job ID Schema Broken? Next Start Interval

1REPADMIN N 02-FEB-2001 05:06:43 PM SYSDATE + 1/24

The Nin the Broken? column means that the job is not broken. Therefore, the job
will run at the next start time. A Y in this column means that the job is broken.

Checking the Definition of the Purge Job

You can query the DBA_JOBSdata dictionary view to show the definition of the
purge job at a replication site. The following query shows the definition:

Monitoring a Replication Environment 10-23

Monitoring the Error Queue

SELECT WHAT "Definition of the Purge Job"

FROM DBA_JOBS

WHERE WHAT LIKE %dbms_defer_sys,purge% ORDER BY 1;
Your output looks similar to the following:

Definition of the Purge Job

declare rc binary_integer; begin rc := sys.doms_defer_sys.purge(delay_seconds=>
0); end;

Determining the Amount of Time Since the Last Purge

The following query shows the total amount of time, in minutes, since the
successfully propagated transactions were purged from the deferred transactions
queue:

SELECT ((SYSDATE - LAST_PURGE_TIME)/60) "Minutes Since Last Purge”
FROM V$REPLQUEUE;

Your output looks similar to the following:

Minutes Since Last Purge

1343333

Determining the Total Number of Purged Transactions

The following query shows the total number of successfully propagated
transactions that have been purged from the deferred transaction queue since the
instance was last started:

SELECT TXNS_PURGED "Transactions Purged"
FROM V$REPLQUEUE;

Your output looks similar to the following:
Transactions Purged

6541

Monitoring the Error Queue

This section contains queries that you can run to display information about the
error queue at a replication site. The error queue contains deferred transactions that

10-24 Oracle9i Replication Management AP| Reference

Monitoring the Error Queue

resulted in an error at the destination site. These error transactions are placed in the
error queue at the destination site.

Listing General Information About the Error Transactions at a Replication Site

The following query lists the general information about the error transactions at a
replication site:

COLUMN DEFERRED_TRAN_ID HEADING Deferred|Transaction|ID' FORMAT A1l
COLUMN ORIGIN_TRAN_DB HEADING 'Origin|Database’' FORMAT A15

COLUMN DESTINATION HEADING 'Destination|Database’' FORMAT A15
COLUMN TIME_OF_ERROR HEADING Time of|Error FORMAT A22

COLUMN ERROR_NUMBER HEADING ‘Oracle|ErorNumber FORMAT 999999

SELECT DEFERRED_TRAN D,
ORIGIN_TRAN DB,
DESTINATION,
TO_CHAR(START _TIME, DD-Mon-YYYY hh24:miss) TIME_OF _ERROR,
ERROR_NUMBER
FROM DEFERROR ORDER BY START TIME;

Your output looks similar to the following:

Deferred Oracle
Transaction Origin Destination Time of Error
ID Database Database Ermor Number

182470 mvaworld NYWORLD 25Jan-200117:11:17 1403

You can use the deferred transaction ID and the destination database to either
attempt to rerun the transaction that caused the error or to delete the error.

For example, to attempt to rerun the transaction in the previous example, enter the
following:

EXECUTE DBMS_DEFER_SYSEXECUTE_ERROR(1.8.2470, NY.WORLD);

To delete the error in the previous example, enter the following:
EXECUTE DBMS_DEFER_SYS.DELETE_ERROR(1.8.2470, NY.WORLD);

Typically, you should delete an error only if you have resolved it manually.

Monitoring a Replication Environment 10-25

Monitoring the Error Queue

Determining the Percentage of Error Transactions

When propagating transactions to a remote master site, some transactions are
propagated and applied successfully while other transactions may result in errors at
the remote master site. Transactions that result in errors are called error
transactions.

Run the following query to display the percentage of error transactions that resulted
from propagation to the remote master site mv4.world

SELECT DECODE(TOTAL_TXN_COUNT, 0, 'No Transactions,
(TOTAL_ERROR_COUNT/TOTAL_TXN_COUNT)*100) "ERROR PERCENTAGE"
FROM DEFSCHEDULE
WHERE DBLINK ="mv4.world;
Your output looks similar to the following:

Enor Percentage

3.265

Note: If this query returns 'No transactions' , then no
transactions have been propagated to the specified remote site since
the statistics were last cleared.

Listing the Number of Error Transactions from Each Origin Master Site

You can find the number of transaction errors resulting from pushes by each origin
master site by running the query in this section.

Run the following query to see the number of deferred and error transactions:
COLUMN SOURCE HEADING 'Origin' FORMAT A45
COLUMN ERRORS HEADING 'Def Trans Erors' FORMAT 9999

SELECT E.ORIGIN_TRAN_DB SOURCE, COUNT(*) ERRORS
FROM DEFERROR E
GROUP BY E.ORIGIN_TRAN_DB;

Your output looks similar to the following:

Origin Def Trans Errors
NY.WORLD 1
mv4.worid 3

10-26 Oracle9i Replication Management AP| Reference

Monitoring the Error Queue

Listing the Error Messages for the Error Transactions at a Replication Site

The following query lists the error messages for the error transactions at a
replication site:

COLUMN DEFERRED_TRAN_ID HEADING Deferred|Transaction|ID' FORMAT A1l
COLUMN ERROR_MSG HEADING 'Error Messages' FORMAT AG8

SELECT DEFERRED_TRAN_ID, ERROR_MSG
FROM DEFERROR,;

Your output looks similar to the following:

Deferred
Transaction
ID Error Messages

182470 ORA-01403: no data found

Determining the Error Operations at a Replication Site

The following query lists the type of operation that was attempted for each call that
caused an error at a replication site:

COLUMN CALLNO HEADING ‘Cal|Number FORMAT 9999

COLUMN DEFERRED_TRAN_ID HEADING Deferred|Transaction|ID' FORMAT A1l
COLUMN PACKAGENAME HEADING 'Package|Name' FORMAT A20

COLUMN PROCNAME HEADING 'Operation' FORMAT A15

COLUMN ORIGIN_TRAN_DB HEADING ‘Origin|Database' FORMAT A15

SELECT #+ ORDERED ¥
C.CALLNG,
CDEFERRED_TRAN_ID,
C.PACKAGENAME,
C.PROCNAME, E.ORIGIN_TRAN_DB
FROM DEFERRORE, DEFCALL C
WHERE C.DEFERRED_TRAN_ID = E.DEFERRED_TRAN_ID
AND C.CALLNO=E.CALLNO
ORDER BY E.START_TIME;

Monitoring a Replication Environment 10-27

Monitoring Performance in a Replication Environment

Your output looks similar to the following:

Deferred
Call Transaction Package Origin
Number ID Name Operation Database
0182470 EMPLOYEES$RP REP_UPDATE mv4.world

Monitoring Performance in a Replication Environment

This section contains queries that you can run to monitor the performance of your
replication environment.

Tracking the Average Number of Row Changes in a Replication Transaction

The following query shows the average number of row changes in a replication
transaction since instance startup:

SELECT DECODE(TXNS_ENQUEUED, 0, 'No Transactions Enqueued,
(CALLS ENQUEUED/TXNS_ENQUEUED)) "Average Number of Row Changes"
FROM V$REPLQUEUE;

Your output looks similar to the following:

Average Number of Row Changes

56.16

Note: If this query returns '‘No Transactions Enqueued' , then
no transactions have been enqueued since the start of the instance.

Tracking the Rate of Transactions Entering the Deferred Transactions Queue

The following query shows the average number of transactions per second entering
at the deferred transactions queue at the current site since instance startup:

SELECT (RTXNS_ENQUEUED/((SYSDATE - .STARTUP_TIME)*24*60*60)) "Average TPS"
FROM V$REPLQUEUER, V$INSTANCE [;
Your output looks similar to the following:

Average TPS

150

10-28 Oracle9i Replication Management AP| Reference

Monitoring Performance in a Replication Environment

Determining the Average Network Traffic Created To Propagate a Transaction

Propagation of deferred transactions creates a certain amount of traffic on your
network. Here, the network traffic created by a transaction is the number of bytes
being sent and received and the number of network round trips needed to
propagate the transaction.

A round trip is one or more consecutively sent messages followed by one or more
consecutively received messages. For example, both of the following scenarios
constitute only one round trip:

« Site A sends one message to site B and then site B sends one message to site A.
« Site A sends 20 messages to site B and then site B sends one message to site A.

These scenarios illustrate that the number of messages is irrelevant when evaluating
the number of round trips, because the number of round trips is the number of back
and forth communications between sites.

The following query shows the average network traffic created when propagating a
transaction to the mv4.world remote master site:

SELECT
DECODE(TOTAL_TXN_COUNT, 0, No Transactions,

((TOTAL BYTES SENT + TOTAL BYTES _RECEIVED) / TOTAL TXN_COUNT)) "Average Bytes",
DECODE(TOTAL_TXN_COUNT, 0, No Transactions,

(TOTAL_ROUND_TRIPS/TOTAL TXN_COUNT))"Average Round Trips"

FROM DEFSCHEDULE WHERE DBLINK = mv4-world:

Your output looks similar to the following:

Average Bytes Average Round Trips
69621.5 5
Note: If this query returns 'No transactions' in both columns,

then no transactions have been propagated to the specified remote
site since the statistics were last cleared.

Determining the Average Amount of Time to Apply Transactions at Remote Sites

Average latency is the average number of seconds between the first call of a
transaction on the current site and the confirmation that the transaction was applied
at the remote site. The first call begins when the user makes the first data
manipulation language (DML) change, not when the transaction is committed.

Monitoring a Replication Environment 10-29

Monitoring Performance in a Replication Environment

The following query shows the average latency for applying transactions at the
remote master site mv4.world

SELECT AVG_LATENCY "Average Latency"
FROM DEFSCHEDULE
WHERE DBLINK=mv4.world;
Your output looks similar to the following:

Average Latency

255

Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping

When the parallel propagation coordinator is inactive, it is sleeping. You control the
amount of time that the propagation coordinator sleeps using the delay_seconds
parameter in the DBMS_DEFER_SYS.PUSptocedure.

The following query shows the percentage of time that the parallel propagation
coordinator spends sleeping when propagating transactions to the mv4.world
remote master site:

SELECT DECODEAVG_THROUGHPUT, O, NULL,
((TOTAL_SLEEP_TIME/(TOTAL_TXN_COUNT/AVG_THROUGHPUT)) * 100))
"Percent Sleep Time"

FROM DEFSCHEDULE WHERE DBLINK ="mv4.world;,

Your output looks similar to the following:

Percent Sleep Time

2

Of course, in this case, the parallel propagation coordinator is active 98% of the
time.

Note: If this query returns a NULL, then no transactions have been
propagated to the specified remote site since the statistics were last
cleared or since the last database startup.

10-30 Oracle9i Replication Management AP| Reference

Monitoring Performance in a Replication Environment

Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View

To clear the propagation statistics in the DEFSCHEDULEiew for a particular remote
master site, use the CLEAR_PROP_STATISTICSprocedure in the DBMS_DEFER_
SYSpackage. For example, to clear the propagation statistics for the mv4.world
remote master site, run the following procedure:

BEGIN
DBMS_DEFER_SYS.CLEAR_PROP_STATISTICS (
dblink =>"'mv4.word);
END;
/

Monitoring Parallel Propagation of Deferred Transactions Using VSREPLPROP

The V$REPLPRORIynamic performance view provides information about current
parallel propagation sessions.

Note: The VSREPLPRORIynamic performance view is only
relevant if you are using parallel propagation of deferred
transactions. If you are using serial propagation, then this view is
empty.

Determining the Databases to Which You Are Propagating Deferred Transactions

Run the following query to list the database link of each database to which you are
currently propagating deferred transactions using parallel propagation:

SELECT DBLINK "Database Link"
FROM V$REPLPROP
WHERE NAME LIKE '%Coordinator%o;

Your output looks similar to the following:
Database Link
mv4.world

NY.WORLD
HKWORLD

Determining the Transactions Currently Being Propagated to a Remote Master

You can list the following information about the transactions that are currently
being propagated to a specified remote master site using parallel propagation:

Monitoring a Replication Environment 10-31

Monitoring Performance in a Replication Environment

« The transaction identification number of each transaction
« The number of calls in each transaction

« The percentage of processed calls in each transaction. The number in this
column becomes larger as the calls in the transaction are processed. When the
number reaches 100, all of the calls are processed.

The following query displays this information:

SELECT /*+ ORDERED * P.XID "Tran Being Propagated",
(MAX(C.CALLNO) + 1) "Number of Calls in Tran",
(P.SEQUENCE/MAX(C.CALLNO) + 1) * 100 "% Processed Calls"

FROM V$REPLPROP P, DEFCALL C
WHERE P.NAME LIKE '%SLAVEY
AND P.DBLINK ="'mv4.worid'

AND C.DEFERRED_TRAN_ID=P.XID
GROUP BY P.XID, P.SEQUENCE;

Your output looks similar to the following:
Tran Being Propagated Number of Calls in Tran % Processed Calls

1114264 43357 78
1154256 23554 49

The transaction identification numbers should change as existing transactions are
pushed and new transactions are processed. This query can be particularly useful if
the any of the following conditions apply to your replication environment:

= You push a large number of transactions on a regular basis.
« You have some transactions that are very large.
« You are simulating continuous push using asynchronous propagation.

If the first two bullets apply to your replication environment, then you can run this
guery to check if the slave processes are pushing the transactions. In this type of
environment, the slave processes do not exist when they are not pushing
transactions.

In replication environments that are simulating continuous push, the slave
processes exist whenever there are transactions to push in the deferred transactions
gueue. When there are no transactions to push, the slave processes may not exist.
So, when there are transactions to push, you can use this query to make sure the
slave processes exist and are processing the transactions.

10-32 Oracle9i Replication Management AP| Reference

Monitoring Performance in a Replication Environment

See Also: Oracle9i Replication for more information about
scheduling continuous push in your replication environment

Monitoring a Replication Environment 10-33

Monitoring Performance in a Replication Environment

10-34 Oracle9i Replication Management AP| Reference

Part ||

Replication Management API Packages
Reference

Part 1l includes reference information about the replication management API,
including:

« The procedures and functions in each package
« The parameters for each packaged procedure or function

« Exceptions that each procedure or function can raise

Note: Some of the PL/SQL procedures and functions described in
the chapters in this part are overloaded. That is, two or more
procedures or functions have the same name in a single package,
but their formal parameters differ in number, order, or datatype
family. When a procedure or function is overloaded, it is noted in
the description. See the PL/SQL User’s Guide and Reference for more
information about overloading and for more information about
PL/SQL in general.

PL/SQL Packages
Oracle’s replication management API includes the following PL/SQL packages:

. DBMS_DEFER
. DBMS_DEFER_QUERY

. DBMS_DEFER_SYS

. DBMS_MVIEW

. DBMS_OFFLINE_OG

. DBMS_OFFLINE_SNAPSHOT

. DBMS_RECTIFIER_DIFF

. DBMS_REFRESH

. DBMS_REPCAT

. DBMS_REPCAT_ADMIN

. DBMS_REPCAT_INSTANTIATE
. DBMS_REPCAT RGT

. DBMS_REPUTIL

11

Introduction to the Replication Management
API Reference

All installations of Advanced Replication include the replication management
application programming interface (API). This replication management APl is a
collection of PL/SQL packages that administrators use to configure and manage
replication features at each site. The Replication Management tool in Oracle
Enterprise Manager also uses the procedures and functions of each site’s replication
management API to perform work.

This chapter contains the following topics:

« Examples of Using Oracle’s Replication Management API

« Issues to Consider When Using the Replication Management API

« The Replication Management Tool and the Replication Management API

« Abbreviations for Datetime and Interval Datatypes

Note: Some of the PL/SQL procedures and functions described in
the chapters in this part are overloaded. That is, two or more
procedures or functions have the same name in a single package,
but their formal parameters differ in number, order, or datatype
family. When a procedure or function is overloaded, it is noted in
the description. See the PL/SQL User’s Guide and Reference for more
information about overloading and for more information about
PL/SQL in general.

Introduction to the Replication Management AP| Reference 11-1

Examples of Using Oracle’s Replication Management API

Examples of Using Oracle’s Replication Management API

To use Oracle’s replication management API, you issue procedure or function calls
using a query tool such as SQL*Plus or Enterprise Manager SQL Worksheet. For
example, the following call to the DBMS_REPCATCREATE_MASTER_REPOBJECT
procedure creates a new replicated table hr.employees in the hr_repg

replication group:

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
gname =>"hr_repd’,
type => TABLE,
oname =>'employees,
sname =>"hr,
use_existing_object=>TRUE,
copy_rows =>FALSE);
END;
/

To call a replication management API function, you must provide an environment
to receive the return value of the function. For example, the following anonymous
PL/SQL block calls the DBMS_DEFER_SYBISABLEDfunction in an IF statement.

BEGIN
IF DBMS_DEFER SYS.DISABLED fnst?) THEN
DBMS_OUTPUTPUT _LINE(Propagation to INST2 s disabled.);
ELSE
DBMS_OUTPUTPUT _LINE(Propagation to INST2 is enabled.);
ENDIF;
END;
/

11-2 Oracle9i Replication Management AP| Reference

The Replication Management Tool and the Replication Management API

Issues to Consider When Using the Replication Management API

For many procedures and functions in the replication management API, there are
important issues to consider. For example:

« Some procedures or functions are appropriate to call only from the master
definition site in a multimaster configuration.

« To perform some administrative operations for master groups, you must first
suspend replication activity for the group before calling replication
management API procedures and functions.

« The order in which you call different procedures and functions in Oracle’s
replication management API is extremely important. See the next section for
more information about learning how to correctly issue replication
management calls.

The Replication Management Tool and the Replication Management API

The Replication Management tool uses the replication management API to perform
most of its functions. Using the Replication Management tool is much more
convenient than issuing replication management API calls individually because the
utility:

« Provides a GUI interface to type in and adjust API call parameters
« Automatically orders numerous, related API calls in the proper sequence
« Displays output returned from API calls in message boxes and error files

An easy way to learn how to use Oracle’s replication management API is to use the
Replication Management tool’s scripting feature. When you start an administrative
session with the Replication Management tool, turn scripting on. When you are
finished, turn scripting off and then review the script file. The script file contains all
replication management API calls that were made during the session. See the
Replication Management tool’s help for more information about its scripting
feature.

Introduction to the Replication Management API Reference 11-3

Abbreviations for Datetime and Interval Datatypes

Abbreviations for Datetime and Interval Datatypes

Many of the datetime and interval datatypes have names that are too long to be
used with the procedures and functions in the replication management API.
Therefore, you must use abbreviations for these datatypes instead of the full names.
The following table lists each datatype and its abbreviation. No abbreviation is
necessary for the DATEand TIMESTAMPdatatypes.

Datatype Abbreviation
TIMESTAMP WITH TIME ZONE TSTZ
TIMESTAMP LOCAL TIME ZONE TSLTZ
INTERVAL YEAR TO MONTH IYM
INTERVAL DAY TO SECOND IDS

For example, if you want to use the DBMS_DEFER_QUERY.GEdatatype ARG
function to determine the value of a TIMESTAMP LOCAL TIME ZON&Egument in a
deferred call, then you substitute TSLTZ for datatype . Therefore, you run the
DBMS_DEFER_QUERY.GET_TSLTZ_AR@®ction.

11-4 Oracle9i Replication Management AP| Reference

12

DBMS_ DEFER

DBMS_DEFER the user interface to a replicated transactional deferred remote
procedure call facility. Replicated applications use the calls in this interface to queue
procedure calls for later transactional execution at remote nodes.

These procedures are typically called from either after row triggers or application
specified update procedures.

This chapter discusses the following topic:

« Summary of DBMS_DEFER Subprograms

DBMS_DEFER 12-1

Summary of DBMS_DEFER Subprograms

Summary of DBMS_DEFER Subprograms

Table 12-1 DBMS_DEFER Package Subprograms

Subprogram Description

"CALL Procedure" on Builds a deferred call to a remote procedure.

page 12-3

"COMMIT_WORK Performs a transaction commit after checking for well-formed

Procedure" on page 12-4 deferred remote procedure calls.

"datatype_ARG Provides the data that is to be passed to a deferred remote
Procedure" on page 12-5 procedure call.

"TRANSACTION Indicates the start of a new deferred transaction.
Procedure" on page 12-6

12-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER Subprograms

CALL Procedure

Syntax

Parameters

This procedure builds a deferred call to a remote procedure.

DBMS_DEFER.CALL (

schema_name IN VARCHAR2,
package name IN VARCHAR2,
proc name IN VARCHARZ,
arg_count IN NATURAL,
{nodes IN node_list t
|group_name IN VARCHAR2 :=7);

Note: This procedure is overloaded. The nodes and group_name

parameters are mutually exclusive.

Table 12-2 CALL Procedure Parameters

Parameter

Description

schema_name

package_name

proc_name

arg_count

nodes

group_name

Name of the schema in which the stored procedure is located.

Name of the package containing the stored procedure. The stored
procedure must be part of a package. Deferred calls to standalone
procedures are not supported.

Name of the remote procedure to which you want to defer a call.

Number of parameters for the procedure. You must have one call to
DBMS_DEFERatatype_ARGfor each of these parameters.

Note: You must include all of the parameters for the procedure,
even if some of the parameters have defaults.

A PL/SQL index-by table of fully qualified database names to
which you want to propagate the deferred call. The table is indexed
starting at position 1 and continuing until a NULLentry is found, or
the no_data_found exception is raised. The data in the table is
case insensitive. This parameter is optional.

Reserved for internal use.

DBMS_DEFER 12-3

COMMIT_WORK Procedure

Exceptions

Table 12-3 CALL Procedure Exceptions

Exception Description

ORA-23304 Previous call was not correctly formed.

(malformedcall)

ORA-23319 Parameter value is not appropriate.

ORA-23352 Destination list (specified by nodes or by a previous DBMS _

DEFERTRANSACTIONall) contains duplicates.

COMMIT_WORK Procedure

Syntax

Parameters

Exceptions

This procedure performs a transaction commit after checking for well-formed
deferred remote procedure calls.

DBMS_DEFER.COMMIT_WORK (
commit_work_comment IN VARCHAR?);

Table 12-4 COMMIT_WORK Procedure Parameters

Parameter Description

commit_work_comment Equivalent to the COMMIT COMMENMRtement in SQL.

Table 12-5 COMMIT_WORK Procedure Exceptions

Exception Description
ORA-23304 Transaction was not correctly formed or terminated.
(malformedcall)

12-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER Subprograms

datatype ARG Procedure

This procedure provides the data that is to be passed to a deferred remote
procedure call. Depending upon the type of the data that you need to pass to a
procedure, you must call one of the following procedures for each argument to the
procedure.

You must specify each parameter in your procedure using the datatype ARG
procedure after you execute DBMS_DEFER.CALLThat is, you cannot use the
default parameters for the deferred remote procedure call. For example, suppose
you have the following procedure:

CREATE OR REPLACE PACKAGE my_pack AS

PROCEDURE my_proc(a VARCHAR2, b VARCHARZ2 DEFAULT 'SALES));
END;
/

When you run the DBMS_DEFER.CALIlprocedure, you must include a separate
procedure call for each parameter in the my_proc procedure:

CREATE OR REPLACE PROCEDURE load_def_txIS
node DBMS_DEFERNODE LIST_T;
BEGIN
node(1) :=' MYCOMPUTER WORLD;,
node(2) =NULL;
DBMS_DEFER.TRANSACTION(node);
DBMS_DEFER.CALL(PR, MY_PACK, MY_PROC, 2);
DBMS _DEFER.VARCHAR2 ARG(TESTY;
DBMS_DEFER.VARCHAR2_ARG(SALES); - required, cannot omit to use default
END;

Note:

« The AnyData_ARG procedure supports the following
user-defined types: object types, collections, and REFs. See
Oracle9i SQL Reference and Oracle9i Application Developer’s Guide
- Object-Relational Features for more information about the
AnyData datatype.

« This procedure uses abbreviations for some datetime and
interval datatypes. For example, TSTZ is used for the
TIMESTAMP WITH TIME ZON#atatype. For information about
these abbreviations, see "Abbreviations for Datetime and
Interval Datatypes" on page 11-4.

DBMS_DEFER 12-5

TRANSACTION Procedure

Syntax

DBMS DEFERAnyData ARG (arg IN SYS AnyData);

DBMS DEFERNUMBER ARG (arg INNUMBER);

DBMS DEFERDATE ARG (arg INDATE);
DBMS_DEFERVARCHAR2 ARG (arg INVARCHARY),

DBMS DEFERCHAR ARG (arg IN CHARY);

DBMS DEFERROWID_ARG (arg INROWID);

DBMS DEFERRAW ARG (arg INRAW);

DBMS DEFERBLOB ARG (arg INBLOB);

DBMS DEFERCLOB ARG (arg INCLOB);

DBMS DEFERNCLOB ARG (arg INNCLOB);

DBMS DEFERNCHAR ARG (arg INNCHARY;
DBMS_DEFERNVARCHAR2 ARG (arg IN NVARCHAR?);

DBMS DEFERANY CLOB ARG (arg INCLOB);

DBMS_DEFERANY VARCHAR2 ARG (arg IN VARCHARY);

DBMS DEFERANY CHAR ARG (arg IN CHARY);

DBMS DEFERIDS ARG (arg IN DSINTERVAL UNCONSTRAINED);
DBMS DEFERIYM ARG (arg IN YMINTERVAL UNCONSTRAINED);
DBMS DEFERTIMESTAMP ARG (arg IN TIMESTAMP_UNCONSTRAINED);
DBMS DEFERTSLTZ ARG (arg IN TIMESTAMP_LTZ UNCONSTRAINED);
DBMS DEFERTSTZ ARG (arg IN TIMESTAMP_TZ UNCONSTRAINED);

Parameters

Table 12-6 datatype_ARG Procedure Parameters

Parameter Description

arg Value of the parameter that you want to pass to the remote
procedure to which you previously deferred a call.

Exceptions

Table 12-7 datatype ARG Procedure Exceptions

Exception Description

ORA-23323 Argument value is too long.

TRANSACTION Procedure

This procedure indicates the start of a new deferred transaction. If you omit this
call, then Oracle considers your first call to DBMS_DEFERALL to be the start of a
new transaction.

12-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER Subprograms

Syntax

DBMS_DEFER.TRANSACTION (
nodes IN node_list t);

Note: This procedure is overloaded. The behavior of the version
without an input parameter is similar to that of the version with an
input parameter, except that the former uses the nodes in the
DEFDEFAULTDESView instead of using the nodes in the nodes
parameter.

Parameters

Table 12-8 TRANSACTION Procedure Parameters

Parameter Description

nodes A PL/SQL index-by table of fully qualified database names to
which you want to propagate the deferred calls of the transaction.
The table is indexed starting at position 1 and continuing until a
NULLentry is found, or the no_data_found exception is raised.
The data in the table is case insensitive.

Exceptions

Table 12-9 TRANSACTION Procedure Exceptions

Exception Description

ORA-23304 Previous transaction was not correctly formed or terminated.
(malformedcall)

ORA-23319 Parameter value is not appropriate.

ORA-23352 Raised by DBMS_DEFERALL if the node list contains duplicates.

DBMS_DEFER 12-7

TRANSACTION Procedure

12-8 Oracle9i Replication Management AP| Reference

13

DBMS_DEFER QUERY

DBMS_DEFER_QUERHables querying the deferred transactions queue data that is
not exposed through views.

This chapter discusses the following topics:

« Summary of DBMS_DEFER_QUERY Subprograms

DBMS_DEFER_QUERY 13-1

Summary of DBMS_DEFER_QUERY Subprograms

Summary of DBMS_DEFER_QUERY Subprograms

Table 13-1 DBMS_DEFER_QUERY Package Subprograms

Subprogram Description

"GET_ARG_FORM Function" Determines the form of an argument in a deferred call.
on page 13-3

"GET_ARG_TYPE Function"on Determines the type of an argument in a deferred call.
page 13-4

"GET_CALL_ARGSProcedure" Returns the text version of the various arguments for the
on page 13-6 specified call.

"GET_datatype_ARG Determines the value of an argument in a deferred call.
Function" on page 13-7

"GET_OBJECT_NULL_ Returns the type information for a column object.
VECTOR_ARG Function” on

page 13-10

13-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_QUERY Subprograms

GET_ARG_FORM Function

Syntax

Parameters

Exceptions

This function returns the character set form of a deferred call parameter.

See Also: The Replication Management tool’s online help for
information about displaying deferred transactions and error
transactions in the Replication Management tool

DBMS _DEFER_QUERY.GET_ARG_FORM (
calno IN NUMBER,

arg_no IN NUMBER,

deferred tran id IN VARCHAR2)
RETURN NUMBER,;

Table 13-2 GET_ARG_FORM Function Parameters

Parameter Description
calno Call identifier from the DEFCALLview.
arg_no Position of desired parameter in calls argument list. Parameter

positions are 1...number of parameters in call.

deferred tran id Deferred transaction identification.

Table 13-3 GET_ARG_FORM Function Exceptions

Exception Description
NO_DATA FOUND Input parameters do not correspond to a parameter of a deferred
call.

DBMS_DEFER_QUERY 13-3

GET_ARG_TYPE Function

Returns

Table 13-4 GET_ARG_FORM Function Returns

Constant Return Value Return Value Possible Datatype

DBMS_DEFER_QUERY.ARG_FORM_NONE 0 DATE
NUMBER
ROWID
RAW
BLOB
User-defined types

DBMS_DEFER_QUERY.ARG_FORM_IMPLICIT 1 CHAR
VARCHAR2
CLOB

DBMS_DEFER QUERY.ARG_FORM NCHAR 2 NCHAR
NVARCHAR2
NCLOB

GET_ARG_TYPE Function

This function determines the type of an argument in a deferred call. The type of the
deferred remote procedure call (RPC) parameter is returned.

See Also: The Replication Management tool’s online help for
information about displaying deferred transactions and error
transactions in the Replication Management tool

Syntax

DBMS DEFER_QUERY.GET_ARG_TYPE (
calino IN NUMBER,

arg_no IN NUMBER,

deferred tran_id IN VARCHAR2)
RETURN NUMBER,

13-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_QUERY Subprograms

Parameters

Exceptions

Returns

Table 13-5 GET_ARG_TYPE Function Parameters

Parameter Description

calno Identification number from the DEFCALLview of the deferred
remote procedure call.

arg_no Numerical position of the argument to the call whose type you
want to determine. The first argument to a procedure is in
position 1.

deferred tran id Identifier of the deferred transaction.

Table 13-6 GET_ARG_TYPE Function Exceptions

Exception Description

NO_DATA FOUND Input parameters do not correspond to a parameter of a deferred
call.

Table 13-7 GET_ARG_TYPE Function Returns

Return Corresponding
Constant Return Value Value Datatype
DBMS_DEFER_QUERY.ARG_TYPE_VARCHAR2 1 VARCHAR2
DBMS DEFER_QUERY.ARG TYPE NUM 2 NUMBER
DBMS DEFER_QUERY.ARG TYPE ROWID 11 ROWID
DBMS DEFER_QUERY.ARG TYPE DATE 12 DATE
DBMS DEFER_QUERY.ARG_TYPE _RAW 23 RAW
DBMS DEFER_QUERY.ARG TYPE_CHAR % CHAR
DBMS_DEFER_QUERY.ARG_TYPE_AnyData 109 AnyData
DBMS DEFER QUERY.ARG TYPE CLOB 112 CLOB
DBMS DEFER_QUERY.ARG TYPE BLOB 113 BLOB
DBMS DEFER_QUERY.ARG TYPE BFIL 114 BFILE

DBMS_DEFER_QUERY 13-5

GET_CALL_ARGS Procedure

Table 13-7 GET_ARG_TYPE Function Returns

Return Corresponding
Constant Return Value Value Datatype
DBMS_DEFER_QUERY.ARG TYPE_OBJECT NULL VECTOR 121 OBJECT_NULL VECTOR
DBMS_DEFER_QUERY.ARG_TYPE_TIMESTAMP 180 TIMESTAMP
DBMS_DEFER_QUERY.ARG _TYPE_TSTZ 181 TSTZ
DBMS DEFER_QUERY.ARG TYPE IYM 182 M
DBMS DEFER_QUERY.ARG TYPE IDS 183 IDS
DBMS DEFER_QUERY.ARG TYPE TSLTZ 231 TSLTZ

Note:

« The AnyData datatype supports the following user-defined
types: object types, collections, and REFs. See Oracle9i SQL
Reference and Oracle9i Application Developer’s Guide -
Object-Relational Features for more information about the

AnyData datatype.

« This function uses abbreviations for some datetime and interval
datatypes. For example, TSTZ s used for the TIMESTAMP WITH

TIME ZONEdatatype. For information about these

abbreviations, see "Abbreviations for Datetime and Interval

Datatypes" on page 11-4.

GET_CALL_ARGS Procedure

This procedure returns the text version of the various arguments for the specified

call. The text version is limited to the first 2000 bytes.

See Also:

« "GET_datatype ARG Function" on page 13-7

« Oracle9i SQL Reference and Oracle9i Application Developer’s Guide
- Object-Relational Features for more information about the

AnyData datatype

Syntax
DBMS_DEFER_QUERY.GET_CALL_ARGS (

13-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_QUERY Subprograms

calno IN NUMBER,

startarg IN NUMBER =1,

argent IN NUMBER,
argsize IN NUMBER,
fran_id IN VARCHAR2,

date_fmt IN VARCHAR?,
types OUT TYPE_ARY,
foms OUT TYPE_ARY,

vas OUT VAL_ARY);

Parameters

Table 13-8 GET_CALL_ARGS Procedure Parameters

Parameter

Description

calino

startarg
argent
argsize
tran_id
date_fmt

forms

vals

Identification number from the DEFCALLview of the deferred
remote procedure call (RPC).

Numerical position of the first argument you want described.
Number of arguments in the call.

Maximum size of returned argument.

Identifier of the deferred transaction.

Format in which the date is returned.

Array containing the types of arguments.

Array containing the character set forms of arguments.

Array containing the values of the arguments in a textual form.

Exceptions

Table 13-9 GET_CALL_ARGS Procedure Exceptions

Exception

Description

NO_DATA FOUND

Input parameters do not correspond to a parameter of a deferred call.

GET _datatype ARG Function

This function determines the value of an argument in a deferred call.

DBMS_DEFER_QUERY 13-7

GET_datatype_ARG Function

The AnyData type supports the following user-defined types: object types,
collections and REFs. Not all types supported by this function can be enqueued by
the AnyData_ARG procedure in the DBMS_DEFERackage.

The returned text for type arguments includes the following values: type owner,
type name, type version, length, precision, scale, character set identifier, character
set form, and number of elements for collections or number of attributes for object
types. These values are separated by a colon (3).

See Also:

Syntax

"datatype_ARG Procedure" on page 12-5

The Replication Management tool’s online help for information
about displaying deferred transactions and error transactions in
the Replication Management tool

Oracle9i SQL Reference and Oracle9i Application Developer’s Guide
- Object-Relational Features for more information about the
AnyData datatype

This function uses abbreviations for some datetime and interval
datatypes. For example, TSTZ s used for the TIMESTAMP WITH
TIME ZONEdatatype. For information about these
abbreviations, see "Abbreviations for Datetime and Interval
Datatypes" on page 11-4.

Depending upon the type of the argument value that you want to retrieve, the
syntax for the appropriate function is as follows. Each of these functions returns the
value of the specified argument.

DBMS_DEFER QUERY.GEEtape ARG (

calino
arg_no

IN NUMBER,
IN NUMBER,

deferred_tran_id IN VARCHAR2 DEFAULT NULL)
RETURN datanype;

where datatype is:

{AnyData
| NUMBER

| VARCHAR?

| CHAR
| DATE

13-8 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_QUERY Subprograms

Parameters

Exceptions

|RAW
| ROWID
|BLOB
|CLOB
|NCLOB
|NCHAR

| NVARCHAR?2
|IDS

[IYM

| TIMESTAMP
| TSLTZ

| TSTZ}

Table 13-10 GET _datatype ARG Function Parameters

Parameter Description

calno Identification number from the DEFCALLview of the deferred
remote procedure call.

arg_no Numerical position of the argument to the call whose value you
want to determine. The first argument to a procedure is in
position 1.

deferred tran id Identifier of the deferred transaction. Defaults to the last

transaction identifier passed to the GET_ARG_TYPHunction. The
default is NULL

Table 13-11 GET_datatype ARG Function Exceptions

Exception

Description

NO_DATA FOUND

ORA-26564

Input parameters do not correspond to a parameter of a deferred
call.

Argument in this position is not of the specified type or is not
one of the types supported by the AnyData type.

DBMS_DEFER_QUERY 13-9

GET_OBJECT_NULL_VECTOR_ARG Function

GET_OBJECT NULL_VECTOR_ARG Function

This function returns the type information for a column object, including the type
owner, name, and hashcode.

Syntax
DBMS_DEFER_QUERY.GET_OBJECT-NULL_VECTOR_ARG (
callno IN NUMBER,
arg_no IN NUMBER,
deferred tran id IN VARCHAR2)
RETURN SYSTEM.REPCAT$ OBJECT_NULL_VECTOR,
Parameters
Table 13-12 GET_OBJECT_NULL_VECTOR_ARG Function Parameters
Parameter Description
callno Call identifier from the DEFCALLview.
arg_no Position of desired parameter in calls argument list. Parameter
positions are 1...number of parameters in call.
deferred_tran_id Deferred transaction identification.
Exceptions

Table 13-13 GET_OBJECT_NULL_VECTOR_ARG Function Exceptions

Exception Description

NO_DATA FOUND Input parameters do not correspond to a parameter of a deferred
call.

ORA-26564 Parameter is not an object_null_vector type.

13-10 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_QUERY Subprograms

Returns

Table 13-14 GET_OBJECT_NULL_VECTOR_ARG Function Returns

Return Value Type Definition

SYSTEM.REPCAT$_OBJECT _NULL_VECT®®pe CREATETYPE
SYSTEM.REPCAT$ OBJECT_NULL VECTOR
AS OBJECT (
type_owner VARCHAR2(30),
type_ name VARCHAR2(30),
type_hashcode RAW(17),
null_vector RAW(2000));

DBMS_DEFER_QUERY 13-11

GET_OBJECT_NULL_VECTOR_ARG Function

13-12 Oracle9i Replication Management AP| Reference

14

DBMS_DEFER_SYS

DBMS_DEFER_SYgrocedures manage default replication node lists. This package
is the system administrator interface to a replicated transactional deferred remote
procedure call facility. Administrators and replication daemons can execute
transactions queued for remote nodes using this facility, and administrators can
control the nodes to which remote calls are destined.

This chapter discusses the following topic:

« Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-1

Summary of DBMS_DEFER_SYS Subprograms

Summary of DBMS_DEFER_SYS Subprograms

Table 14-1 DBMS_DEFER_SYS Package Subprograms

Subprogram

Description

"ADD_DEFAULT_DEST
Procedure" on page 14-4

"CLEAR_PROP_
STATISTICS Procedure" on
page 14-4

"DELETE_DEFAULT _
DEST Procedure” on
page 14-5

"DELETE_DEF_
DESTINATION
Procedure" on page 14-5

"DELETE_ERROR
Procedure" on page 14-6

"DELETE_TRAN
Procedure" on page 14-7

"DISABLED Function" on
page 14-7

EXCLUDE_PUSH
Function on page 14-8

"EXECUTE_ERROR
Procedure" on page 14-9

"EXECUTE_ERROR_AS _
USER Procedure" on
page 14-10

"PURGE Function” on
page 14-11

"PUSH Function" on
page 14-14

"REGISTER_
PROPAGATOR
Procedure" on page 14-16

Adds a destination database to the DEFDEFAULTDESView.

Clears the propagation statistics in the DEFSCHEDULHata
dictionary view.

Removes a destination database from the DEFDEFAULTDEST
view.

Removes a destination database from the DEFSCHEDULFiew.

Deletes a transaction from the DEFERRORiew.

Deletes a transaction from the DEFTRANDESView.

Determines whether propagation of the deferred transaction
gueue from the current site to a specified site is enabled.

Acquires an exclusive lock that prevents deferred transaction
PUSH

Reexecutes a deferred transaction that did not initially
complete successfully in the security context of the original
receiver of the transaction.

Reexecutes a deferred transaction that did not initially
complete successfully in the security context of the user who
executes this procedure.

Purges pushed transactions from the deferred transaction
gueue at your current master site or materialized view site.

Forces a deferred remote procedure call queue at your current
master site or materialized view site to be pushed to a remote
site.

Registers the specified user as the propagator for the local
database.

14-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

Table 14-1 DBMS_DEFER_SYS Package Subprograms (Cont.)

Subprogram

Description

"SCHEDULE_PURGE
Procedure" on page 14-17

"SCHEDULE_PUSH
Procedure" on page 14-19

"SET_DISABLED
Procedure" on page 14-21

"UNREGISTER_
PROPAGATOR
Procedure" on page 14-23

"UNSCHEDULE_PURGE
Procedure" on page 14-24

"UNSCHEDULE_PUSH
Procedure" on page 14-24

Schedules a job to purge pushed transactions from the deferred
transaction queue at your current master site or materialized
view site.

Schedules a job to push the deferred transaction queue to a
remote site.

Disables or enables propagation of the deferred transaction
gueue from the current site to a specified destination site.

Unregisters a user as the propagator from the local database.

Stops automatic purges of pushed transactions from the
deferred transaction queue at a master site or materialized
view site.

Stops automatic pushes of the deferred transaction queue from
a master site or materialized view site to a remote site.

DBMS_DEFER_SYS 14-3

ADD_DEFAULT_DEST Procedure

ADD_DEFAULT_DEST Procedure

This procedure adds a destination database to the DEFDEFAULTDESdata
dictionary view.

Syntax
DBMS DEFER_SYS.ADD_DEFAULT_DEST (
dbiink IN VARCHARY);
Parameters
Table 14-2 ADD_DEFAULT_DEST Procedure Parameters
Parameter Description
dblink The fully qualified database name of the node that you want to
add to the DEFDEFAULTDESView.
Exceptions

Table 14-3 ADD_DEFAULT_DEST Procedure Exceptions

Exception Description

ORA-23352 The dblink that you specified is already in the default list.

CLEAR_PROP_STATISTICS Procedure

This procedure clears the propagation statistics in the DEFSCHEDULHata
dictionary view. When this procedure is executed successfully, all statistics in this
view are returned to zero and statistic gathering starts fresh.

Specifically, this procedure clears statistics from the following columns in the
DEFSCHEDULHBata dictionary view:

« TOTAL_TXN_COUNT

« AVG_THROUGHPUT

« AVG_LATENCY

« TOTAL_BYTES_SENT

« TOTAL_BYTES_RECEIVED
« TOTAL_ROUND_TRIPS

14-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

« TOTAL_ADMIN_COUNT
« TOTAL_ERROR_COUNT
« TOTAL_SLEEP_TIME

Syntax
DBMS_DEFER_SYS.CLEAR PROP_STATISTICS (
dbink IN VARCHARY);

Parameters

Table 14-4 CLEAR_PROP_STATISTICS Procedure Parameters
Parameter Description
dblink

The fully qualified database name of the node whose statistics you
want to clear. The statistics to be cleared are the statistics for
propagation of deferred transactions from the current node to the
node you specify for dblink

DELETE_DEFAULT _DEST Procedure
This procedure removes a destination database from the DEFDEFAULTDESView.

Syntax
DBMS_DEFER_SYS.DELETE DEFAULT_DEST (
dbiink IN VARCHAR?);

Parameters

Table 14-5 DELETE DEFAULT DEST Procedure Parameters
Parameter Description
dblink

The fully qualified database name of the node that you want to
delete from the DEFDEFAULTDESView. If Oracle does not find
this dblink in the view, then no action is taken.

DELETE_DEF_DESTINATION Procedure

This procedure removes a destination database from the DEFSCHEDULRiew.

DBMS_DEFER_SYS 14-5

DELETE_ERROR Procedure

Syntax

Parameters

DBMS_DEFER_SYS.DELETE DEF DESTINATION (
destination IN VARCHAR?2,
foce IN BOOLEAN :=false);

Table 14-6 DELETE DEF DESTINATION Procedure Parameters

Parameter Description

destination The fully qualified database name of the destination that you want
to delete from the DEFSCHEDULEiew. If Oracle does not find this
destination in the view, then no action is taken.

force When set to true , Oracle ignores all safety checks and deletes the
destination.

DELETE_ERROR Procedure

Syntax

Parameters

This procedure deletes a transaction from the DEFERRORiew.

DBMS_DEFER_SYS.DELETE ERROR(
deferred tran id IN VARCHAR2,
destination IN VARCHARY);

Table 14-7 DELETE ERROR Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERRORiew of the deferred
transaction that you want to remove from the DEFERRORiew. If
this parameter is NULL, then all transactions meeting the
requirements of the other parameter are removed.

destination The fully qualified database name from the DEFERRORiew of the
database to which the transaction was originally queued. If this
parameter is NULL, then all transactions meeting the requirements
of the other parameter are removed from the DEFERRORiew.

14-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

DELETE_TRAN Procedure

Syntax

Parameters

This procedure deletes a transaction from the DEFTRANDESView. If there are no
other DEFTRANDES®r DEFERRORNtries for the transaction, then the transaction
is deleted from the DEFTRAMNind DEFCALLviews as well.

DBMS_DEFER_SYS.DELETE TRAN (
deferred tran id IN VARCHAR2,
destination IN VARCHARY)

Table 14-8 DELETE_TRAN Procedure Parameters

Parameter Description

deferred tran id Identification number from the DEFTRANiew of the deferred
transaction that you want to delete. If this is NULL, then all
transactions meeting the requirements of the other parameter are
deleted.

destination The fully qualified database name from the DEFTRANDESView of
the database to which the transaction was originally queued. If
this is NULL, then all transactions meeting the requirements of the
other parameter are deleted.

DISABLED Function

Syntax

This function determines whether propagation of the deferred transaction queue
from the current site to a specified site is enabled. The DISABLED function returns
true if the deferred remote procedure call (RPC) queue is disabled for the specified
destination.

DBMS_DEFER_SYS.DISABLED (
destination IN VARCHAR?2)
RETURN BOOLEAN;

DBMS_DEFER_SYS 14-7

EXCLUDE_PUSH Function

Parameters

Returns

Exceptions

Table 14-9 DISABLED Function Parameters

Parameter Description

destination The fully qualified database name of the node whose propagation
status you want to check.

Table 14-10 DISABLED Function Return Values

Value Description
true Propagation to this site from the current site is disabled.
false Propagation to this site from the current site is enabled.

Table 14-11 DISABLED Function Exceptions

Exception Description
NO_DATA FOUND Specified destination does not appear in the DEFSCHEDULE
view.

EXCLUDE_PUSH Function

Syntax

This function acquires an exclusive lock that prevents deferred transaction PUSH
(either serial or parallel). This function performs a commit when acquiring the lock.
The lock is acquired with RELEASE_ON_COMMIT => true so that pushing of the
deferred transaction queue can resume after the next commit.

DBMS_DEFER_SYS.EXCLUDE._PUSH (
timeout IN INTEGER)
RETURN INTEGER;

14-8 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

Parameters

Returns

Table 14-12 EXCLUDE_PUSH Function Parameters

Parameter Description

timeout Timeout in seconds. If the lock cannot be acquired within this time
period (either because of an error or because a PUSHis currently
under way), then the call returns a value of 1. A timeout value of
DBMS_LOCKIAXWAITwaits indefinitely.

Table 14-13 EXCLUDE_PUSH Function Return Values

Value Description

0 Success, lock acquired.

1 Timeout, no lock acquired.
2 Deadlock, no lock acquired.
4 Already own lock.

EXECUTE_ERROR Procedure

Syntax

Parameters

This procedure reexecutes a deferred transaction that did not initially complete
successfully in the security context of the original receiver of the transaction.

DBMS_DEFER_SYS.EXECUTE_ERROR (
deferred tran idIN VARCHAR?2,
destination IN VARCHAR2);

Table 14-14 EXECUTE_ERROR Procedure Parameters

Parameter Description

deferred tran id Identification number from the DEFERRORiew of the deferred
transaction that you want to reexecute. If this is NULL, then all
transactions queued for destination are reexecuted.

DBMS_DEFER_SYS 14-9

EXECUTE_ERROR_AS_USER Procedure

Table 14-14 EXECUTE_ERROR Procedure Parameters (Cont.)

Parameter Description

destination The fully qualified database name from the DEFERRORiew of the
database to which the transaction was originally queued. This
must not be NULL If the provided database name is not fully
qualified or is invalid, no error will be raised.

Exceptions

Table 14-15 EXECUTE_ERROR Procedure Exceptions

Exception Description

ORA-24275 error Illegal combinations of NULLand non-NULL parameters were
used.

badparam Parameter value missing or invalid (for example, if destination
is NULL).

missinguser Invalid user.

EXECUTE_ERROR_AS_USER Procedure

This procedure reexecutes a deferred transaction that did not initially complete
successfully. Each transaction is executed in the security context of the connected

user.
Syntax
DBMS_DEFER_SYSEXECUTE_ERROR_AS USER(
deferred_tran_id IN VARCHAR2,
destination IN VARCHAR2);
Parameters

Table 14-16 EXECUTE_ERROR_AS_USER Procedure Parameters

Parameter Description

deferred_tran id Identification number from the DEFERRORiew of the deferred
transaction that you want to reexecute. If this is NULL, then all
transactions queued for destination are reexecuted.

destination The fully qualified database name from the DEFERRORiew of the
database to which the transaction was originally queued. This
must not be NULL

14-10 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

Exceptions

Table 14-17 EXECUTE_ERROR_AS_USER Procedure Exceptions

Exception Description

ORA-24275 error Illegal combinations of NULLand non-NULL parameters
were used.

badparam Parameter value missing or invalid (for example, if destination
is NULL).

missinguser Invalid user.

PURGE Function
This function purges pushed transactions from the deferred transaction queue at
your current master site or materialized view site.

Syntax

DBMS_DEFER_SYS.PURGE (
purge_method IN BINARY_INTEGER :=purge_method_quick,
rolback_segment IN VARCHAR2 :=NULL,
startup_seconds IN BINARY_INTEGER =0,
execution_seconds IN BINARY_INTEGER :=seconds_infinity,
delay seconds IN BINARY_INTEGER =0,
fransaction_count IN BINARY_INTEGER :=transactions_infinity,
write_trace IN BOOLEAN :=NULL);
RETURN BINARY_INTEGER,;

DBMS_DEFER_SYS 14-11

PURGE Function

Parameters

Table 14-18 PURGE Function Parameters

Parameter

Description

purge_method

rollback _segment

startup_seconds

execution_seconds

delay_seconds

transaction_count

write_trace

Controls how to purge the deferred transaction queue: purge_
method_quick costs less, while purge_method_precise offers
better precision.

Specify the following for this parameter to use purge_method_
quick :

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user purge_method_
precise

dbms_defer_sys.purge_method_precise

If you use purge_method_quick , deferred transactions and
deferred procedure calls that have been successfully pushed may
remain in the DEFTRANand DEFCALLdata dictionary views for
longer than expected before they are purged. See "Usage Notes" on
page 14-13 for more information.

Name of rollback segment to use for the purge, or NULL for
default.

Maximum number of seconds to wait for a previous purge of the
same deferred transaction queue.

If > 0, then stop purge cleanly after the specified number of
seconds of real time.

Stop purge cleanly after the deferred transaction queue has no
transactions to purge for delay_seconds

If > 0, then shut down cleanly after purging transaction_
count number of transactions.

When set to true , Oracle records the result value returned by the
PURGHunction in the server’s trace file. When set to false
Oracle does not record the result value.

Returns

Table 14-19 Purge Function Returns

Value

Description

result_ok

OK, terminated after delay_seconds expired.

14-12 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

Table 14-19 Purge Function Returns (Cont.)

Value Description

result_startup_seconds Terminated by lock timeout while starting.
result_execution_seconds Terminated by exceeding execution_seconds
result_transaction_count Terminated by exceeding transaction_count
result_emors Terminated after errors.

result_split_del order_limit Terminated after failing to acquire the enqueue in

exclusive mode. If you receive this return code, then
retry the purge. If the problem persists, then contact
Oracle Support Services.

result_purge_disabled Queue purging is disabled internally for synchronization
when adding new master sites without quiesce.

Exceptions

Table 14-20 PURGE Function Exceptions

Exception Description

argoutofrange Parameter value is out of a valid range.
executiondisabled Execution of purging is disabled.
defererror Internal error.

Usage Notes

When you use the purge_method_quick for the purge_method parameter in
the DBMS_DEFER_SYS.PURGHNction, deferred transactions and deferred
procedure calls may remain in the DEFCALLand DEFTRANJata dictionary views
after they have been successfully pushed. This behavior occurs in replication
environments that have more than one database link and the push is executed to
only one database link.

To purge the deferred transactions and deferred procedure calls, perform one of the
following actions:

« Use purge_method_precise for the purge_method parameter instead of
the purge_method_quick . Using purge_method_precise is more
expensive, but it ensures that the deferred transactions and procedure calls are
purged after they have been successfully pushed.

DBMS_DEFER_SYS 14-13

PUSH Function

« Using purge_method_quick for the purge_method parameter, push the
deferred transactions to all database links. The deferred transactions and
deferred procedure calls are purged efficiently when the push to the last
database link is successful.

PUSH Function

Syntax

Parameters

This function forces a deferred remote procedure call (RPC) queue at your current
master site or materialized view site to be pushed (propagated) to a remote site
using either serial or parallel propagation.

DBMS_DEFER SYS.PUSH (
destination IN VARCHAR?2,
parallelism IN BINARY_INTEGER :=0,
heap_size IN BINARY_INTEGER :=0,
stop_on emor IN BOOLEAN =false,
wiite_trace IN BOOLEAN =false,
startup_seconds IN BINARY_INTEGER =0,
execution_seconds IN BINARY_INTEGER :=seconds_infinity,
delay seconds IN BINARY_INTEGER =0,
transaction_count IN BINARY_INTEGER :=transactions_infinity,
delivery_order_limitIN NUMBER :=delivery_order_infinity)
RETURN BINARY_INTEGER,;

Table 14-21 PUSH Function Parameters

Parameter Description

destination The fully qualified database name of the master site or master
materialized view site to which you are forwarding changes.

parallelism 0 specifies serial propagation.
n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle
Support Services.

14-14 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

Returns

Table 14-21 PUSH Function Parameters (Cont.)

Parameter

Description

stop_on _eror

write_trace

startup_seconds

execution_seconds

delay_seconds

transaction_count

delivery_order_limit

The default, false , indicates that the executor should continue
even if errors, such as conflicts, are encountered. If true , then
stops propagation at the first indication that a transaction
encountered an error at the destination site.

When set to true , Oracle records the result value returned by the
function in the server’s trace file. When set to false , Oracle does
not record the result value.

Maximum number of seconds to wait for a previous push to the
same destination.

If > 0, then stop push cleanly after the specified number of seconds
of real time. If transaction_count and execution_seconds

are zero (the default), then transactions are executed until there are
no more in the queue.

The execution_seconds parameter only controls the duration
of time that operations can be started. It does not include the
amount of time that the transactions require at remote sites.
Therefore, the execution_seconds parameter is not intended to
be used as a precise control to stop the propagation of transactions
to a remote site. If a precise control is required, use the
transaction_count or delivery_order parameters.

Do not return before the specified number of seconds have
elapsed, even if the queue is empty. Useful for reducing execution
overhead if PUSHIis called from a tight loop.

If > 0, then the maximum number of transactions to be pushed
before stopping. If transaction_count and execution_
seconds are zero (the default), then transactions are executed
until there are no more in the queue that need to be pushed.

Stop execution cleanly before pushing a transaction where
delivery_order >= delivery_order_limit

Table 14-22 PUSH Function Returns

Value

Description

result_ok

result_startup_seconds

OK, terminated after delay_seconds expired.

Terminated by lock timeout while starting.

DBMS_DEFER_SYS 14-15

REGISTER_PROPAGATOR Procedure

Exceptions

REGISTER_PROPAGATOR Procedure

This procedure registers the specified user as the propagator for the local database.

Table 14-22 PUSH Function Returns (Cont.)

Value

Description

result_execution _seconds
result_transaction_count
result_delivery_order_limit
result_emors

result_push_disabled

result_split_del order_limit

Terminated by exceeding execution_seconds
Terminated by exceeding transaction_count
Terminated by exceeding delivery_order_limit
Terminated after errors.

Push was disabled internally. Typically, this return value
means that propagation to the destination was set to
disabled internally by Oracle for propagation
synchronization when adding a new master site to a
master group without quiescing the master group.
Oracle will enable propagation automatically at a later
time

Terminated after failing to acquire the enqueue in
exclusive mode. If you receive this return code, then
retry the push. If the problem persists, then contact
Oracle Support Services.

Table 14-23 PUSH Function Exceptions

Exception Description

incompleteparallelpush Serial propagation requires that parallel propagation shuts
down cleanly.

executiondisabled Execution of deferred remote procedure calls (RPCs) is
disabled at the destination.

ct err_en Error while creating entry in DEFERROR

deferred rpc_quiesce

commfailure

missingpropagator

Replication activity for replication group is suspended.

Communication failure during deferred remote procedure call
(RPC).

A propagator does not exist.

It also grants the following privileges to the specified user (so that the user can

create wrappers):

14-16 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

» CREATE SESSION

« CREATE PROCEDURE

« CREATE DATABASE LINK

« EXECUTE ANY PROCEDURE

Syntax
DBMS_DEFER_SYS.REGISTER PROPAGATOR (
usemame IN VARCHARY),
Parameters
Table 14-24 REGISTER_PROPAGATOR Procedure Parameters
Parameter Description
usemame Name of the user.
Exceptions

Table 14-25 REGISTER_PROPAGATOR Procedure Exceptions

Exception Description

missinguser Specified user does not exist.
alreadypropagator Specified user is already the propagator.
duplicatepropagator There is already a different propagator.

SCHEDULE PURGE Procedure

This procedure schedules a job to purge pushed transactions from the deferred
transaction queue at your current master site or materialized view site. You should
schedule one purge job.

See Also: Oracle9i Replication for information about using this
procedure to schedule continuous or periodic purge of your
deferred transaction queue

Syntax

DBMS_DEFER SYS.SCHEDULE_PURGE (
interval IN VARCHARZ,

DBMS_DEFER_SYS 14-17

SCHEDULE_PURGE Procedure

next_date IN DATE,

reset IN BOOLEAN :=NULL,
purge_method IN BINARY_INTEGER := NULL,
rolback_segment IN VARCHAR2 :=NULL,
startup_seconds IN BINARY_INTEGER :=NULL,
execution_seconds IN BINARY_INTEGER :=NULL,
delay seconds IN BINARY_INTEGER :=NULL,
transaction_count IN BINARY INTEGER :=NULL,
wiite_trace IN BOOLEAN :=NULL);

Parameters

Table 14-26 SCHEDULE _PURGE Procedure Parameters

Parameter Description

interval Allows you to provide a function to calculate the next time to
purge. This value is stored in the interval field of the
DEFSCHEDULFiew and calculates the next_date field of this
view. If you use the default value for this parameter, NULL, then
the value of this field remains unchanged. If the field had no
previous value, it is created with a value of NULL If you do not
supply a value for this field, you must supply a value for next_
date .

next_date Allows you to specify a time to purge pushed transactions from
the site’s queue. This value is stored in the next_date field of the
DEFSCHEDULFiew. If you use the default value for this
parameter, NULL, then the value of this field remains unchanged.
If this field had no previous value, it is created with a value of
NULL If you do not supply a value for this field, then you must
supply a value for interval

reset Set to true to reset LAST_TXN_COUNTAST_ERRORand LAST_
MSGo NULL

14-18 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

Table 14-26 SCHEDULE _PURGE Procedure Parameters (Cont.)

Parameter Description

purge_method Controls how to purge the deferred transaction queue: purge_
method_quick costs less, while purge_method_precise offers
better precision.

Specify the following for this parameter to use purge_method_
quick :

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user purge_method_
precise

dbms_defer_sys.purge_method_precise

If you use purge_method_quick , deferred transactions and
deferred procedure calls that have been successfully pushed may
remain in the DEFTRANand DEFCALLdata dictionary views for
longer than expected before they are purged. For more
information, see "Usage Notes" on page 14-13. These usage notes
are for the DBMS_DEFER_SYS.PURG@HNction, but they also
apply to the DBMS_DEFER_SYS.SCHEDULE_PUR@#cedure.

rollback _segment Name of rollback segment to use for the purge, or NULL for
default.
startup_seconds Maximum number of seconds to wait for a previous purge of the

same deferred transaction queue.

execution_seconds If >0, then stop purge cleanly after the specified number of
seconds of real time.

delay_seconds Stop purge cleanly after the deferred transaction queue has no
transactions to purge for delay_seconds

transaction_count If > 0, then shut down cleanly after purging transaction_
count number of transactions.

wiite_trace When set to true , Oracle records the result value returned by the
PURGHunction in the server’s trace file.

SCHEDULE_PUSH Procedure

This procedure schedules a job to push the deferred transaction queue to a remote
site. This procedure performs a COMMIT

See Also: Oracle9i Replication for information about using this

procedure to schedule continuous or periodic push of your
deferred transaction queue

DBMS_DEFER_SYS 14-19

SCHEDULE_PUSH Procedure

Syntax
DBMS_DEFER SYS.SCHEDULE_PUSH (
destination IN VARCHAR2,
interval IN VARCHARZ,
next_date
reset IN BOOLEAN =false,
parallelism IN BINARY_INTEGER :=NULL,
heap_size IN BINARY_INTEGER :=NULL,
stop_on emor IN BOOLEAN :=NULL,
wiite_trace IN BOOLEAN :=NULL,
startup_seconds IN BINARY_INTEGER := NULL,
execution_seconds IN BINARY_INTEGER := NULL,
delay seconds IN BINARY_INTEGER :=NULL,
fransaction_count IN BINARY_INTEGER :=NULL);
Parameters

Table 14-27 SCHEDULE_PUSH Procedure Parameters

Parameter

Description

destination

interval

next_date

reset

parallelism

The fully qualified database name of the master site or master
materialized view site to which you are forwarding changes.

Allows you to provide a function to calculate the next time to
push. This value is stored in the interval field of the
DEFSCHEDULFEiew and calculates the next_date field of this
view. If you use the default value for this parameter, NULL, then
the value of this field remains unchanged. If the field had no
previous value, it is created with a value of NULL If you do not
supply a value for this field, then you must supply a value for
next_date

Allows you to specify a time to push deferred transactions to the
remote site. This value is stored in the next_date field of the
DEFSCHEDULFiew. If you use the default value for this
parameter, NULL, then the value of this field remains unchanged.
If this field had no previous value, then it is created with a value
of NULL If you do not supply a value for this field, then you must
supply a value for interval

Settotrue toreset LAST TXN_COUNTST_ERRORand LAST
MSGo NULL

0 specifies serial propagation.
n > 1 specifies parallel propagation with n parallel processes.
1 specifies parallel propagation using only one parallel process.

14-20 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

Table 14-27 SCHEDULE_PUSH Procedure Parameters (Cont.)

Parameter Description

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle
Support Services.

stop_on_ermor The default, false |, indicates that the executor should continue
even if errors, such as conflicts, are encountered. If true , then
stops propagation at the first indication that a transaction
encountered an error at the destination site.

write_trace When set to true , Oracle records the result value returned by the
function in the server’s trace file.

startup_seconds Maximum number of seconds to wait for a previous push to the
same destination.

execution_seconds If >0, then stop execution cleanly after the specified number of
seconds of real time. If transaction_count and execution_

seconds are zero (the default), then transactions are executed
until there are no more in the queue.

delay seconds Do not return before the specified number of seconds have
elapsed, even if the queue is empty. Useful for reducing execution
overhead if PUSHis called from a tight loop.

transaction_count If > 0, then the maximum number of transactions to be pushed
before stopping. If transaction_count and execution_
seconds are zero (the default), then transactions are executed
until there are no more in the queue that need to be pushed.

SET_DISABLED Procedure

To disable or enable propagation of the deferred transaction queue from the current
site to a specified destination site. If the disabled parameter is true , then the
procedure disables propagation to the specified destination and future invocations
of PUSHdo not push the deferred remote procedure call (RPC) queue. SET_
DISABLED eventually affects a session already pushing the queue to the specified
destination, but does not affect sessions appending to the queue with DBMS_DEFER

If the disabled parameter is false , then the procedure enables propagation to the
specified destination and, although this does not push the queue, it permits future
invocations of PUSHto push the queue to the specified destination. Whether the
disabled parameter is true or false ,a COMMITis required for the setting to take
effect in other sessions.

DBMS_DEFER_SYS 14-21

SET_DISABLED Procedure

Syntax

Parameters

Exceptions

DBMS_DEFER_SYS.SET_DISABLED (
destination IN VARCHAR?2,

disabled IN BOOLEAN:

catchup IN RAW :='00,

=true,

overmide IN BOOLEAN :=false);

Table 14-28 SET_DISABLED Procedure Parameters

Parameter Description

destination The fully qualified database name of the node whose propagation
status you want to change.

disabled By default, this parameter disables propagation of the deferred
transaction queue from your current site to the specified
destination. Set this to false to enable propagation.

catchup The extension identifier for adding new master sites to a master
group without quiescing the master group. The new master site is
the destination. Query the DEFSCHEDULHata dictionary view for
the existing extension identifiers.

override Afalse setting, the default, specifies that Oracle raises the

cantsetdisabled exception if the disabled parameter is set to
false and propagation was disabled internally by Oracle.

Atrue setting specifies that Oracle ignores whether the disabled
state was set internally for synchronization and always tries to set
the state as specified by the disabled parameter.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 14-29 SET_DISABLED Procedure Exceptions

Exception

Description

NO_DATA FOUND

No entry was found in the DEFSCHEDULFEiew for the
specified destination

14-22 Oracle9i Replication Management AP| Reference

Summary of DBMS_DEFER_SYS Subprograms

Table 14-29 SET_DISABLED Procedure Exceptions (Cont.)

Exception Description

cantsetdisabled The disabled status for this site is set internally by Oracle for
synchronization during adding a new master site to a master
group without quiescing the master group. Ensure that adding a
new master site without quiescing finished before invoking this
procedure.

UNREGISTER_PROPAGATOR Procedure

To unregister a user as the propagator from the local database. This procedure:
« Deletes the specified propagator from DEFPROPAGATOR

« Revokes privileges granted by REGISTER_PROPAGATGRM the specified
user (including identical privileges granted independently).

« Drops any generated wrappers in the schema of the specified propagator, and
marks them as dropped in the replication catalog.

Syntax

DBMS_DEFER_SYS.UNREGISTER_PROPAGATOR (
usemame IN VARCHAR2
timeout IN INTEGER DEFAULT DBMS_LOCK.MAXWAIT);

Parameters

Table 14-30 UNREGISTER_PROPAGATOR Procedure Parameters

Parameter Description

usemame Name of the propagator user.

timeout Timeout in seconds. If the propagator is in use, then the procedure
waits until timeout. The default is DBMS_LOCKIAXWAIT

Exceptions

Table 14-31 UNREGISTER_PROPAGATOR Procedure Exceptions

Parameter Description
missingpropagator Specified user is not a propagator.
propagator_inuse Propagator is in use, and thus cannot be unregistered. Try later.

DBMS_DEFER_SYS 14-23

UNSCHEDULE_PURGE Procedure

UNSCHEDULE_PURGE Procedure

Syntax

Parameters

This procedure stops automatic purges of pushed transactions from the deferred
transaction queue at a master site or materialized view site.

DBMS_DEFER_SYS.UNSCHEDULE PURGE();

None

UNSCHEDULE_PUSH Procedure

Syntax

Parameters

This procedure stops automatic pushes of the deferred transaction queue from a
master site or materialized view site to a remote site.

DBMS_DEFER_SYS.UNSCHEDULE_PUSH (
dblink IN' VARCHAR2);

Table 14-32 UNSCHEDULE_PUSH Procedure Parameters

Parameter Description

dblink Fully qualified path name for the database at which you want to
unschedule periodic execution of deferred remote procedure calls.

Table 14-33 UNSCHEDULE PUSH Procedure Exceptions

Exception Description
NO_DATA FOUND No entry was found in the DEFSCHEDULEiew for the specified
dblink

14-24 Oracle9i Replication Management AP| Reference

15

DBMS_MVIEW

DBMS_MVIEWnNables you to understand capabilities for materialized views and
potential materialized views, including their rewrite availability. It also enables you
to refresh materialized views that are not part of the same refresh group and purge
logs.

This chapter discusses the following topics:

« Summary of DBMS_MVIEW Subprograms

Note: DBMS_SNAPSHQ3 a synonym for DBMS_MVIEW

See Also:

« Oracle9i Replication for more information about using
materialized views in a replication environment

« Oracle9i Data Warehousing Guide for more information about
using materialized views in a data warehousing environment

DBMS_MVIEW 15-1

Summary of DBMS_MVIEW Subprograms

Summary of DBMS_MVIEW Subprograms

Table 15-1 DBMS_MVIEW Package Subprograms

Subprogram

Description

"BEGIN_TABLE_
REORGANIZATION
Procedure" on page 15-3

"END_TABLE_
REORGANIZATION
Procedure” on page 15-3

"EXPLAIN_MVIEW
Procedure" on page 15-4

"EXPLAIN_REWRITE
Procedure" on page 15-5

"I_AM_A_REFRESH Function"
on page 15-6

"PMARKER Function" on
page 15-6

"PURGE_DIRECT_LOAD _
LOG Procedure" on page 15-7

"PURGE_LOG Procedure" on
page 15-7

"PURGE_MVIEW_FROM_
LOG Procedure" on page 15-8

"REFRESH Procedure" on
page 15-9

"REFRESH_ALL_MVIEWS
Procedure" on page 15-12

"REFRESH_DEPENDENT
Procedure” on page 15-13

"REGISTER_MVIEW
Procedure" on page 15-15

"UNREGISTER_MVIEW
Procedure" on page 15-18

Performs a process to preserve materialized view data
needed for refresh.

Ensures that the materialized view data for the master
table is valid and that the master table is in the proper
state.

Explains what is possible with a materialized view or
potential materialized view.

Explains why a query failed to rewrite.
Returns the value of the |_AM_REFRESHpackage state.

Returns a partition marker from a rowid. This function is
used for Partition Change Tracking (PCT).

Purges rows from the direct loader log after they are no
longer needed by any materialized views (used with data
warehousing).

Purges rows from the materialized view log.
Purges rows from the materialized view log.

Consistently refreshes one or more materialized views that
are not members of the same refresh group.

Refreshes all materialized views that do not reflect
changes to their master table or master materialized view.

Refreshes all table-based materialized views that depend
on a specified master table or master materialized view, or
list of master tables or master materialized views.

Enables the administration of individual materialized
Views.

Enables the administration of individual materialized
views. Invoked at a master site or master materialized
view site to unregister a materialized view.

15-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_MVIEW Subprograms

BEGIN_TABLE_REORGANIZATION Procedure

This procedure performs a process to preserve materialized view data needed for
refresh. It must be called before a master table is reorganized.

See Also: "Reorganizing Master Tables that Have Materialized
View Logs" on page 8-20

Syntax
DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION (
tabowner IN VARCHAR?Z,
tabname IN VARCHAR2);

Parameters

Table 15-2 BEGIN_TABLE REORGANIZATION Procedure Parameters

Parameter Description
tabowner Owner of the table being reorganized.
tabname Name of the table being reorganized.

END_TABLE_REORGANIZATION Procedure

This procedure ensures that the materialized view data for the master table is valid
and that the master table is in the proper state. It must be called after a master table
is reorganized.

See Also: "Reorganizing Master Tables that Have Materialized
View Logs" on page 8-20

Syntax

DBMS_MVIEW.END_TABLE_REORGANIZATION (
tabowner IN VARCHAR2,
tabname IN VARCHAR2);

DBMS_MVIEW 15-3

EXPLAIN_MVIEW Procedure

Parameters

Table 15-3 END_TABLE_REORGANIZATION Procedure Parameters

Parameter Description
tabowner Owner of the table being reorganized.
tabname Name of the table being reorganized.

EXPLAIN_MVIEW Procedure

Syntax

This procedure enables you to learn what is possible with a materialized view or
potential materialized view. For example, you can determine if a materialized view
is fast refreshable and what types of query rewrite you can perform with a
particular materialized view.

Using this procedure is straightforward. You simply call DBMS_MVIE\WXPLAIN_
MVIEWpassing in as parameters the schema and materialized view name for an
existing materialized view. Alternatively, you can specify the SELECTstring for a
potential materialized view. The materialized view or potential materialized view is
then analyzed and the results are written into either a table called MV _
CAPABILITIES_TABLE , which is the default, or to an array called MSG_ARRAY

Note that you must run the utlxmv.sql script prior to calling EXPLAIN_MVIEW
except when you direct output to a VARRAYThe script is found in the admin
directory. In addition, you must create MV_CAPABILITIES_TABLE in the current
schema.

The following PL/SQL declarations that are made for you in the DBMS_MVIEW
package show the order and datatypes of these parameters for explaining an
existing materialized view and a potential materialized view with output to a table
and to a VARRAY

To explain an existing or potential materialized view with output to MV_
CAPABILITIES_TABLE:

DBMS_MVIEW.EXPLAIN_MVIEW (

mv IN VARCHAR?Z,

statement_id IN VARCHAR2:= NULL);

To explain an existing or potential materialized view with output to a VARRAY

DBMS_MVIEW.EXPLAIN_MVIEW (

15-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_MVIEW Subprograms

Parameters

mv INVARCHAR2,
msg_array OUT SYS.ExplainMVArayType);

Table 15-4 EXPLAIN_MVIEW Procedure Parameters

Parameter Description

mv The name of an existing materialized view (optionally qualified
with the owner name separated by a ".") or a SELECTstatement
for a potential materialized view.

statement_id A client-supplied unique identifier to associate output rows with
specific invocations of EXPLAIN_MVIEW

msg_array The PL/SQL varray that receives the output. Use this parameter to
direct EXPLAIN_MVIEWSs output to a PL/SQL VARRAY rather
than MV_CAPABILITIES_TABLE.

EXPLAIN_REWRITE Procedure

Syntax

This procedure enables you to learn why a query failed to rewrite, or, if it rewrites,
which materialized views will be used. Using the results from the procedure, you
can take the appropriate action needed to make a query rewrite if at all possible.
The query specified in the EXPLAIN_REWRITEstatement is never actually executed.

To obtain the output into a table, you must run the admin/utlxrw.sq | script
before calling EXPLAIN_REWRITE This script creates a table named REWRITE_
TABLE in the current schema.

You can obtain the output from EXPLAIN_REWRITEin two ways. The first is to use
a table, while the second is to create a VARRAYThe following shows the basic
syntax for using an output table:

DBMS_MVIEW.EXPLAIN_REWRITE (
query IN VARCHAR?Z,
mv INVARCHAR2,
statement id IN VARCHARZ;

If you want to direct the output of EXPLAIN_REWRITEtO a varray, instead of a
table, then the procedure should be called as follows:

DBMS_MVIEW.EXPLAIN_REWRITE (
query INVARCHAR2(2000),

DBMS_MVIEW 15-5

|_AM_A_REFRESH Function

mv IN VARCHAR2(30),
msg_array IN OUT SYS.RewriteArray Type);

Parameters

Table 15-5 EXPLAIN_REWRITE Procedure Parameters

Parameter Description

query SQL select statement to be explained.

mv The fully qualified name of an existing materialized view in the form
of SCHEMA.MV

statement_id A client-supplied unique identifier to distinguish output messages

msg_array The PL/SQL varray that receives the output. Use this parameter to

direct EXPLAIN_REWRITES output to a PL/SQL VARRAY

|_ AM_A_REFRESH Function

This function returns the value of the | AM_REFRESHpackage state. A return value
of TRUEindicates that all local replication triggers for materialized views are
effectively disabled in this session because each replication trigger first checks this
state. A return value of FALSE indicates that these triggers are enabled.

Syntax
DBMS_MVIEW. AM_A REFRESH()
RETURN BOOLEAN,;
Parameters
None.
PMARKER Function
This function returns a partition marker from a rowid. It is used for Partition
Change Tracking (PCT).
Syntax

DBMS_MVIEW.PMARKER(rid IN ROWID)
RETURN NUMBER,

15-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_MVIEW Subprograms

Parameters

Table 15-6 PMARKER Procedure Parameters

Parameter Description

rid The rowid of a row entry in a master table.

PURGE_DIRECT LOAD LOG Procedure

This procedure removes entries from the direct loader log after they are no longer
needed for any known materialized view. This procedure usually is used in
environments using Oracle’s data warehousing technology.

See Also: Oracle9i Data Warehousing Guide for more information

Syntax
DBMS_MVIEW.PURGE_DIRECT_LOAD_LOG();

Parameters
None.

PURGE_LOG Procedure

This procedure purges rows from the materialized view log.

Syntax

DBMS_MVIEW.PURGE_LOG (

master IN VARCHAR?2,

num IN BINARY_INTEGER =1,
flag IN VARCHAR2 :='NOPY,

DBMS_MVIEW 15-7

PURGE_MVIEW_FROM_LOG Procedure

Parameters

Table 15-7 PURGE_LOG Procedure Parameters

Parameter Description
master Name of the master table or master materialized view.
num Number of least recently refreshed materialized views whose rows

you want to remove from materialized view log. For example, the
following statement deletes rows needed to refresh the two least
recently refreshed materialized views:

DBMS_MVIEW.PURGE_LOG('master_table', 2);

To delete all rows in the materialized view log, indicate a high
number of materialized views to disregard, as in this example:

DBMS_MVIEW.PURGE_LOG('master_table',9999);

This statement completely purges the materialized view log that
corresponds to master_table if fewer than 9999 materialized
views are based on master_table . A simple materialized view
whose rows have been purged from the materialized view log
must be completely refreshed the next time it is refreshed.

flag Specify delete to guarantee that rows are deleted from the
materialized view log for at least one materialized view. This
parameter can override the setting for the parameter num For
example, the following statement deletes rows from the
materialized view log that has dependency rows in the least
recently refreshed materialized view:

DBMS_MVIEW.PURGE_LOG('master_table',1,'delete’);

PURGE_MVIEW_FROM_LOG Procedure

This procedure is called on the master site or master materialized view site to delete
the rows in materialized view refresh related data dictionary tables maintained at
the master for the specified materialized view identified by its mview_id or the
combination of the mviewowner , mviewname, and the mviewsite . If the
materialized view specified is the oldest materialized view to have refreshed from
any of the master tables or master materialized views, then the materialized view
log is also purged. This procedure does not unregister the materialized view.

If there is an error while purging one of the materialized view logs, the successful
purge operations of the previous materialized view logs are not rolled back. This is
to minimize the size of the materialized view logs. In case of an error, this procedure
can be invoked again until all the materialized view logs are purged.

15-8 Oracle9i Replication Management AP| Reference

Summary of DBMS_MVIEW Subprograms

Syntax
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
mview id IN BINARY_INTEGER |
mviewowner IN VARCHAR?2,
mviewname IN VARCHAR?2,
mviewsite IN VARCHAR2);
Note: This procedure is overloaded. The mview_id parameter is
mutually exclusive with the three remaining parameters:
mviewowner , mviewname, and mviewsite
Parameters

Table 15-8 PURGE_MVIEW_FROM_LOG Procedure Parameters

Parameter Description

mview_id If you want to execute this procedure based on the identification of
the target materialized view, specify the materialized view
identification using the mview_id parameter. Query the DBA_
BASE_TABLE_MVIEWSiew at the materialized view log site for a
listing of materialized view IDs.

Executing this procedure based on the materialized view
identification is useful if the target materialized view is not listed in
the list of registered materialized views (DBA_REGISTERED _
MVIEWS.

mviewowner If you do not specify a mview_id , enter the owner of the target
materialized view using the mviewowner parameter. Query the
DBA_REGISTERED_MVIEWSew at the materialized view log site
to view the materialized view owners.

mviewname If you do not specify a mview_id , enter the name of the target
materialized view using the mviewname parameter. Query the
DBA_REGISTERED_MVIEWSew at the materialized view log site
to view the materialized view names.

mviewsite If you do not specify a mview_id , enter the site of the target
materialized view using the mviewsite parameter. Query the
DBA_REGISTERED_MVIEWSew at the materialized view log site
to view the materialized view sites.

REFRESH Procedure

This procedure refreshes a list of materialized views.

DBMS_MVIEW 15-9

REFRESH Procedure

Syntax

DBMS_MVIEW.REFRESH (
{list IN VARCHAR?,

|tab INOUT DBMS_UTILITY.UNCL ARRAY}

method IN VARCHAR2 :=NULL,

rollback_seg IN VARCHAR2 :=NULL,
push deferred ipc IN - BOOLEAN =true,
refresh_after emors IN BOOLEAN =false,
purge_option IN BINARY_INTEGER =1,

parallelism IN BINARY_INTEGER =0,

heap_size IN BINARY_INTEGER =0,
atomic_refresh IN BOOLEAN :=true);

Note: This procedure is overloaded. The list
parameters are mutually exclusive.

and tab

Parameters

Table 15-9 REFRESH Procedure Parameters

Parameter Description

list| tab Comma-separated list of materialized views that you want to
refresh. (Synonyms are not supported.) These materialized views
can be located in different schemas and have different master
tables or master materialized views. However, all of the listed
materialized views must be in your local database.

Alternatively, you may pass in a PL/SQL index-by table of type
DBMS_UTILITY.UNCL_ARRAYwhere each element is the name of

a materialized view.

15-10 Oracle9i Replication Management AP| Reference

Summary of DBMS_MVIEW Subprograms

Table 15-9 REFRESH Procedure Parameters (Cont.)

Parameter

Description

method

rolback_seg

push_deferred_rpc

refresh_after_ermrors

purge_option

A string of refresh methods indicating how to refresh the listed
materialized views. An f indicates fast refresh, ? indicates force
refresh, Cor c indicates complete refresh, and A or a indicates
always refresh. Aand Care equivalent.

If a materialized view does not have a corresponding refresh
method (that is, if more materialized views are specified than
refresh methods), then that materialized view is refreshed
according to its default refresh method. For example, consider the
following EXECUTEstatement within SQL*Plus:

DBMS_MVIEW.REFRESH
(countries_mv,regions_mv,hremployees_mv,cf);

This statement performs a complete refresh of the countries_mv
materialized view, a fast refresh of the regions_mv materialized
view, and a default refresh of the hr.employees materialized
view.

Name of the materialized view site rollback segment to use while
refreshing materialized views.

Used by updatable materialized views only. Set this parameter to
true if you want to push changes from the materialized view to
its associated master tables or master materialized views before
refreshing the materialized view. Otherwise, these changes may
appear to be temporarily lost.

If this parameter is true , an updatable materialized view
continues to refresh even if there are outstanding conflicts logged
in the DEFERRORIiew for the materialized view's master table or
master materialized view. If this parameter is true and atomic_
refresh isfalse |, this procedure continues to refresh other
materialized views if it fails while refreshing a materialized view.

If you are using the parallel propagation mechanism (in other
words, parallelism is set to 1 or greater), 0 means do not purge, 1
means lazy purge, and 2 means aggressive purge. In most cases,
lazy purge is the optimal setting. Set purge to aggressive to trim
the queue if multiple master replication groups are pushed to
different target sites, and updates to one or more replication
groups are infrequent and infrequently pushed. If all replication
groups are infrequently updated and pushed, then set this
parameter to O and occasionally execute PUSHwith this parameter
set to 2 to reduce the queue.

DBMS_MVIEW 15-11

REFRESH_ALL_MVIEWS Procedure

Table 15-9 REFRESH Procedure Parameters (Cont.)

Parameter

Description

parallelism

heap_size

atomic_refresh

0 specifies serial propagation.
n > 1 specifies parallel propagation with n parallel processes.
1 specifies parallel propagation using only one parallel process.

Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

If this parameter is set to true , then the list of materialized views
is refreshed in a single transaction. All of the refreshed
materialized views are updated to a single point in time. If the
refresh fails for any of the materialized views, none of the
materialized views are updated.

If this parameter is set to false , then each of the materialized
views is refreshed in a separate transaction. The number of job
gueue processes must be set to 1 or greater if this parameter is
false

REFRESH_ALL MVIEWS Procedure

This procedure refreshes all materialized views that have the following properties:

« The materialized view has not been refreshed since the most recent change to a
master table or master materialized view on which it depends.

« The materialized view and all of the master tables or master materialized views
on which it depends are local.

« The materialized view is in the view DBA_MVIEWS

This procedure is intended for use with data warehouses.

Syntax

DBMS_MVIEW.REFRESH_ALL_MVIEWS (
number_of failures OUT BINARY_INTEGER,

method
rollback seg

IN VARCHAR2 :=NULL,
IN VARCHAR2 =NULL,

refresh_after_emors IN BOOLEAN =false,

atomic_refresh

IN BOOLEAN =true);

15-12 Oracle9i Replication Management AP| Reference

Summary of DBMS_MVIEW Subprograms

Parameters

Table 15-10 REFRESH_ALL_MVIEWS Procedure Parameters

Parameter

Description

number_of failures

method

rolback_seg

refresh_after_ermrors

atomic_refresh

Returns the number of failures that occurred during processing.

A single refresh method indicating the type of refresh to perform
for each materialized view that is refreshed. F or f indicates fast
refresh, ? indicates force refresh, Cor ¢ indicates complete refresh,
and A or a indicates always refresh. Aand Care equivalent. If no
method is specified, a materialized view is refreshed according to
its default refresh method.

Name of the materialized view site rollback segment to use while
refreshing materialized views.

If this parameter is true , an updatable materialized view
continues to refresh even if there are outstanding conflicts logged
in the DEFERRORiew for the materialized view's master table or
master materialized view. If this parameter is true and atomic_
refresh isfalse |, this procedure continues to refresh other
materialized views if it fails while refreshing a materialized view.

If this parameter is set to true , then the refreshed materialized
views are refreshed in a single transaction. All of the refreshed
materialized views are updated to a single point in time. If the
refresh fails for any of the materialized views, none of the
materialized views are updated.

If this parameter is set to false , then each of the refreshed
materialized views is refreshed in a separate transaction. The
number of job queue processes must be set to 1 or greater if this
parameter is false

REFRESH_DEPENDENT Procedure

This procedure refreshes all materialized views that have the following properties:

« The materialized view depends on a master table or master materialized view
in the list of specified masters.

« The materialized view has not been refreshed since the most recent change to a
master table or master materialized view on which it depends.

« The materialized view and all of the master tables or master materialized views
on which it depends are local.

« The materialized view is in the view DBA_MVIEWS

DBMS_MVIEW 15-13

REFRESH_DEPENDENT Procedure

Syntax

Parameters

This procedure is intended for use with data warehouses.

DBMS_MVIEW.REFRESH_DEPENDENT (
number_of failures OUT BINARY_INTEGER,

{list IN VARCHARZ,
| tab INOUT DBMS_UTILITY.UNCL_ARRAY }
method IN VARCHAR2 :=NULL,

rolback_seg IN VARCHAR2 :=NULL,
refresh_after_emors IN BOOLEAN :=false,
atomic refresh IN BOOLEAN =true);

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 15-11 REFRESH _DEPENDENT Procedure Parameters

Parameter Description
number_of failures Returns the number of failures that occurred during processing.
list| tab Comma-separated list of master tables or master materialized

views on which materialized views can depend. (Synonyms are
not supported.) These tables and the materialized views that
depend on them can be located in different schemas. However, all
of the tables and materialized views must be in your local
database.

Alternatively, you may pass in a PL/SQL index-by table of type
DBMS_UTILITY.UNCL_ARRAYwhere each element is the name of
atable.

15-14 Oracle9i Replication Management AP| Reference

Summary of DBMS_MVIEW Subprograms

Table 15-11 REFRESH_DEPENDENT Procedure Parameters (Cont.)

Parameter Description

method A string of refresh methods indicating how to refresh the
dependent materialized views. All of the materialized views that
depend on a particular table are refreshed according to the refresh
method associated with that table. F or f indicates fast refresh, ?
indicates force refresh, Cor c indicates complete refresh, and A or
a indicates always refresh. Aand Care equivalent.

If a table does not have a corresponding refresh method (that is, if
more tables are specified than refresh methods), then any
materialized view that depends on that table is refreshed
according to its default refresh method. For example, the
following EXECUTEstatement within SQL*Plus:

DBMS_MVIEW.REFRESH DEPENDENT
(employees,deptartments, hr.regions',cf);

performs a complete refresh of the materialized views that depend
on the employees table, a fast refresh of the materialized views
that depend on the departments table, and a default refresh of
the materialized views that depend on the hr.regions table.

rolback seg Name of the materialized view site rollback segment to use while
refreshing materialized views.

refresh_after_errors If this parameter is true , an updatable materialized view
continues to refresh even if there are outstanding conflicts logged
in the DEFERRORIiew for the materialized view's master table or
master materialized view. If this parameter is true and atomic_
refresh isfalse |, this procedure continues to refresh other
materialized views if it fails while refreshing a materialized view.

atomic_refresh If this parameter is set to true , then the refreshed materialized
views are refreshed in a single transaction. All of the refreshed
materialized views are updated to a single point in time. If the
refresh fails for any of the materialized views, none of the
materialized views are updated.

If this parameter is set to false , then each of the refreshed
materialized views is refreshed in a separate transaction. The
number of job queue processes must be set to 1 or greater if this
parameter is false

REGISTER_MVIEW Procedure

This procedure enables the administration of individual materialized views. It is
invoked at a master site or master materialized view site to register a materialized
view.

DBMS_MVIEW 15-15

REGISTER_MVIEW Procedure

Note: Typically, a materialized view is registered automatically
during materialized view creation. You should only run this
procedure to manually register a materialized view if the automatic
registration failed or if the registration information was deleted.

Syntax

DBMS_MVIEW.REGISTER_MVIEW (

mviewowner IN VARCHAR?2,

mviewname IN VARCHAR?2,

mviewsite IN VARCHAR2,

mview_id IN DATE | BINARY_INTEGER,

fag IN BINARY_INTEGER,

gy txt IN VARCHAR2,

rep type IN BINARY_INTEGER :=DBMS_MVIEW.REG_UNKNOWN);

Parameters

Table 15-12 REGISTER_MVIEW Procedure Parameters

Parameter Description

mviewowner Owner of the materialized view.
mviewname Name of the materialized view.

mviewsite Name of the materialized view site for a materialized view registering at an
Oracle8 and higher master site or master materialized view site. This name
should not contain any double quotes.

mview_id The identification number of the materialized view. Specify an Oracle8 and
higher materialized view as a BINARY_INTEGER Specify an Oracle7
materialized view registering at an Oracle8 and higher master sites or master
materialized view sites as a DATE

15-16 Oracle9i Replication Management AP| Reference

Summary of DBMS_MVIEW Subprograms

Table 15-12 REGISTER_MVIEW Procedure Parameters (Cont.)

Parameter Description

flag A constant that describes the properties of the materialized view being
registered. Valid constants that can be assigned include the following:

« dbms_mview.reg_rowid_mview for a rowid materialized view

« dbms_mview.reg_primary_key_mview for a primary key
materialized view

« dbms_mview.reg_object_id_mview for an object id materialized
view

« dbms_mview.reg_fast refreshable_mview for a materialized
view that can be fast refreshed

« dbms_mview.reg_updatable_mview for a materialized view that is
updatable

A materialized view can have more than one of these properties. In this case,
use the plus sign (+) to specify more than one property. For example, if a
primary key materialized view can be fast refreshed, you can enter the
following for this parameter:

dbms_mview.reg_primary_key mview +dbms_mview.reg_fast refreshable_mview

You can determine the properties of a materialized view by querying the
ALL_MVIEWSdata dictionary view.

qry_txt The first 32,000 bytes of the materialized view definition query.
rep_type Version of the materialized view. Valid constants that can be assigned include
the following:
« dbms_mview.reg_v7_snapshot if the materialized view is at an
Oracle7 site
« dbms_mview.reg_v8 snapshot if the materialized view is at an

Oracle8 or higher site

« dbms_mview.reg_unknown (the default) if you do not know whether
the materialized view is at an Oracle7 site or an Oracle8 (or higher) site

Usage Notes

This procedure is invoked at the master site or master materialized view site by a
remote materialized view site using a remote procedure call. If REGISTER_MVIEWs
called multiple times with the same mviewowner , mviewname, and mviewsite
then the most recent values for mview_id , flag ,and qry_txt are stored. If a
guery exceeds the maximum VARCHARZ2ize, then qry_txt contains the first 32000
characters of the query and the remainder is truncated. When invoked manually,

DBMS_MVIEW 15-17

UNREGISTER_MVIEW Procedure

the value of mview_id must be looked up in the materialized view data dictionary
views by the person who calls the procedure.

UNREGISTER_MVIEW Procedure

This procedure enables the administration of individual materialized views. It is
invoked at a master site or master materialized view site to unregister a
materialized view.

Syntax
DBMS_MVIEW.UNREGISTER_MVIEW (
mviewowner IN VARCHAR?2,
mviewname IN VARCHAR2,
mviewsite IN VARCHARY);
Parameters

Table 15-13 UNREGISTER_MVIEW Procedure Parameters

Parameters Description

mviewowner Owner of the materialized view.
mviewname Name of the materialized view.
mviewsite Name of the materialized view site.

15-18 Oracle9i Replication Management AP| Reference

16

DBMS_OFFLINE_OG

The DBMS_OFFLINE_O@ackage contains public APIs for offline instantiation of
master groups.

This chapter discusses the following topics:

« Summary of DBMS_OFFLINE_OG Subprograms

Note: These procedures are used in performing an offline
instantiation of a master table in a multimaster replication
environment.

These procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHQdackage (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATPpackage (used for
instantiating a deployment template). See these respective packages
for more information on their usage.

DBMS_OFFLINE_OG 16-1

Summary of DBMS_OFFLINE_OG Subprograms

Summary of DBMS_OFFLINE_OG Subprograms

Table 16-1 DBMS_OFFLINE_OG Package Subprograms

Subprogram Description

"BEGIN_INSTANTIATION Starts offline instantiation of a master group.
Procedure" on page 16-3

"BEGIN_LOAD Procedure” Disables triggers while data is imported to new master site
on page 16-4 as part of offline instantiation.
"END_INSTANTIATION Completes offline instantiation of a master group.

Procedure" on page 16-5

"END_LOAD Procedure" on Re-enables triggers after importing data to new master site

page 16-6 as part of offline instantiation.

"RESUME_SUBSET_OF _ Resumes replication activity at all existing sites except the
MASTERS Procedure” on new site during offline instantiation of a master group.
page 16-8

16-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_OFFLINE_OG Subprograms

BEGIN_INSTANTIATION Procedure

This procedure starts offline instantiation of a master group. You must call this
procedure from the master definition site.

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHQdackage (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATPackage (used for
instantiating a deployment template). See these respective packages
for more information on their usage.

See Also: "Adding New Master Sites with Offline Instantiation
Using Export/Import" on page 7-35 for information about adding a
new master site to a master group by performing an offline
instantiation of a master site

Syntax
DBMS_OFFLINE_OG.BEGIN_INSTANTIATION (
gname IN VARCHAR2,
new_site IN VARCHAR2
fnrame IN VARCHAR?);
Parameters

Table 16-2 BEGIN_INSTANTIATION Procedure Parameters

Parameter Description

gname Name of the replication group that you want to replicate to the
new site.

new_site The fully qualified database name of the new site to which you

want to replicate the replication group.

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

DBMS_OFFLINE_OG 16-3

BEGIN_LOAD Procedure

Exceptions

Table 16-3 BEGIN_INSTANTIATION Procedure Exceptions

Exception Description

badargument NULLor.empty string for replication group or new
master site name.

dbms_repcat.nonmasterdef T_his procedure must be called from the master definition
site.

sitealreadyexists Specified site is already a master site for this replication
group.

wrongstate Status of master definition site must be quiesced.

dbms_repcatmissingrepgroup gname does not exist as a master group.

dbms_repcatmissing_flavor ISf you receive this exception, contact Oracle Support

ervices.

BEGIN_LOAD Procedure

This procedure disables triggers while data is imported to the new master site as
part of offline instantiation. You must call this procedure from the new master site.

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHQdackage (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATPpackage (used for
instantiating a deployment template). See these respective packages
for more information on their usage.

See Also: "Adding New Master Sites with Offline Instantiation
Using Export/Import" on page 7-35 for information about adding a
new master site to a master group by performing an offline
instantiation of a master site

Syntax

DBMS_OFFLINE_OG.BEGIN_LOAD (
gname IN VARCHAR2,

16-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_OFFLINE_OG Subprograms

new_site IN VARCHAR2);

Parameters
Table 16-4 BEGIN_LOAD Procedure Parameters
Parameter Description
gname Name of the replication group whose members you are importing.
new_site The fully qualified database name of the new site at which you
will be importing the replication group members.
Exceptions

Table 16-5 BEGIN_LOAD Procedure Exceptions

Exception Description

badargument NULLor empty string for replication group or new
master site name.

wrongsite This procedure must be called from the new master site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of the new master site must be quiesced.

dbms_repcat missingrepgroup gname does not exist as a master group.

END_INSTANTIATION Procedure

This procedure completes offline instantiation of a master group. You must call this
procedure from the master definition site.

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHQJackage (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATPBackage (used for
instantiating a deployment template). See these respective packages
for more information on their usage.

DBMS_OFFLINE_OG 16-5

END_LOAD Procedure

See Also: "Adding New Master Sites with Offline Instantiation
Using Export/Import" on page 7-35 for information about adding a
new master site to a master group by performing an offline
instantiation of a master site

Syntax

DBMS_OFFLINE_OG.END_INSTANTIATION (
gname IN VARCHAR?,
new_site IN VARCHAR?);

Parameters

Table 16-6 END_INSTANTIATION Procedure Parameters

Parameter Description

gname Name of the replication group that you are replicating to the new
site.

new_site The fully qualified database name of the new site to which you are
replicating the replication group.

Exceptions

Table 16—-7 END_INSTANTIATION Procedure Exceptions

Exception Description

badargument NULLor empty string for replication group or new master
site name.

dbms_repcatnonmasterdef T_f;is procedure must be called from the master definition
site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of master definition site must be quiesced.

dbms_repcatmissingrepgroup gname does not exist as a master group.

END_LOAD Procedure

This procedure re-enables triggers after importing data to new master site as part of
offline instantiation. You must call this procedure from the new master site.

16-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_OFFLINE_OG Subprograms

Syntax

Parameters

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHQJackage (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATIpackage (used for
instantiating a deployment template). See these respective packages
for more information on their usage.

See Also: "Adding New Master Sites with Offline Instantiation
Using Export/Import" on page 7-35 for information about adding a
new master site to a master group by performing an offline
instantiation of a master site

DBMS_OFFLINE_OG.END_LOAD (

gname

IN VARCHARZ,

new_site IN VARCHAR2

fname

IN VARCHAR2);

Table 16-8 END_LOAD Procedure Parameters

Parameter Description

gname

new_site

fname

Name of the replication group whose members you have finished
importing.

The fully qualified database name of the new site at which you
have imported the replication group members.

This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

DBMS_OFFLINE_OG 16-7

RESUME_SUBSET_OF_MASTERS Procedure

Exceptions

Table 16-9 END_LOAD Procedure Exceptions

Exception Description

badargument NULLor.empty string for replication group or new
master site name.

wrongsite This procedure must be called from the new master site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of the new master site must be quiesced.

dbms_repcat missingrepgroup gname does not exist as a master group.

dbms_repcat.fiavor_noobject If you receive this exception, contact Oracle Support
Services.

dbms_repcatflavor_contains ISf you receive this exception, contact Oracle Support

ervices.

RESUME_SUBSET _OF MASTERS Procedure

When you add a new master site to a master group by performing an offline
instantiation of a master site, it may take some time to complete the offline
instantiation process. This procedure resumes replication activity at all existing
sites, except the new site, during offline instantiation of a master group. You
typically execute this procedure after executing the DBMS_OFFLINE_OG.BEGIN_
INSTANTIATION procedure. You must call this procedure from the master
definition site.

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHQdackage (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATPackage (used for
instantiating a deployment template). See these respective packages
for more information on their usage.

16-8 Oracle9i Replication Management AP| Reference

Summary of DBMS_OFFLINE_OG Subprograms

Syntax

Parameters

See Also:

"Adding New Master Sites with Offline Instantiation

Using Export/Import" on page 7-35 for information about adding a
new master site to a master group by performing an offline
instantiation of a master site

DBMS_OFFLINE_OGRESUME_SUBSET OF MASTERS (

gname IN VARCHAR?2,
new_site IN VARCHAR2

override IN BOOLEAN :=false);

Table 16-10 RESUME_SUBSET_OF _MASTERS Procedure Parameters

Parameter Description

gname Name of the replication group that you are replicating to the new
site.

new_site The fully qualified database name of the new site to which you are
replicating the replication group.

override If this is true , then any pending RepCat administrative requests

are ignored and normal replication activity is restored at each
master as quickly as possible. The override parameter should be
set to true only in emergency situations.

If this is false , then normal replication activity is restored at each
master only when there is no pending RepCat administrative
request for gname at that master.

DBMS_OFFLINE_OG 16-9

RESUME_SUBSET_OF_MASTERS Procedure

Exceptions

Table 16-11 RESUME_SUBSET_OF_MASTERS Procedure Exceptions

Exception Description

badargument NULLor.empty string for replication group or new
master site name.

dbms_repcat.nonmasterdef T_his procedure must be called from the master definition
site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of master definition site must be quiesced.

dbms_repcat missingrepgroup gname does not exist as a master group.

16-10 Oracle9i Replication Management AP| Reference

17

DBMS_ OFFLINE_SNAPSHOT

The DBMS_OFFLINE_SNAPSHQJackage contains public APIs for offline
instantiation of materialized views.

This chapter discusses the following topics:

« Summary of DBMS_OFFLINE_SNAPSHOT Subprograms

Note: These procedure are used in performing an offline
instantiation of a materialized view.

These procedures should not be confused with the procedures in
the DBMS_OFFLINE_O@ackage (used for performing an offline
instantiation of a master table) or with the procedures in the DBMS _
REPCAT_INSTANTIATEpackage (used for instantiating a
deployment template). See these respective packages for more
information on their usage.

DBMS_OFFLINE_SNAPSHOT 17-1

Summary of DBMS_OFFLINE_SNAPSHOT Subprograms

Summary of DBMS_OFFLINE_SNAPSHQOT Subprograms

Table 17-1 DBMS_OFFLINE_SNAPSHOT Package Subprograms

Subprogram Description

"BEGIN_LOAD Prepares a materialized view site for import of a new materialized
Procedure" on view as part of offline instantiation.

page 17-3

"END_LOAD Completes offline instantiation of a materialized view.

Procedure" on

page 17-4

17-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_OFFLINE_SNAPSHOT Subprograms

BEGIN_LOAD Procedure

This procedure prepares a materialized view site for import of a new materialized
view as part of offline instantiation. You must call this procedure from the
materialized view site for the new materialized view.

Note: This procedure is used to perform an offline instantiation of
a materialized view.

These procedures should not be confused with the procedures in
the DBMS_OFFLINE_O@ackage (used for performing an offline
instantiation of a master table) or with the procedures in the DBMS _
REPCAT_INSTANTIATEpackage (used for instantiating a
deployment template). See these respective packages for more
information on their usage.

See Also: "Performing an Offline Instantiation of a Materialized
View Site Using Export/Import" on page 8-25 for information
about adding a new materialized view site by performing an offline
instantiation using Export/Import

Syntax
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (
gname IN VARCHAR?2,
sname IN VARCHARZ,

master ste IN VARCHAR2,

snapshot oname IN VARCHAR2,
storage_c IN VARCHAR2 =",
comment IN VARCHAR2 :=",
min_communication IN BOOLEAN :=true);

DBMS_OFFLINE_SNAPSHOT 17-3

END_LOAD Procedure

Parameters

Exceptions

Table 17-2 BEGIN_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group for the materialized view that you
are creating using offline instantiation.

sname Name of the schema for the new materialized view.

master_site Fully qualified database name of the materialized view’s master

snapshot_oname

storage ¢

comment

min_communication

site.

Name of the temporary materialized view created at the master
site.

Storage options to use when creating the new materialized view at
the materialized view site.

User comment.

If true , then the update trigger sends the new value of a column
only if the update statement modifies the column. Also, if true ,
the update trigger sends the old value of the column only if itis a
key column or a column in a modified column group.

Table 17-3 BEGIN_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group, schema,
master site, or materialized view name.

dbms_repcatmissingrepgroup gname does not exist as a replication group.

missingremotemview Could not locate specified materialized view at specified
master site.

dbms_repcatmissingschema Specified schema does not exist.

mviewtabmismatch Base table name of the materialized view at the master

and materialized view do not match.

END_LOAD Procedure

This procedure completes offline instantiation of a materialized view. You must call
this procedure from the materialized view site for the new materialized view.

17-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_OFFLINE_SNAPSHOT Subprograms

Syntax

Parameters

Note: This procedure is used to perform an offline instantiation of
a materialized view.

These procedures should not be confused with the procedures in
the DBMS_OFFLINE_O@ackage (used for performing an offline
instantiation of a master table) or with the procedures in the DBMS _
REPCAT_INSTANTIATEpackage (used for instantiating a
deployment template). See these respective packages for more
information on their usage.

See Also: "Performing an Offline Instantiation of a Materialized
View Site Using Export/Import" on page 8-25 for information
about adding a new materialized view site by performing an offline
instantiation using Export/Import

DBMS_OFFLINE_SNAPSHOT.END_LOAD (

gname
sname

IN VARCHAR2,
IN VARCHAR?Z,

snapshot_oname IN VARCHARY);

Table 17-4 END_LOAD Procedure Parameters

Parameter Description

gname

shame

Name of the replication group for the materialized view that you
are creating using offline instantiation.

Name of the schema for the new materialized view.

snapshot_oname Name of the materialized view.

DBMS_OFFLINE_SNAPSHOT 17-5

END_LOAD Procedure

Exceptions

Table 17-5 END_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group, schema, or
materialized view name.

dbms_repcatmissingrepgroup gname does not exist as a replication group.

dbms_repcatnonmview T_his pl_rocedure must be called from the materialized
view site.

17-6 Oracle9i Replication Management AP| Reference

13

DBMS_ RECTIFIER_DIFF

The DBMS_RECTIFIER_DIFF package contains APIs used to detect and resolve
data inconsistencies between two replicated sites.

This chapter discusses the following topics:

« Summary of DBMS_RECTIFIER_DIFF Subprograms

DBMS_RECTIFIER_DIFF 18-1

Summary of DBMS_RECTIFIER_DIFF Subprograms

Summary of DBMS_RECTIFIER_DIFF Subprograms

Table 18-1 DBMS_RECTIFIER_DIFF Package Subprograms

Subprogram Description

"DIFFERENCES Determines the differences between two tables.
Procedure" on

page 18-3

"RECTIFY Procedure" Resolves the differences between two tables.
on page 18-5

18-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_RECTIFIER_DIFF Subprograms

DIFFERENCES Procedure

This procedure determines the differences between two tables. It accepts the storage

Syntax

Parameters

table of a nested table.

Note: This procedure cannot be used on LOB columns, nor on
columns based on user-defined types.

DBMS_RECTIFIER_DIFF.DIFFERENCES (

snamel IN VARCHARZ2,
onamel IN VARCHAR2,
reference site IN VARCHAR2 ="
sname2 IN VARCHARZ2,
oname2 IN VARCHARZ2,

comparison_site IN VARCHAR2 =",
where_clause IN VARCHAR2 =",
{column_list IN VARCHAR2 =",
|aray_columns IN dbms_utiity.name_array, }
missing_rows_sname IN VARCHAR?2,
missing_rows_onamel IN VARCHAR2,
missing_rows_oname2 IN VARCHAR2,
missing_rows_site IN VARCHAR2 :=",
max_missing IN INTEGER,

commit_rows IN INTEGER :=500);

Note: This procedure is overloaded. The column_list and
array_columns parameters are mutually exclusive.

Table 18-2 DIFFERENCES Procedure Parameters

Parameter Description

snamel Name of the schema at reference_site

onamel Name of the table at reference_site

reference_site Name of the reference database site. The default, NULL indicates

the current site.

DBMS_RECTIFIER_DIFF 18-3

DIFFERENCES Procedure

Table 18-2 DIFFERENCES Procedure Parameters (Cont.)

Parameter Description
sname2 Name of the schema at comparison_site
oname2 Name of the table at comparison_site

comparison_site

where_clause

column_list

array_columns

missing_rows_sname

missing_rows_onamel

missing_rows_oname2

missing_rows_site

max_missing

Name of the comparison database site. The default, NULL,
indicates the current site.

Only rows satisfying this clause are selected for comparison. The
default, NULL, indicates all rows are compared.

A comma-separated list of one or more column names being
compared for the two tables. You must not have any spaces before
or after acomma. The default, NULL, indicates that all columns
will be compared.

A PL/SQL index-by table of column names being compared for
the two tables. Indexing begins at 1, and the final element of the
array must be NULL If position 1 is NULL, then all columns are
used.

Name of the schema containing the tables with the missing rows.

Name of an existing table at missing_rows_site that stores
information about the rows in the table at reference_site that
are missing from the table at comparison_site , and
information about the rows at comparison_site site that are
missing from the table at reference_site

Name of an existing table at missing_rows_site that stores
information about the missing rows. This table has three columns:
the R_ID column shows the rowid of the row in the missing_
rows_onamel table, the PRESENTolumn shows the name of the
site where the row is present, and the ABSENTcolumn shows
name of the site from which the row is absent.

Name of the site where the missing_rows_onamel and
missing_rows_oname2 tables are located. The default, NULL,
indicates that the tables are located at the current site.

Integer that specifies the maximum number of rows that should be
inserted into the missing_rows_oname table. If more than max_
missing rows are missing, then that many rows are inserted into
missing_rows_oname , and the routine then returns normally
without determining whether more rows are missing. This
parameter is useful if the fragments are so different that the
missing rows table has too many entries and there is no point in
continuing. Raises exception badnumber if max_missing is less
than 1 or NULL

18-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_RECTIFIER_DIFF Subprograms

Table 18-2 DIFFERENCES Procedure Parameters (Cont.)

Parameter

Description

commit_rows

Maximum number of rows to insert to or delete from the reference
or comparison table before a COMMIToccurs. By default, a COMMIT
occurs after 500 inserts or 500 deletes. An empty string (*') or
NULL indicates that a COMMITshould be issued only after all rows
for a single table have been inserted or deleted.

Exceptions
Table 18-3 DIFFERENCES Procedure Exceptions
Exception Description
nosuchsite Database site could not be found.
badnumber The commit_rows parameter is less than 1.
missingprimarykey Column list must include primary key (or SET_COLUMNS
equivalent).
badname NULL or empty string for table or schema name.
cannotbenull Parameter cannot be NULL
notshapeequivalent Tables being compared are not shape equivalent. Shape
refers to the number of columns, their column names, and
the column datatypes.
unknowncolumn Column does not exist.
unsupportedtype Type not supported.
dbms_repcat.commfailure Remote site is inaccessible.
dbms_repcatmissingobject Table does not exist.
Restrictions
The error ORA-00001 (unigue constraint violated) is issued when there are any
unique or primary key constraints on the missing rows table.
RECTIFY Procedure

This procedure resolves the differences between two tables. It accepts the storage

table of a nested table.

DBMS_RECTIFIER_DIFF 18-5

RECTIFY Procedure

Syntax

Parameters

Note:

This procedure cannot be used on LOB columns, nor on

columns based on user-defined types.

DBMS_RECTIFIER_DIFF.RECTIFY (

snamel
onamel
reference_site
sname2
oname2

comparison_site

{column_list
| aray_columns

IN VARCHARZ,
IN VARCHAR2,
IN VARCHAR2 =",
IN VARCHAR2,
IN VARCHARZ,

IN VARCHAR2 =",

IN VARCHARZ2 =",
IN dbms_utility.name_array, }

missing_rows_sname IN VARCHAR?2,
missing_rows_onamel IN VARCHAR2,
missing_rows_oname2 IN VARCHAR2,
missing_rows_site IN VARCHAR2 =",

commit_rows

IN INTEGER :=500);

Note:

This procedure is overloaded. The column_list and

array_columns parameters are mutually exclusive.

Table 18-4 RECTIFY Procedure Parameters

Parameter Description

snamel Name of the schema at reference_site

onamel Name of the table at reference_site

reference_site Name of the reference database site. The default, NULL indicates
the current site.

sname2 Name of the schema at comparison_site

oname2 Name of the table at comparison_site

comparison_site

Name of the comparison database site. The default, NULL,
indicates the current site.

18-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_RECTIFIER_DIFF Subprograms

Table 18-4 RECTIFY Procedure Parameters (Cont.)

Parameter Description

column_list A comma-separated list of one or more column names being
compared for the two tables. You must not have any spaces before
or after acomma. The default, NULL, indicates that all columns
will be compared.

array_columns A PL/SQL index-by table of column names being compared for

missing_rows_sname

missing_rows_onamel

missing_rows_oname2

missing_rows_site

commit_rows

the two tables. Indexing begins at 1, and the final element of the
array must be NULL If position 1 is NULL, then all columns are
used.

Name of the schema containing the tables with the missing rows.

Name of the table at missing_rows_site that stores
information about the rows in the table at reference_site that
are missing from the table at comparison_site , and
information about the rows at comparison_site that are
missing from the table at reference_site

Name of the table at missing_rows_site that stores
information about the missing rows. This table has three columns:
the rowid of the row in the missing_rows_onamel table, the
name of the site at which the row is present, and the name of the
site from which the row is absent.

Name of the site where the missing_rows_onamel and
missing_rows_oname2 tables are located. The default, NULL,
indicates that the tables are located at the current site.

Maximum number of rows to insert to or delete from the reference
or comparison table before a COMMIToccurs. By default, a
COMMIToccurs after 500 inserts or 500 deletes. An empty string ('
") or NULL indicates that a COMMITshould be issued only after all
rows for a single table have been inserted or deleted.

DBMS_RECTIFIER_DIFF 18-7

RECTIFY Procedure

Exceptions

Table 18-5 RECTIFY Procedure Exceptions

Exception Description

nosuchsite Database site could not be found.

badnumber The commit_rows parameter is less than 1.
badname NULL or empty string for table or schema name.
dbms_repcat.commfailure Remote site is inaccessible.
dbms_repcatmissingobject Table does not exist.

18-8 Oracle9i Replication Management AP| Reference

19

DBMS REFRESH

DBMS_REFRESghables you to create groups of materialized views that can be
refreshed together to a transactionally consistent point in time.

This chapter discusses the following topics:

« Summary of DBMS_REFRESH Subprograms

DBMS_REFRESH 19-1

Summary of DBMS_REFRESH Subprograms

Summary of DBMS_REFRESH Subprograms

Table 19-1 DBMS_REFRESH Package Subprograms

Subprogram Description

"ADD Procedure" on Adds materialized views to a refresh group.

page 19-3

"CHANGE Procedure” Changes the refresh interval for a refresh group.

on page 19-3

"DESTROY Procedure” Removes all of the materialized views from a refresh group and

on page 19-5 deletes the refresh group.

"MAKE Procedure” on Specifies the members of a refresh group and the time interval

page 19-6 used to determine when the members of this group should be
refreshed.

"REFRESH Procedure” Manually refreshes a refresh group.

on page 19-8

"SUBTRACT Removes materialized views from a refresh group.

Procedure" on

page 19-9

19-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_REFRESH Subprograms

ADD Procedure

This procedure adds materialized views to a refresh group.

See Also: Step 6, "Add objects to refresh group," on page 5-10 and
Oracle9i Replication for more information

Syntax

DBMS_REFRESH.ADD (
name INVARCHAR2,
{list INVARCHAR2,
|[tab INDBMS_UTILITY.UNCL_ARRAY,}
lax INBOOLEAN :=false);

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Parameters

Table 19-2 ADD Procedures Parameters

Parameter Description
name Name of the refresh group to which you want to add members.
list Comma-separated list of materialized views that you want to add

to the refresh group. (Synonyms are not supported.)

tab Instead of a comma-separated list, you can supply a PL/SQL
index-by table of type DBMS_UTILITY.UNCL_ARRAXvhere each
element is the name of a materialized view. The first materialized
view should be in position 1. The last position must be NULL

lax A materialized view can belong to only one refresh group at a
time. If you are moving a materialized view from one group to
another, then you must set the lax flag to true to succeed. Oracle
then automatically removes the materialized view from the other
refresh group and updates its refresh interval to be that of its new
group. Otherwise, the call to ADDgenerates an error message.

CHANGE Procedure

This procedure changes the refresh interval for a refresh group.

DBMS_REFRESH 19-3

CHANGE Procedure

Syntax

Parameters

See Also:
groups

Oracle9i Replication for more information about refresh

DBMS_REFRESH.CHANGE (

name IN VARCHAR?2,

next_date IN DATE =NULL,

interval INVARCHAR2 :=NULL,
implicit_destroy INBOOLEAN :=NULL,
rollback_seg INVARCHAR2 :=NULL,
push_deferred mpc INBOOLEAN :=NULL,
refresh_after_ermors INBOOLEAN ~ :=NULL,
purge_option IN BINARY_INTEGER :=NULL,
parallelism IN BINARY_INTEGER :=NULL,
heap_size INBINARY_INTEGER :=NULL);

Table 19-3 CHANGE Procedures Parameters

Parameter

Description

name

next_date

interval

implicit_destroy

rollback_seg

Name of the refresh group for which you want to alter the refresh
interval.

Next date that you want a refresh to occur. By default, this date
remains unchanged.

Function used to calculate the next time to refresh the materialized
views in the refresh group. This interval is evaluated immediately
before the refresh. Thus, you should select an interval that is
greater than the time it takes to perform a refresh. By default, the
interval remains unchanged.

Allows you to reset the value of the implicit_destroy flag. If
this flag is set, then Oracle automatically deletes the group if it no
longer contains any members. By default, this flag remains
unchanged.

Allows you to change the rollback segment used. By default, the
rollback segment remains unchanged. To reset this parameter to
use the default rollback segment, specify NULL, including the
quotes. Specifying NULL without quotes indicates that you do not
want to change the rollback segment currently being used.

19-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_REFRESH Subprograms

Table 19-3 CHANGE Procedures Parameters (Cont.)

Parameter

Description

push_deferred rpc

refresh_after emrors

purge_option

parallelism

heap_size

Used by updatable materialized views only. Set this parameter to
true if you want to push changes from the materialized view to
its associated master table or master materialized view before
refreshing the materialized view. Otherwise, these changes may
appear to be temporarily lost. By default, this flag remains
unchanged.

Used by updatable materialized views only. Set this parameter to
true if you want the refresh to proceed even if there are
outstanding conflicts logged in the DEFERRORiew for the
materialized view’s master table or master materialized view. By
default, this flag remains unchanged.

If you are using the parallel propagation mechanism (that is,
parallelism is set to 1 or greater), then:

« 0=donot purge

« 1=lazy (default)

« 2 =aggressive

In most cases, lazy purge is the optimal setting. Set purge to
aggressive to trim back the queue if multiple master replication
groups are pushed to different target sites, and updates to one or
more replication groups are infrequent and infrequently pushed. If
all replication groups are infrequently updated and pushed, then
set purge to do not purge and occasionally execute PUSHwith
purge set to aggressive to reduce the queue.

0 specifies serial propagation.
n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

DESTROQY Procedure

This procedure removes all of the materialized views from a refresh group and
delete the refresh group.

See Also:

Oracle9i Replication for more information refresh groups

DBMS_REFRESH 19-5

MAKE Procedure

Syntax
DBMS_REFRESH.DESTROY (
name IN VARCHARY2);
Parameters
Table 19-4 DESTROY Procedure Parameters
Parameter Description
name Name of the refresh group that you want to destroy.
MAKE Procedure
This procedure specifies the members of a refresh group and the time interval used
to determine when the members of this group should be refreshed.
See Also: Step 4, "Create the refresh group,” on page 5-7 and
Oracle9i Replication for more information
Syntax

DBMS_REFRESH.MAKE (

name IN VARCHAR2

{list IN VARCHAR2,

| tab IN DBMS_UTILITY.UNCL_ARRAY,}
next_date IN DATE,

interval IN VARCHAR2,

implicit_destroy IN BOOLEAN =false,
lax IN BOOLEAN =false,

job IN BINARY INTEGER =0,
rollback_seg IN VARCHAR2 =NULL,
push_deferred_rpc IN BOOLEAN =true,
refresh_after_errorsIN BOOLEAN =false

purge_option IN BINARY_INTEGER := NULL,
parallelism IN BINARY_INTEGER :=NULL,
heap_size IN BINARY_INTEGER := NULL);

Note: This procedure is overloaded. The list
parameters are mutually exclusive.

and tab

19-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_REFRESH Subprograms

Parameters

Table 19-5 MAKE Procedure Parameters

Parameter

Description

name

list

next_date
interval

implicit_destroy

job
rolback_seg

Unigque name used to identify the refresh group. Refresh groups
must follow the same naming conventions as tables.

Comma-separated list of materialized views that you want to
refresh. (Synonyms are not supported.) These materialized views
can be located in different schemas and have different master
tables or master materialized views. However, all of the listed
materialized views must be in your current database.

Instead of a comma separated list, you can supply a PL/SQL
index-by table of names of materialized views that you want to
refresh using the datatype DBMS_UTILITY.UNCL_ARRAYTf the
table contains the names of n materialized views, then the first
materialized view should be in position 1 and the n + 1 position
should be set to NULL

Next date that you want a refresh to occur.

Function used to calculate the next time to refresh the materialized
views in the group. This field is used with the next_date value.

For example, if you specify NEXT_DAY(SYSDATE+1, "MONDAY")
as your interval, and if your next_date evaluates to Monday,
then Oracle refreshes the materialized views every Monday. This
interval is evaluated immediately before the refresh. Thus, you
should select an interval that is greater than the time it takes to
perform a refresh.

Set this to true if you want to delete the refresh group
automatically when it no longer contains any members. Oracle
checks this flag only when you call the SUBTRACTprocedure. That
is, setting this flag still enables you to create an empty refresh

group.

A materialized view can belong to only one refresh group at a
time. If you are moving a materialized view from an existing
group to a new refresh group, then you must set this to true to
succeed. Oracle then automatically removes the materialized view
from the other refresh group and updates its refresh interval to be
that of its new group. Otherwise, the call to MAKEgenerates an
error message.

Needed by the Import utility. Use the default value, 0.

Name of the rollback segment to use while refreshing materialized
views. The default, NULL, uses the default rollback segment.

DBMS_REFRESH 19-7

REFRESH Procedure

Table 19-5 MAKE Procedure Parameters (Cont.)

Parameter

Description

push_deferred_mpc

refresh_after_errors

purge_option

parallelism

heap_size

Used by updatable materialized views only. Use the default value,
true , if you want to push changes from the materialized view to
its associated master table or master materialized view before
refreshing the materialized view. Otherwise, these changes may
appear to be temporarily lost.

Used by updatable materialized views only. Set this to 0 if you
want the refresh to proceed even if there are outstanding conflicts
logged in the DEFERRORiew for the materialized view’s master
table or master materialized view.

If you are using the parallel propagation mechanism (in other
words, parallelism is set to 1 or greater), then 0 = do not purge; 1 =
lazy (default); 2 = aggressive. In most cases, lazy purge is the
optimal setting.

Set purge to aggressive to trim back the queue if multiple master
replication groups are pushed to different target sites, and updates
to one or more replication groups are infrequent and infrequently
pushed. If all replication groups are infrequently updated and
pushed, then set purge to do not purge and occasionally execute
PUSHwith purge set to aggressive to reduce the queue.

0 specifies serial propagation.
n > 1 specifies parallel propagation with n parallel processes.
1 specifies parallel propagation using only one parallel process.

Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

REFRESH Procedure

This procedure manually refreshes a refresh group.

Syntax

See Also:
groups

Oracle9i Replication for more information about refresh

DBMS_REFRESH.REFRESH (

name IN VARCHAR?),

19-8 Oracle9i Replication Management AP| Reference

Summary of DBMS_REFRESH Subprograms

Table 19-6 REFRESH Procedure Parameters

Description

Name of the refresh group that you want to refresh manually.

See Also:
groups

This procedure removes materialized views from a refresh group.

Oracle9i Replication for more information about refresh

DBMS_REFRESH.SUBTRACT (
name IN VARCHARZ,
{list IN VARCHARZ,

|tab IN DBMS_UTILITY.UNCL_ARRAY,}
lax IN BOOLEAN :=false);

Note:

This procedure is overloaded. The list and tab

parameters are mutually exclusive.

Parameters
Parameter
name
SUBTRACT Procedure
Syntax
Parameters

Table 19—7 SUBTRACT Procedure Parameters

Parameter Description

name Name of the refresh group from which you want to remove
members.

list Comma-separated list of materialized views that you want to

remove from the refresh group. (Synonyms are not supported.)
These materialized views can be located in different schemas and
have different master tables or master materialized views.
Howvever, all of the listed materialized views must be in your
current database.

DBMS_REFRESH 19-9

SUBTRACT Procedure

Table 19-7 SUBTRACT Procedure Parameters (Cont.)

Parameter

Description

tab

Instead of a comma-separated list, you can supply a PL/SQL
index-by table of names of materialized views that you want to
refresh using the datatype DBMS_UTILITY.UNCL_ARRAMT the
table contains the names of n materialized views, then the first
materialized view should be in position 1 and the n + 1 position
should be set to NULL

Set this to false if you want Oracle to generate an error message
if the materialized view you are attempting to remove is not a
member of the refresh group.

19-10 Oracle9i Replication Management AP| Reference

20

DBMS_ REPCAT

DBMS_REPCAfrovides routines to administer and update the replication catalog
and environment.

This chapter discusses the following topics:

« Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 20-1

Summary of DBMS_REPCAT Subprograms

Summary of DBMS_REPCAT Subprograms

Table 20-1 DBMS_REPCAT Package Subprograms

Subprogram Description

"ADD_GROUPED_COLUMN Adds members to an existing column group.
Procedure" on page 20-7

"ADD_MASTER_DATABASE Adds another master site to your replication
Procedure" on page 20-8 environment.

"ADD_NEW_MASTERS Procedure” on Adds the master sites in the DBA_REPSITES_
page 20-9 NEWdata dictionary view to the replication

catalog at all available master sites.

"ADD_PRIORITY_datatype Procedure” Adds a member to a priority group.
on page 20-14

"ADD_SITE_PRIORITY_SITE Adds a new site to a site priority group.
Procedure" on page 20-16

"ADD_conflicttype_ RESOLUTION Designates a method for resolving an update,
Procedure" on page 20-17 delete, or uniqueness conflict.
"ALTER_CATCHUP_PARAMETERS Alters the values for parameters stored in the
Procedure" on page 20-22 DBA_REPEXTENSIONS8ata dictionary view.
"ALTER_MASTER_PROPAGATION Alters the propagation method for a specified
Procedure" on page 20-24 replication group at a specified master site.
"ALTER_MASTER_REPOBJECT Alters an object in your replication environment.
Procedure" on page 20-25
"ALTER_MVIEW_PROPAGATION Alters the propagation method for a specified
Procedure" on page 20-29 replication group at the current materialized
view site.
"ALTER_PRIORITY Procedure" on Alters the priority level associated with a
page 20-30 specified priority group member.
"ALTER_PRIORITY_datatype Alters the value of a member in a priority group.

Procedure” on page 20-31
"ALTER_SITE_PRIORITY Procedure” on Alters the priority level associated with a

page 20-33 specified site.
"ALTER_SITE_PRIORITY_SITE Alters the site associated with a specified priority
Procedure" on page 20-34 level.

"CANCEL_STATISTICS Procedure" on Stops collecting statistics about the successful
page 20-35 resolution of update, uniqueness, and delete
conflicts for a table.

20-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Table 20-1 DBMS_REPCAT Package Subprograms (Cont.)

Subprogram

Description

"COMMENT_ON_COLUMN_GROUP
Procedure" on page 20-36

"COMMENT_ON_conflicttype_
RESOLUTION Procedure” on
page 20-43

"COMMENT_ON_PRIORITY_
GROUP/COMMENT_ON_SITE_
PRIORITY Procedures" on page 20-38

"COMMENT_ON_REPGROUP
Procedure" on page 20-39

"COMMENT_ON_REPOBIJECT
Procedure" on page 20-40

"COMMENT_ON_REPSITES
Procedure" on page 20-41

"COMMENT_ON_conflicttype_
RESOLUTION Procedure" on
page 20-43

"COMPARE_OLD_VALUES Procedure”
on page 20-44

"CREATE_MASTER_REPGROUP
Procedure" on page 20-47

"CREATE_MASTER_REPOBIJECT
Procedure" on page 20-48

"CREATE_MVIEW_REPGROUP
Procedure" on page 20-52

"CREATE_MVIEW_REPOBJECT
Procedure" on page 20-53

"DEFINE_COLUMN_GROUP
Procedure" on page 20-56

"DEFINE_PRIORITY_GROUP
Procedure" on page 20-57

"DEFINE_SITE_PRIORITY Procedure"
on page 20-58

Updates the comment field in the ALL _
REPCOLUMN_GROMUiew for a column group.

Updates the SCHEMA_COMMER@Id in the ALL_
REPGROU®Riew for a materialized view site.

Updates the comment field in the ALL_
REPPRIORITY_GROURiew for a (site) priority
group.

Updates the comment field in the ALL_
REPGROURiew for a master group.

Updates the comment field in the ALL_
REPOBJECWView for a replicated object.

Updates the comment field in the ALL_REPSITE
view for a replicated site.

Updates the comment field in the ALL_
REPRESOLUTIONiew for a conflict resolution
routine.

Specifies whether to compare old column values
at each master site for each nonkey column of a
replicated table for updates and deletes.

Creates a new, empty, quiesced master group.

Specifies that an object is a replicated object.

Creates a new, empty materialized view group in
your local database.

Adds a replicated object to a materialized view
group.

Creates an empty column group.

Creates a new priority group for a master group.

Creates a new site priority group for a master
group.

DBMS_REPCAT 20-3

Summary of DBMS_REPCAT Subprograms

Table 20-1 DBMS_REPCAT Package Subprograms (Cont.)

Subprogram

Description

"DO_DEFERRED_REPCAT_ADMIN
Procedure" on page 20-59

"DROP_COLUMN_GROUP Procedure"
on page 20-60

"DROP_GROUPED_COLUMN
Procedure" on page 20-61

"DROP_MASTER_REPGROUP
Procedure" on page 20-62

"DROP_MASTER_REPOBJECT
Procedure" on page 20-64

"DROP_PRIORITY Procedure" on
page 20-67

"DROP_MVIEW_REPGROUP
Procedure" on page 20-65

"DROP_MVIEW_REPOBJECT
Procedure" on page 20-66

"DROP_PRIORITY Procedure" on
page 20-67

"DROP_PRIORITY_GROUP Procedure”
on page 20-68

"DROP_PRIORITY_datatype Procedure"
on page 20-69

"DROP_SITE_PRIORITY Procedure" on
page 20-70

"DROP_SITE_PRIORITY_SITE
Procedure" on page 20-71

"DROP_conflicttype_ RESOLUTION
Procedure" on page 20-72

"EXECUTE_DDL Procedure" on
page 20-74

"GENERATE_MVIEW_SUPPORT
Procedure" on page 20-75

20-4 Oracle9i Replication Management AP| Reference

Executes the local outstanding deferred
administrative procedures for the specified
master group at the current master site, or for all
master sites.

Drops a column group.

Removes members from a column group.

Drops a master group from your current site.

Drops a replicated object from a master group.

Drops a replicated object from a master group.

Drops a materialized view site from your
replication environment.

Drops a replicated object from a materialized
view site.

Drops a member of a priority group by priority
level.

Drops a priority group for a specified master
group.

Drops a member of a priority group by value.

Drops a site priority group for a specified master
group.

Drops a specified site, by name, from a site
priority group.

Drops an update, delete, or uniqueness conflict
resolution method.

Supplies DDL that you want to have executed at
each master site.

Activates triggers and generate packages needed
to support the replication of updatable
materialized views or procedural replication.

Summary of DBMS_REPCAT Subprograms

Table 20-1 DBMS_REPCAT Package Subprograms (Cont.)

Subprogram

Description

"GENERATE_REPLICATION_
SUPPORT Procedure" on page 20-77

"MAKE_COLUMN_GROUP Procedure"
on page 20-79

"PREPARE_INSTANTIATED_MASTER
Procedure" on page 20-81

"PURGE_MASTER_LOG Procedure" on
page 20-82

"PURGE_STATISTICS Procedure" on
page 83

"REFRESH_MVIEW_REPGROUP
Procedure" on page 20-84

REGISTER_MVIEW_REPGROUP
Procedure on page 20-86

"REGISTER_STATISTICS Procedure" on
page 20-87

"RELOCATE_MASTERDEF Procedure”
on page 88

"REMOVE_MASTER_DATABASES
Procedure" on page 20-90

"RENAME_SHADOW_COLUMN_
GROUP Procedure" on page 20-91

"REPCAT_IMPORT_CHECK Procedure"

on page 20-92

"RESUME_MASTER_ACTIVITY
Procedure" on page 20-93

Generates the triggers, packages, and procedures
needed to support replication for a specified
object.

Creates a new column group with one or more
members.

Changes the global name of the database you are
adding to a master group.

Removes local messages in the DBA_REPCATLOG
associated with a specified identification number,
source, or master group.

Removes information from the ALL _
REPRESOLUTION_STATISTICSriew.

Refreshes a materialized view group with the
most recent data from its associated master site or
master materialized view site.

Facilitates the administration of materialized
views at their respective master sites or master
materialized view sites by inserting, modifying,
or deleting from DBA_REGISTERED_MVIEW _
GROUPS

Collects information about the successful
resolution of update, delete, and uniqueness
conflicts for a table.

Changes your master definition site to another
master site in your replication environment.

Removes one or more master databases from a
replication environment.

Renames the shadow column group of a
replicated table to make it a named column

group.

Ensures that the objects in the master group have
the appropriate object identifiers and status
values after you perform an export/import of a
replicated object or an object used by the
advanced replication facility.

Resumes normal replication activity after
quiescing a replication environment.

DBMS_REPCAT 20-5

Summary of DBMS_REPCAT Subprograms

Table 20-1 DBMS_REPCAT Package Subprograms (Cont.)

Subprogram

Description

"RESUME_PROPAGATION_TO_MDEF
Procedure" on page 20-94

"SEND_OLD_VALUES Procedure" on
page 20-95

"SET_COLUMNS Procedure" on
page 20-97

"SPECIFY_NEW_MASTERS Procedure"
on page 20-99

"SUSPEND_MASTER_ACTIVITY
Procedure" on page 20-102

"SWITCH_MVIEW_MASTER
Procedure” on page 20-102

"UNDO_ADD_NEW_MASTERS_
REQUEST Procedure" on page 20-104

"UNREGISTER_MVIEW_REPGROUP
Procedure" on page 20-105

"VALIDATE Function" on page 20-106

"WAIT_MASTER_LOG Procedure” on
page 20-108

Indicates that export is effectively finished and
propagation for both extended and unaffected
replication groups existing at master sites can be
enabled.

Specifies whether to send old column values for
each nonkey column of a replicated table for
updates and deletes.

Specifies use of an alternate column or group of
columns, instead of the primary key, to determine
which columns of a table to compare when using
row-level replication.

Specifies the master sites you intend to add to an
existing replication group without quiescing the
group.

Suspends replication activity for a master group.

Changes the master site of a materialized view
group to another master site.

Undoes all of the changes made by the
SPECIFY_NEW_MASTERSId ADD_NEW_
MASTERSrocedures for a specified
extension_id

Facilitates the administration of materialized
views at their respective master sites and master
materialized view sites by inserting, modifying,
or deleting from DBA_REGISTERED_MVIEW _
GROUPS

Validates the correctness of key conditions of a
multimaster replication environment.

Determines whether changes that were
asynchronously propagated to a master site have
been applied.

20-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

ADD_ GROUPED_COLUMN Procedure

Syntax

Parameters

This procedure adds members to an existing column group. You must call this
procedure from the master definition site.

DBMS_REPCAT.ADD_GROUPED_COLUMN (

shame IN VARCHAR2,

oname IN VARCHAR2,

column_group IN VARCHARZ,

list_of column_names IN VARCHARZ | DBMS_REPCAT.VARCHAR?s);

Table 20-2 ADD_GROUPED_COLUMN Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table with which the column group is
associated. The table can be the storage table of a nested table.

column_group Name of the column group to which you are adding members.

list_of column_names Names of the columns that you are adding to the designated

column group. This can either be a comma-delimited list or a
PL/SQL index-by table of column names. The PL/SQL index-by
table must be of type DBMS_REPCAT.VARCHARZse the single
value ' * to create a column group that contains all of the columns
in your table.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object, then you can specify SYS_NC_OID$to add
the object identifier column to the column group. This column
tracks the object identifier of each row object.

If the table is a storage table of a nested table, then you can specify
NESTED_TABLE_IDto add the column that tracks the identifier
for each row of the nested table.

DBMS_REPCAT 20-7

ADD_MASTER_DATABASE Procedure

Table 20-3 ADD_GROUPED_COLUMN Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

missinggroup Specified column group does not exist.

missingcolumn Specified column does not exist in the specified table.

duplicatecolumn Specified column is already a member of another column group.

missingschema Specified schema does not exist.

notquiesced Re_plicagon group to which the specified table belongs is not
quiesced.

ADD_MASTER_DATABASE Procedure

Syntax

Parameters

This procedure adds another master site to your replication environment. This
procedure regenerates all the triggers and their associated packages at existing
master sites. You must call this procedure from the master definition site.

DBMS_REPCAT.ADD_MASTER DATABASE (
gname IN VARCHAR2,
master IN VARCHARZ,
use_existing_objects IN BOOLEAN =true,
copy_rows IN BOOLEAN :=true,

comment IN VARCHAR2 =",
propagation mode IN VARCHAR2 :='ASYNCHRONOUS,
fname IN VARCHAR2 := NULL);

Table 20-4 ADD_MASTER DATABASE Procedure Parameters

Parameter Description

gname Name of the replication group being replicated. This replication
group must already exist at the master definition site.

master Fully qualified database name of the new master database.

use_existing_objects Indicate true if you want to reuse any objects of the same type

and shape that already exist in the schema at the new master site.

20-8 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-4 ADD_MASTER_DATABASE Procedure Parameters (Cont.)

Parameter Description

Copy._rows Indicate true if you want the initial contents of a table at the new
master site to match the contents of the table at the master
definition site.

comment This comment is added to the MASTER_COMMENR®@Id of the DBA _
REPSITESview.

propagation_mode Method of forwarding changes to and receiving changes from new
master database. Accepted values are synchronous and
asynchronous

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 20-5 ADD_MASTER_DATABASE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Replication has not been suspended for the master group.
missingrepgroup Replication group does not exist at the specified database site.
commfailure New master is not accessible.

typefailure An incorrect propagation mode was specified.

notcompat Compatibility mode must be 7.3.0.0 or greater.

duplrepgrp Master site already exists.

ADD NEW_MASTERS Procedure

This procedure adds the master sites in the DBA_REPSITES_NEWlata dictionary
view to the master groups specified when the SPECIFY_NEW_MASTERSocedure
was run. Information about these new master sites are added to the replication
catalog at all available master sites.

All master sites instantiated with object-level export/import must be accessible at
this time. Their new replication groups are added in the quiesced state. Master sites

DBMS_REPCAT 20-9

ADD_NEW_MASTERS Procedure

instantiated through full database export/import or through changed-based
recovery do not need to be accessible.

Run this procedure after you run the SPECIFY_NEW_MASTERSocedure.

Caution: After running this procedure, do not disable or enable
propagation of the deferred transactions queue until after the new
master sites are added. The DBA_REPEXTENSIONGSata dictionary
view must be clear before you disable or enable propagation. You
can use the Replication Management tool or the SET_DISABLED
procedure in the DBMS_DEFER_SYfackage to disable or enable
propagation.

See Also:
« "SPECIFY_NEW_MASTERS Procedure" on page 20-99

« "Adding New Master Sites" on page 7-4 for more information
about adding master sites to a master group

Syntax

DBMS_REPCAT.ADD NEW_MASTERS (
export_required IN BOOLEAN,
{available_master list IN VARCHAR2,

| available_master table IN DBMS_UTILITY.DBLINK_ARRAY }
masterdef flashback scn OUT NUMBER,
extension_id OUT RAW,
break trans to_masterdef IN BOOLEAN :=false,
break trans to new masters IN BOOLEAN :=false,
percentage_for_catchup_mdef IN BINARY_INTEGER =100,
cycle_seconds_mdef IN BINARY_INTEGER =60,
percentage for_catchup new IN BINARY_INTEGER :=100,
cycle_seconds_new IN BINARY_INTEGER :=60);

Note: This procedure is overloaded. The available_master_
list and available_master_table parameters are mutually
exclusive.

20-10 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Table 20-6 ADD_NEW_MASTERS Procedure Parameters

Parameter

Description

export_required

available_master_list

available_master_table

masterdef flashback scn

extension_id

Set to true if either object-level or full database export is
required for at least one of the new master sites. Set to
false if you are using change-based recovery for all of
the new master sites.

A comma-delimited list of the new master sites to be
instantiated using object-level export/import. The sites
listed must match the sites specified in the SPECIFY_
NEW_MASTERSocedure. List only the new master sites,
not the existing master sites. Do not put any spaces
between site names.

Specify NULL if all masters will be instantiated using full
database export/import or change-based recovery.

A table that lists the new master sites to be instantiated
using object-level export/import. The sites in the table
must match the sites specified in the SPECIFY_NEW_
MASTER®$rocedure. Do not specify masters that will be
instantiated using full database export/import or
change-based recovery.

In the table that lists the master sites to be instantiated
using object-level export/import, list only the new
master sites for the master groups being extended. Do
not list the existing master sites in the master groups
being extended. The first master site should be at
position 1, the second at position 2, and so on.

This OUTparameter returns a system change number
(SCN) that must be used during export or change-based
recovery. Use the value returned by this parameter for
the FLASHBACK_SCHMXxport parameter when you
perform the export. You can find the flashback_scn
value by querying the DBA_REPEXTENSIONG&ata
dictionary view.

This OUTparameter returns an identifier for the current
pending request to add master databases without
quiesce. You can find the extension_id by querying
the DBA_REPSITES_NEWnd DBA_REPEXTENSIONS
data dictionary views.

DBMS_REPCAT 20-11

ADD_NEW_MASTERS Procedure

Table 20-6 ADD_NEW_MASTERS Procedure Parameters (Cont.)

Parameter

Description

break trans_to_masterdef

break trans_to_new_masters

This parameter is meaningful only if export_
required is setto true .

If break_trans_to masterdef is set to true , then
existing masters may continue to propagate their
deferred transactions to the master definition site for
replication groups that are not adding master sites.
Deferred transactions for replication groups that are
adding master sites cannot be propagated until the
export completes.

Each deferred transaction is composed of one or more
remote procedure calls (RPCs). If set to false and a
transaction occurs that references objects in both
unaffected master groups and master groups that are
being extended, then the transaction may be split into
two parts and sent to a destination in two separate
transactions at different times. Such transactions are
called split-transactions. If split-transactions are possible,
then you must disable integrity constraints that may be
violated by this behavior until the new master sites are
added.

If break_trans_to_masterdef is set to false , then
existing masters cannot propagate their deferred
transactions to the master definition site.

If break _trans_to_new_masters is setto true , then
existing master sites may continue to propagate deferred
transactions to the new master sites for replication
groups that are not adding master sites.

Each deferred transaction is composed of one or more
remote procedure calls (RPCs). If setto true and a
transaction occurs that references objects in both
unaffected master groups and master groups that are
being extended, then the transaction may be split into
two parts and sent to a destination in two separate
transactions at different times. Such transactions are
called split-transactions. If split-transactions are possible,
then you must disable integrity constraints that may be
violated by this behavior until the new master sites are
added.

If break_trans_to_new_masters is setto false ,
then propagation of deferred transaction queues to the
new masters is disabled.

20-12 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Table 20-6 ADD_NEW_MASTERS Procedure Parameters (Cont.)

Parameter Description

percentage_for_catchup_mdef This parameter is meaningful only if export_
required and break_trans_to_masterdef are both
set to true .

The percentage of propagation resources that should be
used for catching up propagation to the master definition
site. Must be a multiple of 10 and must be between 0 and
100.

cycle_seconds_mdef This parameter is meaningful when percentage_for_
catchup_mdef is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to
the masterdef alternates between replication groups that
are not being extended and replication groups that are
being extended, with one push to each during each cycle.
This parameter indicates the length of the cycle in
seconds.

percentage_for_catchup_new This parameter is meaningful only if break_trans_
to_new_masters issetto true .

The percentage of propagation resources that should be
used for catching up propagation to new master sites.
Must be a multiple of 10 and must be between 0 and 100.

cycle_seconds_new This parameter is meaningful when percentage_for_
catchup_new is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to
a new master alternates between replication groups that
are not being extended and replication groups that are
being extended, with one push to each during each cycle.
This parameter indicates the length of the cycle in
seconds.

Exceptions

Table 20-7 ADD_NEW_MASTERS Procedure Exceptions

Exception Description
nonmasterdef Invocation site is not the master definition site.
typefailure The parameter value specified for one of the parameters is not

appropriate.

novalidextreq No valid extension request. The extension_id is not valid.

DBMS_REPCAT 20-13

ADD_PRIORITY_datatype Procedure

Table 20-7 ADD_NEW_MASTERS Procedure Exceptions (Cont.)

Exception Description

nonewsites No new master sites to be added for the specified extension
request.

notanewsite Not a new site for extension request. A site was specified that was
not specified when you ran the SPECIFY_NEW_MASTERS
procedure.

dbnotcompatible Feature is incompatible with database version. All databases must

be at 9.0.1 or higher compatibility level.

Usage Notes

For a new master site to be instantiated using change-based recovery or full
database export/import, the following conditions apply:

« The new master sites cannot have any existing replication groups.
« The master definition site cannot have any materialized view groups.

« The master definition site must be the same for all of the master groups. If one
or more of these master groups have a different master definition site, then do
not use change-based recovery or full database export/import. Use object-level
export/import instead.

« The new master site must include all of the replication groups in the master
definition site when the extension process is complete. That is, you cannot add a
subset of the master groups at the master definition site to the new master site;
all of the groups must be added.

Note: To use change-based recovery, the existing master site and
the new master site must be running under the same operating
system, although the release of the operating system can differ.

For object-level export/import, before importing ensure that all the requests in the
DBA_REPCATLOG@ata dictionary view for the extended groups have been
processed without any error.

ADD_PRIORITY _datatype Procedure

This procedure adds a member to a priority group. You must call this procedure
from the master definition site. The procedure that you must call is determined by

20-14 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Syntax

Parameters

the datatype of your priority column. You must call this procedure once for each
of the possible values of the priority column.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

DBMS_REPCATADD PRIORMatatype (

gname IN VARCHAR?2,
pgroup IN VARCHAR?2,
value IN datatype

pioity IN NUMBERY);

where datatype:

{NUMBER

| VARCHAR?
|CHAR

| DATE

|RAW
|NCHAR

| NVARCHAR2 }

Table 20-8 ADD_PRIORITY _ datatype Procedure Parameters

Parameter Description

gname Master group for which you are creating a priority group.

paroup Name of the priority group.

value Value of the priority group member. This is one of the possible
values of the associated priority column of a table using this
priority group.

priority Priority of this value. The higher the number, the higher the
priority.

DBMS_REPCAT 20-15

ADD_SITE_PRIORITY_SITE Procedure

Exceptions

Table 20-9 ADD_PRIORITY _ datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatevalue Specified value already exists in the priority group.
duplicatepriority Specified priority already exists in the priority group.
missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

typefailure Specified value has the incorrect datatype for the priority group.
notquiesced Specified master group is not quiesced.

ADD_SITE_PRIORITY_SITE Procedure

This procedure adds a new site to a site priority group. You must call this procedure
from the master definition site.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
gname IN VARCHAR2,

name IN VARCHAR2

site IN VARCHARZ,

prioity IN NUMBER);

20-16 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters
Table 20-10 ADD_SITE_PRIORITY_SITE Procedure Parameters
Parameter Description
gname Master group for which you are adding a site to a group.
name Name of the site priority group to which you are adding a
member.
site Global database name of the site that you are adding.
priority Priority level of the site that you are adding. A higher number
indicates a higher priority level.
Exceptions

Table 20-11 ADD_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Specified site priority group does not exist.

duplicatepriority Specified priority level already exists for another site in the group.
duplicatevalue Specified site already exists in the site priority group.

notquiesced Master group is not quiesced.

ADD _ confiicttype _RESOLUTION Procedure

These procedures designate a method for resolving an update, delete, or uniqueness
conflict. You must call these procedures from the master definition site. The
procedure that you need to call is determined by the type of conflict that the routine
resolves.

Table 20-12 ADD_conflicttype_RESOLUTION Procedures

Conflict Type Procedure Name

update ADD_UPDATE_RESOLUTION
uniqueness ADD_UNIQUE_RESOLUTION
delete ADD_DELETE RESOLUTION

DBMS_REPCAT 20-17

ADD_conflicttype_ RESOLUTION Procedure

See Also:

Chapter 6, "Configure Conflict Resolution” and Oracle9i

Replication for more information about designating methods to
resolve update conflicts, selecting uniqueness conflict resolution
methods, and assigning delete conflict resolution methods

Syntax
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
sname IN VARCHAR2,
oname IN VARCHAR2,

column_group IN VARCHAR2,
sequence_no IN NUMBER,
method IN VARCHARZ,
parameter_column_name IN VARCHAR2

| DBMS_REPCAT.VARCHAR2S

| DBMS_UTILITY.LNAME_ARRAY,
priority group IN VARCHAR2 :=NULL,
function_name IN VARCHAR2 =NULL,

comment IN VARCHAR2 :=NULL);
DBMS_REPCAT.ADD _DELETE_RESOLUTION (
shame IN VARCHARZ,

oname IN VARCHAR2,

sequence_no IN NUMBER,
parameter_column_name IN VARCHAR2 | DBMS_REPCAT.VARCHAR?Zs,
function_name IN VARCHAR2,

comment IN VARCHAR2 :=NULL

method IN VARCHAR2 :='USER FUNCTIONY);
DBMS_REPCAT.ADD UNIQUE_RESOLUTION(

sname IN VARCHAR2,

oname IN VARCHARZ2,

constraint name IN VARCHARZ2,
sequence_no IN NUMBER,
method IN VARCHAR2,
parameter_column_name IN VARCHAR2

| DBMS_REPCAT.VARCHAR2s

| DBMS_UTILITY.LNAME_ARRAY,
functon name IN VARCHAR2 :=NULL,
comment IN VARCHAR2 :=NULL),

20-18 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Table 20-13 ADD_conflicttype_ RESOLUTION Procedure Parameters

Parameter Description

shame Name of the schema containing the table to be replicated.

oname Name of the table to which you are adding a conflict resolution
routine. The table can be the storage table of a nested table.

column_group Name of the column group to which you are adding a conflict
resolution routine. Column groups are required for update
conflict resolution routines only.

constraint_name Name of the unique constraint or unique index for which you
are adding a conflict resolution routine. Use the name of the
unique index if it differs from the name of the associated unique
constraint. Constraint names are required for uniqueness conflict
resolution routines only.

sequence_no Order in which the designated conflict resolution methods
should be applied.

method Type of conflict resolution routine that you want to create. This

can be the name of one of the standard routines provided with
advanced replication, or, if you have written your own routine,
you should choose user function , and provide the name of

your method as the function_name parameter.

The standard methods supported in this release for update
conflicts are:

« Mminimum

« maximum

« latest timestamp

« earliest timestamp

. additive , average
« priority group

« Site priority

=« overwrite

« discard

The standard methods supported in this release for uniqueness
conflicts are: append site name , append sequence , and
discard . There are no built-in (Oracle supplied) methods for
delete conflicts.

DBMS_REPCAT 20-19

ADD_conflicttype_ RESOLUTION Procedure

Table 20-13 ADD_conflicttype_ RESOLUTION Procedure Parameters (Cont.)

Parameter

Description

parameter_column_name

priority._group

function_name

comment

Name of the columns used to resolve the conflict. The standard
methods operate on a single column. For example, if you are
using the latest timestamp method for a column group,
then you should pass the name of the column containing the
timestamp value as this parameter. If your are using a user
function , then you can resolve the conflict using any number
of columns.

For update or unique conflicts, this parameter accepts either a
comma-delimited list of column names, or a PL/SQL index-by
table of type DBMS_REPCAT.VARCHARZ2 DBMS_

UTILITY .LNAME_ARRAYse DBMS_UTILITY.LNAME_ARRA¥
any column name is greater than or equal to 30 bytes, which
may occur when you specify the attributes of column objects.

For delete conflicts, this parameter accepts either a
comma-delimited list of column names or a PL/SQL index-by
table of type DBMS_REPCAT.VARCHAR2

The single value ' *' indicates that you want to use all of the
columns in the table (or column group, for update conflicts) to
resolve the conflict. If you specify ' *' , then the columns are
passed to your function in alphabetical order.

LOB columns cannot be specified for this parameter.

See Also: "Usage Notes" on page 20-22 if you are using column
objects

If you are using the priority group or site priority
update conflict resolution method, then you must supply the
name of the priority group that you have created.

See Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information. If you are using a different
method, you can use the default value for this parameter, NULL
This parameter is applicable to update conflicts only.

If you selected the user function method, or if you are
adding a delete conflict resolution routine, then you must
supply the name of the conflict resolution routine that you have
written. If you are using one of the standard methods, then you
can use the default value for this parameter, NULL

This user comment is added to the DBA_REPRESOLUTIOMiew.

20-20 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-14 ADD_conflicttype_ RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
using row-level replication.

missingschema Specified schema does not exist.

missingcolumn Column that you specified as part of the parameter_column_
name parameter does not exist.

missinggroup Specified column group does not exist.

missingprioritygroup The priority group that you specified does not exist for the table.

invalidmethod Resolution method that you specified is not recognized.

invalidparameter Number of columns that you specified for the parameter_
column_name parameter is invalid. (The standard routines take
only one column name.)

missingfunction User function that you specified does not exist.

missingconstraint Constraint that you specified for a uniqueness conflict does not
exist.

notquiesced Replication group to which the specified table belongs is not
quiesced.

duplicateresolution Specified conflict resolution method is already registered.

duplicatesequence The specified sequence number already exists for the specified
object.

invalidprioritygroup The specified priority group does not exist.

paramtype Type is different from the type assigned to the priority group.

DBMS_REPCAT 20-21

ALTER_CATCHUP_PARAMETERS Procedure

Usage Notes

If you are using column objects, then whether you can specify the attributes of the
column objects for the parameter_column_name parameter depends on whether
the conflict resolution method is built-in (Oracle supplied) or user-created:

« If you are using a built-in conflict resolution method, then you can specify
attributes of objects for this parameter. For example, if a column object named
cust_address has street_address as an attribute, then you can specify
cust_address.street_address for this parameter.

« If you are using a built-in conflict resolution method, the following types of
columns cannot be specified for this parameter: LOB attribute of a column
object, collection or collection attribute of a column object, REF, or an entire
column object.

« If you are using a user-created conflict resolution method, then you must
specify an entire column object. You cannot specify the attributes of a column
object. For example, if a column object named cust_address has street
address as an attribute (among other attributes), then you can specify only
cust_address for this parameter.

ALTER_CATCHUP_PARAMETERS Procedure

This procedure alters the values for the following parameters stored in the DBA _
REPEXTENSIONSlata dictionary view:

« percentage_for_catchup_mdef
« cycle_seconds_mdef

« percentage_for_catchup_new
« cycle_seconds_new

These parameters were originally set by the ADD_NEW_MASTER®ocedure. The
new values you specify for these parameters are used during the remaining steps in
the process of adding new master sites to a master group. These changes are only to
the site at which it is executed. Therefore, it must be executed at each master site,
including the master definition site, if you want to alter parameters at all sites.

20-22 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

See Also:
« "ADD_NEW_MASTERS Procedure" on page 20-9

« "Adding New Master Sites" on page 7-4 for more information
about adding master sites to a master group

Syntax

DBMS_REPCAT.ALTER_CATCHUP_PARAMETERS (
extension _id IN RAW,
percentage_for_catchup_mdef IN BINARY_INTEGER :=NULL,
cycle_seconds_mdef IN BINARY_INTEGER :=NULL,
percentage _for_catchup_new IN BINARY_INTEGER :=NULL,
cycle_seconds_new IN BINARY_INTEGER :=NULL);

Parameters

Table 20-15 ALTER_CATCHUP_PARAMETERS Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add
master database without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW
and DBA_REPEXTENSIONS&ata dictionary views.

percentage_for_catchup_mdef The percentage of propagation resources that should be
used for catching up propagation to the master definition
site. Must be a multiple of 10 and must be between 0 and
100.

cycle_seconds_mdef This parameter is meaningful when percentage_for_
catchup_mdef is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to
the masterdef alternates between replication groups that
are not being extended and replication groups that are
being extended, with one push to each during each cycle.
This parameter indicates the length of the cycle in seconds.

percentage_for_catchup_new The percentage of propagation resources that should be
used for catching up propagation to new master sites.
Must be a multiple of 10 and must be between 0 and 100.

DBMS_REPCAT 20-23

ALTER_MASTER_PROPAGATION Procedure

Exceptions

Table 20-15 ALTER_CATCHUP_PARAMETERS Procedure Parameters (Cont.)

Parameter Description

cycle_seconds_new This parameter is meaningful when percentage_for_
catchup_new is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to a
new master alternates between replication groups that are
not being extended and replication groups that are being
extended, with one push to each during each cycle. This
parameter indicates the length of the cycle in seconds.

Table 20-16 ALTER_CATCHUP_PARAMETERS Procedure Exceptions

Exception Description

typefailure The parameter value specified for one of the parameters is not
appropriate.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

ALTER_MASTER_PROPAGATION Procedure

Syntax

This procedure alters the propagation method for a specified replication group at a
specified master site. This replication group must be quiesced. You must call this
procedure from the master definition site. If the master appears in the dblink_

list ordblink_table , then ALTER_MASTER_PROPAGATIG@jhores that
database link. You cannot change the propagation mode from a master to itself.

DBMS_REPCAT.ALTER_MASTER _PROPAGATION (
gname IN VARCHAR?2,

master IN VARCHAR?,

{dblink _list IN VARCHAR2,

|dblink_table IN DBMS_UTILITY.DBLINK_ARRAY }
propagation_mode IN VARCHAR2 :=ASYNCHRONOUS,
comment IN VARCHARZ :=");

Note: This procedure is overloaded. The dblink_list and
dblink_table parameters are mutually exclusive.

20-24 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Exceptions

Table 20-17 ALTER_MASTER_PROPAGATION Procedure Parameters

Parameter Description

gname Name of the replication group to which to alter the propagation
mode.

master Name of the master site at which to alter the propagation mode.

dblink_list A comma-delimited list of database links for which to alter the

propagation method. If NULL, then all masters except the master
site being altered are used by default.

dblink_table A PL/SQL index-by table, indexed from position 1, of database
links for which to alter propagation.

propagation_mode Determines the manner in which changes from the specified
master site are propagated to the sites identified by the list of
database links. Appropriate values are synchronous and
asynchronous

comment This comment is added to the DBA_REPPRORiew.

Table 20-18 ALTER_MASTER_PROPAGATION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Invocation site is not quiesced.

typefailure Propagation mode specified was not recognized.

nonmaster List of database links includes a site that is not a master site.

ALTER_MASTER_REPOBJECT Procedure

This procedure alters an object in your replication environment. You must call this
procedure from the master definition site.

This procedure requires that you quiesce the master group of the object if either of
the following conditions is true:

« You are altering a table in a multimaster replication environment.

DBMS_REPCAT 20-25

ALTER_MASTER_REPOBJECT Procedure

« You are altering a table with the safe_table_change parameter set to false
in a single master replication environment.

You can use this procedure to alter nontable objects without quiescing the master

group.
Syntax
DBMS_REPCAT.ALTER_MASTER _REPOBJECT (
shame IN VARCHAR2,
oname IN VARCHAR?2,
type IN VARCHARZ,

ddl_text IN VARCHARZ,

comment IN VARCHAR2 ="

retry IN BOOLEAN :=false
safe_table change IN BOOLEAN :=false);

20-26 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Table 20-19 ALTER_MASTER_REPOBJECT Procedure Parameters

Parameter Description
shame Schema containing the object that you want to alter.
oname Name of the object that you want to alter. The object cannot be a
storage table for a nested table.
type Type of the object that you are altering. The following types are
supported:
FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE
ddl_text The DDL text that you want used to alter the object. Oracle does
not parse this DDL before applying it. Therefore, you must ensure
that your DDL text provides the appropriate schema and object
name for the object being altered.
If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator’s schema. Be sure
to specify the schema if it is other than the replication
administrator’s schema.
comment If not NULL, then this comment is added to the COMMENfield of
the DBA_REPOBJECView.
retry If retry is true , then ALTER_MASTER_REPOBJEG@Rers the

object only at masters whose object status is not VALID.

DBMS_REPCAT 20-27

ALTER_MASTER_REPOBJECT Procedure

Table 20-19 ALTER_MASTER_REPOBJECT Procedure Parameters (Cont.)

Parameter Description

safe_table_change Specify true if the change to a table is safe. Specify false if the
change to a table is unsafe.

You can make safe changes to a master table in a single master
replication environment without quiescing the master group that
contains the table. To make unsafe changes, you must quiesce the
master group.

Only specify this parameter for tables in single master replication
environments. This parameter is ignored in multimaster
replication environments and when the object specified is not a
table. In multimaster replication environments, you must quiesce
the master group to run the ALTER_MASTER_REPOBJECT
procedure on a table.

The following are safe changes:
« Changing storage and extent information

« Making existing columns larger. For example, changing a
VARCHAR2(20) column to a VARCHAR2(50) column.

« Adding non primary key constraints

« Altering non primary key constraints

« Enabling and disabling non primary key constraints
The following are unsafe changes:

« Changing the primary key by adding or deleting columns in
the key

« Adding or deleting columns

« Making existing columns smaller. For example, changing a
VARCHAR2(50) column to a VARCHAR2(20) column.

« Disabling a primary key constraint
« Changing the datatype of an existing column
« Dropping an existing column

If you are unsure whether a change is safe or unsafe, then quiesce
the master group before you run the ALTER_MASTER_REPOBJECT
procedure.

20-28 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-20 ALTER_MASTER_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
notquiesced Associated replication group has not been suspended.
missingobject Obiject identified by sname and oname does not exist.
typefailure Specified type parameter is not supported.

ddffailure DDL at the master definition site did not succeed.
commfailure At least one master site is not accessible.

ALTER_MVIEW_PROPAGATION Procedure

This procedure alters the propagation method for a specified replication group at
the current materialized view site. This procedure pushes the deferred transaction
gueue at the materialized view site, locks the materialized view base tables, and
regenerates any triggers and their associated packages. You must call this procedure
from the materialized view site.

Syntax

DBMS_REPCATALTER_MVIEW_PROPAGATION (
gname IN VARCHARZ,
propagation_mode IN VARCHARZ,
comment IN VARCHAR2 =",
gowner IN VARCHAR2 :='PUBLIC);

DBMS_REPCAT 20-29

ALTER_PRIORITY Procedure

Parameters

Exceptions

ALTER_PRIORITY Procedure

Table 20-21 ALTER_MVIEW_PROPAGATION Procedure Parameters

Parameter Description

gname Name of the replication group for which to alter the propagation
method.

propagation_mode Manner in which changes from the current materialized view site
are propagated to its associated master site or master materialized
view site. Appropriate values are synchronous and
asynchronous

comment This comment is added to the DBA_REPPRORiew.

gowner Owner of the materialized view group.

Table 20-22 ALTER_MVIEW_PROPAGATION Procedure Exceptions

Exception Description

missingrepgroup Specified replication group does not exist.

typefailure Propagation mode was specified incorrectly.

nonmview Current site is not a materialized view site for the specified
replication group.

commfailure Cannot contact master site or master materialized view site.

notcompat Compatibility mode must be 7.3.0.0 or greater.

failattermviewrop Materialized view group propagation can be altered only when

there are no other materialized view groups with the same master
site or master materialized view site sharing the materialized view
site.

This procedure alters the priority level associated with a specified priority group
member. You must call this procedure from the master definition site.

See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle9i

Replication for more information about conflict resolution methods

20-30 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Syntax
DBMS_REPCAT.ALTER_PRIORITY (
gname IN VARCHAR?2,
pgroup IN VARCHAR?2,
old_priority IN NUMBER,
new_priority IN NUMBER);
Parameters
Table 20-23 ALTER_PRIORITY Procedure Parameters
Parameter Description
gname Master group with which the priority group is associated.
pgroup Name of the priority group containing the priority that you want
to alter.
old_priority Current priority level of the priority group member.
new_priority New priority level that you want assigned to the priority group
member.
Exceptions

Table 20-24 ALTER_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatepriority New priority level already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingvalue Value was not registered by a call to DBMS_REPCAADD _
PRIORITY_ datatype

missingprioritygroup Specified priority group does not exist.

notquiesced Specified master group is not quiesced.

ALTER_PRIORITY _datatype Procedure

This procedure alters the value of a member in a priority group. You must call this
procedure from the master definition site. The procedure that you must call is
determined by the datatype of your priority column.

DBMS_REPCAT 20-31

ALTER_PRIORITY_datatype Procedure

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Syntax

DBMS_REPCATALTER PRIORITYdatape (
gname IN VARCHAR?,
pgroup IN' VARCHAR?,

old value IN aalatype
new value IN datatype),

where datatype:

{NUMBER

| VARCHAR2

| CHAR

| DATE

|RAW
|NCHAR

| NVARCHAR2 }

Parameters

Table 20-25 ALTER_PRIORITY _datatype Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the value that you want to
alter.

old_value Current value of the priority group member.

new_value New value that you want assigned to the priority group member.

20-32 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-26 ALTER_PRIORITY _datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatevalue New value already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

missingvalue Old value does not exist.

paramtype New value has the incorrect datatype for the priority group.
typefailure Specified value has the incorrect datatype for the priority group.
notquiesced Specified master group is not quiesced.

ALTER_SITE_PRIORITY Procedure

This procedure alters the priority level associated with a specified site. You must
call this procedure from the master definition site.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Syntax

DBMS_REPCATALTER_SITE_PRIORITY (
gname IN VARCHAR2,

name IN VARCHAR2,

old_priority IN NUMBER,

new_priority IN NUMBERY);

DBMS_REPCAT 20-33

ALTER_SITE_PRIORITY_SITE Procedure

Parameters
Table 20-27 ALTER_SITE_PRIORITY Procedure Parameters
Parameter Description
gname Master group with which the site priority group is associated.
name Name of the site priority group whose member you are altering.
old_priority Current priority level of the site whose priority level you want to
change.
new,_priority New priority level for the site. A higher number indicates a higher
priority level.
Exceptions

Table 20-28 ALTER_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Old priority level is not associated with any group members.
duplicatepriority New priority level already exists for another site in the group.
missingvalue Old value does not already exist.

paramtype New value has the incorrect datatype for the priority group.
notquiesced Master group is not quiesced.

ALTER_SITE_PRIORITY_SITE Procedure

This procedure alters the site associated with a specified priority level. You must
call this procedure from the master definition site.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Syntax

DBMS_REPCATALTER_SITE_PRIORITY_SITE (
gname IN VARCHAR2,
name IN VARCHARZ,
old_site IN VARCHAR?,

20-34 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

new_site IN VARCHAR2);

Parameters
Table 20-29 ALTER_SITE_PRIORITY_SITE Procedure Parameters
Parameter Description
gname Master group with which the site priority group is associated.
name Name of the site priority group whose member you are altering.
old_site Current global database name of the site to disassociate from the priority
level.
new_site New global database name that you want to associate with the current
priority level.
Exceptions

Table 20-30 ALTER_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
missingrepgroup Specified master group does not exist.
missingpriority Specified site priority group does not exist.
missingvalue Old site is not a group member.

notquiesced Master group is not quiesced

CANCEL_STATISTICS Procedure

This procedure stops the collection of statistics about the successful resolution of
update, uniqueness, and delete conflicts for a table.

Syntax

DBMS_REPCAT.CANCEL_STATISTICS (
sname IN VARCHAR2,
oname IN VARCHAR2);

DBMS_REPCAT 20-35

COMMENT_ON_COLUMN_GROUP Procedure

Parameters
Table 20-31 CANCEL_STATISTICS Procedure Parameters
Parameter Description
shame Name of the schema in which the table is located.
oname Name of the table for which you do not want to gather conflict
resolution statistics.
Exceptions

Table 20-32 CANCEL_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.

missingobject Specified table does not exist.

statnotreg Specified table is not currently registered to collect statistics.

COMMENT_ON_COLUMN_GROUP Procedure

This procedure updates the comment field in the DBA_REPCOLUMN_GROW&w for
a column group. This comment is not added at all master sites until the next call to
DBMS_REPCAGENERATE_REPLICATION_SUPPORT

Syntax

DBMS_REPCAT.COMMENT_ON_COLUMN_GROUP (
shame IN VARCHARZ,

oname IN VARCHARZ,

column_group IN VARCHAR2,

comment IN VARCHAR?),

20-36 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Exceptions

Table 20-33 COMMENT_ON_COLUMN_GROUP Procedure Parameters

Parameter Description

shame Name of the schema in which the object is located.

oname Name of the replicated table with which the column group is
associated.

column_group Name of the column group.

comment Text of the updated comment that you want included in the

GROUP_COMMER@Id of the DBA_REPCOLUMN_GROL&w.

Table 20-34 COMMENT_ON_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
missinggroup Specified column group does not exist.
missingohyj Obiject is missing.

COMMENT_ON_MVIEW_REPSITES Procedure

Syntax

This procedure updates the SCHEMA_COMMER@Id in the DBA_REPGROUiRita
dictionary view for the specified materialized view group. The group name must be
registered locally as a replicated materialized view group. This procedure must be
executed at the materialized view site.

DBMS_REPCAT.COMMENT_ON_MVIEW_REPSITES (
gowner IN VARCHAR?Z,

gname IN VARCHAR2,

comment IN VARCHAR2);

DBMS_REPCAT 20-37

COMMENT_ON_PRIORITY_GROUP/COMMENT_ON_SITE_PRIORITY Procedures

Parameters

Exceptions

Table 20-35 COMMENT_ON_MVIEW _REPSITES Procedure Parameters

Parameter Description

gowner Owner of the materialized view group.

gname Name of the materialized view group.

comment Updated comment to include in the SCHEMA_COMMERN#Id of the

DBA_REPGROURew.

Table 20-36 COMMENT_ON_MVIEW_REPSITES Procedure Exceptions

Parameter Description
missingrepgroup The materialized view group does not exist.
nonmview The connected site is not a materialized view site.

COMMENT_ON_PRIORITY_GROUP/COMMENT_ON_SITE_PRIORITY Procedures

Syntax

COMMENT_ON_PRIORITY_GROuWBdates the comment field in the DBA _
REPPRIORITY_GROURiew for a priority group. This comment is not added at all
master sites until the next call to GENERATE_REPLICATION_SUPPORT

COMMENT_ON_SITE_PRIORITMpdates the comment field in the DBA _
REPPRIORITY_GROURiew for a site priority group. This procedure is a wrapper
for the COMMENT_ON_COLUMN_GR@éedure and is provided as a convenience
only. This procedure must be issued at the master definition site.

DBMS_REPCAT.COMMENT_ON_PRIORITY_GROUP (
gname IN VARCHAR2,

pgroup IN VARCHARZ,

comment IN VARCHARY);

DBMS_REPCAT.COMMENT_ON_SITE PRIORITY (
gname IN VARCHAR2,

name IN VARCHARZ,

comment IN VARCHARY);

20-38 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters
Table 20-37 COMMENT_ON_PRIORITY_GROUP and COMMENT_ON_SITE_PRIORITY
Parameters
Parameter Description
gname Name of the master group.
pgroup/name Name of the priority or site priority group.
comment Text of the updated comment that you want included in the
PRIORITY_COMMENTield of the DBA_REPPRIORITY_GROUP
view.
Exceptions
Table 20-38 COMMENT_ON_PRIORITY_GROUP and COMMENT_ON_SITE_PRIORITY
Exceptions
Exception Description
nonmasterdef Invocation site is not the master definition site.
missingrepgroup Specified master group does not exist.
missingprioritygroup Specified priority group does not exist.

COMMENT_ON_REPGROUP Procedure

This procedure updates the comment field in the DBA_REPGROURew for a master
group. This procedure must be issued at the master definition site.

Syntax

DBMS_REPCAT.COMMENT_ON_REPGROUP (
gname IN VARCHAR2,
comment IN VARCHAR2);

DBMS_REPCAT 20-39

COMMENT_ON_REPOBJECT Procedure

Parameters
Table 20-39 COMMENT_ON_REPGROUP Procedure Parameters
Parameter Description
gname Name of the replication group that you want to comment on.
comment Updated comment to include in the SCHEMA_COMMERN#AId of the
DBA_REPGROURew.
Exceptions

Table 20-40 COMMENT_ON_REPGROUP Procedure Exceptions

Exception Description
nonmasterdef Invocation site is not the master definition site.
commfailure At least one master site is not accessible.

COMMENT_ON_REPOBJECT Procedure

This procedure updates the comment field in the DBA_REPOBJECView for a
replicated object in a master group. This procedure must be issued at the master
definition site.

Syntax

DBMS_REPCAT.COMMENT_ON_REPOBJECT (
sname IN VARCHAR?,

oname IN VARCHARZ,

type IN VARCHAR?Z,

comment IN VARCHARY),

20-40 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Table 20-41 COMMENT_ON_REPOBJECT Procedure Parameters

Parameter Description

shame Name of the schema in which the object is located.

oname Name of the object that you want to comment on. The object
cannot be a storage table for a nested table.

type Type of the object. The following types are supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPEBODY
PACKAGE BODY VIEW
PROCEDURE

comment Text of the updated comment that you want to include in the
OBJECT_COMMENiIEId of the DBA_REPOBJECView.

Exceptions

Table 20-42 COMMENT_ON_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.
commifailure At least one master site is not accessible.

COMMENT_ON_REPSITES Procedure

If the replication group is a master group, then this procedure updates the MASTER_
COMMEN(field in the DBA_REPSITESview for a master site. If the replication group
is a materialized view group, this procedure updates the SCHEMA_COMMERNAId in
the DBA_REPGROURew for a materialized view site.

This procedure can be executed at either a master site or a materialized view site. If
you execute this procedure on a a materialized view site, then the materialized view
group owner must be PUBLIC.

DBMS_REPCAT 20-41

COMMENT_ON_REPSITES Procedure

See Also: "COMMENT_ON_conflicttype_ RESOLUTION
Procedure” on page 20-43 for instructions on placing a comment in
the SCHEMA_COMMER@Id of the DBA_REPGROURew for a
materialized view site if the materialized view group owner is not

PUBLIC
Syntax
DBMS_REPCAT.COMMENT_ON_REPSITES (
gname IN VARCHAR2,
[master IN VARCHAR|]
comment IN VARCHARY);
Parameters
Table 20-43 COMMENT_ON_REPSITES Procedure Parameters
Parameter Description
gname Name of the replication group. This avoids confusion if a database
is a master site in more than one replication environment.
master The fully qualified database name of the master site on which you
want to comment. If you are executing the procedure on a master
site, then this parameter is required. To update comments at a
materialized view site, omit this parameter. This parameter is
optional.
comment Text of the updated comment that you want to include in the
comment field of the appropriate dictionary view. If the site is a
master site, then this procedure updates the MASTER_COMMENT
field of the DBA_REPSITESview. If the site is a materialized view
site, then this procedure updates the SCHEMA_COMMER@Id of
the DBA_REPGROURew.
Exceptions

Table 20-44 COMMENT_ON_REPSITES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
nonmaster Invocation site is not a master site.

commfailure At least one master site is not accessible.
missingrepgroup Replication group does not exist.

20-42 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Table 20-44 COMMENT_ON_REPSITES Procedure Exceptions (Cont.)

Exception Description
commfailure One or more master sites are not accessible.
comupt There is an inconsistency in the replication catalog views.

COMMENT _ON_ conficcttype _RESOLUTION Procedure

This procedure updates the RESOLUTION_COMMEIfi&ld in the DBA _
REPRESOLUTIONiew for a conflict resolution routine. The procedure that you

Syntax

need to call is determined by the type of conflict

that the routine resolves. These

procedures must be issued at the master definition site.

Table 20-45 COMMENT_ON_confiicttype_ RESOLUTION Procedures

Conflict Type Procedure Name

update COMMENT_ON_UPDATE_RESOLUTION

uniqueness

COMMENT_ON_UNIQUE_RESOLUTION

delete COMMENT_ON_DELETE RESOLUTION

The comment is not added at all master sites unt
REPLICATION_SUPPORT

DBMS_REPCAT.COMMENT_ON_UPDATE_RESOLUTION (
shame IN VARCHAR2,

oname IN VARCHAR2,

column_group IN VARCHARZ,

sequence_no IN NUMBER,

comment IN VARCHARY?);

DBMS_REPCAT.COMMENT_ON_UNIQUE_RESOLUTION (
sname IN VARCHAR2,

oname IN VARCHARZ2,

constraint name IN VARCHARZ2,

sequence_no IN NUMBER,

comment IN VARCHAR?);

DBMS_REPCAT.COMMENT_ON_DELETE _RESOLUTION (
sname IN VARCHARZ2,
oname IN VARCHAR2,

il the next call to GENERATE _

DBMS_REPCAT 20-43

COMPARE_OLD_VALUES Procedure

seguence_no IN NUMBER,

comment IN VARCHAR?);
Parameters
Table 20-46 COMMENT_ON_conflicttype_ RESOLUTION Procedure Parameters
Parameter Description
shame Name of the schema.
oname Name of the replicated table with which the conflict resolution
routine is associated.
column_group Name of the column group with which the update conflict
resolution routine is associated.
constraint_name Name of the unique constraint with which the uniqueness conflict
resolution routine is associated.
sequence_no Sequence number of the conflict resolution procedure.
comment The text of the updated comment that you want included in the
RESOLUTION_COMMENgId of the DBA_ REPRESOLUTIOMiew.
Exceptions

Table 20-47 COMMENT_ON_conflicttype_RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
missingobject Specified object does not exist.

missingresolution Specified conflict resolution routine is not registered.

COMPARE_OLD_VALUES Procedure

This procedure specifies whether to compare old column values during propagation
of deferred transactions at each master site for each nonkey column of a replicated
table for updates and deletes. The default is to compare old values for all columns.
You can change this behavior at all master sites and materialized view sites by
invoking DBMS_REPCACTOMPARE_OLD_VALUBESthe master definition site.

When you use user-defined types, you can specify leaf attributes of a column object,
or you can specify an entire column object. For example, if a column object named
cust_address has street_address as an attribute, then you can specify cust_

20-44 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Syntax

address.street_address for the column_list parameter or as part of the
column_table parameter, or you can specify only cust_address

When performing equality comparisons for conflict detection, Oracle treats objects
as equal only if one of the following conditions is true:

« Both objects are atomically NULL (the entire object is NULL)
« All of the corresponding attributes are equal in the objects

Given these conditions, if one object is atomically NULLwhile the other is not, then
Oracle does not consider the objects to be equal. Oracle does not consider MAPand
ORDERMethods when performing equality comparisons.

DBMS_REPCAT.COMPARE_OLD VALUES(
shame IN VARCHAR2,
oname IN VARCHAR2,
{column_list IN VARCHAR?2,
| column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY}
operation IN VARCHAR2 :="UPDATE,
compare IN BOOLEAN =true);

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.

DBMS_REPCAT 20-45

COMPARE_OLD_VALUES Procedure

Parameters

Table 20-48 COMPARE_OLD_VALUES Procedure Parameters

Parameter

Description

shame

oname

column_list

column_table

operation

compare

Schema in which the table is located.

Name of the replicated table. The table can be the storage table of
a nested table.

A comma-delimited list of the columns in the table. There must be
no spaces between entries.

Instead of a list, you can use a PL/SQL index-by table of type
DBMS_REPCAT.VARCHAR2 DBMS_UTILITY.LNAME_ARRA%0
contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAJY any column name is greater
than or equal to 30 bytes, which may occur when you specify the
attributes of column objects.

Possible values are: update , delete , or the asterisk wildcard ' *' ,
which means update and delete.

If compare is true , the old values of the specified columns are
compared when sent. If compare is false , the old values of the
specified columns are not compared when sent. Unspecified
columns and unspecified operations are not affected. The specified
change takes effect at the master definition site as soon as min_
communication istrue for the table. The change takes effect at
a master site or at a materialized view site the next time
replication support is generated at that site with min_
communication true

Note:

The operation parameter enables you to decide whether

or not to compare old values for nonkey columns when rows are
deleted or updated. If you do not compare the old value, then
Oracle assumes the old value is equal to the current value of the
column at the target side when the update or delete is applied.

See Oracle9i Replication for more information about reduced data
propagation using the COMPARE_OLD_VALUp8ocedure before
changing the default behavior of Oracle.

20-46 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-49 COMPARE_OLD_VALUES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Master group has not been quiesced.

typefailure An illegal operation is specified.

keysendcomp A specified column is a key column in a table.

dbnotcompatible Feature is incompatible with database version. Typically, this

exception arises when you are trying to compare the attributes of
column objects. In this case, all databases must be at 9.0.1 or
higher compatibility level.

CREATE_MASTER_REPGROUP Procedure

This procedure creates a new, empty, quiesced master group.

Syntax

DBMS_REPCAT.CREATE_MASTER_REPGROUP (
gname IN VARCHARZ,

group_comment IN VARCHAR2 ="
master_comment IN VARCHAR2 =",

qualiier IN VARCHAR2

=",

DBMS_REPCAT 20-47

CREATE_MASTER_REPOBJECT Procedure

Parameters
Table 20-50 CREATE_MASTER_REPGROUP Procedure Parameters
Parameter Description
gname Name of the master group that you want to create.
group_comment This comment is added to the DBA_REPGROURew.
master_comment This comment is added to the DBA_REPSITESview.
qualifier Connection qualifier for master group. Be sure to use the @ sign.
See Oracle9i Replication and Oracle9i Database Administrator’s
Guide for more information about connection qualifiers.
Exceptions

Table 20-51 CREATE_MASTER_REPGROUP Procedure Exceptions

Exception Description

duplicaterepgroup Master group already exists.

norepopt Advanced replication option is not installed.
missingrepgroup Master group name was not specified.
qualifiertoolong Connection qualifier is too long.

CREATE_MASTER_REPOBJECT Procedure

This procedure makes an object a replicated object by adding the object to a master
group. This procedure preserves the object identifier for user-defined types and
object tables at all replication sites.

Replication of clustered tables is supported, but the use_existing_object

parameter cannot be set to false for clustered tables. In other words, you must
create the clustered table at all master sites participating in the master group before
you execute the CREATE_MASTER_REPOBJE@ocedure. However, these tables
do not need to contain the table data. So, the copy_rows parameter can be set to
true for clustered tables.

20-48 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Syntax

Parameters

DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

sname IN VARCHARZ,
oname IN VARCHARZ,
type IN VARCHARZ,

use_existing_object IN BOOLEAN =true,
ddl text IN VARCHAR2 =NULL,

comment IN VARCHAR2 ="
retry IN BOOLEAN =false,
copy_rows IN BOOLEAN =true,

gname

IN VARCHAR2 =",

The following table describes the parameters for this procedure.

Table 20-52 CREATE_MASTER_REPOBJECT Procedure Parameters

Parameters

Description

shame

oname

Name of the schema in which the object that you want to
replicate is located.

Name of the object you are replicating. If ddl_text is NULL,
then this object must already exist in the specified schema. To
ensure unigueness, table names should be a maximum of 27 bytes
long, and package names should be no more than 24 bytes. The
object cannot be a storage table for a nested table.

Type of the object that you are replicating. The following types
are supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPEBODY
PACKAGE BODY VIEW
PROCEDURE

DBMS_REPCAT 20-49

CREATE_MASTER_REPOBJECT Procedure

Table 20-52 CREATE_MASTER_REPOBJECT Procedure Parameters (Cont.)

Parameters

Description

use_existing_object

ddl text

comment

refry

Ccopy._rows

gname

Indicate true if you want to reuse any objects of the same type
and shape at the current master sites. See Table 20-54 for more
information.

Note: This parameter must be set to true for clustered tables.

If the object does not already exist at the master definition site,
then you must supply the DDL text necessary to create this
object. PL/SQL packages, package bodies, procedures, and
functions must have a trailing semicolon. SQL statements do not
end with trailing semicolon. Oracle does not parse this DDL
before applying it; therefore, you must ensure that your DDL text
provides the appropriate schema and object name for the object
being created.

If the DDL is supplied without specifying a schema (sname
parameter), then the default schema is the replication
administrator’s schema. Be sure to specify the schema if it is
other than the replication administrator’s schema.

Note: Do not use the ddl_text parameter to add user-defined
types or object tables. Instead, create the object first and then add
the object.

This comment is added to the OBJECT_COMMENIEId of the
DBA_ REPOBJECView.

Indicate true if you want Oracle to reattempt to create an object
that it was previously unable to create. Use this if the error was
transient or has since been rectified, or if you previously had
insufficient resources. If this is true , then Oracle creates the
object only at master sites whose object status is not VALID.

Indicate true if you want the initial contents of a newly
replicated object to match the contents of the object at the master
definition site. See Table 20-54 for more information.

Name of the replication group in which you want to create the
replicated object. The schema name is used as the default
replication group name if none is specified, and a replication
group with the same name as the schema must exist for the
procedure to complete successfully in that case.

20-50 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Object Creations

Table 20-53 CREATE_MASTER_REPOBJECT Procedure Exceptions

Exceptions Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Master group is not quiesced.

duplicateohject Specified object already exists in the master group and retry is
false , orif a name conflict occurs.

missingobject Object identified by sname and oname does not exist and
appropriate DDL has not been provided.

typefailure Obijects of the specified type cannot be replicated.

ddffailure DDL at the master definition site did not succeed.

commfailure At least one master site is not accessible.

notcompat Not all remote masters in at least 7.3 compatibility mode.

Table 20-54 Object Creation at Master Sites

Object

Already USE_EXISTING._

Exists? COPY_ROWS OBJECTS Result

yes true true duplicatedobject message if objects do
not match. For tables, use data from master
definition site.

yes false frue duplicatedobject message if objects do
not match. For tables, DBA must ensure
contents are identical.

yes trueffalse false duplicatedobject message.

no true trueffalse Object is created. Tables populated using
data from master definition site.

no false trueffalse Object is created. DBA must populate
tables and ensure consistency of tables at
all sites.

DBMS_REPCAT 20-51

CREATE_MVIEW_REPGROUP Procedure

CREATE_MVIEW_REPGROUP Procedure

This procedure creates a new, empty materialized view group in your local
database. CREATE_MVIEW_REPGRO&IRomatically calls REGISTER_MIEW _
REPGROUBut ignores any errors that may have happened during registration.

Syntax

DBMS_REPCAT.CREATE_MVIEW_REPGROUP (

gname IN VARCHAR2,

master IN VARCHAR?Z,

comment IN VARCHAR2 ="

propagation_ mode IN VARCHAR2 :='ASYNCHRONOUS,

fname IN VARCHAR2 =NULL

gowner IN VARCHAR2 :='PUBLIC);

Parameters

Table 20-55 CREATE_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group. This group must exist at the
specified master site or master materialized view site.

master Fully qualified database name of the database in the replication
environment to use as the master site or master materialized view
site. You can include a connection qualifier if necessary. See
Oracle9i Replication and Oracle9i Database Administrator’s Guide for
information about using connection qualifiers.

comment This comment is added to the DBA_REPGROURew.

propagation_mode Method of propagation for all updatable materialized views in the
replication group. Acceptable values are synchronous and
asynchronous

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

gowner Owner of the materialized view group.

20-52 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-56 CREATE_MVIEW_REPGROUP Procedure Exceptions

Exception Description

duplicaterepgroup Replication group already exists at the invocation site.

nonmaster S_pecified database is not a master site or master materialized view
site.

commfailure Specified database is not accessible.

norepopt Advanced replication option is not installed.

typefailure Propagation mode was specified incorrectly.

missingrepgroup Replication group does not exist at master site.

invalidqualifier Connection qualifier specified for the master site or master
materialized view site is not valid for the replication group.

alreadymastered At the local site, there is another materialized view group with the

same group name, but different master site or master materialized
view site.

CREATE_MVIEW_REPOBJECT Procedure

This procedure adds a replicated object to a materialized view group.

Syntax
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
sname IN VARCHARZ,
oname IN VARCHAR2,
type IN VARCHARZ,
ddl_text IN VARCHAR2 ="
comment IN VARCHAR2 =",
gname IN VARCHAR2 =",

gen_objs_owner IN VARCHAR2 =",

min_communication IN BOOLEAN =true,

generate_80_compatible IN BOOLEAN :=true,
gowner IN VARCHARZ :='PUBLIC);

DBMS_REPCAT

20-53

CREATE_MVIEW_REPOBJECT Procedure

Parameters

Table 20-57 CREATE_MVIEW_REPOBJECT Procedure Parameters

Parameter

Description

shame

oname

ddl text

comment

Name of the schema in which the object is located. The schema
must be same as the schema that owns the master table or
master materialized view on which this materialized view is
based.

Name of the object that you want to add to the replicated
materialized view group.

Type of the object that you are replicating. The following types
are supported:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPEBODY
PACKAGE BODY VIEW
PROCEDURE

For objects of type SNAPSHOTthe DDL needed to create the
object. For other types, use the default:

" (@an empty string)

If a materialized view with the same name already exists, then
Oracle ignores the DDL and registers the existing materialized
view as a replicated object. If the master table or master
materialized view for a materialized view does not exist in the
replication group of the master designated for this schema,
then Oracle raises a missingobject error.

If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator’s schema. Be
sure to specify the schema if it is other than the replication
administrator’s schema.

If the object is not of type SNAPSHOTthen the materialized
view site connects to the master site or master materialized
view site and pulls down the DDL text to create the object. If
the object type is TYPEor TYPE BODMhen the object identifier
(OID) for the object at the materialized view site is the same as
the OID at the master site or master materialized view site.

This comment is added to the OBJECT_COMMENIEId of the
DBA_REPOBJECView.

20-54 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Table 20-57 CREATE_MVIEW_REPOBJECT Procedure Parameters (Cont.)

Parameter Description

gname Name of the replicated materialized view group to which you
are adding an object. The schema name is used as the default
group name if none is specified, and a materialized view group
with the same name as the schema must exist for the procedure
to complete successfully.

gen_objs_owner Name of the user you want to assign as owner of the
transaction.

min_communication Set to false if the materialized view’s master site is running
Oracle7 release 7.3. Set to true to minimize new and old
values of propagation. The default is true . For more
information about conflict resolution methods, see Chapter 6,
"Configure Conflict Resolution" and Oracle9i Replication.

generate_80_compatible Set to true if the materialized view’s master site is running a
version of Oracle server prior to Oracle8i release 8.1.5. Set to
false if the materialized view’s master site or master
materialized view site is running Oracle8i release 8.1.5 or
greater.

gowner Owner of the materialized view group.

DBMS_REPCAT 20-55

DEFINE_COLUMN_GROUP Procedure

Exceptions

Table 20-58 CREATE_MVIEW_REPOBJECT Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Master is no longer a master site or master materialized view site.

missingobject Specified object does not exist in the master’s replication group.

duplicateobject Specified object already exists with a different shape.

typefailure Type is not an allowable type.

ddffailure DDL did not succeed.

commfailure Master site or master materialized view site is not accessible.

missingschema Schema does not exist as a database schema.

badmviewdd! DDL was executed but materialized view does not exist.

onlyonemview Only one materialized view for master table or master
materialized view can be created.

badmviewname Materialized view base table differs from master table or master
materialized view.

missingrepgroup Replication group at the master does not exist.

DEFINE_COLUMN_GROUP Procedure

This procedure creates an empty column group. You must call this procedure from
the master definition site.

See Also: Chapter 6, "Configure Conflict Resolution” and Oracle9i
Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DEFINE_COLUMN_GROUP (
sname IN VARCHARZ,

oname IN VARCHARZ,

column_group IN VARCHARZ,

comment IN VARCHARZ := NULL);

20-56 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Exceptions

Table 20-59 DEFINE_COLUMN_GROUP Procedure Parameters

Parameter Description

shame Schema in which the replicated table is located.

oname Name of the replicated table for which you are creating a column
group.

column_group Name of the column group that you want to create.

comment This user text is displayed in the DBA_REPCOLUMN_GROW&w.

Table 20-60 DEFINE_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

duplicategroup Specified column group already exists for the table.

notquiesced Replication group to which the specified table belongs is not

quiesced.

DEFINE_PRIORITY_GROUP Procedure

This procedure creates a new priority group for a master group. You must call this
procedure from the master definition site.

Syntax

See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle9i

Replication for more information about conflict resolution methods

DBMS_REPCAT.DEFINE_PRIORITY_GROUP (
gname IN VARCHARZ,

pgroup IN VARCHARZ,

datatype IN VARCHAR2,

fixed_length IN INTEGER := NULL,

comment IN VARCHAR2 :=NULL);

DBMS_REPCAT 20-57

DEFINE_SITE_PRIORITY Procedure

Parameters
Table 20-61 DEFINE_PRIORITY_GROUP Procedure Parameters
Parameter Description
gname Master group for which you are creating a priority group.
paroup Name of the priority group that you are creating.
datatype Datatype of the priority group members. The datatypes supported
are: CHARVARCHAR2NUMBERDATE RAWNCHARand
NVARCHAR2
fixed_length You must provide a column length for the CHARdatatype. All
other types can use the default, NULL
comment This user comment is added to the DBA_REPPRIORIT Yview.
Exceptions

Table 20-62 DEFINE_PRIORITY_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
missingrepgroup Specified master group does not exist.

duplicatepriority Specified priority group already exists in the master group.
group

typefailure Specified datatype is not supported.

notquiesced Master group is not quiesced.

DEFINE_SITE_PRIORITY Procedure

This procedure creates a new site priority group for a master group. You must call
this procedure from the master definition site.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DEFINE_SITE_PRIORITY (
gname IN VARCHAR2,
name IN VARCHAR?Z,

20-58 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Exceptions

comment IN VARCHAR2 :=NULL);

Table 20-63 DEFINE_SITE_PRIORITY Procedure Parameters

Parameter Description

gname The master group for which you are creating a site priority group.
name Name of the site priority group that you are creating.

comment This user comment is added to the DBA_REPPRIORIT Yview.

Table 20-64 DEFINE_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

duplicate Specified site priority group already exists in the master group.
prioritygroup

notquiesced Master group is not quiesced.

DO_DEFERRED_REPCAT_ADMIN Procedure

Syntax

This procedure executes the local outstanding deferred administrative procedures
for the specified master group at the current master site, or (with assistance from job
gueues) for all master sites.

DO_DEFERRED_REPCAT_ADMikécutes only those administrative requests
submitted by the connected user who called DO_DEFERRED_REPCAT_ADMIN
Requests submitted by other users are ignored.

DBMS_REPCAT.DO_DEFERRED REPCAT_ADMIN (
gname IN VARCHAR?2,
al_stes IN BOOLEAN :=false);

DBMS_REPCAT 20-59

DROP_COLUMN_GROUP Procedure

Parameters
Table 20-65 DO_DEFERRED REPCAT_ADMIN Procedure Parameters
Parameter Description
gname Name of the master group.
al sites If this is true , then use a job to execute the local administrative
procedures at each master site.
Exceptions

Table 20-66 DO _DEFERRED REPCAT_ADMIN Procedure Exceptions

Exception Description
nonmaster Invocation site is not a master site.
commifailure At least one master site is not accessible and all_sites istrue .

DROP_COLUMN_GROUP Procedure

This procedure drops a column group. You must call this procedure from the master
definition site.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DROP_COLUMN_GROUP (
sname IN VARCHAR2,

oname IN VARCHAR?2,
column_groupIN VARCHAR?2);

20-60 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Table 20-67 DROP_COLUMN_GROUP Procedure Parameters

Parameter Description

shame Schema in which the replicated table is located.

oname Name of the replicated table whose column group you are

dropping.

column_group Name of the column group that you want to drop.

Exceptions

Table 20-68 DROP_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

referenced Specified column group is being used in conflict detection and
resolution.

missingobject Specified table does not exist.

missinggroup Specified column group does not exist.

notquiesced Master group to which the table belongs is not quiesced.

DROP_GROUPED_COLUMN Procedure

This procedure removes members from a column group. You must call this
procedure from the master definition site.

See Also: Chapter 6, "Configure Conflict Resolution” and Oracle9i
Replication for more information about conflict resolution methods

Syntax
DBMS_REPCAT.DROP_GROUPED_COLUMN (
shame IN VARCHARZ2,
oname IN VARCHAR?,

column_group IN VARCHARZ,
list of column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2S);

DBMS_REPCAT

20-61

DROP_MASTER_REPGROUP Procedure

Table 20-69 DROP_GROUPED_COLUMN Procedure Parameters

Description

Schema in which the replicated table is located.

Name of the replicated table in which the column group is located.
The table can be the storage table of a nested table.

Name of the column group from which you are removing
members.

Names of the columns that you are removing from the designated
column group. This can either be a comma-delimited list or a
PL/SQL index-by table of column names. The PL/SQL index-by
table must be of type DBMS_REPCAT.VARCHAR?2

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object, then you can specify SYS_NC_OID$to add
the object identifier column to the column group. This column
tracks the object identifier of each row object.

If the table is a storage table of a nested table, then you can specify
NESTED_TABLE_IDto add the column that tracks the identifier
for each row of the nested table.

Parameters

Parameter

shame

oname

column_group

list of column_names
Exceptions

Table 20-70 DROP_GROUPED_COLUMN Procedure Exceptions

Exception

Description

nonmasterdef
missingobject
notquiesced

Invocation site is not the master definition site.

Specified table does not exist.

Master group that the table belongs to is not quiesced.

DROP_MASTER_REPGROUP Procedure

This procedure drops a master group from your current site. To drop the master
group from all master sites, including the master definition site, you can call this
procedure at the master definition site, and set all_sites to true .

20-62 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Syntax

Parameters

Exceptions

DBMS_REPCAT.DROP_MASTER REPGROUP (
gname IN VARCHAR?2,
drop_contents IN BOOLEAN =false,
al stes INBOOLEAN :=false);

Table 20-71 DROP_MASTER _REPGROUP Procedure Parameters

Parameter

Description

gname

drop_contents

al sites

Name of the master group that you want to drop from the current
master site.

By default, when you drop the replication group at a master site,
all of the objects remain in the database. They simply are no longer
replicated. That is, the replicated objects in the replication group
no longer send changes to, or receive changes from, other master
sites. If you set this to true , then any replicated objects in the
master group are dropped from their associated schemas.

If this istrue and if the invocation site is the master definition
site, then the procedure synchronously multicasts the request to all
masters. In this case, execution is immediate at the master
definition site and may be deferred at all other master sites.

Table 20-72 DROP_MASTER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.

nonmasterdef Invocation site is not the master definition site and all_sites is
true .

commifailure At least one master site is not accessible and all_sites istrue .

fullqueue Deferred remote procedure call (RPC) queue has entries for the
master group.

mastemotremoved Master does not recognize the master definition site and all_

sites istrue .

DBMS_REPCAT 20-63

DROP_MASTER_REPOBJECT Procedure

DROP_MASTER_REPOBJECT Procedure

This procedure drops a replicated object from a master group. You must call this

procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_MASTER_REPOBJECT (
shame IN VARCHAR?,
oname IN VARCHAR?2,
type IN VARCHAR?2,
drop_objects IN BOOLEAN =false);
Parameters

Table 20-73 DROP_MASTER_REPOBJECT Procedure Parameters

Parameter

Description

shame

oname

type

drop_objects

Name of the schema in which the object is located.

Name of the object that you want to remove from the master
group. The object cannot be a storage table for a nested table.

Type of object that you want to drop. The following types are
supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPEBODY
PACKAGE BODY VIEW
PROCEDURE

By default, the object remains in the schema, but is dropped from
the master group. That is, any changes to the object are no longer
replicated to other master and materialized view sites. To
completely remove the object from the replication environment,
set this parameter to true . If the parameter is set to true , the
object is dropped from the database at each master site.

20-64 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-74 DROP_MASTER_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.
commfailure At least one master site is not accessible.

DROP_MVIEW_REPGROUP Procedure

This procedure drops a materialized view site from your replication environment.
DROP_MVIEW_REPGRO&iRomatically calls UNREGISTER_MVIEW_REPGRGC&1P
the master site or master materialized view site to unregister the materialized view,
but ignores any errors that may have occurred during unregistration. If DROP_
MVIEW_REPGROU$unsuccessful, then connect to the master site or master
materialized view site and run UNREGISTER_MVIEW_REPGROUP

Syntax
DBMS_REPCAT.DROP_MVIEW_REPGROUP (
gname IN VARCHAR?2,
drop_contents IN BOOLEAN :=false,
gowner IN VARCHAR2 :='PUBLIC);
Parameters

Table 20-75 DROP_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group that you want to drop from the
current materialized view site. All objects generated to support
replication, such as triggers and packages, are dropped.

drop_contents By default, when you drop the replication group at a materialized
view site, all of the objects remain in their associated schemas.
They simply are no longer replicated. If you set this to true , then
any replicated objects in the replication group are dropped from
their schemas.

gowner Owner of the materialized view group.

DBMS_REPCAT 20-65

DROP_MVIEW_REPOBJECT Procedure

Exceptions

Table 20-76 DROP_MVIEW_REPGROUP Procedure Exceptions

Exception Description
nonmview Invocation site is not a materialized view site.
missingrepgroup Specified replication group does not exist.

DROP_MVIEW_REPOBJECT Procedure

This procedure drops a replicated object from a materialized view site.

Syntax

DBMS_REPCAT.DROP_MVIEW_REPOBJECT (
shame IN VARCHAR2,

oname IN VARCHAR2,

type IN VARCHARZ,

drop_objects IN BOOLEAN =false);

20-66 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Exceptions

DROP_PRIORITY Procedure

Table 20-77 DROP_MVIEW_REPOBJECT Procedure Parameters

Parameter

Description

shame

oname

type

drop_objects

Name of the schema in which the object is located.

Name of the object that you want to drop from the replication
group.

Type of the object that you want to drop. The following types are
supported:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPEBODY
PACKAGE BODY VIEW
PROCEDURE

By default, the object remains in its associated schema, but is
dropped from its associated replication group. To completely
remove the object from its schema at the current materialized view
site, set this parameter to true . If the parameter is set to true , the
object is dropped from the database at the materialized view site.

Table 20-78 DROP_MVIEW_REPOBJECT Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.
missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.

This procedure drops a member of a priority group by priority level. You must call
this procedure from the master definition site.

See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle9i

Replication for more information about conflict resolution methods

DBMS_REPCAT 20-67

DROP_PRIORITY_GROUP Procedure

Syntax
DBMS_REPCAT.DROP_PRIORITY(
gname IN VARCHAR?2,
pgoup IN VARCHAR?2,
priority_num IN NUMBER);
Parameters
Table 20-79 DROP_PRIORITY Procedure Parameters
Parameter Description
gname Master group with which the priority group is associated.
paroup Name of the priority group containing the member that you want
to drop.
priority_num Priority level of the priority group member that you want to
remove from the group.
Exceptions

Table 20-80 DROP_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
missingrepgroup Specified master group does not exist.
missingprioritygroup Specified priority group does not exist.
notquiesced Master group is not quiesced.

DROP_PRIORITY_GROUP Procedure

This procedure drops a priority group for a specified master group. You must call
this procedure from the master definition site.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DROP_PRIORITY_GROUP (
gname IN VARCHAR2,
pgroup IN VARCHAR2);

20-68 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters
Table 20-81 DROP_PRIORITY_GROUP Procedure Parameters
Parameter Description
gname Master group with which the priority group is associated.
paroup Name of the priority group that you want to drop.
Exceptions

Table 20-82 DROP_PRIORITY_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
missingrepgroup Specified master group does not exist.

referenced Specified priority group is being used in conflict resolution.
notquiesced Specified master group is not quiesced.

DROP_PRIORITY_datatype Procedure

This procedure drops a member of a priority group by value. You must call this
procedure from the master definition site. The procedure that you must call is
determined by the datatype of your priority column.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DROP_PRIORITdatatype (
gname IN VARCHAR2,
pagroup IN VARCHAR?Z,

value IN aatatype);

where datatype:

{NUMBER

| VARCHAR2
| CHAR

| DATE
|RAW

DBMS_REPCAT 20-69

DROP_SITE_PRIORITY Procedure

Parameters

Exceptions

|NCHAR
| NVARCHAR2 }

Table 20-83 DROP_PRIORITY _datatype Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

paroup Name of the priority group containing the member that you want
to drop.

value Value of the priority group member that you want to remove from

the group.

Table 20-84 DROP_PRIORITY_datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
missingrepgroup Specified master group does not exist.
missingprioritygroup Specified priority group does not exist.

paramtype, Value has the incorrect datatype for the priority group.
typefailure

notquiesced Specified master group is not quiesced

DROP_SITE_PRIORITY Procedure

This procedure drops a site priority group for a specified master group. You must
call this procedure from the master definition site.

Syntax

See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle9i

Replication for more information about conflict resolution methods

DBMS_REPCAT.DROP_SITE_PRIORITY (

gname IN VARCHARZ,
name IN VARCHARY2),

20-70 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters
Table 20-85 DROP_SITE_PRIORITY Procedure Parameters
Parameter Description
gname Master group with which the site priority group is associated.
name Name of the site priority group that you want to drop.
Exceptions

Table 20-86 DROP_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

referenced Specified site priority group is being used in conflict resolution.
notquiesced Specified master group is not quiesced

DROP_SITE_PRIORITY_SITE Procedure

This procedure drops a specified site, by name, from a site priority group. You must
call this procedure from the master definition site.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Syntax
DBMS_REPCAT.DROP_SITE_PRIORITY_SITE (
gname IN VARCHAR?,
name IN VARCHAR?,
ste IN VARCHARY);

DBMS_REPCAT 20-71

DROP_conflicttype_ RESOLUTION Procedure

Parameters
Table 20-87 DROP_SITE_PRIORITY_SITE Procedure Parameters
Parameter Description
gname Master group with which the site priority group is associated.
name Name of the site priority group whose member you are dropping.
site Global database name of the site you are removing from the

group.
Exceptions

Table 20-88 DROP_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
missingrepgroup Specified master group does not exist.
missingpriority Specified site priority group does not exist.
notquiesced Specified master group is not quiesced.

DROP_conflicttype RESOLUTION Procedure

This procedure drops an update, delete, or uniqueness conflict resolution routine.
You must call these procedures from the master definition site. The procedure that
you must call is determined by the type of conflict that the routine resolves.

Conflict Resolution Routines
The following table shows the procedure name for each conflict resolution routine.

Table 20-89 Conflict Resolution Routines

Routine Procedure Name

update DROP_UPDATE_RESOLUTION
uniqueness DROP_UNIQUE_RESOLUTION
delete DROP_DELETE_RESOLUTION

20-72 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Syntax

Parameters

DBMS_REPCAT.DROP_UPDATE_RESOLUTION (
sname IN VARCHARZ2,

oname IN VARCHARZ,

column_group IN VARCHAR2,

sequence_no IN NUMBER);

DBMS_REPCAT.DROP_DELETE_RESOLUTION (
shame IN VARCHARZ2,

oname IN VARCHARZ,

sequence_no IN NUMBER);

DBMS_REPCAT.DROP_UNIQUE_RESOLUTION (
shame IN VARCHAR?,

oname IN VARCHAR2,

constraint name IN VARCHAR?2,

sequence_no IN NUMBER);

Table 20-90 DROP_conflicttype_ RESOLUTION Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the table for which you want to drop a conflict resolution
routine.

column_group Name of the column group for which you want to drop an update

conflict resolution routine.

constraint_name Name of the unique constraint for which you want to drop a
unique conflict resolution routine.

sequence_no Sequence number assigned to the conflict resolution method that
you want to drop. This number uniquely identifies the routine.

DBMS_REPCAT 20-73

EXECUTE_DDL Procedure

Exceptions

Table 20-91 DROP_conflicttype_ RESOLUTION Procedure Exceptions

Exception Description
nonmasterdef Invocation site is not the master definition site.
missingobject Specified object does not exist as a table in the specified schema, or

a conflict resolution routine with the specified sequence number is
not registered.

notquiesced Master group is not quiesced.

EXECUTE_DDL Procedure

This procedure supplies DDL that you want to have executed at some or all master
sites. You can call this procedure only from the master definition site.

Syntax

DBMS_REPCAT.EXECUTE_DDL (
gname IN VARCHAR?2,
{master_list IN VARCHAR2 :=NULL,
| master_table IN DBMS_UTILITY.DBLINK_ARRAY }
DDL TEXT IN VARCHARY),

Note: This procedure is overloaded. The master_list and
master_table parameters are mutually exclusive.

20-74 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Table 20-92 EXECUTE_DDL Procedure Parameters

Parameter Description

gname Name of the master group.

master_list A comma-delimited list of master sites at which you want to
execute the supplied DDL. Do not put any spaces between site
names. The default value, NULL, indicates that the DDL should be
executed at all sites, including the master definition site.

master_table A table that lists the master sites where you want to execute the
supplied DDL. The first master should be at position 1, the second
at position 2, and so on.

ddl text The DDL that you want to execute at each of the specified master
sites. If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator’s schema. Be sure
to specify the schema if it is other than the replication
administrator’s schema.

Exceptions

Table 20-93 EXECUTE_DDL Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
nonmaster At least one site is not a master site.

ddffailure DDL at the master definition site did not succeed.
commifailure At least one master site is not accessible.

GENERATE_MVIEW_SUPPORT Procedure

This procedure activates triggers and generate packages needed to support the
replication of updatable materialized views or procedural replication.You must call
this procedure from the materialized view site.

Note: CREATE_MVIEW_REPOBJE@uUtomatically generates
materialized view support for updatable materialized views.

DBMS_REPCAT 20-75

GENERATE_MVIEW_SUPPORT Procedure

Syntax
DBMS_REPCAT.GENERATE_MVIEW_SUPPORT (
sname IN VARCHAR?2,
oname IN VARCHAR?Z,
type IN VARCHAR?2,
gen_objs_owner INVARCHAR2 =",
min_communication IN BOOLEAN :=true,
generate_80 compatible IN BOOLEAN :=true);
Parameters
Table 20-94 GENERATE_MVIEW_SUPPORT Procedure Parameters
Parameter Description
shame Schema in which the object is located.
oname The name of the object for which you are generating support.
type Type of the object. The types supported are SNAPSHOT
PACKAGEand PACKAGE BODY
gen_objs_owner For objects of type PACKAGEr PACKAGE BODXhe schema in
which the generated object should be created. If NULL, the
objects are created in SNAME
min_communication If true , then the update trigger sends the new value of a
column only if the update statement modifies the column. The
update trigger sends the old value of the column only if itis a
key column or a column in a modified column group.
generate_80_compatible Set to true if the materialized view’s master site is running a
version of Oracle server prior to Oracle8i release 8.1.5. Set to
false if the materialized view’s master site or master
materialized view site is running Oracle8i release 8.1.5 or
higher.
Exceptions

Table 20-95 GENERATE_MVIEW_SUPPORT Procedure Exceptions

Exceptions Descriptions

nonmview Invocation site is not a materialized view site.

20-76 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Table 20-95 GENERATE_MVIEW_SUPPORT Procedure Exceptions (Cont.)

Exceptions Descriptions

missingobject Specified object does not exist as a materialized view in the
replicated schema waiting for row/column-level replication
information or as a package (body) waiting for wrapper

generation.
typefailure Specified type parameter is not supported.
missingschema Specified owner of generated objects does not exist.
missingremoteobject Object at master site or master materialized view site has not yet

generated replication support.

commfailure Master site or master materialized view site is not accessible.

GENERATE_REPLICATION_SUPPORT Procedure

This procedure generates the triggers and packages needed to support replication
for a specified object. You must call this procedure from the master definition site.

Syntax
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR?,

package_prefix IN VARCHAR2 :=NULL,
procedure_prefix IN VARCHARZ2 :=NULL,
distributed IN BOOLEAN =frue,
gen_ohjs_owner IN VARCHAR2 :=NULL,
min_communication IN BOOLEAN =true,
generate_80_compatible IN BOOLEAN :=true);

DBMS_REPCAT 20-77

GENERATE_REPLICATION_SUPPORT Procedure

Parameters

Table 20-96 GENERATE_REPLICATION_SUPPORT Procedure Parameters

Parameter Description

shame Schema in which the object is located.

oname Name of the object for which you are generating replication
support.

type Type of the object. The types supported are: TABLE PACKAGE
and PACKAGE BODY

package prefix For objects of type PACKAGEr PACKAGE BODYhis value is
prepended to the generated wrapper package name. The
default is DEFER_.

procedure_prefix For objects of type PACKAGEr PACKAGE BODYhis value is
prepended to the generated wrapper procedure names. By
default, no prefix is assigned.

distributed This must be set to true .

gen_objs_owner

min_communication

generate_80_compatible

For objects of type PACKAGEBr PACKAGE BODXhe schema in
which the generated object should be created. If NULL, the
objects are created in sname.

Set to false if any master site is running Oracle7 release 7.3.
Setto true when you want propagation of new and old values
to be minimized. The default is true . For more information,
see Oracle9i Replication.

Set to true if any master site is running a version of Oracle
server prior to Oracle8i release 8.1.5. Set to false if all master
sites are running Oracle8i release 8.1.5 or higher.

20-78 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-97 GENERATE_REPLICATION_SUPPORT Procedure Exceptions

Exception Description
nonmasterdef Invocation site is not the master definition site.
missingobject Specified object does not exist as a table in the specified schema

waiting for row-level replication information or as a package
(body) waiting for wrapper generation.

typefailure Specified type parameter is not supported.

notquiesced Replication group has not been quiesced.

commfailure At least one master site is not accessible.

missingschema Schema does not exist.

dbnotcompatible One of the master sites is not 7.3.0.0 compatible.

notcompat One of the master sites is not 7.3.0.0 compatible. (Equivalent to

dbnotcompatible)

duplicateohject Obiject already exists.

MAKE_COLUMN_GROUP Procedure

Syntax

This procedure creates a new column group with one or more members. You must
call this procedure from the master definition site.

See Also: Chapter 6, "Configure Conflict Resolution” and Oracle9i
Replication for more information about conflict resolution methods

DBMS_REPCAT.MAKE_COLUMN_GROUP (

shame IN VARCHAR?2,

oname IN VARCHAR2,

column_group IN VARCHARZ,

list of column_names IN VARCHARZ2 | DBMS_REPCAT.VARCHAR2S),

DBMS_REPCAT 20-79

MAKE_COLUMN_GROUP Procedure

Table 20-98 MAKE_COLUMN_GROUP Procedure Parameters

Description

Schema in which the replicated table is located.

Name of the replicated table for which you are creating a new
column group. The table can be the storage table of a nested table.

Name that you want assigned to the column group that you are
creating.

Names of the columns that you are grouping. This can either be a
comma-delimited list or a PL/SQL index-by table of column
names. The PL/SQL index-by table must be of type DBMS_
REPCAT.VARCHAR2Jse the single value ' *' to create a column
group that contains all of the columns in your table.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object table, then you can specify SYS_NC_OID$
to add the object identifier column to the column group. This
column tracks the object identifier of each row object.

If the table is the storage table of a nested table, then you can
specify NESTED_TABLE_IDto add the column that tracks the
identifier for each row of the nested table.

Parameters

Parameter

sname

oname

column_group

list of column_names
Exceptions

Table 20-99 MAKE_COLUMN_GROUP Procedure Exceptions

Exception

Description

nonmasterdef
duplicategroup
missingobject
missingcolumn
duplicatecolumn
notquiesced

Invocation site is not the masterdef site.

Specified column group already exists for the table.

Specified table does not exist.

Specified column does not exist in the designated table.
Specified column is already a member of another column group.

Master group is not quiesced.

20-80 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

PREPARE_INSTANTIATED_MASTER Procedure

This procedure enables the propagation of deferred transactions from other
prepared new master sites and existing master sites to the invocation master site.
This procedure also enables the propagation of deferred transactions from the
invocation master site to the other prepared new master sites and existing master
sites.

If you performed a full database export/import or a change-based recovery, then
the new master site includes all of the deferred transactions that were in the
deferred transactions queue at the master definition site. Because these deferred
transactions should not exist at the new master site, this procedure deletes all
transactions in the deferred transactions queue and error queue if full database
export/import or change-based recovery was used.

For object-level export/import, ensure that all the requests in the DBA_ REPCATLOG
data dictionary view for the extended groups have been processed without error
before running this procedure.

Caution:

« Do not invoke this procedure until instantiation (export/import
or change-based recovery) for the new master site is complete.

« Do not allow any data manipulation language (DML)
statements directly on the objects in the extended master group
in the new master site until execution of this procedure returns
successfully. These DML statements may not be replicated.

« Do not use the DBMS_DEFEIRackage to create deferred
transactions until execution of this procedure returns
successfully. These deferred transactions may not be replicated.

Note: To use change-based recovery, the existing master site and
the new master site must be running under the same operating
system, although the release of the operating system can differ.

DBMS_REPCAT 20-81

PURGE_MASTER_LOG Procedure

Syntax
DBMS_REPCAT.PREPARE_INSTANTIATED _MASTER (
extension id IN RAW),
Parameters
Table 20-100 PREPARE_INSTANTIATED _MASTER Procedure Parameters
Parameter Description
extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEWnNd DBA_
REPEXTENSIONSlata dictionary views.
Exceptions

Table 20-101 PREPARE_INSTANTIATED_MASTER Procedure Exceptions

Exception Description

typefailure The parameter value specified for one of the parameters is not
appropriate.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

PURGE_MASTER_LOG Procedure

This procedure removes local messages in the DBA_REPCATLO®@iew associated
with a specified identification number, source, or master group.

To purge all of the administrative requests from a particular source, specify NULL
for the id parameter. To purge all administrative requests from all sources, specify
NULL for both the id parameter and the source parameter.

Syntax

DBMS_REPCAT.PURGE_MASTER_LOG (
id IN BINARY_INTEGER,

source IN VARCHAR?2,

gname IN VARCHAR2);

20-82 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Table 20-102 PURGE_MASTER_LOG Procedure Parameters

Parameter Description

id Identification number of the request, as it appears in the DBA_

REPCATLO®iew.

source Master site from which the request originated.

gname Name of the master group for which the request was made.
Exceptions

Table 20-103 PURGE_MASTER_LOG Procedure Exceptions

Exception Description

nonmaster gname is not NULL, and the invocation site is not a master site.

PURGE_STATISTICS Procedure

This procedure removes information from the DBA_ REPRESOLUTION _
STATISTICS view.

Syntax

DBMS_REPCAT.PURGE_STATISTICS (
sname IN VARCHAR2,

oname IN VARCHAR2,

start dateIN DATE,

end date IN DATE),

DBMS_REPCAT 20-83

REFRESH_MVIEW_REPGROUP Procedure

Parameters
Table 20-104 PURGE_STATISTICS Procedure Parameters
Parameter Description
shame Name of the schema in which the replicated table is located.
oname Name of the table whose conflict resolution statistics you want to
purge.
start_date/end_date Range of dates for which you want to purge statistics. If start_
date is NULL then purge all statistics up to the end_date . If
end_date is NULL, then purge all statistics after the start_
date .
Exceptions

Table 20-105 PURGE_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.
missingobject Specified table does not exist.

statnotreg Table not registered to collect statistics.

REFRESH_MVIEW_REPGROUP Procedure

This procedure refreshes a materialized view group with the most recent data from
its associated master site or master materialized view site.

Syntax

DBMS_REPCAT.REFRESH_MVIEW_REPGROUP (
gname IN VARCHARZ,
drop_missing_contents IN BOOLEAN =false,
refresh_mviews IN BOOLEAN =false,
refresh_other_objects IN BOOLEAN =false,
gowner IN VARCHAR2 :='PUBLIC);

20-84 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Table 20-106 REFRESH_MVIEW_REPGROUP Procedure Parameters

Parameter Description
gname Name of the replication group.
drop_missing_contents If an object was dropped from the replication group at the

master site or master materialized view site, then it is not
automatically dropped from the schema at the materialized view
site. It is simply no longer replicated. That is, changes to this
object are no longer sent to its associated master site or master
materialized view site. Materialized views can continue to be
refreshed from their associated master tables or master
materialized views. However, any changes to an updatable
materialized view are lost. When an object is dropped from the
replication group, you can choose to have it dropped from the
schema entirely by setting this parameter to true .

refresh_mviews Set to true to refresh the contents of the materialized views in
the replication group.

refresh_other_objects Set this to true to refresh the contents of the nonmaterialized
view objects in the replication group. Nonmaterialized view
objects may include the following:

« Tables
. Views
. Indexes

« PL/SQL packages and package bodies
« PL/SQL procedures and functions

« Triggers

« Synonyms

gowner Owner of the materialized view group.

DBMS_REPCAT 20-85

REGISTER_MVIEW_REPGROUP Procedure

Exceptions

Table 20-107 REFRESH_MVIEW_REPGROUP Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Master is no longer a master site or master materialized view site.
commfailure Master site or master materialized view site is not accessible.
missingrepgroup Replication group name not specified.

REGISTER_MVIEW_REPGROUP Procedure

Syntax

Parameters

This procedure facilitates the administration of materialized views at their
respective master sites or master materialized view sites by inserting or modifying a
materialized view group in DBA_REGISTERED_MVIEW_GROUPS

DBMS_REPCAT.REGISTER_MVIEW_REPGROUP (
gname IN VARCHAR?2,
mviewsite IN VARCHAR?,
comment IN VARCHAR2 :=NULL,
rep_type IN NUMBER :=reg_unknown,
fname IN VARCHAR2 :=NULL,
gowner IN VARCHAR?Z :='PUBLICY;

Table 20-108 REGISTER_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the materialized view group to be registered.

mviewsite Global name of the materialized view site.

comment Comment for the materialized view site or update for an existing
comment.

20-86 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-108 REGISTER_MVIEW_REPGROUP Procedure Parameters (Cont.)

Parameter Description

rep_type \ersion of the materialized view group. Valid constants that can be
assigned include the following:
« dbms_repcat.reg_unknown (the default)
« dbms_repcat.reg_v7_group
« dbms_repcat.reg_v8_group

fname This parameter is for internal use only.
Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

gowner Owner of the materialized view group.

Table 20-109 REGISTER_MVIEW_REPGROUP Procedure Exceptions

Exception

Description

failregmviewrepgroup
missingrepgroup
nullsitename

nonmaster

duplicaterepgroup

Registration of materialized view group failed.
Replication group name not specified.
A materialized view site was not specified.

Procedure must be executed at the materialized view’s master site
or master materialized view site.

Replication group already exists.

REGISTER_STATISTICS Procedure

This procedure collects information about the successful resolution of update,
delete, and uniqueness conflicts for a table.

Syntax

DBMS_REPCAT.REGISTER_STATISTICS (

snameIN VARCHAR2,

oname IN VARCHARY2);

DBMS_REPCAT 20-87

RELOCATE_MASTERDEF Procedure

Parameters
Table 20-110 REGISTER_STATISTICS Procedure Parameters
Parameter Description
shame Name of the schema in which the table is located.
oname Name of the table for which you want to gather conflict resolution
statistics.
Exceptions

Table 20-111 REGISTER_STATISTICS Procedure Exceptions

Exception Description
missingschema Specified schema does not exist.
missingobject Specified table does not exist.

RELOCATE_MASTERDEF Procedure

This procedure changes your master definition site to another master site in your
replication environment.

It is not necessary for either the old or new master definition site to be available
when you call RELOCATE_MASTERDAR a planned reconfiguration, you should
invoke RELOCATE_MASTERDR¥th notify_masters setto true and
include_old_masterdef set to true .

Syntax

DBMS_REPCAT.RELOCATE_MASTERDEF (
gname IN VARCHAR?2,
old_masterdef IN VARCHAR2,
new_masterdef IN VARCHARZ2,
notify masters IN BOOLEAN :=true,
include_old masterdef IN BOOLEAN :=true,
require_flavor_change IN BOOLEAN =false);

20-88 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Exceptions

Table 20-112 RELOCATE_MASTERDEF Procedure Parameters

Parameter Description

gname Name of the replication group whose master definition you
want to relocate.

old_masterdef Fully qualified database name of the current master definition
site.

new_masterdef Fully qualified database name of the existing master site that
you want to make the new master definition site.

notify_masters If this is true , then the procedure synchronously multicasts
the change to all masters (including old_masterdef only if
include_old_masterdef istrue). If any master does not

make the change, then roll back the changes at all masters.

If just the master definition site fails, then you should invoke
RELOCATE_MASTERDH¥th notify_masters set to true
and include_old_masterdef set to false . If several
master sites and the master definition site fail, then the
administrator should invoke RELOCATE_MASTERDEFeach
operational master with notify_masters set to false

include_old_masterdef If notify_masters istrue and if include_old_
masterdef is also true , then the old master definition site is
also notified of the change.

require_flavor_change This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.

Table 20-113 RELOCATE_MASTERDEF Procedure Exceptions

Exception Description

nonmaster new_ma_sterdef is not a master site or the invocation site is not a
master site.

nonmasterdef old_masterdef is not the master definition site.

commfailure At least one master site is not accessible and notify_masters is
true .

DBMS_REPCAT 20-89

REMOVE_MASTER_DATABASES Procedure

REMOVE_MASTER_DATABASES Procedure

This procedure removes one or more master databases from a replication
environment. This procedure regenerates the triggers and their associated packages
at the remaining master sites. You must call this procedure from the master
definition site.

Syntax

DBMS_REPCAT.REMOVE_MASTER_DATABASES (
gname IN VARCHAR?2,
master_list IN VARCHAR2 |
master_table IN DBMS_UTILITY.DBLINK_ARRAY);

Note: This procedure is overloaded. The master_list and
master_table parameters are mutually exclusive.

Parameters

Table 20-114 REMOVE_MASTER_DATABASES Procedure Parameters

Parameter Description

gname Name of the replication group associated with the replication
environment. This prevents confusion if a master database is
involved in more than one replication environment.

master_list A comma-delimited list of fully qualified master database names
that you want to remove from the replication environment. There
must be no spaces between names in the list.

master_table In place of a list, you can specify the database names in a PL/SQL
index-by table of type DBMS_UTILITY.DBLINK_ARRAY

20-90 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-115 REMOVE_MASTER_DATABASES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

nonmaster At least one of the specified databases is not a master site.
reconfigerror One of the specified databases is the master definition site.
commifailure At least one remaining master site is not accessible.

RENAME_SHADOW_COLUMN_GROUP Procedure

Syntax

Parameters

This procedure renames the shadow column group of a replicated table to make it a
named column group. The replicated table’s master group does not need to be
quiesced to run this procedure.

DBMS_REPCAT.RENAME_SHADOW_COLUMN_GROUP (
sname INVARCHAR2,
ohame INVARCHAR?2,
new_col_group_name IN VARCHAR?2)

Table 20-116 RENAME_SHADOW _COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table.

new_col_group_name Name of the new column group. The columns currently in the
zgzgi%\;v group are placed in a column group with the name you

DBMS_REPCAT 20-91

REPCAT_IMPORT_CHECK Procedure

Exceptions

Table 20-117 RENAME_SHADOW_COLUMN_GROUP Procedure Exceptions

Exception Description

missmview The specified schema does not exist.

nonmasterdef Invocation site is not the master definition site.

missingobject The specified object does not exist.

duplicategroup The column group that was specified for creation already exists.

REPCAT_IMPORT_CHECK Procedure

This procedure ensures that the objects in the master group have the appropriate
object identifiers and status values after you perform an export/import of a
replicated object or an object used by Advanced Replication.

Syntax
DBMS_REPCAT.REPCAT IMPORT_CHECK (
gname IN VARCHARZ,
master IN BOOLEAN,
gowner IN VARCHAR2 :='PUBLIC);
Parameters

Table 20-118 REPCAT _IMPORT _CHECK Procedure Parameters

Parameter Description

gname Name of the master group. If you omit both parameters, then the
procedure checks all master groups at your current site.

master Set this to true if you are checking a master site and false if you
are checking a materialized view site.

gowner Owner of the master group.

20-92 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-119 REPCAT_IMPORT_CHECK Procedure Exceptions

Exception Description

nonmaster master istrue and either the database is not a master site for the
replication group or the database is not the expected database.

nonmview master isfalse and the database is not a materialized view site
for the replication group.

missingobject A valid replicated object in the replication group does not exist.

missingrepgroup The specified replicated replication group does not exist.

missingschema The specified replicated replication group does not exist.

RESUME_MASTER_ACTIVITY Procedure

This procedure resumes normal replication activity after quiescing a replication

Syntax

Parameters

environment.

DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

gname IN VARCHAR2,

overide IN BOOLEAN =false);

Table 20-120 RESUME_MASTER_ACTIVITY Procedure Parameters

Parameter Description
gname Name of the master group.
ovenide If this is true , then itignores any pending RepCat administrative

requests and restores normal replication activity at each master as
quickly as possible. This should be considered only in emergency
situations.

If this is false , then it restores normal replication activity at each
master only when there is no pending RepCat administrative
request for gname at that master.

DBMS_REPCAT 20-93

RESUME_PROPAGATION_TO_MDEF Procedure

Exceptions

Table 20-121 RESUME_MASTER_ACTIVITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Master group is not quiescing or quiesced.

commfailure At least one master site is not accessible.

notallgenerated Generate replication support before resuming replication activity.

RESUME_PROPAGATION_TO_MDEF Procedure

Syntax

Parameters

During the process of adding new master sites to a master group without quiesce,
this procedure indicates that export is effectively finished and propagation to the
master definition site for both extended and unaffected replication groups existing
at master sites can be enabled. Run this procedure after the export required to add
new master sites to a master group is complete.

See Also: "Adding New Master Sites" on page 7-4 for more
information about adding master sites to a master group

DBMS_REPCAT RESUME_PROPAGATION_TO_MDEF (
extension _id IN RAW),

Table 20-122 RESUME _PROPAGATION_TO_MDEF Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEWnd DBA _
REPEXTENSIONSIata dictionary views.

20-94 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Table 20-123 RESUME_PROPAGATION_TO_MDEF Procedure Exceptions

Exception Description
nonmasterdef Invocation site is not the master definition site.
extstinapp Extension status is inappropriate. The extension status should be

EXPORTINGwhen you run this procedure. To check the extension
status, query the DBA_REPEXTENSIONG&ata dictionary view.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

SEND_OLD_VALUES Procedure

Syntax

You have the option of sending old column values during propagation of deferred
transactions for each nonkey column of a replicated table when rows are updated or
deleted in the table. When min_communication s set to true , the default is the
following:

« For adeleted row, to send old values for all columns

« For an updated row, to send old values for key columns and the modified
columns in a column group

You can change this behavior at all master sites and materialized view sites by
invoking DBMS_REPCASEND_OLD_VALUES& the master definition site. Then,
generate replication support at all master sites and at each materialized view site.

When you use user-defined types, you can specify the leaf attributes of a column
object, or an entire column object. For example, if a column object named cust_
address has street_address as an attribute, then you can specify cust_
address.street_address for the column_list parameter or as part of the
column_table parameter, or you can specify only cust_address

DBMS_REPCAT.SEND OLD VALUES(
sname IN VARCHAR?2,
oname IN VARCHARZ,
{column_list IN VARCHAR?2,
| column_table IN DBMS_UTILITY.VARCHARZ2s | DBMS_UTILITY.LNAME_ARRAY }
operation IN VARCHARZ :='UPDATE,
send IN BOOLEAN =true);

DBMS_REPCAT 20-95

SEND_OLD_VALUES Procedure

Parameters

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.
Table 20-124 SEND_OLD_VALUES Procedure Parameters
Parameter Description
sname Schema in which the table is located.
oname Name of the replicated table. The table can be the storage table of
a nested table.
column_list A comma-delimited list of the columns in the table. There must be
no spaces between entries.
column_table Instead of a list, you can use a PL/SQL index-by table of type

DBMS_REPCAT.VARCHARZ2 DBMS_UTILITY.LNAME_ARRAY0
contain the column names. The first column name should be at

position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAJW any column name is greater
than or equal to 30 bytes, which may occur when you specify the

attributes of column objects.

operation Possible values are: update , delete , or the asterisk wildcard ' *',

which means update and delete.

send If true , then the old values of the specified columns are sent. If
false |, then the old values of the specified columns are not sent.
Unspecified columns and unspecified operations are not affected.

The specified change takes effect at the master definition site as
soon as min_communication istrue for the table. The change
takes effect at a master site or at a materialized view site the next
time replication support is generated at that site with min_

communication true

20-96 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Exceptions

Note: The operation parameter enables you to specify whether
or not to transmit old values for nonkey columns when rows are
deleted or updated. If you do not send the old value, then Oracle
sends a NULL in place of the old value and assumes the old value is
equal to the current value of the column at the target side when the
update or delete is applied.

See Oracle9i Replication for information about reduced data
propagation using the SEND_OLD_VALUESBrocedure before
changing the default behavior of Oracle.

Table 20-125 SEND_OLD_VALUES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Master group has not been quiesced.

typefailure An illegal operation is specified.

keysendcomp A specified column is a key column in a table.

dbnotcompatible Feature is incompatible with database version. Typically, this

exception arises when you are trying to send the attributes of
column objects. In this case, all databases must be at 9.0.1 or
higher compatibility level.

SET_COLUMNS Procedure

This procedure enables you to use an alternate column or group of columns, instead
of the primary key, to determine which columns of a table to compare when using
row-level replication. You must call this procedure from the master definition site.

When you use column objects, if an attribute of a column object can be used as a
primary key or part of a primary key, then the attribute can be part of an alternate
key column. For example, if a column object named cust_address has street_
address as a VARCHARZ2ttribute, then you can specify cust_address.street_

DBMS_REPCAT 20-97

SET_COLUMNS Procedure

address for the column_list parameter or as part of the column_table
parameter. However, the entire column object, cust_address , cannot be specified.

For the storage table of a nested table column, this procedure accepts the NESTED_
TABLE_ID as an alternate key column.

When you use object tables, you cannot specify alternate key columns. If the object
identifier (OID) is system-generated for an object table, then Oracle uses the OID
column in the object table as the key for the object table. If the OID is user-defined
for an object table, then Oracle uses the primary key in the object table as the key.

The following types of columns cannot be alternate key columns:
« LOB or LOB attribute of a column object

« Collection or collection attribute of a column object

« REF

« Anentire column object

See Also: The constraint_clause in Oracle9i SQL Reference for more
information about restrictions on primary key columns

Syntax

DBMS_REPCAT.SET_COLUMNS (

sname IN VARCHAR?,

oname IN VARCHARZ,

{column_list IN VARCHAR2

| column_table IN DBMS_UTILITY.NAME_ARRAY | DBMS_UTILITY.LNAME_ARRAY });

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.

20-98 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Exceptions

Table 20-126 SET_COLUMNS Procedure Parameters

Parameter Description

shame Schema in which the table is located.

oname Name of the table.

column_list A comma-delimited list of the columns in the table that you want

to use as a primary key. There must be no spaces between entries.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_UTILITY.NAME_ARRAYor DBMS_UTILITY.LNAME_ARRAY
to contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAJW any column name is greater
than or equal to 30 bytes, which may occur when you specify the
attributes of column objects.

Table 20-127 SET_COLUMNS Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Replication group is not quiescing or quiesced.

SPECIFY_NEW_MASTERS Procedure

This procedure specifies the master sites you intend to add to an existing replication
group without quiescing the group. This procedure must be run at the master
definition site of the specified master group.

If necessary, this procedure creates an extension_id that tracks the process of
adding new master sites to a master group. You use this extension_id in the
other procedures that you run at various stages in the process. You can view
information about the extension_id in the DBA_REPSITES_NEWnd DBA _
REPEXTENSIONSlata dictionary views.

DBMS_REPCAT 20-99

SPECIFY_NEW_MASTERS Procedure

This procedure adds the new master sites to the DBA_REPSITES_NEWata
dictionary view for the specified replication group. This procedure can be run any
number of times for a given replication group. If it is run more than once, then it
replaces any masters in the local DBA_REPSITES_NEWata dictionary view for the
specified replication group with the masters specified in the master_

list /master_table parameters.

You must run this procedure before you run the ADD_NEW_MASTER®ocedure. No
new master sites are added to the master group until you run the ADD_NEW _
MASTERSrocedure.

See Also:
« "ADD_NEW_MASTERS Procedure" on page 20-9

« "Adding New Master Sites" on page 7-4 for more information
about adding master sites to a master group

Syntax

DBMS_REPCAT.SPECIFY_NEW_MASTERS (
gname IN VARCHARZ,
{master_list IN VARCHAR2
| master_table IN DBMS_UTILITY.DBLINK_ARRAYY});

Note: This procedure is overloaded. The master_list and
master_table parameters are mutually exclusive.

20-100 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Exceptions

Table 20-128 SPECIFY_NEW _MASTERS Procedure Parameters

Parameter

Description

gname

master_list

master_table

Master group to which you are adding new master sites.

A comma-delimited list of new master sites that you want to add to the
master group. List only the new master sites, not the existing master sites.
Do not put any spaces between site names.

If master_list is NULL, all master sites for the given replication group
are removed from the DBA_REPSITES_NEWlata dictionary view. Specify
NULLto indicate that the master group is not being extended.

A table that lists the new master sites that you want to add to the master
group. In the table, list only the new master sites, not the existing master
sites. The first master site should be at position 1, the second at position 2,
and so on.

If the table is empty, then all master sites for the specified replication
group are removed from the DBA_REPSITES_NEWata dictionary view.
Use an empty table to indicate that the master group is not being
extended.

Table 20-129 SPECIFY_NEW_MASTERS Procedure Exceptions

Exception Description

duplicaterepgroup A master site that you are attempting to add is already part of the
master group.

nonmasterdef Invocation site is not the master definition site.

propmodenotallowed Synchronous propagation mode not allowed for this operation.
Only asynchronous propagation mode is allowed.

extstinapp Extension request with status not allowed. There must either be no
extension_id for the master group or the extension_id
status must be READYYou can view the status for each
extension_id ata master site in the DBA_REPEXTENSIONS8ata
dictionary view.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

notsamecq Master groups do not have the same connection qualifier.

DBMS_REPCAT 20-101

SUSPEND_MASTER_ACTIVITY Procedure

SUSPEND_MASTER_ACTIVITY Procedure

Syntax

Parameters

Exceptions

This procedure suspends replication activity for a master group. You use this
procedure to quiesce the master group. You must call this procedure from the
master definition site.

DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
gname IN VARCHAR2);

Table 20-130 SUSPEND_MASTER_ACTIVITY Procedure Parameters

Parameter Description

gname Name of the master group for which you want to suspend activity.

Table 20-131 SUSPEND_MASTER_ACTIVITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
notnormal Master group is not in normal operation.
commfailure At least one master site is not accessible.

SWITCH_MVIEW_MASTER Procedure

This procedure changes the master site of a materialized view group to another
master site. This procedure does a full refresh of the affected materialized views and
regenerates the triggers and their associated packages as needed. This procedure
does not push the queue to the old master site before changing master sites.

If min_communication istrue for the materialized view and the new master site
is an Oracle7 master site, then regenerate replication support for the materialized
view with min_communication set to false

If generate_80_compatible is false for the materialized view and the new
master site is a release lower than Oracle8i (Oracle7 or Oracle8), then regenerate
replication support for the materialized view with generate_80_compatible set
to true .

20-102 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms

Syntax

Parameters

Exceptions

You can set both parameters for a materialized view in one call to DBMS_
REPCAT.GENERATE_MVIEW_SUPPORT

Note: You cannot switch the master of materialized views that are
based on other materialized views (level 2 and greater materialized
views). Such a materialized view must be dropped and re-created if
you want to base it on a different master.

See Also: "GENERATE_MVIEW_SUPPORT Procedure" on
page 20-75

DBMS_REPCAT.SWITCH_MVIEW_MASTER (
gname IN VARCHAR2,

master IN VARCHAR?,

gowner IN VARCHARZ :='PUBLIC);

Table 20-132 SWITCH_MVIEW_MASTER Procedure Parameters

Parameter Description

gname Name of the materialized view group for which you want to
change the master site.

master Fully qualified database name of the new master site to use for the

materialized view group.

gowner Owner of the materialized view group.

Table 20-133 SWITCH_MVIEW_MASTER Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.
nonmaster Specified database is not a master site.
commifailure Specified database is not accessible.
missingrepgroup Materialized view group does not exist.

DBMS_REPCAT

20-103

UNDO_ADD_NEW_MASTERS_REQUEST Procedure

Table 20-133 SWITCH_MVIEW_MASTER Procedure Exceptions (Cont.)

Exception Description
grytoolong Materialized view definition query is greater 32 KB.
alreadymastered At the local site, there is another materialized view group with the

same group name mastered at the old master site.

UNDO_ADD_NEW_MASTERS_REQUEST Procedure

This procedure undoes all of the changes made by the SPECIFY_NEW_MASTERS
and ADD_NEW_MASTER®ocedures for a specified extension_id

This procedure is executed at one master site, which may be the master definition
site, and it only affects that master site. If you run this procedure at one master site
affected by the request, you must run it at all new and existing master sites affected
by the request. You can query the DBA_REPSITES_NEWata dictionary view to see
the new master sites affected by the extension_id . This data dictionary view also
lists the replication group name, and you must run this procedure at all existing
master sites in the replication group.

Caution: This procedure is not normally called. Use this

procedure only if the adding new masters without quiesce

operation cannot proceed at one or more master sites. Run this
procedure after you have already run the SPECIFY_NEW_MASTERS
and ADD_NEW_MASTER®ocedures, but before you have run the
RESUME_PROPAGATION_TO_MDIEE PREPARE _
INSTANTIATED_MASTERprocedures.

Do not run this procedure after you have run either RESUME _
PROPAGATION_TO_MDEF PREPARE_INSTANTIATED_MASTER
for a particular extension_id

See Also:
« "SPECIFY_NEW_MASTERS Procedure" on page 20-99
« "ADD_NEW_MASTERS Procedure" on page 20-9

« "RESUME_PROPAGATION_TO_MDEF Procedure" on
page 20-94

» "PREPARE_INSTANTIATED_MASTER Procedure" on
page 20-81

20-104 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms

Syntax

Parameters

Exceptions

DBMS_REPCAT.UNDO_ADD NEW_MASTERS REQUEST (
extension id INRAW,
drop_contents IN BOOLEAN :=TRUE);

Table 20-134 UNDO_ADD NEW _MASTERS REQUEST Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEWnd DBA _
REPEXTENSIONSIata dictionary views.

drop_contents Specify true , the default, to drop the contents of objects in new
replication groups being extended at the local site. Specify false
to retain the contents.

Table 20-135 UNDO_ADD NEW _MASTERS_REQUEST Procedure Exceptions

Exception Description

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

typefail A parameter value that you specified is not appropriate.

UNREGISTER_MVIEW_REPGROUP Procedure

Syntax

This procedure facilitates the administration of materialized views at their
respective master sites or master materialized view sites by deleting a materialized
view group from DBA_REGISTERED_MVIEW_GROURSN this procedure at the
master site or master materialized view site.

DBMS_REPCAT.UNREGISTER_MVIEW_REPGROUP (
gname IN VARCHARZ,

mviewsite IN VARCHAR?2,

gowner IN VARCHAR2 :='PUBLIC);

DBMS_REPCAT 20-105

VALIDATE Function

Parameters
Table 20-136 UNREGISTER_MVIEW_REPGROUP Procedure Parameters
Parameter Description
gname Name of the materialized view group to be unregistered.
mviewsite Global name of the materialized view site.
gowner Owner of the materialized view group.
VALIDATE Function
This function validates the correctness of key conditions of a multimaster
replication environment.
Syntax
DBMS_REPCAT.VALIDATE (
gname IN VARCHAR?2,
check genflags IN BOOLEAN =false,

check valid objs IN BOOLEAN :=false,
check_links_sched IN BOOLEAN :=false,

check_links
eror_table

IN BOOLEAN :=false,
OUT DBMS_REPCAT.VALIDATE_ERR_TABLE)

RETURN BINARY_INTEGER,

DBMS_REPCAT.VALIDATE (

gname

check_genflags

IN VARCHARZ2,
IN BOOLEAN :=false,

check valid objs IN BOOLEAN :=false,
check links_sched IN BOOLEAN :=false,

check links

IN BOOLEAN :=false,

emor_msg_table OUT DBMS_UTILITY.UNCL ARRAY,
emor_num_table OUT DBMS_UTILITY.NUMBER_ARRAY)
RETURN BINARY_INTEGER;

20-106 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms

Parameters

Note: This function is overloaded. The return value of VALIDATE
is the number of errors found. The function’s OUTparameter
returns any errors that are found. In the first interface function

shown under "Syntax" on page 20-106, the error_table consists
of an array of records. Each record has a VARCHAR2nd a NUMBER
in it. The string field contains the error message, and the number
field contains the Oracle error number.

The second interface function shown under "Syntax" on

page 20-106 is similar except that there are two OUTarrays: a
VARCHAR2rray with the error messages and a NUMBERrray with
the error numbers.

Table 20-137 VALIDATE Function Parameters

Parameter Description

gname Name of the master group to validate.

check_genflags Check whether all the objects in the group are generated. This
must be done at the master definition site only.

check valid_ohjs Check that the underlying objects for objects in the group valid.
This must be done at the master definition site only. The master
definition site goes to all other sites and checks that the underlying
objects are valid. The validity of the objects is checked within the
schema of the connected user.

check links_sched Check whether the links are scheduled for execution. This should
be invoked at each master site.

check_links Check whether the connected user (repadmin), as well as the
propagator, have correct links for replication to work properly.
Checks that the links exist in the database and are accessible. This
should be invoked at each master site.

error_table Returns the messages and numbers of all errors that are found.

error_msg_table Returns the messages of all errors that are found.

emor_num_table

Returns the numbers of all errors that are found.

DBMS_REPCAT 20-107

WAIT_MASTER_LOG Procedure

Exceptions

Usage Notes

Table 20-138 VALIDATE Function Exceptions

Exception Description

missingdblink Database link does not exist in the schema of the replication
propagator or has not been scheduled. Ensure that the database
link exists in the database, is accessible, and is scheduled for
execution.

dblinkmismatch Database link name at the local node does not match the global
name of the database that the link accesses. Ensure that the
GLOBAL_NAMERitialization parameter is set to true and the
link name matches the global name.

dblinkuidmismatch User name of the replication administration user at the local node
and the user name at the node corresponding to the database link
are not the same. Advanced Replication expects the two users to
be the same. Ensure that the user identification of the replication
administration user at the local node and the user identification at
the node corresponding to the database link are the same.

objectnotgenerated Object has not been generated at other master sites or is still being
generated. Ensure that the object is generated by calling
GENERATE_REPLICATION_SUPPORMd DO_DEFERRED_
REPCAT_ADMINor the object at the master definition site.

opnotsupported Operation is not supported if the replication group is replicated at
a pre-Oracle8 node. Ensure that all nodes of the master group are
running Oracle8 and higher.

The return value of VALIDATE is the number of errors found. The function’s OUT
parameter returns any errors that are found. In the first interface function, the
error_table consists of an array of records. Each record has a VARCHAR2nNd a
NUMBER it. The string field contains the error message and the number field
contains the Oracle error number.

The second interface is similar except that there are two OUTarrays. A VARCHAR2
array with the error messages and a NUMBERrray with the error numbers.

WAIT_MASTER_LOG Procedure

This procedure determines whether changes that were asynchronously propagated
to a master site have been applied.

20-108 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms

Syntax

Parameters

Exceptions

DBMS_REPCATWAIT_MASTER_LOG (
gname IN VARCHAR?2,
record_count IN NATURAL,

timeout IN NATURAL,

frue_count OUT NATURAL);

Table 20-139 WAIT_MASTER_LOG Procedure Parameters

Parameter Description

gname Name of the master group.

record_count Procedure returns whenever the number of incomplete activities is
at or below this threshold.

timeout Maximum number of seconds to wait before the procedure
returns.

true_count Returns the number of incomplete activities.

(out parameter)

Table 20-140 WAIT_MASTER_LOG Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.

DBMS_REPCAT 20-109

WAIT_MASTER_LOG Procedure

20-110 Oracle9i Replication Management API Reference

21

DBMS_REPCAT_ADMIN

DBMS_REPCAT_ADMIdhables you to create users with the privileges needed by
the symmetric replication facility.

This chapter discusses the following topics:

« Summary of DBMS_REPCAT_ADMIN Subprograms

DBMS_REPCAT_ADMIN 21-1

Summary of DBMS_REPCAT_ADMIN Subprograms

Summary of DBMS_REPCAT_ADMIN Subprograms

Table 21-1 DBMS_REPCAT_ADMIN Package Subprograms

Subprogram

Description

"GRANT_ADMIN_ANY _
SCHEMA Procedure" on
page 21-3

"GRANT_ADMIN_SCHEMA

Procedure" on page 21-3

"REGISTER_USER _
REPGROUP Procedure” on
page 4

"REVOKE_ADMIN_ANY_
SCHEMA Procedure" on
page 21-6

"REVOKE_ADMIN_
SCHEMA Procedure" on
page 21-6

"UNREGISTER_USER _
REPGROUP Procedure" on
page 21-7

Grants the necessary privileges to the replication
administrator to administer any replication group at the
current site.

Grants the necessary privileges to the replication
administrator to administer a schema at the current site.

Assigns proxy materialized view administrator or receiver
privileges at the master site or master materialized view site
for use with remote sites.

Revokes the privileges and roles from the replication
administrator that were granted by GRANT_ADMIN_ANY _
SCHEMA

Revokes the privileges and roles from the replication
administrator that were granted by GRANT_ADMIN_
SCHEMA

Revokes the privileges and roles from the proxy
materialized view administrator or receiver that were
granted by the REGISTER_USER_REPGROPRcedure.

21-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_ADMIN Subprograms

GRANT_ADMIN_ANY_SCHEMA Procedure

Syntax

Parameters

Exceptions

This procedure grants the necessary privileges to the replication administrator to
administer any replication groups at the current site.

DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
usemame IN VARCHARY),

Table 21-2 GRANT_ADMIN_ANY_SCHEMA Procedure Parameters

Parameter Description

usemame Name of the replication administrator to whom you want to grant
the necessary privileges and roles to administer any replication
groups at the current site.

Table 21-3 GRANT_ADMIN_ANY_REPGROUP Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

GRANT_ADMIN_SCHEMA Procedure

Syntax

This procedure grants the necessary privileges to the replication administrator to
administer a schema at the current site. This procedure is most useful if your
replication group does not span schemas.

DBMS_REPCAT_ADMIN.GRANT_ADMIN_SCHEMA (
usemame IN VARCHARY);

DBMS_REPCAT_ADMIN 21-3

REGISTER_USER_REPGROUP Procedure

Parameters
Table 21-4 GRANT_ADMIN_REPSCHEMA Procedure Parameters
Parameter Description
usemame Name of the replication administrator. This user is then granted
the necessary privileges and roles to administer the schema of the
same name within a replication group at the current site.
Exceptions

Table 21-5 GRANT_ADMIN_REPSCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

REGISTER_USER_REPGROUP Procedure

This procedure assigns proxy materialized view administrator or receiver privileges
at the master site or master materialized view site for use with remote sites. This
procedure grants only the necessary privileges to the proxy materialized view
administrator or receiver. It does not grant the powerful privileges granted by the
GRANT_ADMIN_SCHEMAGRANT_ADMIN_ANY_SCHEMrocedures.

See Also: Appendix A, "Security Options" for more information
about trusted versus untrusted security models

Syntax

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
usemame IN VARCHAR2,
priviege_type IN VARCHARZ,
{list_of gnames IN VARCHARZ? |
table_of gnames IN DBMS_UTILITY.NAME_ARRAY)}

Note: This procedure is overloaded. The list_of _gnames and
table_of gnames parameters are mutually exclusive.

21-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_ADMIN Subprograms

Parameters

Exceptions

Table 21-6 REGISTER_USER_REPGROUP Procedure Parameters

Parameter Description

usemame Name of the user to whom you are giving either proxy
materialized view administrator or receiver privileges.

privilege_type Specifies the privilege type you are assigning. Use the following
values for to define your privilege_type

« receiver for receiver privileges

« proxy_shapadmin for proxy materialized view
administration privileges

list_of gnames Comma-separated list of replication groups you want a user
registered for receiver privileges. There must be no spaces
between entries in the list. If you set list_of _gnames to NULL,
then the user is registered for all replication groups, even
replication groups that are not yet known when this procedure is
called. You must use named notation in order to set list_of
gnames to NULL An invalid replication group in the list causes
registration to fail for the entire list.

table_of _gnames PL/SQL index-by table of replication groups you want a user
registered for receiver privileges. The PL/SQL index-by table
must be of type DBMS_UTILITY.NAME_ARRAY his table is
1-based (the positions start at 1 and increment by 1). Use the single
value NULLto register the user for all replication groups. An
invalid replication group in the table causes registration to fail for
the entire table.

Table 21-7 REGISTER_USER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Specified replication group does not exist or the invocation
database is not a master site or master materialized view site.

ORA-01917 User does not exist.

typefailure Incorrect privilege type was specified.

DBMS_REPCAT_ADMIN 21-5

REVOKE_ADMIN_ANY_SCHEMA Procedure

REVOKE_ADMIN_ANY_SCHEMA Procedure

This procedure revokes the privileges and roles from the replication administrator
that were granted by GRANT_ADMIN_ANY_SCHEMA

Note: Identical privileges and roles that were granted
independently of GRANT_ADMIN_ANY_SCHEM also revoked.

Syntax
DBMS_REPCAT_ADMIN.REVOKE_ADMIN_ANY SCHEMA (
usemame IN VARCHAR?);
Parameters
Table 21-8 REVOKE_ADMIN_ANY_SCHEMA Procedure Parameters
Parameter Description
usemame Name of the replication administrator whose privileges you want
to revoke.
Exceptions

Table 21-9 REVOKE_ADMIN_ANY_SCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

REVOKE_ADMIN_SCHEMA Procedure

This procedure revokes the privileges and roles from the replication administrator
that were granted by GRANT_ADMIN_SCHEMA

Note: Identical privileges and roles that were granted
independently of GRANT_ADMIN_SCHEM#e also revoked.

Syntax

DBMS_REPCAT_ADMIN.REVOKE_ADMIN_SCHEMA (
usemame IN VARCHAR?);

21-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_ADMIN Subprograms

Parameters

Exceptions

Table 21-10 REVOKE_ADMIN_SCHEMA Procedure Parameters

Parameter Description
usemame Name of the replication administrator whose privileges you want
to revoke.

Table 21-11 REVOKE_ADMIN_SCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

UNREGISTER_USER_REPGROUP Procedure

Syntax

Parameters

This procedure revokes the privileges and roles from the proxy materialized view
administrator or receiver that were granted by the REGISTER_USER_REPGROUP

procedure.

DBMS_REPCAT_ADMIN.UNREGISTER_USER_REPGROUP (
usemame IN VARCHAR?2,
priviege type IN VARCHARZ,
{list_of gnames IN VARCHARZ? |
table_of gnames IN DBMS_UTILITY.NAME_ARRAY)};

Note: This procedure is overloaded. The list_of gnames and
table_of gnames parameters are mutually exclusive.

Table 21-12 UNREGISTER _USER_REPGROUP Procedure Parameters

Parameter Description

usemame Name of the user you are unregistering.

DBMS_REPCAT_ADMIN 21-7

UNREGISTER_USER_REPGROUP Procedure

Exceptions

Table 21-12 UNREGISTER_USER_REPGROUP Procedure Parameters (Cont.)

Parameter Description

privilege_type Specifies the privilege type you are revoking. Use the following
values for to define your privilege_type

« receiver for receiver privileges

« proxy_shapadmin for proxy materialized view
administration privileges

list_of gnames Comma-separated list of replication groups you want a user
unregistered for receiver privileges. There must be no spaces
between entries in the list. If you set list_of_gnames to NULL,
then the user is unregistered for all replication groups registered.
You must use named notation in order to set list_of_gnames to
NULL An invalid replication group in the list causes
unregistration to fail for the entire list.

table_of gnames PL/SQL index-by table of replication groups you want a user
unregistered for receiver privileges. The PL/SQL index-by table
must be of type DBMS_UTILITY.NAME_ARRAYhis table is
1-based (the positions start at 1 and increment by 1). Use the single
value NULLto unregister the user for all replication groups
registered. An invalid replication group in the table causes
unregistration to fail for the entire table.

Table 21-13 UNREGISTER_USER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Specified replication group does not exist or the invocation
database is not a master site or master materialized view site.

ORA-01917 User does not exist.

typefailure Incorrect privilege type was specified.

21-8 Oracle9i Replication Management AP| Reference

22

DBMS_ REPCAT_INSTANTIATE

DBMS_REPCAT_INSTANTIATpackage instantiates deployment templates.
This chapter discusses the following topics:

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

DBMS_REPCAT_INSTANTIATE 22-1

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

Table 22-1 DBMS_REPCAT_INSTANTIATE Package Subprograms

Subprogram Description

DROP_SITE_INSTANTIATION Public procedure that removes the target site from the DBA_

Procedure on page 22-3 REPCAT_TEMPLATE_SITESiew.

INSTANTIATE_OFFLINE Public function that generates a script at the master site that

Functon on page 22-3 is used to create the materialized view environment at the
remote materialized view site while offline.

INSTANTIATE_ONLINE Public function that generates a script at the master site that

Functon on page 22-6 is used to create the materialized view environment at the

remote materialized view site while online.

22-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

DROP_SITE_INSTANTIATION Procedure

This procedure drops a template instantiation at a target site. This procedure
removes all related metadata at the master site and disables the specified site from
refreshing its materialized views. You must execute this procedure as the user who
originally instantiated the template. To see who instantiated the template, query the
ALL_REPCAT_TEMPLATE_SITESiew.

Syntax

DBMS_REPCAT_INSTANTIATE.DROP_SITE_INSTANTIATION(
refresh_template_name IN VARCHAR?2,
site_name IN VARCHAR?);

Table 22-2 DROP_SITE_INSTANTIATION Procedure Parameters

Parameter Description
refresh_template_name The name of the deployment template to be dropped.
site_name Identifies the master site where you want to drop the specified

template instantiation.

INSTANTIATE_OFFLINE Function

This function generates a file at the master site that is used to create the materialized
view environment at the remote materialized view site while offline. This generated
file is an offline instantiation file and should be used at remote materialized view
sites that are not able to remain connected to the master site for an extended
amount of time.

This is an ideal solution when the remote materialized view site is a laptop. Use the
packaging interface in the Replication Management tool to package the generated
file and data into a single file that can be posted on an FTP site or loaded to a
CD-ROM, floppy disk, and so on.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including the Replication
Management tool, during the distribution of deployment templates. The number
returned by this function is used to retrieve the appropriate information from the
USER_REPCAT_TEMP_OUTPUigw.

The user who executes this public function becomes the "registered" user of the
instantiated template at the specified site.

DBMS_REPCAT_INSTANTIATE 22-3

INSTANTIATE_OFFLINE Function

Note: This function is used in performing an offline instantiation
of a deployment template.

This function should not be confused with the procedures in the
DBMS_OFFLINE_O@ackage (used for performing an offline
instantiation of a master table) or with the procedures in the DBMS _
OFFLINE_SNAPSHOPackage (used for performing an offline
instantiation of a materialized view). See these respective packages
for more information on their usage.

See Also:

« "Packaging a Deployment Template for Instantiation” on
page 4-12

« Oracle9i Replication

« The Replication Management tool’s online help

Syntax

DBMS_REPCAT_INSTANTIATE.INSTANTIATE_OFFLINE(
refresh_template_name IN VARCHAR2,
site_name IN VARCHAR?,
runtime_parm_id IN NUMBER :=-1e-130,
next_date IN DATE :=SYSDATE,
interval IN VARCHAR2 ='SYSDATE +1/,
use_default gowner IN BOOLEAN :=true)
retum NUMBER,;

22-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

Exceptions

Returns

Table 22-3 INSTANTIATE_OFFLINE Function Parameters

Parameter Description

refresh_template_name The name of the deployment template to be instantiated.

site_name The name of the remote site that is instantiating the deployment
template.

runtime_parm _id If you have defined runtime parameter values using the

INSERT_RUNTIME_PARMS§rocedure, specify the identification
used when creating the runtime parameters (the identification
was retrieved by using the GET_RUNTIME_PARM _IBunction).

next_date The next refresh date value to be used when creating the refresh
group.

interval The refresh interval to be used when creating the refresh group.

use_default_gowner If true , then any materialized view groups created are owned

by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.

Table 22—-4 INSTANTIATE_OFFLINE Function Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

dupl_template_site The deployment template has already been instantiated at the

materialized view site. A deployment template can be
instantiated only once at a particular materialized view site.

not_authorized The user attempting to instantiate the deployment template is
not authorized to do so.

Table 22-5 INSTANTIATE_OFFLINE Function Returns

Return Value Description
<system-generated Specifies the generated system number for the output_id when
number> you select from the USER_REPCAT_TEMP_OUTPUiEw to

retrieve the generated instantiation script.

DBMS_REPCAT_INSTANTIATE 22-5

INSTANTIATE_ONLINE Function

INSTANTIATE_ONLINE Function

This function generates a script at the master site that is used to create the
materialized view environment at the remote materialized view site while online.
This generated script should be used at remote materialized view sites that are able
to remain connected to the master site for an extended amount of time, as the
instantiation process at the remote materialized view site may be lengthy
(depending on the amount of data that is populated to the new materialized views).

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including the Replication
Management tool, during the distribution of deployment templates. The number
returned by this function is used to retrieve the appropriate information from the
USER_REPCAT_TEMP_OUTPUigw.

The user who executes this public function becomes the "registered” user of the
instantiated template at the specified site.

See Also:

» "Packaging a Deployment Template for Instantiation” on
page 4-12

« Oracle9i Replication

« The Replication Management tool’s online help

Syntax

DBMS_REPCAT_INSTANTIATE.INSTANTIATE_ONLINE(
refresh_template_name IN VARCHAR2,
site_name IN VARCHARZ2,
runtime_parm_id IN NUMBER :=-1e-130,
next_date IN DATE =SYSDATE,
interval IN VARCHAR?2 :='SYSDATE +1,
use_default gowner IN BOOLEAN :=true)
retum NUMBER;

22-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

Exceptions

Table 22-6 INSTANTIATE_ONLINE Function Parameters

Parameter

Description

refresh_template_name

site_name

runtime_parm _id

next_date

interval

use_default_gowner

The name of the deployment template to be instantiated.

The name of the remote site that is instantiating the deployment
template.

If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMS§rocedure, specify the identification
used when creating the runtime parameters (the identification
was retrieved by using the GET_RUNTIME_PARM _IBunction).

Specifies the next refresh date value to be used when creating
the refresh group.

Specifies the refresh interval to be used when creating the
refresh group.

If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.

Table 22—-7 INSTANTIATE_ONLINE Function Exceptions

Exception

Description

miss_refresh_template

dupl_template_site

not_authorized

The deployment template name specified is invalid or does not
exist.

The deployment template has already been instantiated at the
materialized view site. A deployment template can be
instantiated only once at a particular materialized view site.

The user attempting to instantiate the deployment template is
not authorized to do so.

DBMS_REPCAT_INSTANTIATE 22-7

INSTANTIATE_ONLINE Function

Returns

Table 22-8 INSTANTIATE_ONLINE Function Returns

Return Value Description

Specifies the generated system number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUiEw to
retrieve the generated instantiation script.

<system-generated
number>

22-8 Oracle9i Replication Management AP| Reference

23

DBMS_REPCAT_RGT

DBMS_REPCAT_R@&bntrols the maintenance and definition of refresh group
templates.

This chapter discusses the following topics:

« Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT RGT 23-1

Summary of DBMS_REPCAT_RGT Subprograms

Summary of DBMS_REPCAT_RGT Subprograms

Table 23-1 DBMS_REPCAT_RGT Package Subprograms

Subprogram

Description

"ALTER_REFRESH_TEMPLATE
Procedure" on page 23-5

"ALTER_TEMPLATE_OBJECT
Procedure" on page 23-7

"ALTER_TEMPLATE_PARM
Procedure" on page 23-10

"ALTER_USER_
AUTHORIZATION Procedure"
on page 23-11

"ALTER_USER_PARM_VALUE
Procedure" on page 23-13

"COMPARE_TEMPLATES
Function" on page 23-15

"COPY_TEMPLATE Function"
on page 23-16

"CREATE_OBJECT_FROM_
EXISTING Function" on
page 23-19

"CREATE_REFRESH_
TEMPLATE Function" on
page 23-21

"CREATE_TEMPLATE_OBIJECT
Function"” on page 23-23

"CREATE_TEMPLATE_PARM
Function" on page 23-26

"CREATE_USER_
AUTHORIZATION Function" on
page 23-28

"CREATE_USER_PARM_VALUE
Function" on page 23-29

"DELETE_RUNTIME_PARMS
Procedure” on page 23-31

Allows the DBA to alter existing deployment templates.

Alters objects that have been added to a specified
deployment template.

Allows the DBA to alter the parameters for a specific
deployment template.

Alters the contents of the DBA_ REPCAT_USER_
AUTHORIZATIONSview.

Changes existing parameter values that have been
defined for a specific user.

Allows the DBA to compare the contents of two
deployment templates.

Allows the DBA to copy a deployment template.

Creates a template object definition from existing
database objects and adds it to a target deployment
template.

Creates the deployment template, which allows the DBA
to define the template name, private/public status, and
target refresh group.

Adds object definitions to a target deployment template
container.

Creates parameters for a specific deployment template to
allow custom data sets to be created at the remote
materialized view site.

Authorizes specific users to instantiate private
deployment templates.

Predefines deployment template parameter values for
specific users.

Deletes a runtime parameter value that you defined
using the INSERT_RUNTIME_PARM§@rocedure.

23-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Table 23-1 DBMS_REPCAT_RGT Package Subprograms (Cont.)

Subprogram

Description

"DROP_ALL_OBJECTS
Procedure" on page 23-32

"DROP_ALL_TEMPLATE_
PARMS Procedure"” on
page 23-33

"DROP_ALL_TEMPLATE_SITES
Procedure" on page 23-34

"DROP_ALL_TEMPLATES
Procedure" on page 23-35

"DROP_ALL_USER_
AUTHORIZATIONS Procedure"
on page 23-35

"DROP_ALL_USER_PARM_
VALUES Procedure" on
page 23-36

"DROP_REFRESH_TEMPLATE
Procedure" on page 23-37

"DROP_SITE_INSTANTIATION
Procedure” on page 23-38

"DROP_TEMPLATE_OBJECT
Procedure" on page 23-39

"DROP_TEMPLATE_PARM
Procedure” on page 23-40

DROP_USER_
AUTHORIZATION Procedure
on page 23-41

"DROP_USER_PARM_VALUE
Procedure" on page 23-42

"GET_RUNTIME_PARM_ID
Function" on page 23-43

"INSERT_RUNTIME_PARMS
Procedure" on page 23-43

"INSTANTIATE_OFFLINE
Function" on page 23-45

Allows the DBA to drop all objects or specific object
types from a deployment template.

Allows the DBA to drop template parameters for a
specified deployment template.

Removes all entries from the DBA_REPCAT_TEMPLATE_
SITES view.

Removes all deployment templates at the site where the
procedure is called.

Allows the DBA to drop all user authorizations for a
specified deployment template.

Drops user parameter values for a specific deployment
template.

Drops a deployment template.

Removes the target site from the DBA_REPCAT_
TEMPLATE_SITESview.

Removes a template object from a specific deployment
template.

Removes an existing template parameter from the DBA_
REPCAT_TEMPLATE_PARN®w.

Removes a user authorization entry from the DBA _
REPCAT_USER_AUTHORIZATIONSew.

Removes a predefined user parameter value for a specific
deployment template.

Retrieves an identification to be used when defining a
runtime parameter value.

Defines runtime parameter values prior to instantiating a
template.

Generates a script at the master site that is used to create
the materialized view environment at the remote
materialized view site while offline.

DBMS_REPCAT_RGT 23-3

Summary of DBMS_REPCAT_RGT Subprograms

Table 23-1 DBMS_REPCAT_RGT Package Subprograms (Cont.)

Subprogram Description

"INSTANTIATE_ONLINE Generates a script at the master site that is used to create

Function" on page 23-48 the materialized view environment at the remote
materialized view site while online.

"LOCK_TEMPLATE_ Prevents users from reading or instantiating the template

EXCLUSIVE Procedure" on when a deployment template is being updated or

page 50 modified.

"LOCK_TEMPLATE_SHARED Makes a specified deployment template read-only.
Procedure" on page 23-51

23-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

ALTER_REFRESH_TEMPLATE Procedure

This procedure allows the DBA to alter existing deployment templates. Alterations
may include defining a new deployment template name, a new refresh group, or a
new owner and changing the public/private status.

Syntax

DBMS_REPCAT _RGTALTER_REFRESH TEMPLATE (
refresh_template name IN VARCHAR2,

new_owner IN VARCHAR2 =",
new_refresh_group name IN VARCHAR2 ="
new_refresh_template_name IN VARCHAR2 =",
new_template_comment IN VARCHAR2 =",
new_public_template IN VARCHAR2 =",
new_last_modified IN DATE =to_date(1,J),
new_modified_by IN NUMBER :=-1e-130);

DBMS_REPCAT_RGT 23-5

ALTER_REFRESH_TEMPLATE Procedure

Parameters

Table 23-2 ALTER_REFRESH_TEMPLATE Procedure Parameters

Parameter

Description

refresh_template_name

new_owner

new_refresh_group_name

new_refresh_template_name

new_template_comment

new_public_template

new_last_ modified

new_modified_by

The name of the deployment template that you want to
alter.

The name of the new deployment template owner. Do not
specify a value to keep the current owner.

If necessary, use this parameter to specify a new refresh
group name to which the template objects will be added. Do
not specify a value to keep the current refresh group.

Use this parameter to specify a new deployment template
name. Do not specify a value to keep the current
deployment template name.

New deployment template comments. Do not specify a
value to keep the current template comment.

Determines whether the deployment template is public or
private. Only acceptable values are 'Y’ and N' (Y' =
public and 'N' = private). Do not specify a value to keep
the current value.

Contains the date of the last modification made to this
deployment template. If a value is not specified, then the
current date is automatically used.

Contains the name of the user who last modified this
deployment template. If a value is not specified, then the
current user is automatically used.

Exceptions

Table 23-3 ALTER_REFRESH_TEMPLATE Procedure Exceptions

Exception

Description

miss_refresh_template

bad_public_template

dupl_refresh_template

Deployment template name specified is invalid or does not exist.

The public_template parameter is specified incorrectly. The
public_template parameter must be specified asa'Y' fora
public template or an 'N' for a private template.

A template with the specified name already exists. See the ALL_
REPCAT_REFRESH_TEMPLATERwW.

23-6 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

ALTER_TEMPLATE_OBJECT Procedure

Syntax

This procedure alters objects that have been added to a specified deployment
template. The most common changes are altering the object DDL and assigning the
object to a different deployment template.

Changes made to the template are reflected only at new sites instantiating the
deployment template. Remote sites that have already instantiated the template
must re-instantiate the deployment template to apply the changes.

DBMS_REPCAT _RGTALTER_TEMPLATE_OBJECT (
refresh_template name IN VARCHAR2,

object name IN VARCHARZ,

object_type IN VARCHAR2,
new_refresh_template_name IN VARCHAR2 =",
new_object_name IN VARCHARZ2 =",
new_object type IN VARCHAR2 =",

new_dd|_text IN CLOB =",
new_master_rolback seg IN VARCHAR2 :=*,
new_flavor_id IN NUMBER :=-1e-130);

DBMS_REPCAT_RGT 23-7

ALTER_TEMPLATE_OBJECT Procedure

Parameters

Table 23-4 ALTER_TEMPLATE_OBJECT Procedure Parameters

Parameter

Description

refresh_template_name

object name
object_type

new_refresh_template_name

new_object name

new_object type

new_ddl_text

new_master_rollback seg

new _flavor_id

Deployment template name that contains the object that you
want to alter.

Name of the template object that you want to alter.
Type of object that you want to alter.

Name of the new deployment template to which you want
to reassign this object. Do not specify a value to keep the
object assigned to the current deployment template.

New name of the template object. Do not specify a value to
keep the current object name.

If specified, then the new object type. Objects of the
following type may be specified:

SNAPSHOT PROCEDURE
INDEX FUNCTION

TABLE PACKAGE

VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

New object DDL for specified object. Do not specify any
new DDL text to keep the current object DDL.

New master rollback segment for specified object. Do not
specify a value to keep the current rollback segment.

This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.

23-8 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Exceptions

Usage Notes

Table 23-5 ALTER_TEMPLATE_OBJECT Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

miss_flavor_id If you receive this exception, contact Oracle Support Services.

bad_object type Obiject type is specified incorrectly. See Table 23-4 for a list of
valid object types.

miss_template_object Template object name specified is invalid or does not exist.

dupl_template_object New template name specified in the new_refresh_

template_name parameter already exists.

Because the ALTER_TEMPLATE_OBJECprocedure utilizes a CLOB you must use
the DBMS_LOBackage when using the ALTER_TEMPLATE_OBJECgrocedure. The
following example illustrates how to use the DBMS_LOBackage with the ALTER_
TEMPLATE_OBJECProcedure:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;
BEGIN
DBMS_LOB.CREATETEMPORARY (templob, TRUE, DBMS_LOB.SESSION);
tempstring :='CREATE MATERIALIZED VIEW mview_sales AS SELECT *
FROM sales WHERE salesperson = :salesid and region_id = :region’;
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
DBMS_REPCAT_RGT.ALTER_TEMPLATE_OBJECT(
refresh_template_name =>'rgt_personnel,
object name =>'MVIEW_SALES,
object_type =>'SNAPSHOT,
new_ddl_text=>templob);
DBMS_LOB.FREETEMPORARY (temploby);
END;
/

DBMS_REPCAT_RGT 23-9

ALTER_TEMPLATE_PARM Procedure

ALTER_TEMPLATE_PARM Procedure

Syntax

Parameters

This procedure allows the DBA to alter the parameters for a specific deployment
template. Alterations include renaming the parameter and redefining the default
value and prompt string.

DBMS_REPCAT _RGTALTER_TEMPLATE_PARM (
refresh_template name IN VARCHAR2,
parameter_name IN VARCHAR?2,
new_refresh_template name IN VARCHAR2 =",
new_parameter_name IN VARCHAR2 =",
new_default parm value IN CLOB :=NULL,
new_prompt_string IN VARCHARZ2 :=*-,
new_user_overide IN VARCHAR2 :=");

Table 23-6 ALTER_TEMPLATE_PARM Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the
parameter that you want to alter.

parameter_name Name of the parameter that you want to alter.

new_refresh_template_name Name of the deployment template that the specified

parameter should be reassigned to (useful when you want
to move a parameter from one template to another). Do not
specify a value to keep the parameter assigned to the
current template.

new_parameter_name New name of the template parameter. Do not specify a
value to keep the current parameter name.

new_default_parm_value New default value for the specified parameter. Do not
specify a value to keep the current default value.

new_prompt_string New prompt text for the specified parameter. Do not specify
a value to keep the current prompt string.

new_user_ovenide Determines whether the user can override the default value
if prompted during the instantiation process. The user is
prompted if no user parameter value has been defined for
this parameter. Set this parameter to 'Y' to allow a user to
override the default value or set this parameter to 'N' to
prevent an override.

23-10 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Exceptions

Usage Notes

Table 23-7 ALTER_TEMPLATE_PARM Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.
miss_template_parm Template parameter specified is invalid or does not exist.

dupl template_parm Combination of new_refresh_template_name and new_

parameter_name already exists.

Because the ALTER_TEMPLATE_PARprocedure utilizes a CLOB you must use the
DBMS_LOBackage when using the ALTER_TEMPLATE_PARpfrocedure. The
following example illustrates how to use the DBMS_LORpackage with the ALTER _
TEMPLATE_PARMrocedure:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;
BEGIN
DBMS_LOB.CREATETEMPORARY (templob, TRUE, DBMS_LOB.SESSION);
tempstring :='REGION 20
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM(
refresh_template_name =>'rgt_personnel,
parameter_name => 'region,
new_default_parm_value =>templob);
DBMS_LOB.FREETEMPORARY (temploby);
END;
/

ALTER_USER_AUTHORIZATION Procedure

This procedure alters the contents of the DBA_REPCAT_USER_AUTHORIZATIONS
view. Specifically, you can change user/deployment template authorization
assignments. This procedure is helpful, for example, if an employee is reassigned
and requires the materialized view environment of another deployment template.
The DBA simply assigns the employee the new deployment template and the user

is authorized to instantiate the target template.

DBMS_REPCAT_RGT 23-11

ALTER_USER_AUTHORIZATION Procedure

Syntax
DBMS_REPCAT_RGT.ALTER_USER_AUTHORIZATION (
user_name IN VARCHAR?2,
refresh_template name IN VARCHAR2,
new_user_name IN VARCHAR2 =",
new_refresh_template_name IN VARCHAR2 :=");
Parameters
Table 23-8 ALTER_USER_AUTHORIZATION Procedure Parameters
Parameter Description
user_name Name of the user whose authorization you want to alter.
refresh_template_name Name of the deployment template that is currently assigned
to the specified user that you want to alter.
new_user_name Use this parameter to define a new user for this template
authorization. Do not specify a value to keep the current
user.
new_refresh_template_name The deployment template that the specified user (either the
existing or, if specified, the new user) is authorized to
instantiate. Do not specify a value to keep the current
deployment template.
Exceptions

Table 23-9 ALTER_USER_AUTHORIZATION Procedure Exceptions

Exception Description

miss_user_authorization The combination of user_name and refresh_template_
name values specified does not exist in the DBA_REPCAT _
USER_AUTHORIZATIONSiew.

miss_user The user name specified for the new_user_name or user_
name parameter is invalid or does not exist.

miss_refresh_template The deployment template specified for the new_refresh_
template parameter is invalid or does not exist.

dupl_user_authorization A row already exists for the specified user name and
deployment template name. See the ALL_REPCAT_USER_
AUTHORIZATIONSview.

23-12 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

ALTER_USER_PARM_VALUE Procedure

Syntax

This procedure changes existing parameter values that have been defined for a
specific user. This procedure is especially helpful if your materialized view
environment uses assignment tables. Change a user parameter value to quickly and
securely change the data set of a remote materialized view site.

See Also: Oracle9i Replication for more information on using
assignment tables

DBMS_REPCAT_RGTALTER USER_PARM_VALUE(
refresh_template name IN VARCHARZ,
parameter_name IN VARCHAR?2,
user_name IN VARCHAR2,
new_refresh_template_ name IN VARCHAR2 =",
new_parameter_name IN VARCHAR2 ="
new_user_name IN VARCHARZ2 =",
new_pam _value IN CLOB :=NULL);

DBMS_REPCAT_RGT 23-13

ALTER_USER_PARM_VALUE Procedure

Parameters

Exceptions

Table 23-10 ALTER_USER_PARM_VALUE Procedure Parameters

Parameter

Description

refresh_template_name

parameter_name
user_name

new_refresh_template_name

new_parameter_name

new_user_name

new_pam_value

Name of the deployment template that contains the user
parameter value that you want to alter.

Name of the parameter that you want to alter.
Name of the user whose parameter value you want to alter.

Name of the deployment template that the specified user
parameter value should be reassigned to (useful when you
are authorizing a user for a different template). Do not
specify a value to keep the parameter assigned to the
current template.

The new template parameter name. Do not specify a value
to keep the user value defined for the existing parameter.

The new user name that this parameter value is for. Do not
specify a value to keep the parameter value assigned to the
current user.

The new parameter value for the specified user parameter.
Do not specify a value to keep the current parameter value.

Table 23-11 ALTER_USER_PARM_VALUE Procedure Exceptions

Exception

Description

miss_refresh_template

miss_template_parm

miss_user

miss_user_parm_values
dupl_user_parm_values

Deployment template name specified is invalid or does not
exist.

Template parameter specified is invalid or does not exist.

User name specified for the user_name or new_user_
name parameters is invalid or does not exist.

User parameter value specified does not exist.

New user parameter specified already exists.

23-14 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Usage Notes

Because the ALTER_USER_PARM_VALUiocedure utilizes a CLOB you must use
the DBMS_LOBRackage when using the ALTER_USER_PARM_VALUfocedure. The
following example illustrates how to use the DBMS_LORackage with the ALTER _
USER_PARM_VALUgrocedure:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;
BEGIN
DBMS_LOB.CREATETEMPORARY (templob, TRUE, DBMS_LOB.SESSION);
tempstring :='REGION 20,
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
DBMS_REPCAT_RGT.ALTER_USER _PARM_VALUE(
refresh_template_name =>'rgt_personnel,
parameter_name => 'region,
user_name =>'BOB,
new_pam_value =>templob);
DBMS_LOB.FREETEMPORARY (temploby);
END;
/

COMPARE_TEMPLATES Function

This function allows a DBA to compare the contents of two deployment templates.
Any discrepancies between the two deployment templates is stored in the USER _
REPCAT_TEMP_OUTPUWamporary view.

The COMPARE_TEMPLATHSction returns a number that you specify in the
WHEREIlause when querying the USER_REPCAT_TEMP_OUTPtémporary view.
For example, if the COMPARE_TEMPLAT®ocedure returns the number 10, you
would execute the following SELECTstatement to view all discrepancies between
two specified templates (your SELECTstatement returns no rows if the templates
are identical):

SELECT TEXT FROM USER_REPCAT_TEMP_OUTPUT
WHERE OUTPUT_ID = 10 ORDER BY LINE;

The contents of the USER_REPCAT_TEMP_OUTPtémporary view are lost after
you disconnect or a rollback has been performed.

DBMS_REPCAT_RGT 23-15

COPY_TEMPLATE Function

Syntax

Parameters

Exceptions

Returns

DBMS_REPCAT_RGT.COMPARE_TEMPLATES (
source_template_ name IN VARCHAR2,
compare_template_name IN VARCHAR2)
retum NUMBER;

Table 23-12 COMPARE_TEMPLATES Function Parameters

Parameter Description
source_template_name Name of the first deployment template to be compared.
compare_template_name Name of the second deployment template to be compared.

Table 23-13 COMPARE_TEMPLATES Function Exceptions

Exception Description

miss_refresh_template The deployment template name to be compared is invalid or
does not exist.

Table 23-14 COMPARE_TEMPLATES Function Returns

Return Value Description
<system-generated Specifies the number returned for the output_id value when you
number> select from the USER_REPCAT_TEMP_OUTPt&émporary view

to view the discrepancies between the compared templates.

COPY_TEMPLATE Function

This function enables you to copy a deployment template and is helpful when a
new deployment template uses many of the objects contained in an existing
deployment template. This function copies the deployment template, template
objects, template parameters, and user parameter values. The DBA can optionally
have the function copy the user authorizations for this template. The number
returned by this function is used internally by Oracle to manage deployment
templates.

23-16 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Syntax

Parameters

Exceptions

Note: The values in the DBA_REPCAT_TEMPLATE_SITEGiew
are not copied.

This function also allows the DBA to copy a deployment template to another master
site, which is helpful for deployment template distribution and to split network
loads between multiple sites.

DBMS_REPCAT_RGT.COPY_TEMPLATE (
old_refresh_template name IN VARCHAR?2,
new_refresh_template name IN VARCHAR?2,
copy_user_authorizations IN VARCHAR?Z,
dblink IN VARCHAR2 :=NULL)
retum NUMBER;

Table 23-15 COPY_TEMPLATE Function Parameters

Parameter Description

old_refresh_template_name Name of the deployment template to be copied.
new_refresh_template_name Name of the new deployment template.
copy_user_authorizations Specifies whether the template authorizations for the

original template should be copied for the new deployment
template. Valid values for this parameter are Y, N, and NULL

Note: All users must exist at the target database.

dblink Optionally defines where the deployment template should
be copied from (this is helpful to distribute deployment
templates to other master sites). If none is specified, then the
deployment template is copied from the local master site.

Table 23-16 COPY_TEMPLATE Function Exceptions

Exception Description
miss_refresh_template Deployment template name to be copied is invalid or does not
exist.

DBMS_REPCAT_RGT 23-17

COPY_TEMPLATE Function

Returns

Table 23-16 COPY_TEMPLATE Function Exceptions (Cont.)

Exception Description
dupl_refresh_template Name of the new refresh template specified already exists.
bad_copy_auth Value specified for the copy_user_authorization

parameter is invalid. Valid values are Y, N, and NULL

Table 23-17 COPY_TEMPLATES Function Returns

Return Value Description
<system-generated System-generated number used internally by Oracle.
number>

23-18 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

CREATE_OBJECT_FROM_EXISTING Function

Syntax

This function creates a template object definition from existing database objects and
adds it to a target deployment template. The object DDL that created the original
database object is executed when the target deployment template is instantiated at
the remote materialized view site. This is ideal for adding existing triggers and
procedures to your template. The number returned by this function is used
internally by Oracle to manage deployment templates.

DBMS_REPCAT_RGT.CREATE_OBJECT_FROM_EXISTING(
refresh_template_name IN VARCHAR?2,
object_ name IN VARCHARZ,

sname IN VARCHARZ,
oname IN VARCHARZ2,
otype IN VARCHAR?2)
retum NUMBER,;

DBMS_REPCAT_RGT 23-19

CREATE_OBJECT_FROM_EXISTING Function

Parameters

Table 23-18 CREATE_OBJECT_FROM_EXISTING Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to which you want to add
this object.

object name Optionally, the new name of the existing object that you are
adding to your deployment template (enables you to define a
new name for an existing object).

sname The schema that contains the object that you are creating your
template object from.

oname Name of the object that you are creating your template object
from.

otype The type of database object that you are adding to the template
(that is, PROCEDURHERIGGER and so on). Objects of the
following type may be specified (DATABASE LINK
MATERIALIZED VIEW and SNAPSHO&re not valid object types
for this function):

SEQUENCE PROCEDURE
INDEX FUNCTION
TABLE PACKAGE

VIEW PACKAGE BODY
SYNONYM TRIGGER

Exceptions

Table 23-19 CREATE_OBJECT_FROM_EXISTING Function Exceptions

Exception Description

miss_refresh_template The specified refresh template name is invalid or missing. Query
the DBA_REPCAT_REFRESH_TEMPLAT&Sw for a list of
existing deployment templates.

bad_object type The object type is specified incorrectly.

dupl_template_object An object of the same name and type has already been added to
the specified deployment template.

objectmissing The object specified does not exist.

23-20 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Returns

Table 23-20 CREATE_OBJECT_FROM_EXISTING Function Returns

Return Value Description
<system-generated System-generated number used internally by Oracle.
number>

CREATE_REFRESH_TEMPLATE Function

Syntax

This function creates the deployment template, which enables you to define the
template name, private/public status, and target refresh group. Each time that you
create a template object, user authorization, or template parameter, you reference
the deployment template created with this function. This function adds a row to the
DBA_REPCAT_REFRESH_TEMPLAT&Sw. The number returned by this function
is used internally by Oracle to manage deployment templates.

DBMS_REPCAT_RGT.CREATE_REFRESH TEMPLATE (
owner IN VARCHARZ,
refresh_group_name IN VARCHAR2,
refresh_template_name IN VARCHAR2,
template_comment IN VARCHAR2 := NULL,
public template IN VARCHAR2 :=NULL,
last_modified IN DATE = SYSDATE,
modified_by IN VARCHAR? = USER,
creation_date IN DATE :=SYSDATE,
created by IN VARCHAR? := USER)
retum NUMBER,;

DBMS_REPCAT_RGT 23-21

CREATE_REFRESH_TEMPLATE Function

Parameters
Table 23-21 CREATE_REFRESH_TEMPLATE Function Parameters
Parameter Description
owner User name of the deployment template owner is specified with
this parameter. If an owner is not specified, then the name of the
user creating the template is automatically used.
refresh_group_name Name of the refresh group that is created when this template is
instantiated. All objects created by this template are assigned to
the specified refresh group.
refresh_template_name Name of the deployment template that you are creating. This
name is referenced in all activities that involve this deployment
template.
template_comment User comments defined with this parameter are listed in the
DBA_REPCAT_REFRESH_TEMPLAT&Sw.
public_template Specifies whether the deployment template is public or private.
Only acceptable values are'Y' and'N' (Y* =publicand N' =
private).
last_modified The date of the last modification made to this deployment
template. If a value is not specified, then the current date is
automatically used.
modified_by Name of the user who last modified this deployment template.
If a value is not specified, then the current user is automatically
used.
creation_date The date that this deployment template was created. If a value is
not specified, then the current date is automatically used.
created by Name of the user who created this deployment template. If a
value is not specified, then the current user is automatically
used.
Exceptions
Table 23-22 CREATE_REFRESH_TEMPLATE Function Exceptions
Exception Description
dupl_refresh_template A template with the specified name already exists. See the ALL_
REPCAT_REFRESH_TEMPLATERW to see a list of existing
templates.
23-22 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Returns

Table 23-22 CREATE_REFRESH_TEMPLATE Function Exceptions (Cont.)

Exception Description
bad _public_template The public_template parameter is specified incorrectly. The
public_template parameter must be specified asa'y' fora

public template or an 'N' for a private template.

Table 23-23 CREATE_REFRESH_TEMPLATE Function Returns

Return Value Description
<system-generated System-generated number used internally by Oracle.
number>

CREATE_TEMPLATE_OBJECT Function

Syntax

This function adds object definitions to a target deployment template container. The
specified object DDL is executed when the target deployment template is
instantiated at the remote materialized view site. In addition to adding materialized
views, this function can add tables, procedures, and other objects to your template.
The number returned by this function is used internally by Oracle to manage
deployment templates.

DBMS_REPCAT RGT.CREATE_TEMPLATE_OBJECT (
refresh_template_name IN VARCHAR2,
object_name IN VARCHARZ,
object_type IN VARCHAR2,

ddl_text IN CLOB,

master_rollback_seg IN VARCHARZ2 :=NULL,
flavor_id IN NUMBER :=-1e-130)

retum NUMBER,;

DBMS_REPCAT_RGT 23-23

CREATE_TEMPLATE_OBJECT Function

Parameters

Table 23-24 CREATE_TEMPLATE_OBJECT Function Parameters

Parameter

Description

refresh_template_name

object name

object_type

ddl_text

master_rollback_seg

flavor_id

Name of the deployment template to which you want to add
this object.

Name of the template object that you are creating.

The type of database object that you are adding to the template
(that is, SNAPSHOTTRIGGER PROCEDURENA so on). Objects
of the following type may be specified:

SNAPSHOT PROCEDURE
INDEX FUNCTION

TABLE PACKAGE

VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

Contains the DDL that creates the object that you are adding to
the template. Be sure to end your DDL with a semi-colon. You
can use a colon () to create a template parameter for your
template object. See Chapter 4, "Create a Deployment Template"
for more information.

When you add a materialized view (snapshot) with a CREATE
MATERIALIZED VIEWstatement, make sure you specify the
schema name of the owner of the master table in the
materialized view query.

Specifies the name of the rollback segment to use when
executing the defined object DDL at the remote materialized
view site.

This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.

Exceptions

23-24

Table 23-25 CREATE_TEMPLATE_OBJECT Function Exceptions

Exception

Description

miss_refresh_template

Specified refresh template name is invalid or missing. Query the
DBA_REPCAT_REFRESH_TEMPLAT&®w for a list of existing
deployment templates.

Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Table 23-25 CREATE_TEMPLATE_OBJECT Function Exceptions (Cont.)

Exception Description

bad_object type Obiject type is specified incorrectly. See Table 23-24 for a list of
valid object types.

dupl_template_object An object of the same name and type has already been added to
the specified deployment template.

Returns

Table 23-26 CREATE_TEMPLATE_OBJECT Function Returns

Return Value Description
<system-generated System-generated number used internally by Oracle.
number>

Usage Notes

Because CREATE_TEMPLATE_OBJEQTilizes a CLOB you must use the DBMS_LOB
package when using the CREATE_TEMPLATE_OBJEGTtinction. The following
example illustrates how to use the DBMS_LORpackage with the CREATE _
TEMPLATE_OBJECTunction:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;
aNUMBER,;
BEGIN
DBMS_LOB.CREATETEMPORARY (templob, TRUE, DBMS_LOB.SESSION);
tempstring :='CREATE MATERIALIZED VIEW mview_sales AS SELECT *
FROM sales WHERE salesperson = :salesid;
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
a:=DBMS_REPCAT_RGT.CREATE _TEMPLATE_OBJECT(
refresh_template_name =>'rgt_personnel,
object_name =>'mview_sales,,
ohject_type =>'SNAPSHOT,
ddl_text=>templob,
master_rollback_seg=>'RBS);
DBMS_LOB.FREETEMPORARY (temploby);
END;
/

DBMS_REPCAT_RGT 23-25

CREATE_TEMPLATE_PARM Function

CREATE_TEMPLATE_PARM Function

This function creates parameters for a specific deployment template to allow
custom data sets to be created at the remote materialized view site. This function is
only required when the DBA wants to define a set of template variables before
adding any template objects. When objects are added to the template using the
CREATE_TEMPLATE_OBJEQTinction, any variables in the object DDL are
automatically added to the DBA_REPCAT_TEMPLATE_PARMIiSw.

The DBA typically uses the ALTER_TEMPLATE_PARfMNction to modify the
default parameter values and/or prompt strings (see "ALTER_TEMPLATE_PARM
Procedure” on page 23-10 for more information). The number returned by this
function is used internally by Oracle to manage deployment templates.

Syntax

DBMS_REPCAT_RGT.CREATE_TEMPLATE_PARM (
refresh_template_name IN VARCHAR2,
parameter_name IN VARCHAR?2,
default pam_value IN CLOB :=NULL,
prompt_string IN VARCHARZ := NULL,
user_override IN' VARCHARZ := NULL)
retum NUMBER,;

23-26 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Parameters
Table 23-27 CREATE_TEMPLATE_PARM Function Parameters
Parameter Description
refresh_template_name Name of the deployment template for which you want to create
the parameter.
parameter_name Name of the parameter you are creating.
default_parm_value Default values for this parameter are defined using this
parameter. If a user parameter value or runtime parameter value
is not present, then this default value is used during the
instantiation process.
prompt_string The descriptive prompt text that is displayed for this template
parameter during the instantiation process.
user_override Determines whether the user can override the default value if
prompted during the instantiation process. The user is
prompted if no user parameter value has been defined for this
parameter. Set this parameter to 'Y" to allow a user to override
the default value or set this parameter to 'N' to not allow an
override.
Exceptions
Table 23-28 CREATE_TEMPLATE_PARM Function Exceptions
Exception Description
miss_refresh_template The specified refresh template name is invalid or missing.
dupl_template_parm A parameter of the same name has already been defined for the
specified deployment template.
Returns

Table 23-29 CREATE _TEMPLATE PARM Function Returns

Return Value Description
<system-generated System-generated number used internally by Oracle.
number>

DBMS_REPCAT_RGT 23-27

CREATE_USER_AUTHORIZATION Function

Usage Notes

Because the CREATE_TEMPLATE_PARMNction utilizes a CLOB you must use the
DBMS_LOBackage when using the CREATE_TEMPLATE_PARMNction. The
following example illustrates how to use the DBMS_LORackage with the CREATE _
TEMPLATE_PARKunNction:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;
aNUMBER,;
BEGIN
DBMS_LOB.CREATETEMPORARY (templob, TRUE, DBMS_LOB.SESSION);
tempstring :='REGION 20,
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
a:=DBMS_REPCAT_RGT.CREATE TEMPLATE_PARM(
refresh_template_name =>'rgt_personnel,
parameter_name => region,
default_parm_value =>templob,
prompt_string => "Enter your region ID?,
user_override =>'Y";
DBMS_LOB.FREETEMPORARY (temploby);
END;
/

CREATE_USER_AUTHORIZATION Function

Syntax

This function authorizes specific users to instantiate private deployment templates.
Users not authorized for a private deployment template are not able to instantiate
the private template. This function adds a row to the DBA_REPCAT_USER _
AUTHORIZATIONSview.

Before you authorize a user, verify that the user exists at the master site where the
user will instantiate the deployment template. The number returned by this
function is used internally by Oracle to manage deployment templates.

DBMS_REPCAT_RGT.CREATE_USER_AUTHORIZATION (
user_name IN VARCHAR?,

refresh_template_name IN VARCHAR?2)

retum NUMBER;

23-28 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Parameters
Table 23-30 CREATE_USER_AUTHORIZATION Function Parameters
Parameter Description
user_name Name of the user that you want to authorize to instantiate the
specified template. Specify multiple users by separating user
names with a comma (for example, john, mike, bob’)
refresh_template_name Name of the template that you want to authorize the specified
user to instantiate.
Exceptions
Table 23-31 CREATE_USER_AUTHORIZATION Function Exceptions
Exception Description
miss_user User name supplied is invalid or does not exist.
miss_refresh_template Refresh template name supplied is invalid or does not exist.
dupl_user_authorization An authorization has already been created for the specified
user and deployment template. See the ALL_REPCAT_USER_
AUTHORIZATIONSview for a listing of template
authorizations.
Returns

Table 23-32 CREATE _USER _AUTHORIZATION Function Returns

Return Value Description
<system-generated System-generated number used internally by Oracle.
number>

CREATE_USER_PARM_VALUE Function

This function predefines deployment template parameter values for specific users.
For example, if you want to predefine the region parameter as west for user 33456,
then you would use the this function.

Any values specified with this function take precedence over default values
specified for the template parameter. The number returned by this function is used
internally by Oracle to manage deployment templates.

DBMS_REPCAT_RGT 23-29

CREATE_USER_PARM_VALUE Function

Syntax
DBMS_REPCAT RGT.CREATE_USER PARM_VALUE (
refresh_template name IN VARCHAR2,
parameter_name IN VARCHAR?2,
user_name IN VARCHAR?2,
parm_value IN CLOB:=NULL)
retum NUMBER,;
Parameters
Table 23-33 CREATE_USER_PARM_VALUE Function Parameters
Parameter Description
refresh_template_name Specifies the name of the deployment template that contains the
parameter you are creating a user parameter value for.
parameter_name Name of the template parameter that you are defining a user
parameter value for.
user_name Specifies the name of the user that you are predefining a user
parameter value for.
parm_value The predefined parameter value that will be used during the
instantiation process initiated by the specified user.
Exceptions

Table 23-34 CREATE_USER_PARM_VALUE Function Exceptions

Exception Description
miss_refresh_template Specified deployment template name is invalid or missing.
dupl_user_parm_values A parameter value for the specified user, parameter, and

deployment template has already been defined. Query the DBA_
REPCAT_USER_PARM_VALUEiBw for a listing of existing user
parameter values.

miss_template_parm Specified deployment template parameter name is invalid or
missing.
miss_user Specified user name is invalid or missing.

23-30 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Returns

Table 23-35 CREATE_USER_PARM_VALUE Function Returns

Return Value Description
<system-generated System-generated number used internally by Oracle.
number>

Usage Notes

Because the CREATE_USER_PARM_VALfihction utilizes a CLOB you must use
the DBMS_L OBackage when using the this function. The following example
illustrates how to use the DBMS_LORBackage with the CREATE_USER_PARM _
VALUEfunction:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;
aNUMBER,;
BEGIN
DBMS_LOB.CREATETEMPORARY (templob, TRUE, DBMS_LOB.SESSION);
tempstring :='REGION 20,
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
a:=DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE(
refresh_template_name =>'rgt_personnel,
parameter_name => region,
user_name =>'BOB,
user_parm_value =>templob);
DBMS_LOB.FREETEMPORARY (temploby);
END;
/

DELETE_RUNTIME_PARMS Procedure

Use this procedure before instantiating a deployment template to delete a runtime
parameter value that you defined using the INSERT_RUNTIME_PARM§@rocedure.

Syntax

DBMS_REPCAT_RGT.DELETE_RUNTIME_PARMS(
runime_parm_id IN NUMBER,
parameter_ name IN VARCHARY),

DBMS_REPCAT_RGT 23-31

DROP_ALL_OBJECTS Procedure

Parameters

Exceptions

Table 23-36 DELETE_RUNTIME_PARMS Procedure Parameters

Parameter Description

runtime_parm _id Specifies the identification that you previously assigned the
runtime parameter value to (this value was retrieved using the
GET_RUNTIME_PARM_IBunction).

parameter_name Specifies the name of the parameter value that you want to drop
(query the DBA_REPCAT_TEMPLATE_PARMi8w for a list of
deployment template parameters).

Table 23-37 DELETE _RUNTIME_PARMS Procedure Exceptions

Exception Description
miss_template_parm The specified deployment template parameter name is invalid or
missing.

DROP_ALL_OBJECTS Procedure

Syntax

This procedure allows the DBA to drop all objects or specific object types from a
deployment template.

Caution: This is a dangerous procedure that cannot be undone.

DBMS_REPCAT RGT.DROP_ALL OBJECTS(
refresh_template_name IN VARCHAR2,
object_type IN VARCHAR2 := NULL);

23-32 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Parameters

Exceptions

Table 23-38 DROP_ALL_OBJECTS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the objects that

you want to drop.

object_type If NULL, then all objects in the template are dropped. If an object

type is specified, then only objects of that type are dropped.
Obijects of the following type may be specified:

SNAPSHOT PROCEDURE
INDEX FUNCTION

TABLE PACKAGE

VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

Table 23-39 DROP_ALL_OBJECTS Procedure Exceptions

Exception Description
miss_refresh_template Specified deployment template name is invalid or does not exist.
bad_object type Obiject type is specified incorrectly. See Table 23-38 for a list of

valid object types.

DROP_ALL_TEMPLATE_PARMS Procedure

Syntax

This procedure lets you drop template parameters for a specified deployment
template. You can use this procedure to drop all parameters that are not referenced
by a template object or to drop from the template all objects that reference any
parameter, along with all of the parameters themselves.

Caution: This is a dangerous procedure that cannot be undone.

DBMS_REPCAT RGT.DROP_ALL TEMPLATE_PARMS (

refresh_template_name IN VARCHAR2,
drop_objects IN VARCHARZ :=n);

DBMS_REPCAT_RGT 23-33

DROP_ALL_TEMPLATE_SITES Procedure

Parameters

Table 23-40 DROP_ALL_TEMPLATE_PARMS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the parameters
and objects that you want to drop.

drop_objects If no value is specified, then this parameter defaults to N, which
drops all parameters not referenced by a template object.

If Y is specified, then all objects that reference any template
parameter and the template parameters themselves are dropped.
The objects are dropped from the template, not from the
database.

Exceptions

Table 23-41 DROP_ALL_TEMPLATE_PARMS Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

DROP_ALL_TEMPLATE_SITES Procedure

This procedure removes all entries from the DBA_ REPCAT_TEMPLATE_SITESGiew,
which keeps a record of sites that have instantiated a particular deployment
template.

Caution: This is a dangerous procedure that cannot be undone.

Syntax

DBMS_REPCAT_RGT.DROP_ALL_TEMPLATE_SITES (
refresh_template_name IN VARCHAR2);

Parameters

Table 23-42 DROP_ALL _TEMPLATE_SITES Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the sites that
you want to drop.

23-34 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Exceptions

Table 23-43 DROP_ALL _TEMPLATE_SITES Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

DROP_ALL_TEMPLATES Procedure

This procedure removes all deployment templates at the site where the procedure is
called.

Caution: This is a dangerous procedure that cannot be undone.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_TEMPLATES;

Parameters
None

DROP_ALL_USER_AUTHORIZATIONS Procedure

This procedure enables the DBA to drop all user authorizations for a specified
deployment template. Executing this procedure removes rows from the DBA _
REPCAT_USER_AUTHORIZATIONSew.

This procedure might be implemented after converting a private template to a
public template and the user authorizations are no longer required.

Syntax

DBMS_REPCAT RGT.DROP_ALL USER AUTHORIZATIONS (
refresh_template_name IN VARCHAR2);

DBMS_REPCAT_RGT 23-35

DROP_ALL_USER_PARM_VALUES Procedure

Parameters

Exceptions

Table 23-44 DROP_ALL _USER_AUTHORIZATIONS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the user
authorizations that you want to drop.

Table 23-45 DROP_ALL _USER_AUTHORIZATIONS Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

DROP_ALL_USER_PARM_VALUES Procedure

Syntax

This procedure drops user parameter values for a specific deployment template.
This procedure is very flexible and enables you to define a set of user parameter
values to be deleted.

For example, defining the parameters shown in the following table has the
described results.

Parameter Result of Defining the Parameter

refresh_template_ Drops all user parameters for the specified deployment template
name

refresh_template_ Drops all of the specified user parameters for the specified

name and user_name deployment template

refresh_template_ Drops all user parameter values for the specified deployment
name and parameter_ template parameter

name

refresh_template_ Drops the specified user’s value for the specified deployment
name, parameter_ template parameter (equivalent to drop_user_parm)

name, and user_name

DBMS_REPCAT _RGT.DROP_ALL USER PARMS (
refresh_template_name IN VARCHAR2,
user_name IN VARCHAR?2,

23-36 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

parameter_name IN VARCHAR?);

Parameters
Table 23-46 DROP_ALL _USER_PARMS Procedure Parameters
Parameter Description
refresh_template_name Name of the deployment template that contains the parameter
values that you want to drop.
user_name Name of the user whose parameter values you want to drop.
parameter_name Template parameter that contains the values that you want to
drop.
Exceptions

Table 23-47 DROP_ALL _USER_PARMS Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.
miss_user User name specified is invalid or does not exist.
miss_user_parm_values Deployment template, user, and parameter combination does

not exist in the DBA_REPCAT_USER_PARM_VALUESW.

DROP_REFRESH_TEMPLATE Procedure

This procedure drops a deployment template. Dropping a deployment template has
a cascading effect, removing all related template parameters, user authorizations,
template objects, and user parameters (this procedure does not drop template sites).

Syntax

DBMS_REPCAT_RGT.DROP_REFRESH_TEMPLATE (
refresh_template_name IN VARCHAR?2);

DBMS_REPCAT_RGT 23-37

DROP_SITE_INSTANTIATION Procedure

Parameters

Exceptions

Table 23-48 DROP_REFRESH_TEMPLATE Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template to be dropped.

Table 23-49 DROP_REFRESH_TEMPLATE Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist. Query the DBA_REPCAT_REFRESH_TEMPLAT&Sw for
a list of deployment templates.

DROP_SITE_INSTANTIATION Procedure

Syntax

This procedure drops a template instantiation at any target site. This procedure
removes all related metadata at the master site and disables the specified site from
refreshing its materialized views.

DBMS_REPCAT_RGT.DROP_SITE_INSTANTIATION (
refresh_template_name IN VARCHAR?2,
user_name IN VARCHAR?Z2,
site_name IN VARCHAR2);

Table 23-50 DROP_SITE_INSTANTIATION Procedure Parameters

Parameter Description
refresh_template_name The name of the template that contains the site to be dropped.
user_name The name of the user who originally instantiated the template

at the remote materialized view site. Query the ALL_REPCAT_
TEMPLATE_SITESview to see the users that instantiated
templates. See the ALL_REPCAT_TEMPLATE_SITESiew on
page 25-10 for more information.

site_name Identifies the template site to be dropped.

23-38 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Exceptions

Table 23-51 DROP_SITE_INSTANTIATION Procedure Exceptions

Exception Description

miss_refresh_template Th_e deployment template name specified is invalid or does not
exist.

miss_user The username specified does not exist.

miss_template_site The deployment template has not been instantiated for user and
site.

DROP_TEMPLATE_OBJECT Procedure

Syntax

Parameters

This procedure removes a template object from a specific deployment template. For
example, a DBA would use this procedure to remove an outdated materialized view
from a deployment template. Changes made to the template are reflected at new
sites instantiating the deployment template. Remote sites that have already
instantiated the template must re-instantiate the deployment template to apply the
changes.

DBMS_REPCAT_RGT.DROP_TEMPLATE_OBJECT (
refresh_template_name IN VARCHAR2,

object name IN VARCHAR2,

object _type IN VARCHARY2);

Table 23-52 DROP_TEMPLATE_OBJECT Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template from which you are dropping
the object.

object_ name Name of the template object to be dropped.

DBMS_REPCAT_RGT 23-39

DROP_TEMPLATE_PARM Procedure

Exceptions

Table 23-52 DROP_TEMPLATE_OBJECT Procedure Parameters (Cont.)

Parameter Description
object type The type of object that is to be dropped. Objects of the following
type may be specified:
SNAPSHOT PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

Table 23-53 DROP_TEMPLATE_OBJECT Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

miss_template_object The template object specified is invalid or does not exist. Query

the DBA_REPCAT_TEMPLATE_OBJECVERwW to see a list of
deployment template objects.

DROP_TEMPLATE_PARM Procedure

Syntax

Parameters

This procedure removes an existing template parameter from the DBA_REPCAT _
TEMPLATE_PARM@ew. This procedure is useful when you have dropped a
template object and a particular parameter is no longer needed.

DBMS_REPCAT_RGT.DROP_TEMPLATE_PARM (
refresh_template_name IN VARCHAR2,
parameter name IN VARCHARY2);

Table 23-54 DROP_TEMPLATE_PARM Procedure Parameters

Parameter Description

refresh_template_name The deployment template name that has the parameter that you
want to drop

23-40 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Exceptions

Table 23-54 DROP_TEMPLATE_PARM Procedure Parameters (Cont.)

Parameter Description

parameter_name Name of the parameter that you want to drop.

Table 23-55 DROP_TEMPLATE_PARM Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

miss_template_parm The parameter name specified is invalid or does not exist. Query

the DBA_ REPCAT_TEMPLATE_PARMiSw to see a list of
template parameters.

DROP_USER_AUTHORIZATION Procedure

Syntax

Parameters

This procedure removes a user authorization entry from the DBA_REPCAT_USER _
AUTHORIZATIONSview. This procedure is used when removing a user’s template
authorization. If a user’s authorization is removed, then the user is no longer able to
instantiate the target deployment template.

See Also: "DROP_ALL_USER_AUTHORIZATIONS Procedure"
on page 23-35

DBMS_REPCAT_RGT.DROP_USER_AUTHORIZATION (
refresh_template_name IN VARCHAR2,
user_name IN VARCHARY),

Table 23-56 DROP_USER_AUTHORIZATION Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template from which the user’s
authorization is being removed.

user_name Name of the user whose authorization is being removed.

DBMS_REPCAT_RGT 23-41

DROP_USER_PARM_VALUE Procedure

Exceptions

Table 23-57 DROP_USER_AUTHORIZATION Procedure Exceptions

Exception Description
miss_user Specified user name is invalid or does not exist.
miss_user_authorization Specified user and deployment template combination does

not exist. Query the DBA_REPCAT_USER_
AUTHORIZATIONSVview to see a list of user/deployment
template authorizations.

miss_refresh_template Specified deployment template name is invalid or does not
exist.

DROP_USER_PARM_VALUE Procedure

Syntax

Parameters

This procedure removes a predefined user parameter value for a specific
deployment template. This procedure is often executed after a user’s template
authorization has been removed.

DBMS_REPCAT_RGT.DROP_USER_PARM_VALUE (
refresh_template_name IN VARCHAR2,
parameter_name IN VARCHARZ,
user_name IN VARCHAR?),

Table 23-58 DROP_USER_PARM_VALUE Procedure Parameters

Parameter Description

refresh_template_name Deployment template name that contains the parameter value
that you want to drop.

parameter_name Parameter name that contains the predefined value that you
want to drop.

user_name Name of the user whose parameter value you want to drop.

23-42 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Exceptions

Table 23-59 DROP_USER_PARM_VALUE Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not
exist.

miss_user User name specified is invalid or does not exist.

miss_user_parm_values Deployment template, user, and parameter combination
does not exist in the DBA_REPCAT_USER_PARM_VALUES
view.

GET_RUNTIME_PARM_ID Function

Syntax

Parameters

Returns

This function retrieves an identification to be used when defining a runtime
parameter value. All runtime parameter values are assigned to this identification
and are also used during the instantiation process.

DBMS_REPCAT RGT.GET_RUNTIME_PARM ID
RETURN NUMBER;

None

Table 23-60 GET_RUNTIME_PARM_ID Function Returns

Return Value Corresponding Datatype
<system-generated Runtime parameter values are assigned to the system-generated
number> number and are also used during the instantiation process.

INSERT_RUNTIME_PARMS Procedure

This procedure defines runtime parameter values prior to instantiating a template.
This procedure should be used to define parameter values when no user parameter
values have been defined and you do not want to accept the default parameter
values.

DBMS_REPCAT_RGT 23-43

INSERT_RUNTIME_PARMS Procedure

Before using the this procedure, be sure to execute the GET_RUNTIME_PARM_ID
function to retrieve a parameter identification to use when inserting a runtime
parameter. This identification is used for defining runtime parameter values and
instantiating deployment templates.

Syntax
DBMS_REPCAT_RGT.INSERT_RUNTIME_PARMS (
runime_parm_id IN NUMBER,
parameter name IN VARCHAR?Z,
parameter_value IN CLOB);
Parameters
Table 23-61 INSERT_RUNTIME_PARMS Procedure Parameters
Parameter Description
runime_parm _id The identification retrieved by the GET_RUNTIME_PARM_ID
function. This identification is also used when instantiating the
deployment template. Be sure to use the same identification for all
parameter values for a deployment template.
parameter_name Name of the template parameter for which you are defining a
runtime parameter value. Query the DBA_REPCAT_TEMPLATE_
PARMSriew for a list of template parameters.
parameter_value The runtime parameter value that you want to use during the
deployment template instantiation process.
Exceptions

Table 23-62 INSERT_RUNTIME_PARMS Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does
not exist.

miss_user The user name specified is invalid or does not exist.

miss_user_parm_values The deployment template, user, and parameter combination
does not exist in the DBA_REPCAT_USER_PARM_VALUES
view.

23-44 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Usage Notes

Because the this procedure utilizes a CLOB you must use the DBMS_LOBackage
when using the INSERT_RUNTIME_PARMBrocedure. The following example
illustrates how to use the DBMS_LORackage with the INSERT_RUNTIME_PARMS
procedure:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;
BEGIN
DBMS_LOB.CREATETEMPORARY (templob, TRUE, DBMS_LOB.SESSION);
tempstring :='REGION 20,
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
DBMS_REPCAT_RGT.INSERT_RUNTIME_PARMS(
runtime_parm_id => 20,
parameter_name => 'region,
parameter_value =>templob);
DBMS_LOB.FREETEMPORARY (temploby);
END;
/

INSTANTIATE_OFFLINE Function

This function generates a script at the master site that is used to create the
materialized view environment at the remote materialized view site while the
materialized view site disconnected from the master (that is, while the materialized
view site is offline). This generated script should be used at remote materialized
view sites that are not able to remain connected to the master site for an extended
amount of time, as the instantiation process at the remote materialized view site
may be lengthy (depending on the amount of data that is populated to the new
materialized views). This function must be executed separately for each user
instantiation.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including Replication Manager,
during the distribution of deployment templates. The number returned by this
function is used to retrieve the appropriate information from the USER_REPCAT _
TEMP_OUTPUTemporary view.

DBMS_REPCAT_RGT 23-45

INSTANTIATE_OFFLINE Function

Note: This function is used to perform an offline instantiation of a
deployment template. Additionally, this function is for replication
administrators who are instantiating for another user. Users
wanting to perform their own instantiation should use the public
version of the INSTANTIATE_OFFLINE function. See the
"INSTANTIATE_OFFLINE Function" on page 23-45 for more
information.

This function should not be confused with the procedures in the
DBMS_OFFLINE_O@®ackage (used for performing an offline
instantiation of a master table) or with the procedures in the DBMS _
OFFLINE_SNAPSHOPpackage (used for performing an offline
instantiation of a materialized view). See these respective packages
for more information on their usage.

DBMS_REPCAT_RGT.INSTANTIATE_OFFLINE(
refresh_template_name IN VARCHAR2,

site_name IN VARCHAR?,

user_name IN VARCHAR2 :=NULL,
runtime_parm_id IN NUMBER :=-1e-130,
next_date IN DATE =SYSDATE,
interval IN VARCHAR?2 :='SYSDATE +1,
use_default gowner IN BOOLEAN :=true)
retum NUMBER;

23-46 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Parameters

Table 23-63 INSTANTIATE_OFFLINE Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to be instantiated.

site_name Name of the remote site that is instantiating the deployment
template.

user_name Name of the authorized user who is instantiating the
deployment template.

runtime_parm _id If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMBrocedure, then specify the
identification used when creating the runtime parameters (the
identification was retrieved by using the GET_RUNTIME_PARM_
ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.

Exceptions

Table 23-64 INSTANTIATE_OFFLINE Function Exceptions

Exception Description
miss_refresh_template Deployment template name specified is invalid or does not exist.
miss_user Name of the authorized user is invalid or does not exist. Verify

that the specified user is listed in the DBA_REPCAT_USER_
AUTHORIZATIONSVview. If user is not listed, then the specified
user is not authorized to instantiate the target deployment
template.

DBMS_REPCAT_RGT 23-47

INSTANTIATE_ONLINE Function

Returns

Table 23-65 INSTANTIATE_OFFLINE Function Returns

Return Value Description
<system-generated Specifies the generated system number for the output_id when
number> you select from the USER_REPCAT_TEMP_OUTPtémporary

view to retrieve the generated instantiation script.

INSTANTIATE_ONLINE Function

Syntax

This function generates a script at the master site that is used to create the
materialized view environment at the remote materialized view site while the
materialized view site is connected to the master (that is, while the materialized
view site is online). This generated script should be used at remote materialized
view sites that are able to remain connected to the master site for an extended
amount of time, as the instantiation process at the remote materialized view site
may be lengthy (depending on the amount of data that is populated to the new
materialized views). This function must be executed separately for each user
instantiation.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including Replication Manager,
during the distribution of deployment templates. The number returned by this
function is used to retrieve the appropriate information from the USER_REPCAT _
TEMP_OUTPUlemporary view.

Note: This function is for replication administrators who are
instantiating for another user. Users wanting to perform their own
instantiation should use the public version of the INSTANTIATE _
OFFLINE function, described in "INSTANTIATE_OFFLINE
Function" on page 23-45 section.

DBMS_REPCAT_RGT.INSTANTIATE_ONLINE(
refresh_template_name IN VARCHAR2,

site_name IN VARCHAR2 :=NULL,
user_name IN VARCHAR2 :=NULL,
runime_parm_id ~ IN NUMBER :=-1e-130,
next_date IN DATE =SYSDATE,
interval IN VARCHAR2 ='SYSDATE + 1,

23-48 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

use_default gowner IN BOOLEAN :=true)
retum NUMBER,;

Parameters

Table 23-66 INSTANTIATE_ONLINE Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to be instantiated.

site_name Name of the remote site that is instantiating the deployment
template.

user_name Name of the authorized user who is instantiating the

deployment template.

runtime_parm _id If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMBrocedure, then specify the
identification used when creating the runtime parameters (the
identification was retrieved by using the GET_RUNTIME_PARM_
ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.

DBMS_REPCAT_RGT 23-49

LOCK_TEMPLATE_EXCLUSIVE Procedure

Exceptions

Table 23-67 INSTANTIATE_ONLINE Function Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

miss_user Name of the authorized user is invalid or does not exist. Verify
that the specified user is listed in the DBA_REPCAT_USER_
AUTHORIZATIONSVview. If user is not listed, then the specified
user is not authorized to instantiate the target deployment
template.

bad_pamms Not all of the template parameters were populated by the
defined user parameter values and/or template default values.
The number of predefined values may not have matched the
number of template parameters or a predefined value was
invalid for the target parameter (that is, type mismatch).

Returns

Table 23-68 INSTANTIATE_ONLINE Function Returns

Return Value Description
<system-generated Specifies the system-generated number for the output_id when
number> you select from the USER_REPCAT_TEMP_OUTPtémporary

view to retrieve the generated instantiation script.

LOCK_TEMPLATE_EXCLUSIVE Procedure

When a deployment template is being updated or modified, you should use the
LOCK_TEMPLATE_EXCLUSIVprocedure to prevent users from reading or
instantiating the template.

The lock is released when a ROLLBACKor COMMITis performed.

Note: This procedure should be executed before you make any
modifications to your deployment template.

Syntax
DBMS_REPCAT_RGT.LOCK_TEMPLATE_EXCLUSIVE();

23-50 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPCAT_RGT Subprograms

Parameters
None

LOCK_TEMPLATE_SHARED Procedure

The LOCK_TEMPLATE_SHAREocedure is used to make a specified deployment
template "read-only." This procedure should be called before instantiating a
template, as this ensures that nobody can change the deployment template while it
is being instantiated.

The lock is released when a ROLLBACKor COMMITis performed.

Syntax
DBMS_REPCAT_RGT.LOCK_TEMPLATE_SHAREDY);

Parameters
None

DBMS_REPCAT_RGT 23-51

LOCK_TEMPLATE_SHARED Procedure

23-52 Oracle9i Replication Management AP| Reference

24

DBMS_REPUTIL

DBMS_REPUTILcontains subprograms to generate shadow tables, triggers, and
packages for table replication, as well as subprograms to generate wrappers for
replication of standalone procedure invocations and packaged procedure
invocations. This package is referenced only by the generated code.

This chapter discusses the following topics:

« Summary of DBMS_REPUTIL Subprograms

DBMS_REPUTIL 24-1

Summary of DBMS_REPUTIL Subprograms

Summary of DBMS_REPUTIL Subprograms

Table 24-1 DBMS_REPUTIL Package Subprograms

Subprogram Description

"REPLICATION_OFF Modifies tables without replicating the modifications to any other
Procedure" on sites in the replication environment, or disables row-level

page 24-3 replication when using procedural replication.
"REPLICATION_ON Re-enables replication of changes after replication has been
Procedure" on temporarily suspended.

page 24-3

"REPLICATION_IS_ON Determines whether or not replication is running.
Function" on page 24-3

FROM_REMOTE Returns TRUEat the beginning of procedures in the internal

Function on page 24-4 replication packages, and returns FALSEat the end of these
procedures.

"GLOBAL_NAME Determines the global database name of the local database (the

Function" on page 24-4 global name is the returned value).

"MAKE_INTERNAL_ Synchronizes internal packages and tables in the replication

PKG Procedure" on catalog.

page 24-4 Note: Do not execute this procedure unless directed to do so by
Oracle Support Services.

"SYNC_UP_REP Synchronizes internal triggers and tables/materialized views in

Procedure" on the replication catalog.

page 24-5

Note: Do not execute this procedure unless directed to do so by
Oracle Support Services.

24-2 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPUTIL Subprograms

REPLICATION_OFF Procedure

Syntax

Parameters

This procedure enables you to modify tables without replicating the modifications
to any other sites in the replication environment. It also disables row-level
replication when using procedural replication. In general, you should suspend
replication activity for all master groups in your replication environment before
setting this flag.

DBMS_REPUTILREPLICATION_OFF();

None

REPLICATION_ON Procedure

Syntax

Parameters

This procedure re-enables replication of changes after replication has been
temporarily suspended.

DBMS_REPUTILREPLICATION_ON();

None

REPLICATION_IS_ON Function

Syntax

This function determines whether or not replication is running. A returned value of
TRUEindicates that the generated replication triggers are enabled. A return value of
FALSEindicates that replication is disabled at the current site for the replication
group.

The returning value of this function is set by calling the REPLICATION_ONor
REPLICATION_OFFprocedures in the DBMS_REPUTILpackage.

DBMS_REPUTIL.REPLICATION_IS_ON()
retum BOOLEAN,;

DBMS_REPUTIL 24-3

FROM_REMOTE Function

Parameters

None

FROM_REMOTE Function

Syntax

Parameters

This function returns TRUEat the beginning of procedures in the internal replication
packages, and returns FALSEat the end of these procedures. You may need to check
this function if you have any triggers that could be fired as the result of an update
by an internal package.

DBMS_REPUTILFROM_REMOTE()
retum BOOLEAN,;

None

GLOBAL_NAME Function

Syntax

Parameters

This function determines the global database name of the local database (the global
name is the returned value).

DBMS_REPUTIL.GLOBAL_NAME()
retum VARCHARZ,

None

MAKE_INTERNAL_PKG Procedure

This procedure synchronizes the existence of an internal package with a table or
materialized view in the replication catalog. If the table has replication support,
then execute this procedure to create the internal package. If replication support
does not exist, then this procedure destroys any related internal package. This
procedure does not accept the storage table of a nested table.

24-4 Oracle9i Replication Management AP| Reference

Summary of DBMS_REPUTIL Subprograms

Syntax

Parameters

Caution: Do not execute this procedure unless directed to do so
by Oracle Support Services.

DBMS_REPUTILMAKE_INTERNAL PKG (
canon_sname IN VARCHARZ,
canon_oname IN VARCHAR2);

Table 24-2 MAKE_INTERNAL_PKG Procedure Parameters

Parameter Description

canon_sname Schema containing the table to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

canon_oname Name of the table to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

SYNC_UP_REP Procedure

Syntax

This procedure synchronizes the existence of an internal trigger with a table or
materialized view in the replication catalog. If the table or materialized view has
replication support, then execute this procedure to create the internal replication
trigger. If replication support does not exist, then this procedure destroys any

related internal trigger. This procedure does not accept the storage table of a nested
table.

Caution: Do not execute this procedure unless directed to do so
by Oracle Support Services.

DBMS_REPUTILSYNC _UP_REP(
canon_sname IN VARCHAR2,
canon_oname IN VARCHAR2);

DBMS_REPUTIL 24-5

SYNC_UP_REP Procedure

Parameters

Table 24-3 SYNC_UP_REP Procedure Parameters

Parameter Description

canon_sname Schema containing the table or materialized view to be
synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

canon_oname Name of the table or materialized view to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

24-6 Oracle9i Replication Management AP| Reference

PartlV

Replication Data Dictionary Reference

Part IV describes data dictionary views that provide information about your
replication environment.

Part IV includes the following chapters:

« Chapter 25,"
« Chapter 26, "
« Chapter 27,"
« Chapter 28, "

Replication Catalog Views"
Replication Dynamic Performance Views"
Deferred Transaction Views"

Materialized View and Refresh Group Views"

25

Replication Catalog Views

When you install replication capabilities at a site, Oracle installs the replication
catalog, which consists of tables and views, at that site. This chapter contains these
topics:

« Summary of Replication Catalog Views

Caution: Do not modify the replication catalog tables directly.
Instead, use the procedures provided in the DBMS_REPCAT
package.

See Also: Chapter 10, "Monitoring a Replication Environment”

Replication Catalog Views 25-1

Summary of Replication Catalog Views

Summary of Replication Catalog Views
Many data dictionary tables have three corresponding views:

« AnALL_ view displays all the information accessible to the current user,
including information from the current user’s schema as well as information
from objects in other schemas, if the current user has access to those objects by
way of grants of privileges or roles.

« A DBA_view displays all relevant information in the entire database. DBA_
views are intended only for administrators. They can be accessed only by users
with the SELECT ANY TABLPrivilege. This privilege is assigned to the DBA
role when Oracle is initially installed.

« A USER_view displays all the information from the schema of the current user.
No special privileges are required to query these views.

The columns of the ALL_, DBA , and USER_views corresponding to a single data
dictionary table are usually nearly identical. Therefore, these views are described in
full only once in this chapter (for the ALL_ view). The views are listed without the
full description for DBA_and USER_views, but differences are noted.

As shown in Figure 25-1 on page 25-3, the replication catalog views are used by
master sites and materialized view sites to determine such information as what
objects are being replicated, where they are being replicated, and if any errors have
occurred during replication. Table 25-1 on page 25-4 lists all of the replication
catalog views.

25-2 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Figure 25-1
Master 1 (m1)
employees
employee_id | last_name | department_id | salary
100 King 90 8340
101 Kochhar 90 6650
103 Hunold 60 9725
104 Ernst 60 5890

DBA_REPGROUP

| GNAME | MASTER [STATUS

| SCHEMA_COMMENT |

[Rs—_[Y [NORMAL

Master 2 m2)

Replication Catalog Views and Replicated Objects

employees
employee_id | last_ name | department_id | salary
100 King 90 8340
101 Kochhar 90 6650
103 Hunold 60 9725
104 Ernst 60 5890

DBA_REPGROUP

[GNAME | MASTER [STATUS

[SCHEMA_COMMENT |

[| [RS [y [NORMAL |
DBA_REPSITES DBA_REPSITES
GNAME | DBLINK [MASTERDEF | SNAPMASTER |MASTER_ GNAME | DBLINK |MASTERDEF |SNAPMASTER | MASTER_
COMMENT COMMENT
RS M1 Y NULL RS M1 Y NULL
RS M2 N NULL RS M2 N NULL
DBA_REPOBJECT DBA_REPOBJECT
GNAME | ONAME TYPE STATUS | OBJECT_ GNAME |ONAME TYPE STATUS | OBJECT_
COMMENT COMMENT
RS EMPLOYEES TABLE VALID RS EMPLOYEES TABLE VALID
RS EMPLOYEES$RP | PACKAGE VALID RS EMPLOYEES$RP | PACKAGE VALID
RS EMPLOYEES$RP | PACKAGE BODY | VALID RS EMPLOYEES$RP | PACKAGE BODY | VALID
Materialized View 1 (department 90) Materialized View 2 (department 60)
employees employees
employee id | last name | department id | salary employee id | last name | department id | salary
100 King 90 8340 103 Hunold 60 9725
101 Kochhar 90 6650 104 Ernst 60 5890
SELECT employee_id, last_name, department_id, SELECT employee_id, last_name, department_id,
salary FROM employees@m1 WHERE department_id = 90; salary FROM employees@m2 WHERE department_id = 60;
DBA_REPGROUP DBA_REPGROUP
| GNAME [MASTER | STATUS | SCHEMA_COMMENT | | GNAME | MASTER | STATUS | SCHEMA_COMMENT |
[RS [N [NULL 4_ [RS [N [NULL
DBA_REPSITES DBA_REPSITES
GNAME | DBLINK [MASTERDEF |SNAPMASTER |MASTER_ > GNAME | DBLINK | MASTERDEF | SNAPMASTER |MASTER_
COMMENT COMMENT
RS M1 Y Y RS M1 Y N
RS M2 N N RS M2 N Y
DBA_REPOBJECT DBA_REPOBJECT
GNAME [ONAME TYPE STATUS | OBJECT_ GNAME [ONAME TYPE STATUS | OBJECT_
COMMENT COMMENT
RS EMPLOYEES SNAPSHOT VALID RS EMPLOYEES SNAPSHOT VALID

Replication Catalog Views 25-3

Summary of Replication Catalog Views

Table 25-1 Replication Catalog Views

ALL_ Views DBA_ Views

USER_ Views

ALL_REPCAT_REFRESH_TEMPLATES
ALL_REPCAT_TEMPLATE_OBJECTS
ALL_REPCAT_TEMPLATE_PARMS
ALL_REPCAT_TEMPLATE_SITES

DBA_REGISTERED_MVIEW_GROUPS -
DBA_REPCAT_REFRESH_TEMPLATES
DBA_REPCAT_TEMPLATE_OBJECTS
DBA_REPCAT_TEMPLATE_PARMS
DBA_REPCAT_TEMPLATE_SITES

USER_REPCAT_REFRESH_TEMPLATES
USER_REPCAT_TEMPLATE_OBJECTS
USER_REPCAT_TEMPLATE_PARMS
USER_REPCAT_TEMPLATE_SITES

ALL_REPCAT_USER_AUTHORIZATIONS DBA_REPCAT_USER_AUTHORIZATIONS USER_REPCAT_USER_AUTHORIZATION

ALL_REPCAT_USER_PARM_VALUES
ALL_REPCATLOG
ALL_REPCOLUMN
ALL_REPCOLUMN_GROUP
ALL_REPCONFLICT

ALL_REPDDL
ALL_REPGENOBJECTS
ALL_REPGROUP
ALL_REPGROUP_PRIVILEGES
ALL_REPGROUPED_COLUMN
ALL_REPKEY_COLUMNS
ALL_REPOBJECT
ALL_REPPARAMETER_COLUMN
ALL_REPPRIORITY
ALL_REPPRIORITY_GROUP
ALL_REPPROP
ALL_REPRESOL_STATS_CONTROL
ALL_REPRESOLUTION
ALL_REPRESOLUTION_METHOD
ALL_REPRESOLUTION_STATISTICS
ALL_REPSITES

DBA_REPCAT_USER_PARM_VALUES
DBA_REPCATLOG
DBA_REPCOLUMN
DBA_REPCOLUMN_GROUP
DBA_REPCONFLICT
DBA_REPDDL
DBA_REPEXTENSIONS -
DBA_REPGENOBJECTS
DBA_REPGROUP
DBA_REPGROUP_PRIVILEGES
DBA_REPGROUPED_COLUMN
DBA_REPKEY_COLUMNS
DBA_REPOBJECT
DBA_REPPARAMETER_COLUMN
DBA_REPPRIORITY U
DBA_REPPRIORITY_GROUP
DBA_REPPROP
DBA_REPRESOL_STATS_CONTROL
DBA_REPRESOLUTION
DBA_REPRESOLUTION_METHOD
DBA_REPRESOLUTION_STATISTICS
DBA_REPSITES U

DBA_REPSITES_NEW -

USER_REPCAT_USER_PARM_VALUES
USER_REPCATLOG
USER_REPCOLUMN
USER_REPCOLUMN_GROUP

USER_REPCONFLICT
USER_REPDDL

USER_REPGENOBJECTS
USER_REPGROUP
USER_REPGROUP_PRIVILEGES

USER_REPGROUPED_COLUMN
USER_REPKEY_COLUMNS
USER_REPOBJECT
USER_REPPARAMETER_COLUMN
SER_REPPRIORITY
USER_REPPRIORITY_GROUP
USER_REPPROP
USER_REPRESOL_STATS_CONTROL
USER_REPRESOLUTION
USER_REPRESOLUTION_METHOD
USER_REPRESOLUTION_STATISTICS
SER_REPSITES

25-4 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

DBA_REGISTERED_MVIEW_GROUPS

DBA_REGISTERED_ MVIEW_GROUI®Es all the registered materialized view
groups at the master site or master materialized view site.

Column Datatype NULL Description
NAME VARCHAR2(30) - Name of the materialized view replication group
MVIEW_SITE VARCHAR2(128) - Site of the materialized view replication group
GROUP_COMMENT VARCHAR2(80) - Description of the materialized view replication group
VERSION VARCHAR2(8) - Oracle version of the materialized view replication
group
Note: Oracle9i materialized view groups show Oracle8.
FNAME VARCHAR2(30) - Name of the flavor of the materialized view group
OWNER VARCHAR2(30) - Owner of the materialized view replication group

ALL_REPCAT_REFRESH_TEMPLATES

Contains global information about each deployment template accessible to the
current user, such as the template name, template owner, what refresh group the
template objects belong to, and the type of template (private or public).

When the DBA adds materialized view definitions to the template container, the
DBA references the appropriate REFRESH_TEMPLATE_NAMENyY materialized
views added to a specific template are added to the refresh group specified in
REFRESH_GROUP_NAME

Furthermore, deployment templates created as public are available to all users who
can connect to the master site. Deployment templates created as private are limited
to those users listed in the ALL_ REPCAT_USER_AUTHORIZATIONSew.

Related Views:
« DBA_REPCAT_REFRESH_TEMPLAT#Scribes all deployment templates in
the database.

« USER_REPCAT_REFRESH_TEMPLATEScribes all deployment templates
owned by the current user.

Replication Catalog Views 25-5

ALL_REPCAT_TEMPLATE_OBJECTS

Column Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) - Name of the deployment template.

OWNER VARCHAR2(30) - Owner of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) - Name of the refresh group to which the template
objects are added during the instantiation process.

TEMPLATE_COMMENT VARCHAR2(2000) - User supplied comment.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.

If N then the deployment template is private.

ALL_REPCAT_TEMPLATE_OBJECTS

Contains the individual object definitions that are contained in each deployment
template accessible to the current user. Individual objects are added to a template
by specifying the target template in REFRESH_TEMPLATE_NAME

DDL_TEXTcan contain variables to create parameterized templates. Variables are
created by placing a colon (:) at the beginning of the variable name (for example,
:region). Templates that use parameters allow for greater flexibility during the
template instantiation process (that is, in defining data sets specific for a
materialized view site).

When the object is added to the template, the specified DDL is examined and if any
parameters have been defined, Oracle automatically adds the parameter to the
ALL REPCAT_TEMPLATE_PARMS&w.

Related Views:

« DBA REPCAT TEMPLATE_OBJECT8scribes the object definitions for all
deployment templates in the database.

« USER_REPCAT TEMPLATE_OBJECd&cribes the object definitions for each
deployment template owned by the current user.

25-6 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column Datatype NULL Description
REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT NULhe name of the deployment template.
OBJECT_NAME VARCHAR2(30) NOT NULL The name of the deployment template object.
OBJECT_TYPE VARCHAR2(17) - The object type of the deployment template object:
FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TABLE
OPERATOR TRIGGER
PACKAGE TYPE
PACKAGEBODY TYPEBODY
PROCEDURE VIEW
DDL_NUM NUMBER NOT NULLUnNdicates the order in which to execute the DDL
statements stored in the DDL_TEXTcolumn when
multiple DDL statements are used to create the
object.
DDL_TEXT CLOB(4000) - The DDL that is executed to create the deployment
template object.
MASTER_ROLLBACK_SEGMENT VARCHAR2(30) - The name of the rollback segment that is used
during the instantiation of the deployment template
object.
DERIVED_FROM_SNAME VARCHAR2(30) - If applicable, displays the schema that contains the
object from which the template object was created.
DERIVED_FROM_ONAME VARCHAR2(30) - If applicable, displays the name of the object from
which the template object was created.
FLAVOR_ID NUMBER - The flavor ID of the deployment template object.

Because the DDL_TEXTcolumn is defined as a CLOB you receive an error if you
simply try to perform a SELECTon the ALL_REPCAT_TEMPLATE_OBJECTN&ew. If
you do not need to see the object DDL, then use the following select statement (be
sure to exclude the DDL_TEXTparameter):

SELECT REFRESH_TEMPLATE.NAME, OBJECT NAME, OBJECT TYPE, MASTER ROLLBACK_SEG,
FLAVOR ID FROMDBA REPCAT TEMPLATE_OBJECTS;

The following script uses cursors and the DBMS_LOBRpackage to view the entire
contents of the ALL_REPCAT_TEMPLATE_OBJECTNew. Use this script to view
the entire contents of the ALL_ REPCAT_TEMPLATE_OBJECTNSew, including the
DDL_TEXTcolumn:

Replication Catalog Views 25-7

ALL_REPCAT_TEMPLATE_PARMS

SET SERVEROUTPUT ON

DECLARE
CURSOR mycursor IS
SELECT REFRESH_TEMPLATE_NAME, OBJECT_NAME, OBJECT_TYPE, DDL_TEXT,
MASTER_ROLLBACK_SEG, FLAVOR ID
FROM DBA_REPCAT_TEMPLATE_OBJECTS;
tempstring VARCHAR2(1000);
len NUMBER;
BEGIN
FOR myrec IN mycursor LOOP
len = DBMS_LOB.GETLENGTH(myrec.dd!_text);
DBMS_LOB.READ(myrec.ddl_text, len, 1, tempstring);
DBMS_OUTPUT.PUT_LINE(myrecrefresh_template_name]|' ||
myrec.object_namef["limyrec.object typel|"|ftempstring]|"|
myrec.master_rollback_seg||' ||myrec.flavor_id);
END LOOP;
END;
/

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information on using cursors. Also, see Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for more information on
using the DBMS_LOBRpackage and LOBs in general.

ALL_REPCAT_TEMPLATE_PARMS

Contains parameters defined in the object DDL for all templates accessible to the
current user. When an object is added to a template, the DDL is examined for
variables. Any found parameters are automatically added to this view.

You can also define default parameter values and a prompt string in this view.
These can make the templates easier to use during the instantiation process.

See Also: ALL_REPCAT_TEMPLATE_OBJECT# page 25-6

Related Views:
« DBA_REPCAT_TEMPLATE_PARM&cribes the template parameters for all
deployment templates in the database.

« USER_REPCAT_TEMPLATE_PARMNEcribes the template parameters for all
deployment templates owned by the current user.

25-8 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT NULhe name of the deployment template.

VARCHAR2(30) NOT NULL The owner of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) NOT NULName of the refresh group to which the template
objects are added to during the instantiation
process.

TEMPLATE_COMMENTS VARCHAR2(2000) - User specified comments.

VARCHAR2(1) - If Y then the deployment template is public.

PUBLIC_TEMPLATE

PARAMETER_NAME

PROMPT_STRING
USER_OVERRIDE

If Nthen the deployment template is private.
VARCHAR2(30) NOT NULLThe name of the parameter.

DEFAULT_PARM_VALUE CLOB(4000) - The default parameter value.
VARCHAR2(2000) - The prompt string for the parameter.
VARCHAR2(1) - If Y then the user can override the default parameter
value.

If Nthen the user cannot override the default
parameter value.

Because the DEFAULT_PARM_VALU#lumn is defined as a CLOB you receive an
error if you simply try to perform a SELECTon the ALL_ REPCAT_TEMPLATE_
PARMSriew. If you do not need to see the default parameter value, then use the
following select statement (be sure to exclude DEFAULT _PARM_VALUE

SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME, TEMPLATE_COMMENT,
PUBLIC_TEMPLATE, PARAMETER _NAME, PROMPT_STRING, USER_OVERRIDE
FROM DBA_REPCAT_TEMPLATE_PARMS;

The following script uses cursors and the DBMS_LOBRpackage to view the entire
contents of the ALL_REPCAT_TEMPLATE_PARM$w. Use this script to view the
entire contents of the ALL_REPCAT_TEMPLATE_PARMSw, including the
DEFAULT_PARM_VALU&lumn;

SET SERVEROUTPUT ON

Replication Catalog Views 25-9

ALL_REPCAT_TEMPLATE_SITES

DECLARE
CURSOR mycursor IS
SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME,
TEMPLATE_COMMENT, PUBLIC_TEMPLATE, PARAMETER_NAME, DEFAULT_PARM_VALUE,
PROMPT_STRING, USER_OVERRIDE
FROM DBA_REPCAT_TEMPLATE_PARMS;
tempstring VARCHAR2(1000);
len NUMBER;
BEGIN
FOR myrec IN mycursor LOOP
len:=DBMS_LOB.GETLENGTH(myrec.default_parm_value);
DBMS_LOB.READ(myrec.default_parm_value, len, 1, tempstring);
DBMS_OUTPUT.PUT_LINE(myrecrefresh_template_name]|' ||
myrec.owner|["||myrec.refresh_group_name["’|
myrec.template_comment]| ||myrec.public_template]| ||
myrec.parameter_name["|ftempstring]["|jmyrec.prompt_string|["|
myrec.user_ovenide);
END LOOP;
END;
/

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information on using cursors. Also, see Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for more information on
using the DBMS_LOBRackage and LOBs in general.

ALL_REPCAT_TEMPLATE_SITES

Contains information about the current status of template instantiation among the
sites of an enterprise network. This view contains information about instantiation
sites for deployment templates that are accessible to the current user. Specifically,
the DBA can monitor the installation and deletion of templates at specific sites.

Related Views:
« DBA REPCAT _TEMPLATE_SITES8escribes all remote instantiation sites for all
templates in the database.

« USER_REPCAT _TEMPLATE_SITESescribes remote instantiation sites for all
templates owned by the current user.

25-10 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT NULIName of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) - Name of the refresh group to which template objects
are added during the instantiation process.

TEMPLATE_OWNER VARCHAR2(30) - Name of the user who is considered the owner of
the deployment template.

USER_NAME VARCHAR2(30) NOT NULL The name of the user who instantiated the
deployment template.

SITE_NAME VARCHAR2(128) - Target materialized view site of the deployment
template.

REPAPI_SITE_NAME VARCHAR2(128) - This column is intended for use in a future release of
Oracle.

STATUS VARCHAR2(10) - Displays the status of the deployment template at

the target materialized view site:
0 = Not Installed

1 = Installed

-1 = Installed with errors

INSTANTIATION_DATE DATE - Displays when the template was instantiated. Is
NULL if the template has not yet been instantiated.

ALL_REPCAT_USER_AUTHORIZATIONS

Lists the authorized users for private deployment templates accessible to the
current user. Users listed in this view have the ability to instantiate the specified
template. Users not listed in this view cannot instantiate the deployment template.

Related Views:

« DBA REPCAT_USER_AUTHORIZATIONISts the authorized users for all the
private deployment templates in the database.

« USER_REPCAT _USER_AUTHORIZATI®isks the authorized users for private
deployment templates owned by the current user.

Replication Catalog Views 25-11

ALL_REPCAT USER_PARM_VALUES

Column Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT NULIName of the deployment template that a user has
been authorized to instantiate.

OWNER VARCHAR2(30) NOT NULL Name of the owner of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) NOT NULName of the refresh group to which template objects
are added during the instantiation process.

TEMPLATE_COMMENT VARCHAR2(2000) - User specified comment.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.

If Nthen the deployment template is private.

USER_NAME VARCHAR2(30) NOT NULL Name of the user who has been authorized to
instantiate the deployment template.

ALL_REPCAT USER_PARM_VALUES

This view describes the template parameters for all deployment templates
accessible to the current user. The DBA has the option of building a table of user
parameters prior to distributing the template for instantiation. When a template is
instantiated by a specified user, the values stored in the ALL_REPCAT_USER _
PARM_VALUESiew for the specified user are used automatically.

Related Views:
« DBA REPCAT_USER_PARM_VALU#Scribes the template parameters for all
deployment templates in the database.

« USER_REPCAT_USER_PARM_VALUfeScribes the template parameters for all
deployment templates owned by the current user.

25-12 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT NULhe name of the deployment template for which a
user parameter value has been defined.

OWNER VARCHAR2(30) NOT NULL The name of the owner of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) NOT NULName of the refresh group to which the template
objects are added to during the instantiation
process.

TEMPATE_COMMENT VARCHAR2(2000) - User specified comment.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.
If N then the deployment template is private.

PARAMETER_NAME VARCHAR2(30) NOT NULLThe name of the parameter for which a user
parameter value has been defined.

DEFAULT_PARM_VALUE CLOB(4000) - The default value for the parameter.

PROMPT_STRING VARCHAR2(2000) - The prompt string for the parameter.

PARM_VALUE CLOB(4000) - The parameter value that has been defined for the
specified user.

USER_NAME VARCHAR2(30) NOT NULL The username of the user for whom the specified

parameter value has been defined.

Replication Catalog Views 25-13

ALL_REPCAT USER_PARM_VALUES

Because DEFAULT_PARM_VALU&nd PARM_VALUEolumns are defined as CLOBSs
you receive an error if you simply try to perform a SELECTon the ALL_REPCAT _
USER_PARM_VALUB#ew. If you do not need to see the default or user parameter
values, then use the following select statement (be sure to exclude DEFAULT_PARM _
VALUEand PARM_VALUE

SELECT REFRESH_TEMPLATE._NAME, OWNER, REFRESH_GROUP_NAME, TEMPLATE_COMMENT,
PUBLIC_TEMPLATE, PARAMETER_NAME, PROMPT_STRING, USER_NAME
FROMDBA REPCAT USER PARM VALUES;

The following script uses cursors and the DBMS_LORpackage to view the entire
contents of the ALL_REPCAT_USER_PARM_VALUERw. Use this script to view
the entire contents of the ALL_ REPCAT_TEMPLATE_PARM&wW, including the
DEFAULT_PARM_VALU&d PARM_VALUEolumns:

SET SERVEROUTPUT ON

DECLARE
CURSOR mycursor IS
SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME,
TEMPLATE_COMMENT, PUBLIC_TEMPLATE, PARAMETER _NAME, DEFAULT_PARM_VALUE,
PROMPT_STRING, PARM_VALUE, USER_NAME
FROM DBA_REPCAT_USER PARM VALUES;
tempstring VARCHAR2(1000);
tempstring2 varchar2(1000);
len NUMBER;
BEGIN
FOR myrec IN mycursor LOOP
len:=DBMS_LOB.GETLENGTH(myrec.default_parm_value);
DBMS_LOB.READ(myrec.default_parm_value, len, 1, tempstring);
DBMS_OUTPUT.PUT_LINE(myrecrefresh_template_name]|' ||
myrec.owner|["|myrec.refresh_group_namej||
myrec.template_comment]| ||myrec.public_template][||
myrec.parameter_name]|"|tempstring]["‘lmyrec.prompt_string|"]|
tempstring2||' |Imyrec.user_name);
END LOOP;
END;
/

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information on using cursors. Also, see Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for more information on
using the DBMS_LOBRackage and LOBs in general.

25-14 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

ALL_REPCATLOG

Contains the interim status of any asynchronous administrative requests and any
error messages generated at each master site. All messages encountered while
executing a request are eventually transferred to the ALL_REPCATLOGiew at the
master site that originated the request. If an administrative request completes
without error, then ultimately all traces of this request are removed from the ALL _
REPCATLOGiew. This view contains administrative requests and error messages
that are accessible to the current user.

Related Views:

« DBA_REPCATLOG@escribes the status for all asynchronous administrative
requests and all error messages in the database.

« USER_REPCATLOG@escribes the status for all asynchronous administrative
requests and all error messages owned by the current user.

Replication Catalog Views 25-15

ALL_REPCOLUMN

Column Datatype NULL Description
ID NUMBER - A sequence number. Together, the ID and SOURCE
columns identify all log records at all master sites
that pertain to a single administrative request.
SOURCE VARCHAR2(128) - Location where the request originated.
USERID VARCHAR2(30) - Name of the user making the request.
TIMESTAMP DATE - When the request was made.
ROLE VARCHAR2(9) - Indicates if site is the master definition site
(masterdef) or a master site (master).
MASTER VARCHAR2(128) - If the role is 'masterdef' and the task is remote, then
indicates which master site is performing the task.
SNAME VARCHAR2(30) - The name of the schema for the replicated object, if
applicable.
REQUEST VARCHAR2(29) - The name of the DBMS_REPCAddministrative
procedure that was run.
ONAME VARCHAR2(30) - The name of the replicated object, if applicable.
TYPE VARCHAR2(12) - The type of replicated object:
FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TABLE
OPERATOR TRIGGER
PACKAGE TYPE
PACKAGEBODY TYPEBODY
PROCEDURE VIEW
STATUS VARCHAR2(14) - The status of the administrative request: READYDO _
CALLBACKAWAIT_CALLBACKor ERROR
MESSAGE VARCHARZ2(200) - Any error message that has been returned.
ERRNUM NUMBER - The Oracle error number for the message.
GNAME VARCHAR2(30) - The name of the replication group.

ALL_REPCOLUMN

Lists the replicated columns for the tables accessible to the current user.

25-16 Oracle9i Replication Management AP| Reference

If the table contains a column object, then this view displays a placeholder for the
type and one row for each type attribute. If the table contains a nested table, then
then this view displays the storage table for the nested table as an independent

Summary of Replication Catalog Views

table. If a table is an object table, then this view displays the hidden object identifier

column.

Related Views:
« DBA_REPCOLUMiscribes the replicated columns for all the tables in the
database.

« USER_REPCOLUMNscribes the replicated columns for all the tables owned by
the current user.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the object owner.

ONAME VARCHAR2(30) NOT NULL The name of the object.

TYPE VARCHAR2(8) - The type of the object, either SNAPSHO®r TABLE

CNAME VARCHAR2(4000) - The name of the replicated column.

ID NUMBER - The ID number of the replicated column.

POS NUMBER The ordering of the replicated column.

COMPARE_OLD_ON_DELETE VARCHAR2(1) Indicates whether Oracle compares the old value of
the column in replicated deletes.

COMPARE_OLD_ON_UPDATE VARCHAR2(1) Indicates whether Oracle compares the old value of
the column in replicated updates.

SEND_OLD_ON_DELETE VARCHAR2(1) Indicates whether Oracle sends the old value of the
column in replicated deletes.

SEND_OLD_ON_UPDATE VARCHAR2(1) Indicates whether Oracle sends the old value of the
column in replicated updates.

CTYPE VARCHAR2(30) - Displays the column type. For user-defined types,
displays the user-defined type name.

CTYPE_TOID RAW(16) - If user-defined type, displays the object identifier
(OID) of the type. Otherwise, this field is NULL

CTYPE_OWNER VARCHAR2(30) If user-defined type, displays the owner of a
user-defined type. Otherwise, this field is NULL

CTYPE_HASHCODE VARCHAR2(34) If user-defined type, displays the type’s hashcode.
Otherwise, this field is NULL

CTYPE_MOD VARCHAR2(3) Displays REFfor REFcolumns. Otherwise, this field
is NULL

DATA_LENGTH VARCHAR2(40) - Displays the length of the column in bytes.

Replication Catalog Views 25-17

ALL_REPCOLUMN_GROUP

Column Datatype NULL

Description

DATA_PRECISION VARCHAR2(40) -

DATA_SCALE VARCHAR2(40) -

NULLABLE VARCHAR2(1) -
CHARACTER_SET_NAME VARCHAR2(44) -

TOP VARCHAR2(30) -

CHAR_LENGTH NUMBER -

CHAR_USED VARCHAR2(1) -

Displays the column precision in terms of decimal
digits for NUMBERolumns or binary digits for
FLOATcolumns.

Displays the digits to right of decimal pointin a
number.

Indicates if the column allow NULL values.

If applicable, displays the name of character set for
the column.

Displays the top column for an attribute in a column
object. For example, in the oe.customers table,
cust_address is acolumn object and street_
address is one of its attributes. For the street_
address attribute, cust_address is the TOP
column.

For built-in datatypes, this field is NULL
Displays the length of the column in characters. This
value only applies to the following datatypes:
. CHAR
. VARCHAR2
. NCHAR
. NVARCHAR2
Bndicates that the column uses BYTElength
semantics. Cindicates that the column uses CHAR

length semantics. NULL indicates that the datatype
is not any of the following:

. CHAR
. VARCHAR2
. NCHAR

. NVARCHAR2

ALL_REPCOLUMN_GROUP

Describes the column groups for each replicated table accessible to the current user.

Related Views:

« DBA_REPCOLUMN_GROQd#cribes the column groups for all the tables in the

database.

« USER_REPCOLUMN_GRG@igBcribes the column groups for all the tables

owned by the current user.

25-18 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the schema containing the replicated
table.

ONAME VARCHAR2(30) NOT NULL The name of the replicated table.

GROUP_NAME VARCHAR2(30) NOT NULLThe column group name.

GROUP_COMMENT VARCHAR2(80) - Any user-supplied comments.

Note: The SNAMEolumn is not present in the USER_
REPCOLUMN_GROUigw.

ALL_REPCONFLICT

Contains the name of each table accessible to the current user for which a conflict
resolution method has been defined and the type of conflict that the method is used
to resolve.

Related Views:

« DBA_REPCONFLICHescribes the conflict resolution method for all the tables in
the database on which a conflict resolution method has been defined.

« USER_REPCONFLICHescribes the conflict resolution method for all the tables
owned by the current user on which a conflict resolution method has been

defined.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the schema containing the replicated
table.

ONAME VARCHAR2(30) NOT NULL The name of the table for which a conflict resolution
method has been defined.

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the conflict resolution
method is used to resolve: delete, uniqueness, or
update.

REFERENCE_NAME VARCHAR2(30) NOT NULLThe object to which the method applies. For delete

conflicts, this is the table name. For uniqueness
conflicts, this is the constraint name. For update
conflicts, this is the column group name.

Replication Catalog Views 25-19

ALL_REPDDL

Note: The SNAMEolumn is not present in the USER_

REPCONFLICTview.

ALL_REPDDL

Contains the DDL for each replication object accessible to the current user.

Related Views:

« DBA_REPDDkontains the DDL for each replicated object in the database.
« USER_REPDDtontains the DDL for each replicated object owned by the

current user.

Column Datatype NULL Description
LOG_ID NUMBER - Identifying number of the ALL_REPCATLOGecord.
SOURCE VARCHAR2(128) - Name of the database at which the request
originated.
ROLE VARCHAR2(1) - If Y then this database is the master definition site
(masterdef) for the request.
If Nthen this database is a master site.
MASTER VARCHAR2(128) - Name of the database that processes this request.
LINE NUMBER(38) - Ordering of records within a single request.
TEXT VARCHAR2(2000) - Portion of an argument or DDL text.
DDL_NUM NUMBER(38) - Indicates the order in which to execute the DDL

statements stored in the TEXT column when
multiple DDL statements are used.

ALL_REPGENOBJECTS

Describes each object accessible to the current user that was generated to support

replication.

Related Views:

« DBA_REPGENOBJECT®gscribes each object in the database that was generated

to support replication.

« USER_REPGENOBJEC@8scribes each object owned by the current user that
was generated to support replication.

25-20 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column Datatype NULL Description

SNAME VARCHAR2(30) - The name of the replicated schema.

ONAME VARCHAR2(30) - The name of the generated object.

TYPE VARCHAR2(12) - The type of the generated object, either PACKAGE
PACKAGE BODYRIGGER or INTERNAL PACKAGE

BASE_SNAME VARCHAR2(30) - The base object’s owner.

BASE_ONAME VARCHAR2(30) - The object for which this object was generated.

BASE_TYPE VARCHAR2(12) - The type of the base object.

PACKAGE_PREFIX VARCHARZ2(30) - The prefix for the package wrapper.

PROCEDURE_PREFIX VARCHAR2(30) - The procedure prefix for the package wrapper.

DISTRIBUTED VARCHAR2(1) - This column is obsolete.

REASON VARCHAR2(30) - The reason the object was generated.

ALL_REPGROUP

Describes all of the replication groups that are accessible to the current user. The
members of each replication group are listed in a different view: ALL_ REPOBJECT

Related Views:

« DBA REPGROUWURscribes all of the replication groups in the database that are

being replicated.

« USER_REPGROUlescribes all of the replication groups owned by the current

user that are being replicated.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the replicated schema. Obsolete with
release 7.3 or later.

MASTER VARCHAR2(1) - Yindicates that the current site is a master site.
Nindicates the current site is a materialized view
site.

STATUS VARCHAR2(9) - Used at master sites only. Status can be: normal,
quiescing, or quiesced.

SCHEMA_COMMENT VARCHAR2(80) - Any user-supplied comments.

GNAME VARCHAR2(30) NOT NULL The name of the replication group.

Replication Catalog Views 25-21

ALL_REPGROUP_PRIVILEGES

Column Datatype NULL Description
FNAME VARCHAR2(30) - Flavor name.
RPC_PROCESSING_DISABLED VARCHAR2(1) - Mdicates that this site can receive and apply

deferred remote procedure calls (RPCs).

Y indicates that this site cannot receive and apply
deferred remote procedure calls (RPCs).

OWNER VARCHAR2(30) NOT NULL Owner of the replication group.

ALL_REPGROUP_PRIVILEGES

Contains information about the users who are registered for privileges in replication
groups. Shows only those replication groups accessible to the current user.

Related Views:
« DBA REPGROUP_PRIVILEGE®ntains information about the users who are
registered for privileges in all the replication groups in the database.

« USER_REPGROUP_PRIVILEGES®Ntains information about the users who are
registered for privileges in the replication groups owned by the current user.

Column Datatype NULL Description

USERNAME VARCHAR2(30) NOT NULL Displays the name of the user.

GNAME VARCHAR2(30) - Displays the name of the replication group.

CREATED DATE NOT NULL Displays the date that the replication group was
registered.

RECEIVER VARCHAR2(1) - Indicates whether the user has receiver privileges.

PROXY_SNAPADMIN VARCHAR2(1) - Indicates whether the user has proxy_snapadmin
privileges.

OWNER VARCHAR2(30) - Owner of the replication group.

ALL_REPGROUPED_COLUMN

Describes all of the columns that make up the column groups for each table
accessible to the current user.

Related Views:

« DBA_REPGROUPED_COLUdbtribes all of the columns that make up the
column groups for each table in the database.

25-22 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

USER_REPGROUPED_COLLUUdé¢ribes all of the columns that make up the
column groups for each table owned by the current user.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the schema containing the replicated
table.

ONAME VARCHAR2(30) NOT NULL The name of the replicated table.

GROUP_NAME VARCHAR2(30) NOT NULLThe name of the column group.

COLUMN_NAME

VARCHAR2(30) NOT NULLThe name of the column in the column group.

Note: The SNAMEolumn is not present in the USER_
REPGROUPED_COLUWxsion of the view.

ALL_REPKEY COLUMNS

Describes the replication key column(s) accessible to the current user in each table.

The replication key column(s) is an alternate column or group of columns, instead
of the primary key, used to determine which columns of a table to compare when
using row-level replication. You can set the replication key columns using the SET _
COLUMNS®rocedure in the DBMS_REPCApackage.

The following types of columns cannot be replication key columns:

LOB or LOB attribute of a column object
Collection or collection attribute of a column object
REF

An entire column object

See Also: "SET_COLUMNS Procedure" on page 20-97

Related Views:

DBA_REPKEY_COLUMNEscribes the replication key column(s) in each table in
the database.

USER_REPKEY_COLUMMNS&scribes the replication key column(s) in each table
owned by the current user.

Replication Catalog Views 25-23

ALL_REPOBJECT

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL Owner of the replicated table.
ONAME VARCHAR2(30) NOT NULL Name of the replicated table.

COL VARCHAR2(4000) - Replication key column(s) in the table.

ALL_REPOBJECT

Contains information about the objects in each replication group accessible to the
current user. An object can belong to only one replication group. A replication
group can span multiple schemas.

Related Views:
« DBA REPOBJEC#@ontains information about the objects in each replication
group in the database.

« USER_REPOBJECGdontains information about the objects owned by the current
user in each replication group.

Column Datatype NULL Description
SNAME VARCHAR2(30) - The name of the schema containing the replicated
object.
ONAME VARCHAR2(30) - The name of the replicated object.
TYPE VARCHAR2(16) - The type of replicated object:
FUNCTION SNAPSHOT
INDEX SYNONYM

INDEXTYPE TABLE
OPERATOR TRIGGER
PACKAGE TYPE
PACKAGEBODY TYPEBODY
PROCEDURE VIEW

STATUS VARCHAR2(10) - CREATHRNdicates that Oracle is applying user
supplied or Oracle-generated DDL to the local
database in an attempt to create the object locally.
When a local replica exists, Oracle COMPAREthe
replica with the master definition to ensure that they
are consistent. When creation or comparison
complete successfully, Oracle updates the status to
VALID. Otherwise, it updates the status to ERRORIf
you drop an object, then Oracle updates its status to
DROPPEDefore deleting the row from the ALL_
REPOBJECView.

25-24 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column Datatype Description

GENERATION_STATUS VARCHAR2(9) Specifies whether the object needs to generate
replication packages.

ID NUMBER The identifier of the local database object, if one
exists.

OBJECT_COMMENT VARCHAR2(80) Any user supplied comments.

GNAME VARCHAR2(30) The name of the replication group to which the
object belongs.

MIN_COMMUNICATION VARCHAR2(1) If Y then use minimum communication for an

REPLICATION_TRIGGER_EXISTS VARCHAR2(1)

INTERNAL_PACKAGE_EXISTS VARCHAR2(1)

GROUP_OWNER VARCHAR2(30)

NESTED_TABLE VARCHAR2(1)

update.

If Nthen send all old and all new values for an
update.

If Y then internal replication trigger exists.
If Nthen internal replication trigger does not exist.

If Y then internal package exists.
If Nthen internal package does not exist.

Owner of the replication group.

If Y then the replicated object is the storage table of a
nested table.

If Nthen the replicated object is not a storage table.

ALL_REPPARAMETER_COLUMN

In addition to the information contained in the ALL_ REPRESOLUTIONiew, the
ALL_REPPARAMETER_COLUMiEw contains information about the columns that
are used to resolve conflicts for each replicated table accessible to the current user.
These are the column values that are passed as the list_of_column_names

argument to the ADD _conflicttype

REPCATpackage.

Related Views:

_RESOLUTIONprocedures in the DBMS _

« DBA_REPPARAMETER_COLWdhtains information about the columns that are
used to resolve conflicts for each replicated table in the database.

« USER_REPPARAMETER_COLWEdMNains information about the columns that
are used to resolve conflicts for each replicated table owned by the current user.

Replication Catalog Views 25-25

ALL_REPPRIORITY

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the schema containing the replicated
table.

ONAME VARCHAR2(30) NOT NULL The name of the replicated table.

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the method is used to

resolve: delete, uniqueness, or update.

REFERENCE_NAME VARCHAR2(30) NOT NULLThe object to which the method applies. For delete
conflicts, this is the table name. For uniqueness
conflicts, this is the constraint name. For update
conflicts, this is the column group name.

SEQUENCE_NO NUMBER NOT NULThe order in which resolution methods are applied,
with 1 applied first.

METHOD_NAME VARCHAR2(80) NOT NULLThe name of an Oracle-supplied conflict resolution
method. For user-supplied methods, this value is
‘user function'.

FUNCTION_NAME VARCHAR2(92) NOT NULL For methods of type 'user function’, the name of the
user-supplied conflict resolution method.

PRIORITY_GROUP VARCHAR2(30) - For methods of name 'priority group’, the name of
the priority group.

PARAMETER_TABLE_NAME VARCHAR2(30) NOT NULIDisplays the name of the table to which the
parameter column belongs.

PARAMETER_COLUMN_NAME VARCHAR2(4000) - The name of the column used as the IN parameter
for the conflict resolution method.

PARAMETER_SEQUENCE_NO NUMBER NOT NWidering of column used as IN parameter.

Note: The SNAMEolumn is not present in the USER_
REPPARAMETER_COLUWVIBWw.

ALL_REPPRIORITY

Contains the value and priority level of each priority group member in each priority
group accessible to the current user. Priority group names must be unique within a
replication group. Priority levels and values must each be unique within a given
priority group.

Related Views:

« DBA_REPPRIORITYcontains the value and priority level of each priority group
member in each priority group in the database.

25-26 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

USER_REPPRIORITYontains the value and priority level of each priority
group member in each priority group owned by the current user.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the replicated schema. Obsolete in
release 7.3 or later.

PRIORITY_GROUP VARCHAR2(30) NOT NULL The name of the priority group or site priority
group.

PRIORITY NUMBER NOT NULL The priority level of the member. The highest
number has the highest priority.

DATA TYPE VARCHAR2(9) - The datatype of the values in the priority group.

FIXED_DATA_LENGTH NUMBER(38) - The maximum length of values of datatype CHAR

CHAR_VALUE CHAR(255) - The value of the priority group member, if DATA_
TYPEis CHAR

VARCHAR2_VALUE VARCHAR2(4000) - The value of the priority group member, if DATA_
TYPEis VARCHAR2

NUMBER_VALUE NUMBER The value of the priority group member, if DATA_
TYPEis NUMBER

DATE_VALUE DATE - The value of the priority group member, if DATA_
TYPEis DATE

RAW_VALUE RAW/(2000) - The value of the priority group member, if DATA_
TYPEis RAW

GNAME VARCHAR2(30) NOT NULL The name of the replication group.

NCHAR_VALUE NCHAR(500) - The value of the priority group member, if DATA_
TYPEis NCHAR

NVARCHAR2_VALUE VARCHAR2(1000) - The value of the priority group member, if DATA_
TYPEis NVARCHAR2

LARGE_CHAR_VALUE CHAR(2000) - The value of the priority group member, for

blank-padded character strings over 255 characters.

Note: The SNAMEand GNAMEolumns are not present in the

USER_REPPRIORIT Wiew.

ALL_REPPRIORITY_GROUP

Describes the priority group or site priority group defined for each replication

group accessible to the current user.

Replication Catalog Views 25-27

ALL_REPPROP

Related Views:
« DBA REPPRIORITY_GROU#escribes the priority group or site priority group
defined for each replication group in the database.

» USER_REPPRIORITY_GROU#scribes the priority group or site priority group
defined for each replication group owned by the current user.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the replicated schema. Obsolete in
release 7.3 or later.

PRIORITY_GROUP VARCHAR2(30) NOT NULL The name of the priority group or site priority
group.

DATA_TYPE VARCHAR2(9) - The datatype of each value in the priority group.

FIXED_DATA LENGTH NUMBER(38) - The maximum length for values of datatype CHAR

PRIORITY_COMMENT VARCHAR2(80) - Any user-supplied comments.

GNAME VARCHAR2(30) NOT NULL The name of the replication group.

Note: The SNAMEnd GNAMEolumns are not present in the
USER_REPPRIORIT Wiew.

ALL_REPPROP

Indicates the technique used to propagate operations on each replicated object to
the same object at another master site. These operations may have resulted from a
call to a stored procedure or procedure wrapper, or may have been issued against a
table directly. This view shows objects accessible to the current user.

Related Views:

« DBA_REPPROdicates the technique used to propagate operations on each
replicated object to the same object at another master site. This view shows all
objects in the database.

« USER_REPPROIRdicates the technique used to propagate operations on each
replicated object to the same object at another master site. This view shows
objects owned by the current user

25-28 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the schema containing the replicated
object.

ONAME VARCHAR2(30) NOT NULL The name of the replicated object.

TYPE VARCHAR2(16) - The type of object being replicated:

FUNCTION PROCEDURE
INDEXTYPE SNAPSHOT
OPERATOR TABLE
PACKAGE TYPE
PACKAGEBODY TYPEBODY

DBLINK VARCHAR2(128) NOT NULL The fully qualified database name of the master site
to which changes are being propagated.

HOW VARCHAR2(13) - How propagation is performed. Values recognized
are 'none' for the local master site, and 'synchronous’
or ‘asynchronous' for all others.

PROPAGATE_COMMENT VARCHAR2(80) - Any user-supplied comments.

ALL_REPRESOL_STATS_CONTROL

Describes statistics collection for conflict resolutions for all replicated tables
accessible to the current user.

Related Views:

« DBA REPRESOL_STATS_CONTRG@Hscribes statistics collection for conflict
resolutions for all replicated tables in the database.

« USER_REPRESOL_STATS_ CONTRf2kcribes statistics collection for conflict
resolutions for all replicated tables owned by the current user.

Replication Catalog Views 25-29

ALL_REPRESOLUTION

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL Owner of the table.

ONAME VARCHAR2(30) NOT NULL Table name.

CREATED DATE NOT NULL Timestamp for when statistics collection was first
started.

STATUS VARCHAR2(9) - Status of statistics collection: ACTIVE or
CANCELLED

STATUS_UPDATE_DATE DATE NOT NULLTimestamp for when the status was last updated.

PURGED_DATE DATE - Timestamp for the last purge of statistics data.

LAST_PURGE_START_DATE DATE - The last start date of the statistics purging date
range.

LAST_PURGE_END_DATE DATE - The last end date of the statistics purging date

range.

Note: The SNAMEolumn is not present in the USER_REPRESOL _
STATS_CONTROVziew.

ALL_REPRESOLUTION

Indicates the methods used to resolve update, uniqueness, or delete conflicts for
each table accessible to the current user that is replicated using row-level replication
for a given schema.

Related Views:

DBA_REPRESOLUTIONdicates the methods used to resolve update,
uniqueness, or delete conflicts for each table in the database that is replicated
using row-level replication for a given schema.

USER_REPRESOLUTIOMdicates the methods used to resolve update,
uniqueness, or delete conflicts for each table owned by the current user that is
replicated using row-level replication.

25-30 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column Datatype NULL Description
SNAME VARCHAR2(30) NOT NULL The name of the replicated schema.
ONAME VARCHAR2(30) NOT NULL The name of the replicated table.

CONFLICT_TYPE

REFERENCE_NAME

SEQUENCE_NO

METHOD_NAME

FUNCTION_NAME

PRIORITY_GROUP

VARCHAR2(10) - The type of conflict that the method is used to
resolve: delete, uniqueness, or update.

VARCHAR2(30) NOT NULLThe object to which the method applies. For delete
conflicts, this is the table name. For uniqueness
conflicts, this is the constraint name. For update
conflicts, this is the column group name.

NUMBER NOT NULThe order that resolution methods are applied, with
1 applied first.

VARCHAR2(80) NOT NULLThe name of an Oracle-supplied conflict resolution
method. For user-supplied methods, this value is
‘user function'.

VARCHAR2(92) NOT NULL For methods of type 'user function’, the name of the
user-supplied conflict resolution method.

VARCHAR2(30) - For methods of type 'priority group’, the name of
the priority group.

RESOLUTION_COMMENT VARCHAR2(80) - Any user-supplied comments.

Note: The SNAMEolumn is not present in the USER_
REPRESOLUTIONiew.

ALL_REPRESOLUTION_METHOD

Lists all of the conflict resolution methods available in the database. Initially, this
view lists the standard methods provided with Advanced Replication. As you
create new user functions and add them as conflict resolution methods for an object
in the database, these functions are added to this view.

Related Views:
« DBA REPRESOLUTION_METH®@4Ds all of the conflict resolution methods
available in the database.

« USER_REPRESOLUTION_METHINEs all of the conflict resolution methods
available in the database.

Replication Catalog Views 25-31

ALL_REPRESOLUTION_STATISTICS

Column Datatype NULL Description

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the resolution method is
designed to resolve: update, uniqueness, or delete.

METHOD_NAME VARCHAR2(80) NOT NULLThe name of the Oracle-supplied method, or the name
of the user-supplied method.

ALL_REPRESOLUTION_STATISTICS

Lists information about successfully resolved update, uniqueness, and delete
conflicts for all replicated tables accessible to the current user. These statistics are
gathered for a table only if you have called the DBMS_REPCAT.REGISTER _
STATISTICS procedure.

Related Views:

« DBA_REPRESOLUTION_STATISTICSists information about successfully
resolved update, uniqueness, and delete conflicts for all replicated tables in the
database.

« USER_REPRESOLUTION_STATISTICSsts information about successfully
resolved update, uniqueness, and delete conflicts for all replicated tables owned
by the current user.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the replicated schema.

ONAME VARCHAR2(30) NOT NULL The name of the replicated table.
CONFLICT_TYPE VARCHAR2(10) - The type of conflict that was successfully resolved:

delete, uniqueness, or update.

REFERENCE_NAME VARCHAR2(30) NOT NULLThe object to which the conflict resolution method
applies. For delete conflicts, this is the table name.
For uniqueness conflicts, this is the constraint name.
For update conflicts, this is the column group name.

METHOD_NAME VARCHAR2(80) NOT NULLThe name of an Oracle-supplied conflict resolution
method. For user-supplied methods, this value is
‘user function'.

FUNCTION_NAME VARCHAR2(92) - For methods of type 'user function', the name of the
user supplied conflict resolution method.

PRIORITY_GROUP VARCHAR2(30) - For methods of type 'priority group’, the name of
the priority group.

25-32 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column Datatype NULL Description
RESOLVED_DATE DATE NOT NULLDate on which the conflict for this row was
resolved.

PRIMARY_KEY_VALUE

VARCHAR2(2000) NOT NULL A concatenated representation of the row’s primary
key.

ALL_REPSITES

Note: The SNAMEolumn is not present in the USER_
REPRESOLUTION_STATISTICSview.

Lists the members of each replication group accessible to the current user.

Related Views:

DBA_REPSITESIists the members of each replication group in the database.

USER_REPSITESists the members of each replication group owned by the
current user.

Column Datatype NULL Description

GNAME VARCHAR2(30) NOT NULL The name of the replication group.

DBLINK VARCHAR2(128) NOT NULL The database link to a master site for this replication
group.

MASTERDEF VARCHAR2(1) - Indicates which of the DBLINKSs is the master
definition site.

SNAPMASTER VARCHAR2(1) - Used by materialized view sites to indicate which of
the DBLINKSs to use when refreshing.

MASTER_COMMENT VARCHAR2(80) - User-supplied comments.

MASTER VARCHAR2(1) - If Y then the site is a master site for the replicated
group.

GROUP_OWNER

If Nthen the site is not a master site for the
replicated group.

VARCHAR2(30) NOT NULIOwner of the replication group.

The DBA_REPSITESview has the following additional columns:

Replication Catalog Views 25-33

DBA_REPCAT_REFRESH_TEMPLATES

Column Datatype NULL Description
PROP_UPDATES NUMBER - Encoding of propagating technique for master site.
MY_DBLINK VARCHAR2(1) - Used to detect problems after import. If Y then the

DBLINK is the global name.

DBA_REPCAT_REFRESH_TEMPLATES

This view contains global information about each deployment template in the
database, such as the template name, template owner, what refresh group the
template objects belong to, and the type of template (private or public).

Its columns are the same as those in ALL_ REPCAT_REFRESH _TEMPLATH®r
detailed information about this view and its columns, see ALL_ REPCAT_REFRESH_
TEMPLATESnN page 25-5.

DBA_REPCAT_TEMPLATE_OBJECTS

The DBA_REPCAT_TEMPLATE_OBJECVRw contains the individual object
definitions that are contained in all deployment templates in the database.
Individual objects are added to a template by specifying the target template in
REFRESH_TEMPLATE_NAME

Its columns are the same as those in ALL_ REPCAT_TEMPLATE_OBJECTEor
detailed information about this view and its columns, see ALL_ REPCAT _
TEMPLATE_OBJECTSn page 25-6.

DBA_REPCAT_TEMPLATE_PARMS

Parameters defined in the object DDL for all templates in the database are stored in
the DBA_REPCAT_TEMPLATE_PARK&SBIe. When an object is added to a template,
the DDL is examined for variables. Any found parameters are automatically added
to this view.

Its columns are the same as those in ALL_ REPCAT_TEMPLATE_PARM®r detailed
information about this view and its columns, see ALL_ REPCAT_TEMPLATE_PARMS
on page 25-8.

25-34 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

DBA_REPCAT_TEMPLATE_SITES

The DBA_REPCAT_TEMPLATE_SITESiew provides the DBA with information
about the current status of template instantiation for all the sites of a enterprise
network. This view contains information about instantiation sites for all
deployment templates in the database. Specifically, the DBA can monitor the
installation and deletion of templates at specific sites. Its columns are the same as
those in ALL_REPCAT_TEMPLATE_SITE®n page 25-10.

DBA_REPCAT_USER_AUTHORIZATIONS

The DBA_REPCAT_USER_AUTHORIZATION®w lists the authorized users for all
templates in the database specified for private use. Users listed in this view have the
ability to instantiate the specified template. Users not contained in this view cannot
instantiate the template. Its columns are the same as those in ALL_REPCAT_USER _
AUTHORIZATIONSoN page 25-11.

DBA_REPCAT USER_PARM_VALUES

The DBA_REPCAT_USER_PARM_VALUE&Sw describes the template parameters
for all deployment templates in the database. The DBA has the option of building a
table of user parameters prior to distributing the template for instantiation. When a
template is instantiated by a specified user, the values stored in the DBA_REPCAT _
USER_PARM_VALUBSDblIe for the specified user are used automatically.

Its columns are the same as those in ALL_REPCAT_USER_PARM_VALUE®r
detailed information about this view and its columns, see ALL_REPCAT_USER_
PARM_VALUESnN page 25-12.

DBA_REPCATLOG

The DBA_REPCATLO®@iew at each master site contains the interim status of any
asynchronous administrative requests and any error messages generated. All
messages encountered while executing a request are eventually transferred to the
DBA_REPCATLOGGiew at the master site that originated the request. If an
administrative request completes without error, then ultimately all traces of this
request are removed from the DBA_REPCATLO@Giew. Its columns are the same as
those in ALL_REPCATLOGn page 25-15.

Replication Catalog Views 25-35

DBA_REPCOLUMN

DBA_REPCOLUMN

The DBA_REPCOLUMNew lists the replicated columns for all the tables in the
database. Its columns are the same as those in ALL_REPCOLUMBbIN page 25-16.

DBA_REPCOLUMN_GROUP

The DBA_REPCOLUMN_GROW®w lists all the column groups each replicated table
in the database. Its columns are the same as those in ALL_ REPCOLUMN_GROUR
page 25-18.

DBA_REPCONFLICT

The DBA_REPCONFLICView displays the name of each table in the database on
which a conflict resolution method has been defined and the type of conflict that the
method is used to resolve. Its columns are the same as those in ALL_ REPCONFLICT
on page 25-19.

DBA_REPDDL

The DBA_REPDDLkontains the DDL for each replication object in the database. Its
columns are the same as those in ALL_REPDDLon page 25-20.

DBA_REPEXTENSIONS

The DBA_REPEXTENSIONS&iew contains information about current operations that
are adding new master sites to a master group without quiescing the master group.

See Also: "Adding New Master Sites Without Quiescing the
Master Group" on page 7-4 for information about the procedure
that adds new master sites to a replication environment

Column Datatype NULL Description

EXTENSION_ID RAW(16) NOT NULL The identifier for a current pending request to add
master databases to a master group without
quiesce.

REQUEST VARCHAR2(15) - Extension request type. Currently, the only

possible value is ADD_NEW_MASTERShich
indicates a request to add new master sites to a
master group without quiescing.

25-36 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column

Datatype

NULL

Description

MASTERDEF

EXPORT_REQUIRED

REPCATLOG_ID

EXTENSION_STATUS

FLASHBACK_SCN

VARCHAR2(128)

VARCHAR2(3)

NUMBER

VARCHAR2(13)

NUMBER

The global name of the master definition site of the
master groups to which new master sites are being
added.

YEmdicates that one or more new master sites
will be added using export/import of either the
entire database or at the table level.

NOindicates that all new master sites will be
added using change-based recovery.

Identifier of replication catalog records related to a
replication extension, on which the master
definition site is waiting. This value is only
meaningful at the master definition site.

Status of each replication extension. This value is
only meaningful at the master definition site.

The possible values are:

READYThe extension request has been created
and is ready.

STOPPING The new master sites have been added
to the master group and the master definition site
is attempting to stop propagation from existing
masters to new master sites and to the master
definition site.

EXPORTINGThe propagation of deferred
transactions has been stopped from existing
master sites to new master sites and to the master
definition site. The master definition site is waiting
for the export to finish.

INSTANTIATING : The DBMS_REPCAT.RESUME_
PROPAGATION_TO_MDH¥focedure has been
invoked (if export was used), and the master
definition site is waiting for the new masters to
instantiate.

ERRORAN error occurred during the execution of
this extension request.

The system change number (SCN) that must be
used during export or change-based recovery
when the new master sites are added. The new
master sites must be consistent with the SCN
listed.

Replication Catalog Views 25-37

DBA_REPEXTENSIONS

Column Datatype NULL

Description

BREAK_TRANS_TO_MASTERDEF VARCHAR2(3)

BREAK_TRANS_TO_NEW_MASTERS VARCHAR2(3)

PERCENTAGE_FOR_CATCHUP_MDEF NUMBER

CYCLE_SECONDS_MDEF NUMBER

PERCENTAGE_FOR_CATCHUP_NEW NUMBER

25-38 Oracle9i Replication Management AP| Reference

This value is meaningful only if EXPORT_
REQUIREDs TRUE

If BREAK_TRANS_TO_MASTERDERRUE then
existing masters may continue to propagate their
deferred transactions to the master definition site
for replication groups that are not adding master
sites. Deferred transactions for replication groups
that are adding master sites cannot be propagated
until the export completes.

If BREAK_TRANS_TO_MASTERDERALSE then
existing masters cannot propagate any deferred
transactions to the master definition site.

If BREAK_TRANS_TO_NEW_MASTHRBRUE
then existing master sites may continue to
propagate deferred transactions to the new master
sites for replication groups that are not adding
master sites.

If BREAK_TRANS_TO_NEW_MASTHRBALSE,
then propagation of deferred transaction queues to
the new masters is disabled.

This value is meaningful only if BREAK_TRANS_
TO_MASTERDER TRUE

The percentage of propagation resources that
should be used for catching up propagation to the
master definition site.

This value is meaningful when PERCENTAGE_
FOR_CATCHUP_MDH$both meaningful and is a
value between 10 and 90, inclusive. In this case,
propagation to the master definition site alternates
between replication groups that are not being
extended and replication groups that are being
extended, with one push to each during each
cycle. This value indicates the length of the cycle
in seconds.

This value is meaningful only if BREAK_TRANS_
TO_NEW_MASTERSTRUE

The percentage of propagation resources that
should be used for catching up propagation to
new master sites.

Summary of Replication Catalog Views

Column Datatype NULL Description

CYCLE_SECONDS_NEW NUMBER - This value is meaningful when PERCENTAGE_
FOR_CATCHUP_NBE¥®\both meaningful and is a
value between 10 and 90, inclusive. In this case,
propagation to a new master alternates between
replication groups that are not being extended and
replication groups that are being extended, with
one push to each during each cycle. This value
indicates the length of the cycle in seconds.

DBA_REPGENOBJECTS

The DBA_REPGENOBJECNew describes each object in the database that was
generated to support replication. Its columns are the same as those in ALL _
REPGENOBJECT®&n page 25-20.

DBA_REPGROUP

The DBA_REPGROURew describes all of the replication groups in the database.
The members of each replication group are listed in a different view, DBA _
REPOBJECTThe DBA REPGROURew’s columns are the same as those in ALL
REPGROU®BN page 25-21.

DBA_REPGROUP_PRIVILEGES

The DBA_REPGROUP_PRIVILEGE@ew contains information about the users who
are registered for privileges in replication groups. Shows all replication groups in
the database. Its columns are the same as those in ALL_REPGROUP_PRIVILEGES
on page 25-22.

DBA_REPGROUPED_COLUMN

The DBA_REPGROUPED_COLUMNHV lists all of the columns that make up the
column groups for each table in the database. Its columns are the same as those in
ALL_REPGROUPED_COLUbftNpage 25-22.

DBA_REPKEY_COLUMNS

The DBA_REPKEY_COLUMN#w describes the replication key column(s) in each
table in the database. Its columns are the same as those in ALL_ REPKEY_COLUMNS
on page 25-23.

Replication Catalog Views 25-39

DBA_REPOBJECT

DBA_REPOBJECT

The DBA_REPOBJECYView contains information about the objects in each
replication group in the database. An object can belong to only one replication
group. A replication group can span multiple schemas. Its columns are the same as
those in ALL_REPOBJECTon page 25-24.

DBA_REPPARAMETER_COLUMN

In addition to the information contained in the DBA_REPRESOLUTIOWiew, the
DBA_REPPARAMETER_COLWkNY contains information about the columns that
are used to resolve conflicts for each replicated table in the database. These are the
column values that are passed as the list_of column_names argument to the
ADD conflicttype _RESOLUTIONprocedures in the DBMS_REPCApackage. Its
columns are the same as those in ALL_ REPPARAMETER_COLUBMNpage 25-25.

DBA_REPPRIORITY

The DBA_REPPRIORITYview contains the value and priority level of each priority
group member in each priority group in the database. Priority group names must be
unique within a replication group. Priority levels and values must each be unique
within a given priority group. Its columns are the same as those in ALL_
REPPRIORITY on page 25-26.

DBA_REPPRIORITY_GROUP

The DBA_REPPRIORITY_GROUWew describes the priority group or site priority
group defined for each replication group in the database. Its columns are the same
as those in ALL_REPPRIORITY_GROURN page 25-27.

DBA_REPPROP

The DBA_REPPRORiew indicates the technique used to propagate operations on
each replicated object to the same object at another master site. These operations
may have resulted from a call to a stored procedure or procedure wrapper, or may
have been issued against a table directly. This view shows all objects in the
database. Its columns are the same as those in ALL_REPPRORN page 25-28.

25-40 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

DBA_REPRESOL_STATS_CONTROL

The DBA_REPRESOL_STATS_CONTR@ew describes statistics collection for
conflict resolutions for all replicated tables in the database. Its columns are the same
as those in ALL_REPRESOL_STATS_CONTR®Oh page 25-29.

DBA_REPRESOLUTION

The DBA_REPRESOLUTIOMew indicates the methods used to resolve update,
uniqueness, or delete conflicts for each table in the database that is replicated using
row-level replication for a given schema. Its columns are the same as those in ALL
REPRESOLUTIONN page 25-30.

DBA_REPRESOLUTION_METHOD

The DBA_REPRESOLUTION_METH®@Bw lists all of the conflict resolution methods
available in the database. Initially, this view lists the standard methods provided
with the advanced replication facility. As you create new user functions and add
them as conflict resolution methods for an object in the database, these functions are
added to this view. Its columns are the same as those in ALL_REPRESOLUTION_
METHOIDN page 25-31.

DBA_REPRESOLUTION_STATISTICS

The DBA_REPRESOLUTION_STATISTICSiew lists information about successfully
resolved update, uniqueness, and delete conflicts for all replicated tables in the
database. These statistics are only gathered for a table if you have called the DBMS_
REPCAT.REGISTER_STATISTICSprocedure. The DBA_REPRESOLUTION_
STATISTICS view’s columns are the same as those in ALL_ REPRESOLUTION _
STATISTICS on page 25-32.

DBA_REPSITES

The DBA_REPSITESview lists the members of each replication group in the
database.

This view has the following additional columns that are not included in the ALL _
REPSITESand USER_REPSITESviews:

Column Datatype NULL Description

PROP_UPDATES NUMBER - Encoding of propagating technique for master site.

Replication Catalog Views 25-41

DBA_REPSITES_NEW

Column Datatype NULL Description

MY_DBLINK VARCHAR2(1) - Used to detect problem after import. If Y then the
dblink is the global name.

Except for these additional columns, its columns are the same as those in ALL_
REPSITESon page 25-33.

DBA_REPSITES_NEW

The DBA_REPSITES NEWiew lists the new replication sites that you plan to add
to your replication environment.

See Also: "Adding New Master Sites Without Quiescing the
Master Group" on page 7-4 for information about the procedure
that adds new master sites to a replication environment

25-42 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Column

Datatype NULL Description

EXTENSION_ID

RAW(16) NOT NULL The identifier for a current pending request to add
master databases to a master group without quiesce.

GOWNER VARCHAR2(30) NOT NULLThe name of the user who owns the master group.
GNAME VARCHAR2(30) NOT NULL The name of the master group.

DBLINK VARCHAR2(128) NOT NULL The database link for a new master site.
FULL_INSTANTIATION VARCHAR2(1) - Y indicates that the new database in DBLINK is to be

MASTER_STATUS

added using full database export/import or
change-based recovery.

Nindicates that the new database in DBLINK is to be
added using object-level export/import.

VARCHAR2(13) - The instantiation status of a new master site. This
value is only meaningful at the master definition
site.

The possible values are:
READYThe new master site is ready.

INSTANTIATING : The new master site is in the
process of being instantiated.

INSTANTIATED: The new master has been
instantiated and is being prepared for replication
activity. That is, the DBMS_REPCAT.PREPARE_
INSTANTIATED_MASTERbrocedure has been run.

PREPAREDThe propagation of deferred
transactions is enabled from the new master site to
other prepared masters, to existing masters, and to
the master definition site. The new master is now
prepared to participate in the replication
environment.

USER_REPCAT_REFRESH_TEMPLATES

This view contains global information about each deployment template owned by
the current user, such as the template name, template owner, what refresh group the
template objects belong to, and the type of template (private or public).

Its columns are the same as those in ALL_REPCAT_REFRESH_TEMPLATH®r
detailed information about this view and its columns, see ALL_ REPCAT_REFRESH_
TEMPLATESN page 25-5.

Replication Catalog Views 25-43

USER_REPCAT_TEMPLATE_OBJECTS

USER_REPCAT_TEMPLATE_OBJECTS

The USER_REPCAT_TEMPLATE_OBJECVi8w contains the individual object
definitions that are contained in each deployment template owned by the current
user. Individual objects are added to a template by specifying the target template in
REFRESH_TEMPLATE_NAME

Its columns are the same as those in ALL_REPCAT_TEMPLATE_OBJECTBEor
detailed information about this view and its columns, see ALL_REPCAT _
TEMPLATE_OBJECTSn page 25-6.

USER_REPCAT_TEMPLATE_PARMS

Parameters defined in the object DDL for all templates owned by the current user
are stored in the USER_REPCAT_TEMPLATE_PARMBIle. When an object is added
to a template, the DDL is examined for variables; any found parameters are
automatically added to this view.

Its columns are the same as those in ALL_ REPCAT_TEMPLATE_PARM®r detailed
information about this view and its columns, see ALL_ REPCAT_TEMPLATE_PARMS
on page 25-8.

USER_REPCAT_TEMPLATE_SITES

The USER_REPCAT_TEMPLATE_SITB#ew provides the user with information
about the current status of template instantiation amongst the sites of a enterprise
network. This view contains information about instantiation sites for deployment
templates that are owned by the current user. Specifically, the user can monitor the
installation and deletion of templates at specific sites. Its columns are the same as
those in ALL_ REPCAT_TEMPLATE_SITE®n page 25-10.

USER_REPCAT_USER_AUTHORIZATION

The USER_REPCAT_USER_AUTHORIZATI@MNwW lists the authorized users for all
of the templates that are owned by the current user and specified for private use.
Users listed in this view have the ability to instantiate the specified template. Users
not contained in this view cannot instantiate the template. Its columns are the same
as those in ALL_REPCAT_USER_AUTHORIZATIONSh page 25-11.

25-44 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

USER_REPCAT USER_PARM_VALUES

The USER_REPCAT_USER_PARM_VALUESN describes the template parameters
for all deployment templates owned by the current user. The DBA has the option of
building a table of user parameters prior to distributing the template for
instantiation. When a template is instantiated by a specified user, the values stored
in the USER_REPCAT_USER_PARM_VALUESW for the specified user are used
automatically.

Its columns are the same as those in ALL_ REPCAT_USER_PARM_VALUHE®r
detailed information about this view and its columns, see ALL_ REPCAT_USER _
PARM_VALUES®nN page 25-12.

USER_REPCATLOG

The USER_REPCATLO@ew at each master site contains the interim status of any
asynchronous administrative requests and any error messages generated. All
messages encountered while executing a request are eventually transferred to the
USER_REPCATLO@ew at the master site that originated the request. If an
administrative request completes without error, then ultimately all traces of this
request are removed from the USER_REPCATLO@ew.

This view contains asynchronous administrative requests and error messages that
are owned by the current user. Its columns are the same as those in ALL_
REPCATLO®nN page 25-15.

USER_REPCOLUMN

The USER_REPCOLUMAEW lists the replicated columns for all the tables owned by
the current user. Its columns are the same as those in ALL_REPCOLUMNN
page 25-16.

USER_REPCOLUMN_GROUP

The USER_REPCOLUMN_GROQU#RV lists the column groups for each replicated
table owned by the current user. Its columns are the same as those in ALL
REPCOLUMN_GROUWpage 25-18.

Note: The SNAMEolumn is not present in the USER_
REPCOLUMN_GROUiRw. This column is available in the ALL
REPCOLUMN_GROG&i®d DBA_REPCOLUMN_GROW®&ws.

Replication Catalog Views 25-45

USER_REPCONFLICT

USER_REPCONFLICT

The USER_REPCONFLICView displays the name of each table owned by the
current user on which a conflict resolution method has been defined and the type of
conflict that the method is used to resolve. Its columns are the same as those in
ALL_REPCONFLICTon page 25-19.

Note: The SNAMEolumn is not present in the USER_
REPCONFLICTview. This column is available in the ALL _
REPCONFLICTand DBA_REPCONFLICViews.

USER_REPDDL

The USER_REPDDtontains the DDL for each replication object owned by the
current user. Its columns are the same as those in ALL_REPDDLon page 25-20.

USER_REPGENOBJECTS

The USER_REPGENOBJECT&w describes each object owned by the current user
that was generated to support replication. Its columns are the same as those in ALL_
REPGENOBJECTGh page 25-20.

USER_REPGROUP

The USER_REPGROURew describes all of the replication groups owned by the
current user. The members of each replication group are listed in a different view,
USER_REPOBJECThe USER_REPGROU#ew’s columns are the same as those in
ALL_REPGROUBN page 25-21.

USER_REPGROUP_PRIVILEGES

The USER_REPGROUP_PRIVILEGES8ew contains information about the users
who are registered for privileges in replication groups. Shows only those replication
groups owned by the current user. Its columns are the same as those in ALL_
REPGROUP_PRIVILEGESn page 25-22.

USER_REPGROUPED_COLUMN

The USER_REPGROUPED_COLUNW lists all of the columns that make up the
column groups for each table. Its columns are the same as those in ALL _
REPGROUPED_COLUbt\page 25-22.

25-46 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Note: The SNAMEolumn is not present in the USER_
REPGROUPED_COLUWMIBW. This column is available in the ALL_
REPGROUPED_COLUMN DBA_REPGROUPED_COLUNE\VvsS.

USER_REPKEY_COLUMNS

The USER_REPKEY_COLUMNMIBw describes the replication key column(s) in each
table owned by the current user. Its columns are the same as those in ALL_REPKEY _
COLUMNSN page 25-23.

USER_REPOBJECT

The USER_REPOBJECView contains information about the objects owned by the
current user in each replication group. An object can belong to only one replication
group. A replication group can span multiple schemas. Its columns are the same as
those in ALL_ REPOBJECTon page 25-24.

USER_REPPARAMETER_COLUMN

In addition to the information contained in the USER_REPRESOLUTIOWew, the
USER_REPPARAMETER_COLUN#W contains information about the columns that
are used to resolve conflicts for each replicated table owned by the current user.
These are the column values that are passed as the list_of column_names
argument to the ADD _confiicttype _RESOLUTIONprocedures in the DBMS _
REPCATpackage. Its columns are the same as those in ALL_ REPPARAMETER _
COLUMMNN page 25-25.

Note: The SNAMEolumn is not present in the USER_
REPPARAMETER_COLUWMIBWw. This column is available in the

ALL REPPARAMETER_COLU#t DBA REPPARAMETER_COLUMN
views.

USER_REPPRIORITY

The USER_REPPRIORITYiew contains the value and priority level of each priority
group member in each priority group owned by the current user. Priority group
names must be unique within a replication group. Priority levels and values must
each be unique within a given priority group. Its columns are the same as those in
ALL_REPPRIORITY on page 25-26.

Replication Catalog Views 25-47

USER_REPPRIORITY_GROUP

Note: The SNAMEolumn is not present in the USER_
REPPRIORITY view. This column is available in the ALL_
REPPRIORITYand DBA_REPPRIORITYviews.

USER_REPPRIORITY_GROUP

The USER_REPPRIORITY_GROURew describes the priority group or site priority
group defined for each replication group owned by the current user. Its columns are
the same as those in ALL_REPPRIORITY_GROUBN page 25-27.

USER_REPPROP

The USER_REPPROWew indicates the technique used to propagate operations on
each replicated object to the same object at another master site. These operations
may have resulted from a call to a stored procedure or procedure wrapper, or may
have been issued against a table directly. This view shows objects owned by the
current user. Its columns are the same as those in ALL_REPPRORN page 25-28.

USER_REPRESOL_STATS_CONTROL

The USER_REPRESOL_STATS_ CONTR®@éw describes statistics collection for
conflict resolutions for all replicated tables owned by the current user. Its columns
are the same as those in ALL_ REPRESOL_STATS_CONTROI page 25-29.

Note: The SNAMEolumn is not present in the USER_REPRESOL _
STATS_CONTROUiew. This column is available in the ALL_
REPRESOL_STATS_CONTR@hd DBA_REPRESOL_STATS_
CONTROVMiews.

USER_REPRESOLUTION

The USER_REPRESOLUTIOMWew indicates the methods used to resolve update,
unigueness, or delete conflicts for each table owned by the current user that is
replicated using row-level replication for a given schema. Its columns are the same
as those in ALL_ REPRESOLUTIONN page 25-30.

25-48 Oracle9i Replication Management AP| Reference

Summary of Replication Catalog Views

Note: The SNAMEolumn is not present in the USER_
REPREPRESOLUTIOMew. This column is available in the ALL_
REPREPRESOLUTIOAhd DBA_REPREPRESOLUTIONews.

USER_REPRESOLUTION_METHOD

The USER_REPRESOLUTION_METH®@Bw lists all of the conflict resolution
methods available in the database. Initially, this view lists the standard methods
provided with the advanced replication facility. As you create new user functions
and add them as conflict resolution methods for an object in the database, these
functions are added to this view. Its columns are the same as those in ALL _
REPRESOLUTION_METH®D page 25-31.

USER_REPRESOLUTION_STATISTICS

The USER_REPRESOLUTION_STATISTICSiew lists information about
successfully resolved update, uniqueness, and delete conflicts for all replicated
tables owned by the current user. These statistics are only gathered for a table if you
have called the DBMS_REPCAT.REGISTER_STATISTIC$rocedure. The USER_
REPRESOLUTION_STATISTICSriew’s columns are the same as those in ALL
REPRESOLUTION_STATISTICSon page 25-32.

Note: The SNAMEolumn is not present in the USER_
REPRESOLUTION_STATISTICSview. This column is available in
the ALL_REPRESOLUTION_STATISTICSand DBA_
REPRESOLUTION_STATISTICSviews.

USER_REPSITES

The USER_REPSITESview lists the members of each replication group owned by
the current user. Its columns are the same as those in ALL_REPSITES on
page 25-33.

Replication Catalog Views 25-49

USER_REPSITES

25-50 Oracle9i Replication Management AP| Reference

20

Replication Dynamic Performance Views

All Oracle installations include the dynamic performance views, often referred to as
V$ views, described in this chapter. These views are used by master sites and
materialized view sites to determine such information as which materialized views
are being refreshed currently and statistics about the deferred transaction queue.

This chapter describes the following views:
« V$MVREFRESH

« V$REPLPROP

« V$REPLQUEUE

See Also: Chapter 10, "Monitoring a Replication Environment"

Replication Dynamic Performance Views 26-1

V$MVREFRESH

V$MVREFRESH
Contains information about the materialized views currently being refreshed.
Column Datatype Description
SID NUMBER Session identifier.
SERIAL# NUMBER Session serial number, which is used to identify uniquely a

session's objects. Guarantees that session-level commands are
applied to the correct session objects if the session ends and
another session begins with the same session ID.

CURRMVOWNER VARCHAR2(31) Owner of the materialized view currently being refreshed. The
materialized view resides in this user’s schema.
CURRMVNAME VARCHAR2(31) Name of the materialized view currently being refreshed.

Contains information about the parallel propagation currently in progress at the
replication site. Use this view to determine which transactions are currently being
propagated, the number of calls propagated in each transaction, and the current
activity of the parallel propagation slave processes or parallel propagation
coordinator process.

Note: This view only contains data when deferred transactions
are being pushed using parallel propagation at the current site. The
parallelism parameter must be set to 1 or higher in the DBMS _
DEFER_SYS.PUSHunction for a push to use parallel propagation.
Otherwise, the push uses serial propagation, and no data appears
in this view during the push.

26-2 Oracle9i Replication Management AP| Reference

Column

Datatype

Description

SID
SERIAL#

NAME

DBLINK
STATE

XID

SEQUENCE

NUMBER
NUMBER

VARCHAR2(71)

VARCHAR2(128)
VARCHAR2(12)

VARCHAR2(22)

NUMBER

Session identifier.

Session serial number. Used to identify uniquely a session's
objects. Guarantees that session-level commands are applied to
the correct session objects if the session ends and another session
begins with the same session ID.

Replication Parallel Prop Slave n indicates that the slave
process is active, either waiting, pushing deferred transactions,
purging metadata, or creating an error transaction.

Replication Parallel Prop Coordinator indicates that the
coordinator process is active, either waiting, sleeping, or
scheduling slaves to perform operations.

The Replication Parallel Prop Coordinator reads
transactions from the deferred transaction queue and assigns
them to the Replication Parallel Prop Slaves . Then, the
slaves propagate the transactions to the destination site. When the
slaves push transactions in a push session, the slaves remain
active until the push session completes, even if there are no more
transactions to push.

Database link on which this replication session is propagating.

WAITindicates that either the slave or coordinator process is
waiting for an event (that is, a message).

SLEEPindicates that the coordinator process is sleeping for the
duration of the delay_seconds setting. You set delay_
seconds with the SCHEDULE_PUSpIrocedure in the DBMS_
DEFER_SY $ackage.

PUSHindicates that the slave process is pushing transactions from
the deferred transaction queue to the remote site.

PURGEHRNdicates that the slave process is purging metadata
related to successfully applied transactions from the remote site.

CREATE ERRORdicates that the slave process is creating an
error transaction. In this case, an error or a conflict occurred while
the slave was pushing deferred transactions to the remote site.

SCHEDULE TXMdicates that the coordinator process is
determining the order that transactions are applied and assigning
slave processes to execute the transactions.

If the session is a slave session, then indicates the transaction id of
the transaction that the slave is currently propagating.

If the process is a slave process, then the sequence number of the
calls propagated in the current operation, if relevant. Each
transaction must process one or more calls, and the value of
SEQUENCEtarts at zero and increases as each call is processed.
So, the SEQUENCHalue shows the call that is currently being
processed in each transaction. This value increases until the slave
has processed all of the calls in a transaction.

Replication Dynamic Performance Views 26-3

V$REPLQUEUE

V$REPLQUEUE

Contains statistics about the replication deferred transactions queue. All values are
stored since the start of the current database instance.

Column Datatype Description

TXNS_ENQUEUED NUMBER Number of transactions enqueued in the deferred transactions
queue.

CALLS_ENQUEUED NUMBER Number of calls enqueued into the deferred transactions queue.

TXNS_PURGED NUMBER Number of transactions purged from the deferred transactions
queue.

LAST_ENQUEUE_TIME DATE Date when the last transaction was enqueued into the deferred

transaction queue. NULL if no transactions have been enqueued
into the deferred transaction queue since the instance started.

LAST_PURGE_TIME DATE Date when the last transaction was purged from the deferred
transaction queue. NULLf no transactions have been purged from
the deferred transaction queue since the instance started.

26-4 Oracle9i Replication Management AP| Reference

217

Deferred Transaction Views

Oracle provides several views for you to use when administering deferred
transactions. These views provide information about each deferred transaction,
such as the transaction destinations, the deferred calls that make up the
transactions, and any errors encountered during attempted execution of the
transaction.

This chapter describes the following views:

DEFCALL
DEFCALLDEST
DEFDEFAULTDEST
DEFERRCOUNT
DEFERROR
DEFLOB
DEFPROPAGATOR
DEFSCHEDULE
DEFTRAN
DEFTRANDEST

Caution: You should not modify the tables directly. Instead, use
the procedures provided in the DBMS_DEFERnd DBMS_DEFER _
SYSpackages.

See Also: Chapter 10, "Monitoring a Replication Environment”

Deferred Transaction Views 27-1

DEFCALL

Records all deferred remote procedure calls.
For calls placed in the queue using asynchronous replication, Oracle uses null
compression for column objects and object tables that contain three or more
consecutive nulls. Therefore, this view may show fewer attributes than the total
number of attributes in a column object and fewer columns than the total number
for an object table. For example, null compression may cause a column object with
eight attributes to show only five attributes.
Null compression does not apply to error transactions.
Column Datatype NULL Description
CALLNO NUMBER - The unique ID of a call within a transaction.
DEFERRED_TRAN_ID VARCHAR2(30) - The unique ID of the associated transaction.
SCHEMANAME VARCHAR2(30) - The schema name of the deferred call.
PACKAGENAME VARCHAR2(30) - The package name of the deferred call. For a
replicated table, this may refer to the table name.
PROCNAME VARCHAR2(30) - The procedure name of the deferred call. For a
replicated table, this may refer to an operation
name.
ARGCOUNT NUMBER - The number of arguments in the deferred call.
Lists the destinations for each deferred remote procedure call.
Column Datatype NULL Description
CALLNO NUMBER NOT NULLUnique ID of a call within a transaction.
DEFERRED_TRAN_ID VARCHAR2(30) NOT NULL Corresponds to the DEFERRED_TRAN_IBolumn in
the DEFTRANview. Each deferred transaction is
made up of one or more deferred calls.
DBLINK VARCHAR2(128) NOT NULL The fully qualified database name of the destination
database.

If you are not using Advanced Replication and do not supply a destination for a
deferred transaction or the calls within that transaction, then Oracle uses the

27-2 Oracle9i Replication Management AP| Reference

DEFDEFAULTDESView to determine the destination databases to which you want
to defer a remote procedure call.

Column Datatype NULL Description

DBLINK VARCHAR2(128) NOT NULL The fully qualified database name to which a
transaction is replicated.

Contains information about the error transactions for a destination.
Column Datatype NULL Description
ERRCOUNT NUMBER - Number of existing transactions that caused an error
for the destination.
DESTINATION VARCHAR2(128) - Database link used to address destination.

Contains the ID of each transaction that could not be applied. You can use this ID to
locate the queued calls associated with this transaction. These calls are stored in the
DEFCALLview. You can use the procedures in the DBMS_DEFER_QUERY¥ckage to
determine the arguments to the procedures listed in the DEFCALLview.

Column Datatype NULL Description

DEFERRED_TRAN_ID VARCHAR2(22) NOT NULL The ID of the transaction causing the error.
ORIGIN_TRAN_DB VARCHAR2(128) - The database originating the deferred transaction.
ORIGIN_TRAN_ID VARCHAR2(22) - The original ID of the transaction.

CALLNO NUMBER - Unique ID of the call at DEFERRED_TRAN_ID
DESTINATION VARCHAR2(128) - Database link used to address destination.
START_TIME DATE - Time when the original transaction was enqueued.
ERROR_NUMBER NUMBER - Oracle error number.

ERROR_MSG VARCHAR2(2000) - Error message text.

RECEIVER VARCHAR2(30) - Original receiver of the deferred transaction.
DEFLOB

Contains the LOB parameters to deferred remote procedure calls (RPCs).

Deferred Transaction Views 27-3

DEFPROPAGATOR

Column Datatype NULL Description

ID RAW(16) NOT NULL Identifier of the LOB parameter.

DEFERRED_TRAN_ID VARCHAR2(22) - Transaction ID for deferred remote procedure calls
(RPCs) with this LOB parameter.

BLOB_COL BLOB(4000) - The binary LOB parameter.

CLOB_COL CLOB(4000) - The character LOB parameter.

NCLOB_COL NCLOB(4000) - The national character LOB parameter.

DEFPROPAGATOR

Contains information about the local propagator.

Column Datatype NULL Description

USERNAME VARCHAR2(30) NOT NULL Username of the propagator.

USERID NUMBER NOT NULL User ID of the propagator.

STATUS VARCHAR2(7) - Status of the propagator.

CREATED DATE NOT NULL Time when the propagator was registered.

DEFSCHEDULE

Contains information about when a job is next scheduled to be executed and also
includes propagation statistics. The propagation statistics are for propagation of
deferred transactions from the current site to the site specified in the DBLINK
column.

To clear the propagation statistics for a remote site and start fresh, use the CLEAR_
PROP_STATISTICSprocedure in the DBMS_DEFER_SYRackage.

See Also: "CLEAR_PROP_STATISTICS Procedure" on page 14-4

Column Datatype NULL Description

DBLINK VARCHAR2(128) NOT NULL Fully qualified path name to the master site for
which you have scheduled periodic execution of
deferred remote procedure calls.

JOB NUMBER - Number assigned to job when you created it by
calling DBMS_DEFER_SYS.SCHEDULE_PUSH
Query the WHATcolumn of the USER_JOBSriew to
determine what is executed when the job is run.

27-4 Oracle9i Replication Management AP| Reference

Column

Datatype

NULL

Description

INTERVAL

NEXT_DATE
LAST_DATE

DISABLED

LAST_TXN_COUNT
LAST_ERROR_NUMBER
LAST_ERROR_MESSAGE
CATCHUP

TOTAL_TXN_COUNT

AVG_THROUGHPUT

AVG_LATENCY

TOTAL_BYTES_SENT

TOTAL_BYTES_RECEIVED

VARCHAR2(200) -

DATE
DATE

CHAR(1) -

NUMBER
NUMBER
VARCHAR2(2000)

RAW(16)

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NOT NULL

Function used to calculate the next time to push the
deferred transaction queue to destination.

Next date that job is scheduled to be executed.

Last time the queue was pushed (or attempted to
push) remote procedure calls to this destination.

If Y then propagation to destination is disabled.
If Nthen propagation to the destination is enabled.

Number of transactions pushed during last attempt.
Oracle error number from last push.
Error message from last push.

The extension identifier associated with a new
master site that is being added to a master group
without quiescing the master group. If there is no
extension identifier for a master site, then the value
is 00.

Total combined number of successful transactions
and error transactions.

The average number of transactions per second that
are propagated using parallel propagation. The
transactions include both successfully applied
transactions and error transactions created on the
remote site. Time that has elapsed when the
propagation coordinator is inactive (sleeping) is
included in the calculation.

If the transaction is successfully applied at the
remote site, then the average number of seconds
between the first call of a transaction on the current
site and the confirmation that the transaction was
applied at the remote site. The first call begins when
the user makes the first data manipulation language
(DML) change, not when the transaction is
committed.

If the transaction is an error transaction, then the
average number of seconds between the first call of
a transaction on the current site and the
confirmation that the error transaction is committed
on the remote site.

Total number of bytes sent, including replicated
data and metadata.

Total number of bytes received in propagation
confirmation messages.

Deferred Transaction Views 27-5

DEFTRAN

Column Datatype NULL

Description

TOTAL_ROUND_TRIPS NUMBER -

TOTAL_ADMIN_COUNT NUMBER -

TOTAL_ERROR_COUNT NUMBER

TOTAL_SLEEP_TIME NUMBER -

DISABLED_INTERNALLY_SET VARCHAR2(1) -

Total number of network round trips completed to
replicate data. A round trip is one or more
consecutively sent messages followed by one or
more consecutively received messages. So, if site A
sends 20 messages to site B and then site B sends
one message to site A, then that is that one round
trip.

Total number of administrative requests sent to
maintain information about transactions applied at
the receiving site. The receiving site is the site
specified in the DBLINK column. This special
administration is only required for parallel
propagation.

Total number of unresolved conflicts for which a
remote error was created.

Total number of seconds the propagation
coordinator was inactive (sleeping). You control the
amount of time that the propagation coordinator
sleeps using the delay_seconds parameter in the
DBMS_DEFER_SYS.PUSHInction.

This value is relevant only if DISABLED:is Y.

If DISABLED_INTERNALLY_SETis Y then
propagation to destination was set to disabled
internally by Oracle for propagation
synchronization when adding a new master site to a
master group without quiescing the master group.
Oracle will enable propagation automatically at a
later time.

If DISABLED_INTERNALLY_SETis Nthen
propagation was not disabled internally.

DEFTRAN

Records all deferred transactions in the deferred transactions queue at the current

site.

27-6 Oracle9i Replication Management AP| Reference

Column Datatype NULL Description

DEFERRED_TRAN_ID VARCHAR2(30) - The transaction ID that enqueued the calls.

DELIVERY_ORDER NUMBER - An identifier that determines the order of deferred
transactions in the queue. The identifier is derived
from the system change number (SCN) of the
originating transaction.

DESTINATION_LIST VARCHAR2(1) - R indicates that the destinations are determined by
the ALL_REPSITES view.

Dindicates that the destinations were determined by
the DEFDEFAULTDESView or the NODE_LIST
argument to the TRANSACTIONr CALL procedures.

START_TIME DATE - The time that the original transaction was
enqueued.

DEFTRANDEST

Lists the destinations for each deferred transaction in the deferred transactions
gueue at the current site.

Column Datatype NULL Description

DEFERRED_TRAN_ID VARCHAR2(30) NOT NULL The transaction ID of the transaction to replicate to
the given database link.

DELIVERY_ORDER NUMBER - An identifier that determines the order of deferred
transactions in the queue. The identifier is derived
from the system change number (SCN) of the
originating transaction.

DBLINK VARCHAR2(128) NOT NULL The fully qualified database name of the destination
database.

Deferred Transaction Views 27-7

DEFTRANDEST

27-8 Oracle9i Replication Management AP| Reference

28

Materialized View and Refresh Group Views

This chapter lists the following data dictionary views, which provide information
about materialized views and materialized view refresh groups.

ALL_ Views DBA_ Views USER_ Views
ALL_BASE_TABLE_MVIEWS DBA_BASE_TABLE_MVIEWS USER_BASE_TABLE_MVIEWS
- DBA_MVIEW_LOG_FILTER_COLS -

ALL_MVIEW_LOGS DBA_MVIEW _LOGS USER_MVIEW_LOGS
ALL_MVIEW_REFRESH_TIMES DBA_MVIEW_REFRESH_TIMES USER_MVIEW_REFRESH_TIMES
ALL_MVIEWS DBA_MVIEWS USER_MVIEWS

- DBA_RCHILD -

ALL_REFRESH DBA_REFRESH USER_REFRESH
ALL_REFRESH_CHILDREN DBA_REFRESH_CHILDREN USER_REFRESH_CHILDREN
ALL_REGISTERED_MVIEWS DBA_REGISTERED_MVIEWS USER_REGISTERED_MVIEWS
- DBA_RGROUP -

See Also: Chapter 10, "Monitoring a Replication Environment”

Materialized View and Refresh Group Views 28-1

28-2 Oracle9i Replication Management AP| Reference

Part V

Appendixes

Part V includes the following appendixes:
« Appendix A, "Security Options"
« Appendix B, "User-Defined Conflict Resolution Methods"

A

Security Options

This appendix contains these topics:
« Security Setup for Multimaster Replication

« Security Setup for Materialized View Replication

Security Options A-1

Security Setup for Multimaster Replication

Security Setup for Multimaster Replication

Nearly all users should find it easiest to use the Replication Manager Setup Wizard
when configuring multimaster replication security. However, in certain cases you
may need to use the replication management API to perform these setup
operations.

To configure a replication environment, the database administrator must connect
with DBA privileges to grant the necessary privileges to the replication
administrator.

First set up user accounts at each master site with the appropriate privileges to
configure and maintain the replication environment and to propagate and apply
replicated changes. You must also define links for users at each master site.

In addition to the end users who access replicated objects, there are three special
categories of "users" in a replication environment:

« Replication administrators, who are responsible for configuring and
maintaining a replication environment.

« Propagators, who are responsible for propagating deferred transactions.
« Receivers at remote sites, who are responsible for applying these transactions.

Typically, a single user acts as administrator, propagator, and receiver. However,
you can have separate users perform each of these functions. You can choose to
have a single, global replication administrator or, if your replication groups do not
span schema boundaries, you may prefer to have separate replication
administrators for different schemas. Note, however, that you can have only one
registered propagator for each database.

Table A-1 on page A-4 describes the necessary privileges that must be assigned to
these specialized accounts. Most privileges needed by these users are granted to
them through calls to the replication management API. You also must grant certain
privileges directly, such as CONNECa@nd RESOURCErivileges.

A-2 Oracle9i Replication Management API Reference

Security Setup for Multimaster Replication

Trusted Compared With Untrusted Security

In addition to the different types of users, you also need to determine which type of
security model you will implement: trusted or untrusted. With a trusted security
model, the receiver has access to all local master groups. Because the receiver
performs database activities at the local master site on behalf of the propagator at
the remote site, the propagator also has access to all master groups at the receiver’s
site. Remember that a single receiver is used for all incoming transactions.

For example, consider the scenario in Figure A-1. Even though only Master Groups
A and C exist at Master Site B, the propagator has access to Master Groups A, B, C,
and D at Master Site A because the trusted security model has been used. While this
greatly increases the flexibility of database administration, due to the mobility of
remote database administration, it also increases the chances of a malicious user at a
remote site viewing or corrupting data at the master site.

Regardless of the security model used, Oracle automatically grants the appropriate
privileges for objects as they are added to or removed from a replication
environment.

Figure A—1 Trusted Security: Multimaster Replication

Master Master Master
Group Group = Group
A C S % A
5| e——2
o Q
o o
Master Master a Master
Group Group Group
B D C
Master Site A Master Site B

Untrusted security assigns only the privileges to the receiver that are required to
work with specified master groups. The propagator, therefore, can only access the
specified master groups that are local to the receiver. Figure A-2 illustrates an
untrusted security model. Because Master Site B contains only Master Groups A
and C, the receiver at Master Site A has been granted privileges for Master Groups
A and C only, thereby limiting the propagator’s access at Master Site A.

Security Options A-3

Security Setup for Multimaster Replication

Figure A—2 Untrusted Security: Multimaster Replication

Master Master Master
Group Group . Group
A C) % A

z | ——2
Q Q.
o o
a Master
Group
C

¥/¥/

Master Site A

Master Site B

Typically, master sites are considered trusted and therefore the trusted security
model is used. If, however, your remote master sites are untrusted, then you may
want to use the untrusted model and assign your receiver limited privileges. A site
might be considered untrusted, for example, if a consulting shop performs work for
multiple customers. Use the appropriate API call listed for the receiver in Table A-1
to assign the different users the appropriate privileges.

Table A-1 Required User Accounts

User

Privileges

global replication
administrator

schema-level replication
administrator

propagator

receiver

DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA
DBMS_REPCAT_ADMIN.GRANT_ADMIN_SCHEMA

DBMS_DEFER_SYS.REGISTER_PROPAGATOR
See "REGISTER_USER_REPGROUP Procedure" on page 21-4
for details.

Trusted:
DBMS_REPCAT_ADMIN.REGISTER_USER _REPGROUP
privilege => receiver

list_of gnames=>NULL

Untrusted:
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => receiver

list_of gnames=>' mastergroupname’

A-4 Oracle9i Replication Management API Reference

Security Setup for Multimaster Replication

After you have created these accounts and assigned the appropriate privileges,
create the following private database links, including username and password
between each site:

« From the local replication administrator to the remote replication administrator.
« From the local propagator to the remote receiver.

Assuming you have designated a single user account to act as replication
administrator, propagator, and receiver, you must create N(N-1) links, where N is
the number of master sites in your replication environment.

After creating these links, you must call DBMS_DEFER_SYS.SCHEDULE_PUahd
DBMS_DEFER_SYS.SCHEDULE_PURG@iteach location, to define how frequently
you want to propagate your deferred transaction queue to each remote location,
and how frequently you wish to purge this queue. You must call DBMS_DEFER _
SYS.SCHEDULE_PUSkhultiple times at each site, once for each remote location.

A sample script for setting up multimaster replication between hq.world and
sales.world is shown below:

F— Create global replication administrator at HQ —/

connect system/manager@ha.world

create user repadmin identified by repadmin

execute dbms_repcat_admin.grant_admin_any_schema(usemame => "repadmin)

F— Create global replication administrator at Sales —*/

connect system/manager@sales.world

create user repadmin identified by repadmin

execute dbms_repcat_admin.grant_admin_any _schema(usemame => "repadmin’)

F— Create single user to act as both propagator and receiver at HQ —*/
connect system/manager@ha.world
create user prop_rec identified by prop_rec
F— Grant privileges necessary to act as propagator —*/
execute doms_defer_sys.register_propagator(usemame =>prop_rec)
F— Grant privileges necessary to act as receiver —/
execute dbms_repcat_admin.register_user_repgroup(
usemame =>'prop_rec,
privilege_type => receiver’,
list_of gnames=>NULL)

F— Create single user to act as both propagator and receiver at Sales —*/
connect system/manager@sales.world

create user prop_rec identified by prop_rec

F— Grant privileges necessary to act as propagator —*/execute

Security Options A-5

Security Setup for Multimaster Replication

doms_defer_sys.register_propagator(usemame =>'prop_rec)

F— Grant privileges necessary to act as receiver —/

execute dbms_repcat_admin.register_user_repgroup(
usemame =>'prop_rec,
privilege_type => receiver’,
list_of_gnames=>NULL)

F— Create public link from HQ to Sales with necessary USING clause —*/
connect system/manager@hg.world
create public database link sales.world using sales.world

P— Create private repadmin to repadmin link —/
connect repadmin/repadmin@ha.world
create database link sales.world connect to repadmin identified by repadmin

F— Schedule replication from HQ to Sales —/
execute dbms_defer_sys.schedule_push(
destination =>'sales.world,
interval => 'sysdate + 1/24,
next_date => sysdate,
stop_on_emor =>FALSE,
parallelism =>1)

F— Schedule purge of def tran queue at HQ —*/
execute dbms_defer_sys.schedule_purge(
next_date => sysdate,
interval =>'sysdate + 1',
delay_seconds=>0,
rollback_segment =>")

F— Create link from propagator to receiver for scheduled push —*/
connect prop_rec/prop_rec@hq.world
create database link sales.world connect to prop_rec identified by prop_rec

F— Create public link from Sales to HQ with necessary USING clause —*/
connect system/manager@sales.world
create public database link hg.world using hg.world

F— Create private repadmin to repadmin link —/

connect repadmin/repadmin@sales.world
create database link hg.world connect to repadmin identified by repadmin

A-6 Oracle9/ Replication Management API Reference

Security Setup for Materialized View Replication

F— Schedule replication from Sales to HQ —/
execute doms_defer_sys.schedule_push(
destination =>hq.world’,
interval => 'sysdate + 1/24,
next_date => sysdate,
stop_on_ermor =>FALSE,
parallelism => 1)

F— Schedule purge of def tran queue at Sales —/
execute dbms_defer_sys.schedule_purge(
next_date => sysdate,
interval =>'sysdate + 1,
delay_seconds=>0,
rollback_segment =>")

F— Create link from propagator to receiver for scheduled push —*/
connect prop_rec/prop_rec@sales.world
create database link hg.word connect to prop_rec identified by prop_rec

Security Setup for Materialized View Replication

Nearly all users should find it easiest to use the Replication Manager Setup Wizard
when configuring materialized view replication security. However, for certain
specialized cases, you may need to use the replication management API to perform
these setup operations. To configure a replication environment, the database
administrator must connect with DBA privileges to grant the necessary privileges to
the replication administrator.

First set up user accounts at each materialized view site with the appropriate
privileges to configure and maintain the replication environment and to propagate
replicated changes. You must also define links for these users to the associated
master site or master materialized view site. You may need to create additional
users, or assign additional privileges to users at the associated master site or master
materialized view site.

In addition to end users who will be accessing replicated objects, there are three
special categories of "users" at a materialized view site:

« Replication administrators, who are responsible for configuring and
maintaining a replication environment.

« Propagators, who are responsible for propagating deferred transactions.

« Refreshers, who are responsible for pulling down changes to the materialized
views from the associated master tables or master materialized views.

Security Options A-7

Security Setup for Materialized View Replication

Typically, a single user performs each of these functions. However, there may be
situations where you need different users performing these functions. For example,
materialized views may be created by a materialized view site administrator and
refreshed by another end user.

Table A-2 describes the privileges needed to create and maintain a materialized
view site.

Table A-2 Required Materialized View Site User Accounts

User Privileges

Materialized view site DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA
replication administrator

Propagator DBMS_DEFER_SYS.REGISTER_PROPAGATOR
Refresher CREATE ANY MATERIALIZED VIEW

ALTER ANY MATERIALIZED VIEW

In addition to creating the appropriate users at the materialized view site, you may
need to create additional users at the associated master site or master materialized
view site, as well. Table A-3 on on page A-11 describes the privileges need by
master site or master materialized view site users to support a new materialized
view site.

Trusted Compared With Untrusted Security

In addition to the different users at the master site or master materialized view site,
you also need to determine which type of security model you will implement:
trusted or untrusted. With a trusted security model, the receiver and proxy
materialized view administrator have access to all local replication groups. The
receiver and proxy materialized view administrator perform database activities at
the local master site or master materialized view site on behalf of the propagator
and materialized view administrator, respectively, at the remote materialized view
site. Therefore, the propagator and materialized view administrator at the remote
materialized view site also have access to all replication groups at the master site or
master materialized view site. Remember that a single receiver is used for all
incoming transactions.

A-8 Oracle9i Replication Management API Reference

Security Setup for Materialized View Replication

For example, consider the scenario in Figure A-3. Even though Materialized View
Groups A and C exist at the materialized view site (based on Master Groups A and
C at the Master Site), the propagator and materialized view administrator have
access to Master Groups A, B, C, and D at the Master Site because the trusted
security model has been used. While this greatly increases the flexibility of database
administration, because the DBA can perform administrative functions at any of
these remote sites and have these changes propagated to the master sites, it also
increases the chances of a malicious user at a remote site viewing or corrupting data
at the master site.

Regardless of the security model used, Oracle automatically grants the appropriate
privileges for objects as they are added to or removed from a replication
environment.

Figure A-3 Trusted Security: Materialized View Replication

Master Master Mat\e/rigllbzed
croup Group 5 Group
A C 5 % 2
§ «—2
o
o o i
Master Master = Mat{e/rilgllilzed
Group Group Group
\B_DJ C
Master Site Materialized View Site

Untrusted security assigns only the privileges to the proxy materialized view
administrator and receiver that are required to work with specified replication
groups. The propagator and materialized view administrator, therefore, can only
access these specified replication groups at the Master Site. Figure A—4 illustrates an
untrusted security model with materialized view replication. Because the
Materialized View Site contains Materialized View Groups A and C, access to only
Master Groups A and C are required. Using untrusted security does not allow the
propagator or the materialized view administrator at the Materialized View Site to
access Master Groups B and D at the Master Site.

Security Options A-9

Security Setup for Materialized View Replication

Figure A—4 Untrusted Security: Materialized View Replication

Master Master Mat{a/rilea\ll:lzed
Group Group _ Sroup
z|le——%
Q Q
e o Materialized
e View
Group
K_J =
Master Site Materialized View Site

Typically, materialized view sites are more vulnerable to security breaches and
therefore the untrusted security model is used. There are very few reasons why you
would want to use a trusted security model with your materialized view site and it

is recommended that you use the untrusted security model with materialized view
sites.

One reason you might choose to use a trusted security model is if your materialized
view site is considered a master site in every way (security, constant network
connectivity, resources) but is a materialized view only because of data subsetting
requirements. Remember that row and column subsetting are not supported in a
multimaster configuration.

Use the appropriate API calls listed for the proxy materialized view administrator
and receiver in Table A-3 to assign the different users the appropriate privileges.

A-10 Oracle9i Replication Management API Reference

Security Setup for Materialized View Replication

Table A-3 Required Master Site or Master Materialized View Site User Accounts

User

Privileges

proxy materialized view
site administrator

receiver

proxy refresher

See "REGISTER_USER_REPGROUP Procedure" on page 21-4
for details.

Trusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege =>'proxy_snapadmin’

list_of gnames=>NULL

Untrusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP

privilege =>'proxy_snapadmin'

list_of gnames=>" mastergroupname’

See "REGISTER_USER_REPGROUP Procedure” on page 21-4
for details.

Trusted
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => receiver

list_of gnames=>NULL

Untrusted:
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => receiver

list_of gnames=>' mastergroupname’

Trusted:

Grant CREATE SESSION
Grant SELECT ANY TABLE

Untrusted:

Grant CREATE SESSION
Grant SELECTon necessary master tables or master
materialized views and materialized view logs

Security Options A-11

Security Setup for Materialized View Replication

After creating the accounts at both the materialized view and associated master
sites or master materialized view sites, you need to create the following private
database links, including username and password, from the materialized view site
to the master site or master materialized view site:

« From the materialized view replication administrator to the proxy materialized
view replication administrator.

« From the propagator to the receiver.
« From the refresher to the proxy refresher.

« From the materialized view owner to the master site or master materialized
view site for refreshes.

Assuming you have designated a single user account to act as materialized view
administrator, propagator, and refresher, you must create one link for each
materialized view site for those functions. You do not need a link from the master
site or master materialized view site to the materialized view site.

After creating these links, you must call DBMS_DEFER_SYS.SCHEDULE_PU&ht
DBMS_DEFER_SYS.SCHEDULE_PUR#&Ehe materialized view site to define how
frequently you want to propagate your deferred transaction queue to the associated
master site or master materialized view site, and how frequently you wish to purge
this queue. You must also call DMBS_REFRESH.REFRESitthe materialized view
site to schedule how frequently to pull changes from the associated master site or
master materialized view site.

A-12 Oracle9i Replication Management API Reference

B

User-Defined Conflict Resolution Methods

This appendix describes how to build user-defined conflict resolution methods and
user-defined conflict notification methods. This appendix contains these topics:

« User-Defined Conflict Resolution Methods
« User-Defined Conflict Notification Methods

« Viewing Conflict Resolution Information

User-Defined Conflict Resolution Methods B-1

User-Defined Conflict Resolution Methods

User-Defined Conflict Resolution Methods

Oracle enables you to write your own conflict resolution or notification methods. A
user-defined conflict resolution method is a PL/SQL function that returns either
TRUEor FALSE TRUEindicates that the method has successfully resolved all
conflicting modifications for a column group. If the method cannot successfully
resolve a conflict, then it should return FALSE Oracle continues to evaluate
available conflict resolution methods, in sequence order, until either a method
returns TRUEor there are no more methods available.

If the conflict resolution method raises an exception, then Oracle stops evaluation of
the method, and, if any other methods were provided to resolve the conflict with a
later sequence number, then Oracle does not evaluate them.

Conflict Resolution Method Parameters

The parameters needed by a user-defined conflict resolution method are
determined by the type of conflict being resolved (uniqueness, update, or delete)
and the columns of the table being replicated. All conflict resolution methods take
some combination of old, new, and current column values for the table.

« The old value represents the value of the row at the initiating site before you
made the change.

« The new value represents the value of the row at the initiating site after you
made the change.

« The current value represents the value of the equivalent row at the receiving
site.

Note: Recall that Oracle uses the primary key, or the key specified
by SET_COLUMNSo determine which rows to compare.

The conflict resolution function should accept as parameters the values for the
columns specified in the PARAMETER_COLUMN_NAdvifiiment to the DBMS _
REPCAT.ADD conflicttype _RESOLUTIONprocedures. The column parameters
are passed to the conflict resolution method in the order listed in the PARAMETER _
COLUMN_NAM#gument, or in ascending alphabetical order if you specified *' for
this argument. When both old and new column values are passed as parameters
(for update conflicts), the old value of the column immediately precedes the new
value.

B-2 Oracle9/ Replication Management AP| Reference

User-Defined Conflict Resolution Methods

Note:

« Type checking of parameter columns in user-defined conflict
resolution methods is not performed until you regenerate
replication support for the associated replicated table.

« Attributes of column objects cannot be defined as column
parameters for user-defined conflict resolution methods.

Resolving Update Conflicts

For update conflicts, a user-defined function should accept the following values for
each column in the column group:

« Old column value from the initiating site. The mode for this parameter is IN .
This value should not be changed.

« New column value from the initiating site. The mode for this parameter is IN
OUT If the function can resolve the conflict successfully, then it should modify
the new column value as needed.

« Current column value from the receiving site. The mode for this parameter
isIN.

The old, new, and current values for a column are received consecutively. The final
argument to the conflict resolution method should be a Boolean flag. If this flag is
false ,then itindicates that you have updated the value of the IN OUT parameter
(new) and that you should update the current column value with this new value. If
this flag is true , then it indicates that the current column value should not be
changed.

Resolving Uniqueness Conflicts

Uniqueness conflicts can occur as the result of an INSERT or UPDATE Your
uniqueness conflict resolution method should accept the new column value from
the initiating site in IN OUT mode for each column in the column group. The final
parameter to the conflict resolution method should be a Boolean flag.

If the method can resolve the conflict, then it should modify the new column values
so that Oracle can insert or update the current row with the new column values.
Your function should set the Boolean flag to true if it wants to discard the new
column values, and false otherwise.

User-Defined Conflict Resolution Methods B-3

User-Defined Conflict Resolution Methods

Because a conflict resolution method cannot guarantee convergence for uniqueness
conflicts, a user-defined uniqueness resolution method should include a notification
mechanism.

Resolving Delete Conflicts

Delete conflicts occur when you successfully delete from the local site, but the
associated row cannot be found at the remote site (for example, because it had been
updated). For delete conflicts, the function should accept old column values in IN
OUTmode for the entire row. The final parameter to the conflict resolution method
should be a Boolean flag.

If the conflict resolution method can resolve the conflict, then it modifies the old
column values so that Oracle can delete the current row that matches all old column
values. Your function should set the Boolean flag to true if it wants to discard these
column values, and false otherwise.

If you perform a delete at the local site and an update at the remote site, then the
remote site detects the delete conflict, but the local site detects an unresolvable
update conflict. This type of conflict cannot be handled automatically. The conflict
raises a NO_DATA FOUN&xception and Oracle logs the transaction as an error
transaction.

Designing a mechanism to properly handle these types of update/delete conflicts is
difficult. It is far easier to avoid these types of conflicts entirely, by simply "marking"
deleted rows, and then purging them using procedural replication.

See Also: "Creating Conflict Avoidance Methods for Delete
Conflicts" on page 6-31

Multitier Materialized Views and User-Defined Conflict Resolution Methods

When you use user-defined conflict resolution methods with multitier materialized
views, the information about these methods is pulled down to the master
materialized view sites automatically. This information is stored in the data
dictionary at the master materialized view site. However, the user-defined conflict
resolution methods themselves cannot be pulled down from the master site.
Therefore, you must re-create these methods at the master materialized view site.

B-4 Oracle9/ Replication Management AP| Reference

User-Defined Conflict Resolution Methods

See Also:

« "Viewing Conflict Resolution Information" on page B-12 for
information about the data dictionary views that store
information about user-defined conflict resolution methods

« Oracle9i Replication for more information about conflict
resolution and multitier materialized views

Restrictions for User-Defined Conflict Resolution Methods

The following sections describe restrictions for user-defined conflict resolution
methods.

SQL Statement Restrictions for User-Defined Conflict Resolution Methods

Avoid the following types of SQL statements in user-defined conflict resolution
methods. Use of such statements can result in unpredictable results.

« Data definition language (DDL) statements (such as CREATEALTER DROP
« Transaction control statements (such as COMMITROLLBACK

« Session control (such as ALTER SESSION

« System control (such as ALTER SYSTEM

Column Subsetting Restrictions for User-Defined Conflict Resolution Methods

Avoid subsetting the columns in a column group when you create updatable
multitier materialized views. Column subsetting excludes columns that are in
master tables or master materialized views from a materialized view based on these
masters. You do this by specifying certain select columns in the SELECTstatement
during materialized view creation.

When you use conflict resolution with multitier materialized views, you cannot
define the conflict resolution methods at the materialized view site. Conflict
resolution methods are always pulled down from the master site. Therefore, if you
subset the columns in a column group that has a user-defined conflict resolution
applied to it, the conflict resolution method will not be able to find all of the
columns in the column group at a master materialized view site. When this
happens, the conflict resolution method returns the following error:

ORA-23460 missing value for column in resolution method

User-Defined Conflict Resolution Methods B-5

User-Defined Conflict Resolution Methods

For example, consider a case where the job_id , salary , and commission_pct
columns in the hr.employees table are part of a column group name
employees_cgl that has a user-defined conflict resolution method applied to it at
the master site hg.world . To protect the privacy of your sales staff, you create a
level 1 updatable materialized view that uses column subsetting to exclude the
salary and commission_pct columns at the ca.us office. When you create this
materialized view at the ca.us office, the conflict resolution method is pulled
down from hg.world . You then create an updatable multitier materialized view at
the sf.ca office based on the level 1 materialized view at the ca.us office.

Given this replication environment, if a conflict arises for a job_id value at the
level 1 materialized view at the ca.us office, then the conflict resolution method
fails to find the salary and commission_pct columns and returns the
ORA-23460 error mentioned previously.

See Also: Oracle9i Replication for more information about column
subsetting

Examples of User-Defined Conflict Resolution Method

The following examples show user-defined methods that are variations on the
standard maximum and additive prebuilt conflict resolution methods. Unlike the
standard methods, these custom functions can handle nulls in the columns used to
resolve the conflict.

Maximum User Function

— User function similar to MAXIMUM method.

— If curris null or curr < new, then use new values.

- Ifnew is null or new < curr, then use current values.
- If both are null, then no resolution.

— Does not converge with > 2 masters, unless

—always increasing.

FUNCTION max_null_loses(old IN NUMBER,
new IN OUT NUMBER,
cur IN NUMBER,

ignore_discard_flag OUT BOOLEAN)
RETURN BOOLEANIS

B-6 Oracle9/ Replication Management AP| Reference

User-Defined Conflict Resolution Methods

BEGIN

IF (new IS NULL AND cur IS NULL) OR new = cur THEN

RETURN FALSE;
ENDIF;
IF new IS NULL THEN
ignore_discard_flag := TRUE;
ELSIF cur IS NULL THEN
ignore_discard flag := FALSE;
ELSIF new < cur THEN
ignore_discard flag .= TRUE;
ELSE
ignore_discard_flag := FALSE;
ENDIF;
RETURN TRUE;
END max_null_loses;

Additive User Function

— User function similar to ADDITIVE method.

—Ifoldis null, then old =0.
— Ifnewis null, then new=0.
- Ifcurris null, then curr =0.

—new = curr + (new - old) -> just like ADDITIVE method.

FUNCTION additve_nulis(old
new IN OUT NUMBER,
our IN NUMBER,

ignore_discard flagOUT BOOLEAN)

RETURN BOOLEAN IS
old valNUMBER :=0.;
new_val NUMBER :=0.0;
cur_valNUMBER :=0.0;
BEGIN
IFold ISNOT NULL THEN
old val:=old;
ENDIF;
IF new IS NOT NULL THEN
new_val :=new;
ENDIF;
IF cur ISNOT NULL THEN
cur_val:=cur;
ENDIF;
new :=cur_val + (new_val - old_val);
ignore_discard_flag := FALSE;
RETURN TRUE;
END additive_nulls;

IN NUMBER,

User-Defined Conflict Resolution Methods B-7

User-Defined Conflict Notification Methods

User-Defined Conflict Notification Methods

A conflict notification method is a user-defined function that provides conflict
notification rather than or in addition to conflict resolution. For example, you can
write your own conflict notification methods to log conflict information in a
database table, send an email message, or page an administrator. After you write a
conflict notification method, you can assign it to a column group (or constraint) in a
specific order so that Oracle notifies you when a conflict happens, before attempting
subsequent conflict resolution methods, or after Oracle attempts to resolve a conflict
but cannot do so.

To configure a replicated table with a user-defined conflict notification mechanism,
you must complete the following steps:

Step 1 Create a conflict notification log.

Step 2 Create the user-defined conflict notification method in a package.
The following sections explain each step.

Creating a Conflict Notification Log

When configuring a replicated table to use a user-defined conflict notification
method, the first step is to create a database table that can record conflict
notifications. You can create a table to log conflict notifications for one or many
tables in a master group.

To create a conflict notification log table at all master sites, use the replication
execute DDL facility. For more information, see "EXECUTE_DDL Procedure" on
page 20-74. Do not generate replication support for the conflict notification tables
because their entries are specific to the site that detects a conflict.

Sample Conflict Notification Log Table

The following CREATE TABLEtatement creates a table that you can use to log
conflict notifications from several tables in a master group.

CREATE TABLE conf_report (
line NUMBER(2), — used to order message text
txt VARCHAR2(80), — conflict notification message
imestamp DATE, — time of conflict
table_name VARCHAR2(30), — table in which the
— conflict occurred
table_owner VARCHAR2(30), — owner of the table
conflict_type VARCHAR2(6) — INSERT, DELETE or UNIQUE

B-8 Oracle9/ Replication Management AP| Reference

User-Defined Conflict Notification Methods

Creating a Conflict Notification Package

To create a conflict notification method, you must define the method in a PL/SQL
package and then replicate the package as part of a master group along with the
associated replicated table.

A conflict notification method can perform conflict notification only, or both conflict
notification and resolution. If possible, you should always use one of Oracle’s
prebuilt conflict resolution methods to resolve conflicts. When a user-defined
conflict notification method performs only conflict notification, assign the
user-defined method to a column group (or constraint) along with conflict
resolution methods that can resolve conflicts.

Note: If Oracle cannot ultimately resolve a replication conflict,
then Oracle rolls back the entire transaction, including any updates
to a notification table. If notification is necessary independent of
transactions, then you can design a notification mechanism to use
the Oracle DBMS_PIPESpackage.

Sample Conflict Notification Package

The following package and package body perform a simple form of conflict
notification by logging uniqueness conflicts for a CUSTOMER®ble into the
previously defined CONF_REPORI(Bble.

Note: This example of conflict notification does not resolve any
conflicts. You should either provide a method to resolve conflicts
(such as discard or overwrite), or provide a notification mechanism
that will succeed (for example, using e-mail) even if the error is not
resolved and the transaction is rolled back. With simple
modifications, the following user-defined conflict notification
method can take more active steps. For example, instead of just
recording the notification message, the package can use the DBMS _
OFFICE utility package to send an Oracle Office email message to
an administrator.

User-Defined Conflict Resolution Methods B-9

User-Defined Conflict Notification Methods

CREATE OR REPLACE PACKAGE notify AS
— Report uniqueness constraint violations on CUSTOMERS table
FUNCTION customers_unique_violation (
first name INOUT VARCHAR2,
last_name IN OUT VARCHARZ,
discard_new_values IN OUT BOOLEAN)
RETURN BOOLEAN,;
END notify;
/

CREATE OR REPLACE PACKAGE BODY notify AS
— Define a PL/SQL index-by table to hold the notification message
TYPE message_table IS TABLE OF VARCHAR2(80) INDEX BY BINARY_INTEGER;
PROCEDURE report_confiict (
conflict_report IN MESSAGE_TABLE,
report_length IN NUMBER,
confiict_time IN DATE,
confiict_table IN VARCHAR2,
table_owner IN VARCHAR2,
confiict type INVARCHAR2)IS
BEGIN
FOR idx IN 1..report_length LOOP
BEGIN
INSERT INTO sales.conf_report
(line, tt, imestamp, table_name, table_owner, conflict_type)
VALUES (idx, SUBSTR(confiict_report(idx),1,80), conflict_time,
conflict_table, table_owner, conflict_type);
EXCEPTION WHEN others THEN NULL;
END;
END LOOP;
END report_conflict;
— This is the confiict resolution method that is called first when
—auniqueness constraint violated is detected in the CUSTOMERS table.
FUNCTION customers_unigue_violation (
first_name IN OUT VARCHAR2,
last_namelN OUT VARCHAR?2,
discard_new_valuesiN OUT BOOLEAN)
RETURN BOOLEAN IS
local node VARCHAR2(128);
conf_report MESSAGE._TABLE;
conf_time DATE :=SYSDATE;

B-10 Oracle9/ Replication Management API Reference

User-Defined Conflict Notification Methods

BEGIN
- Get the global name of the local site
BEGIN
SELECT global_name INTO local_node FROM global_name;
EXCEPTION WHEN others THEN local_node =7,
END;
- Generate a message for the DBA
conf_report(1) :='UNIQUENESS CONFLICT DETECTED IN TABLE CUSTOMERS ON' ||
TO_CHAR(conf_time, MM-DD-YYYY HH24:MI:SSY);
conf_report(2) =" AT NODE ' || local_node;
conf_report(3) :='ATTEMPTING TO RESOLVE CONFLICT USING ||
'APPEND SEQUENCE METHOD;
conf_report(4) :="FIRST NAME: ' || first_name;
conf_report(5) :='LAST NAME: ' || last_name;
conf_report(6) .= NULL;
— Report the confiict
report_conflict(conf_report, 5, conf_time, 'CUSTOMERS,
'OFF_SHORE_ACCOUNTS, UNIQUE);
— Do not discard the new column values. They are still needed by
— other conflict resolution methods.
discard_new_values :=FALSE;
— Indicate that the conflict was not resolved.
RETURN FALSE;
END customers_unique_violation;
END notify;
/

User-Defined Conflict Resolution Methods B-11

Viewing Conflict Resolution Information

Viewing Conflict Resolution Information

Oracle provides replication catalog (REPCAT) views that you can use to determine
what conflict resolution methods are being used by each of the tables and column
groups in your replication environment. Each view has three versions: USER_*,
ALL_*, SYS.DBA_*. The available views are shown in the following table.

View

Description

ALL_REPRESOLUTION_METHOD
ALL_REPCOLUMN_GROUP

ALL_REPGROUPED_COLUMN

ALL_REPPRIORITY_GROUP

ALL_REPPRIORITY

ALL_REPCONFLICT

ALL_REPRESOLUTION

ALL_REPPARAMETER_COLUMN

Lists all of the available conflict resolution methods.

Lists all of the column groups defined for the
database.

Lists all of the columns in each column group in the
database.

Lists all of the priority groups and site priority groups
defined for the database.

Lists the values and corresponding priority levels for
each priority or site priority group.

Lists the types of conflicts (delete, update, or
uniqueness) for which you have specified a resolution
method, for the tables, column groups, and unique
constraints in the database.

Shows more specific information about the conflict
resolution method used to resolve conflicts on each
object.

Shows which columns are used by the conflict
resolution methods to resolve a conflict.

See Also: Chapter 25, "Replication Catalog Views"

B-12 Oracle9/ Replication Management API Reference

A

administrative requests
monitoring, 10-16
errors, 10-17
jobs, 10-18
administrators
for materialized view sites
creating, 2-25
ALL_REPCAT_REFRESH_TEMPLATES
view, 25-5
ALL_REPCAT_TEMPLATE_OBJECTS view, 25-6
ALL_REPCAT_TEMPLATE_PARMS view, 25-8
ALL_REPCAT_TEMPLATE_SITES view, 25-10
ALL_REPCAT_USER_AUTHORIZATIONS
view, 25-11
ALL_REPCAT_USER_PARM_VALUES
view, 25-12
ALL_REPCATLOG view, 25-15
ALL_REPCOLUMN view, 25-16
ALL_REPCOLUMN_GROUP view, 25-18
ALL_REPCONFLICT view, 25-19
ALL_REPDDL view, 25-20
ALL_REPGENOBJECTS view, 25-20
ALL_REPGROUP view, 25-21
ALL_REPGROUP_PRIVILEGES view, 25-22
ALL_REPGROUPED_COLUMN view, 25-22
ALL_REPKEY_COLUMNS view, 25-23
ALL_REPOBIJECT view, 25-24
ALL_REPPARAMETER_COLUMN view, 25-25
ALL_REPPRIORITY view, 25-26
ALL_REPPRIORITY_GROUP view, 25-27
ALL_REPPROP view, 25-28
ALL_REPRESOL_STATS _CONTROL view, 25-29

Index

ALL_REPRESOLUTION view, 25-30
ALL_REPRESOLUTION_METHOD view, 25-31
ALL_REPRESOLUTION_STATISTICS view, 25-32
gathering statistics, 6-41
ALL_REPSITES view, 25-33
ALTER MATERIALIZED VIEW LOG
statement, 8-16
AnyData datatype
replication, 9-16
authorization
template users, 4-12
availability
extended, 6-3, 7-4, 9-2, 20-9, 20-28, 20-81, 20-94,
20-99, 20-104

C

column objects
user-defined conflict resolution, B-3
column subsetting
user-defined conflict resolution methods, B-5
columns
adding to master tables, 20-91
column groups, 6-4,6-7, 6-11, 6-14, 6-17, 6-22
adding members to, 20-7
creating, 20-56, 20-79
dropping, 20-60
removing members from, 20-61
comments
comments field
updating in views, 7-45
updating, 7-45
comparing
tables, 18-3

Index-1

conflict resolution, 6-1

additive method, 6-13, 20-17
auditing, 6-41
average method, 6-13

column groups, 6-4, 6-7, 6-11, 6-14, 6-17, 6-22

configuring without quiesce, 6-3

DBA_REPRESOLUTION_STATISTICS

view, 6-42
discard method, 6-3
information
viewing, B-12
maximum method, 6-6
minimum method, 6-6
overwrite method, 6-3
preparing for, 6-2
priority groups method, 6-16
procedural replication and, 7-50
site priority method, 6-20
sample trigger, 6-22
statistics, 20-35, 20-87
canceling, 6-42
collecting, 6-41
viewing, 6-41
timestamp method, 6-9
sample trigger, 6-11
uniqueness, 6-25
user-defined methods, B-2
column objects, B-3
column subsetting, B-5
example, B-6
for delete conflicts, B-4
for uniqueness conflicts, B-3
for update conflicts, B-3
multitier materialized views,
parameters, B-2
restrictions, B-5
viewing information, B-12

conflicts

avoiding

delete, 6-31

dynamic ownership, 6-35
notification log table

creating, B-8

sample, B-8
notification methods

Index-2

user-defined, B-8
notification package

creating, B-9

sample, B-9
token passing, 6-37
workflow, 6-36

D

data definition language

altering replicated objects, 20-25

asynchronous, 20-74
data dictionary views

comments

updating, 7-45

materialized views, 28-1

refresh groups, 28-1

replication, 10-1, 25-1
database links

creating, 2-20, 2-34, 4-20, 5-5, 5-6, 5-12, 5-13
date expressions, 2-7
DBA_REGISTERED_MVIEW_GROUPS view, 25-5
DBA_REPCAT_REFRESH_TEMPLATES

view, 25-34
DBA_REPCAT_TEMPLATE_OBJECTS view, 25-34
DBA_REPCAT_TEMPLATE_PARMS view, 25-34
DBA_REPCAT_TEMPLATE_SITES view, 25-35
DBA_REPCAT_USER_AUTHORIZATIONS

view, 25-35
DBA_REPCAT_USER_PARM_VALUES

view, 25-35
DBA_REPCATLOG view, 25-35

purging requests from, 20-82
DBA_REPCOLUMN view, 25-36
DBA_REPCOLUMN_GROUP view, 25-36

updating, 7-45, 20-36
DBA_REPCONFLICT view, 25-36
DBA_REPDDL view, 25-36
DBA_REPEXTENSIONS view, 25-36
DBA_REPGENOBJECTS view, 25-39
DBA_REPGROUP view, 25-39

updating, 7-45, 20-39
DBA_REPGROUP_PRIVILEGES view, 25-39
DBA_REPGROUPED_COLUMN view, 25-39
DBA_REPKEY_COLUMNS view, 25-39

DBA_REPOBJECT view, 25-40

updating, 7-45, 20-40
DBA_REPPARAMETER_COLUMN view, 25-40
DBA_REPPRIORITY view, 25-40
DBA_REPPRIORITY_GROUP view, 25-40

updating, 7-45, 20-38
DBA_REPPROP view, 25-40
DBA_REPRESOL_STATS CONTROL view, 25-41
DBA_REPRESOLUTION view, 25-41

updating, 7-45, 20-43
DBA_REPRESOLUTION_METHOD view, 25-41

DBA_REPRESOLUTION_STATISTICS view, 25-41

purging, 6-42,20-83
DBA_REPSITES view, 25-41
updating, 7-45, 20-41
DBA_REPSITES_NEW view, 25-42
DBMS_DEFER package, 12-1
ANY_CHAR_ARG procedure, 12-5
ANY_CLOB_ARG procedure, 12-5
ANY_VARCHAR2_ARG procedure, 12-5
ANYDATA_ARG procedure, 12-5
BLOB_ARG procedure, 12-5
CALL procedure, 12-3
CHAR_ARG procedure, 12-5
CLOB_ARG procedure, 12-5
COMMIT_WORK procedure, 12-4
datatype_ ARG procedure, 12-5
DATE_ARG procedure, 12-5
IDS_ARG procedure, 12-5
IYM_ARG procedure, 12-5
NCHAR_ARG procedure, 12-5
NCLOB_ARG procedure, 12-5
NUMBER_ARG procedure, 12-5
NVARCHAR2_ARG procedure, 12-5
RAW_ARG procedure, 12-5
ROWID_ARG procedure, 12-5
TIMESTAMP_ARG procedure, 12-5
TRANSACTION procedure, 12-6
TSLTZ_ARG procedure, 12-5
TSTZ_ARG procedure, 12-5
VARCHAR2_ARG procedure, 12-5
DBMS_DEFER_QUERY package, 13-1
GET_AnyData_ARG function, 9-16, 13-7
GET_ARG_FORM function, 13-3
GET_ARG_TYPE function, 13-4

GET_BLOB_ARG function, 13-7
GET_CALL_ARGS procedure, 13-6
GET_CHAR_ARG function, 13-7
GET_CLOB_ARG function, 13-7
GET _datatype_ARG function, 13-7
GET_DATE_ARG function, 13-7
GET_IDS_ARG function, 13-7
GET_IYM_ARG function, 13-7
GET_NCHAR_ARG function, 13-7
GET_NCLOB_ARG function, 13-7
GET_NUMBER_ARG function, 13-7
GET_NVARCHAR2_ARG function, 13-7
GET_OBJECT_NULL_VECTOR_ARG
function, 13-10
GET_RAW_ARG function, 13-7
GET_ROWID_ARG function, 13-7
GET_TIMESTAMP_ARG function, 13-7
GET_TSLTZ_ARG function, 13-7
GET_TSTZ_ARG function, 13-7
GET_VARCHAR2_ARG function, 13-7

DBMS_DEFER_SYS package

ADD_DEFAULT_DEST procedure, 14-4

CLEAR_PROP_STATISTICS procedure, 10-31,
14-4

DELETE_DEF_DESTINATION procedure, 14-5

DELETE_DEFAULT_DEST procedure, 14-5

DELETE_ERROR procedure, 14-6

DELETE_TRAN procedure, 14-7,14-9

DISABLED function, 14-7

EXCLUDE_PUSH function, 14-8

EXECUTE_ERROR procedure, 7-37,9-19, 14-9

EXECUTE_ERROR_AS_USER procedure, 9-20,
14-10

PURGE function, 9-15, 14-11

PUSH function, 9-14, 14-14

REGISTER_PROPAGATOR procedure, 2-7,
2-26, 2-33, 14-16

SCHEDULE_EXECUTION procedure, 14-19

SCHEDULE_PURGE procedure, 2-8, 2-29, 2-35,
14-17

SCHEDULE_PUSH procedure, 2-21, 2-29, 2-35,
14-19

SET_DISABLED procedure, 14-21

UNREGISTER_PROPAGATOR
procedure, 14-23

Index-3

UNSCHEDULE_PURGE procedure, 14-24
UNSCHEDULE_PUSH procedure, 14-24
DBMS_MVIEW package
BEGIN_TABLE_REORGANIZATION
procedure, 8-20, 15-3
END_TABLE_REORGANIZATION
procedure, 8-20, 15-3
EXPLAIN_MVIEW procedure, 15-4
EXPLAIN_REWRITE procedure, 15-5
I_AM_A_REFRESH function, 15-6
PMARKER function, 15-6
PURGE_DIRECT_LOAD_LOG procedure, 15-7
PURGE_LOG procedure, 8-18, 15-7
PURGE_MVIEW_FROM_LOG procedure, 8-11,
8-13, 8-15, 8-18, 15-8
REFRESH procedure, 8-2, 8-34, 15-9
REFRESH_ALL_MVIEWS procedure, 15-12
REFRESH_DEPENDENT procedure, 15-13
REGISTER_MVIEW procedure, 15-15
UNREGISTER_MVIEW procedure, 8-13, 15-18
DBMS_OFFLINE_OG package
BEGIN_INSTANTIATION procedure, 7-38,
16-3
BEGIN_LOAD procedure, 7-39, 16-4
END_INSTANTIATION procedure, 7-41, 16-5
END_LOAD procedure, 7-40, 16-6
RESUME_SUBSET_OF_MASTERS
procedure, 7-39, 16-8
DBMS_OFFLINE_SNAPSHOT package
BEGIN_LOAD procedure, 8-30, 17-3
END_LOAD procedure, 8-32,17-4
DBMS_RECTIFIER_DIFF package, 9-9
DIFFERENCES procedure, 9-9, 18-3
RECTIFY procedure, 9-9, 18-5
DBMS_REFRESH package
ADD procedure, 5-10, 5-18, 19-3
CHANGE procedure, 19-3
DESTROY procedure, 19-5
MAKE procedure, 5-7,5-14, 19-6
REFRESH procedure, 8-2,19-8
SUBTRACT procedure, 19-9
DBMS_REPCAT package
ADD_DELETE_RESOLUTION
procedure, 20-17
ADD_GROUPED_COLUMN procedure, 20-7

Index-4

ADD_MASTER_DATABASE procedure, 3-11,
7-31, 7-33, 20-8
ADD_NEW_MASTERS procedure, 7-13, 7-25,
20-9
ADD_PRIORITY_CHAR procedure, 20-14
ADD_PRIORITY_datatype procedure, 20-14
ADD_PRIORITY_DATE procedure, 20-14
ADD_PRIORITY_NUMBER procedure, 20-14
ADD_PRIORITY_VARCHAR?2
procedure, 20-14
ADD_SITE_PRIORITY_SITE procedure, 6-23,
20-16
ADD_UNIQUENESS_RESOLUTION
procedure, 20-17
ADD_UPDATE_RESOLUTION procedure, 6-5,
6-8, 6-12, 6-14, 6-19, 6-24, 20-17
ALTER_CATCHUP_PARAMETERS
procedure, 20-22
ALTER_MASTER_PROPAGATION
procedure, 20-24
ALTER_MASTER_REPOBJECT
procedure, 6-10, 6-21, 6-32, 9-2, 20-25
ALTER_MVIEW_PROPAGATION
procedure, 20-29
ALTER_PRIORITY procedure, 20-30
ALTER_PRIORITY_CHAR procedure, 20-31
ALTER_PRIORITY_datatype procedure, 20-31
ALTER_PRIORITY_DATE procedure, 20-31
ALTER_PRIORITY_NUMBER procedure, 20-31
ALTER_PRIORITY_RAW procedure, 20-31
ALTER_SITE_PRIORITY procedure, 20-33
ALTER_SITE_PRIORITY_SITE
procedure, 20-34
CANCEL_STATISTICS procedure, 6-42, 20-35
comment procedures, 7-45
COMMENT_ON_COLUMN_GROUP
procedure, 7-45, 20-36
COMMENT_ON_DELETE_RESOLUTION
procedure, 7-45,20-43
COMMENT_ON_MVIEW_REPSITES
procedure, 20-37
COMMENT_ON_PRIORITY_GROUP
procedure, 7-45, 20-38
COMMENT_ON_REPGROUP procedure, 7-45,
20-39

COMMENT_ON_REPOBIJECT procedure, 7-45,
20-40
COMMENT_ON_REPSITES procedure, 7-45,
20-41
COMMENT_ON_SITE_PRIORITY
procedure, 20-38
COMMENT_ON_UNIQUE_RESOLUTION
procedure, 7-45,20-43
COMMENT_ON_UPDATE_RESOLUTION
procedure, 7-45,20-43
COMPARE_OLD_VALUES procedure, 20-44
CREATE_MASTER_REPGROUP
procedure, 3-6, 20-47
CREATE_MASTER_REPOBJECT
procedure, 6-11, 6-22, 20-48
CREATE_MVIEW_REPGROUP procedure, 5-7,
5-14, 8-30, 8-36, 8-37, 20-52
CREATE_MVIEW_REPOBIJECT procedure, 5-8,
5-9, 5-10, 5-16, 5-17, 8-36, 8-39, 20-53
DEFINE_COLUMN_GROUP procedure, 20-56
DEFINE_PRIORITY_GROUP procedure, 20-57
DEFINE_SITE_PRIORITY procedure, 6-23,
20-58
DO_DEFERRED_REPCAT_ADMIN
procedure, 6-35, 7-37, 20-59
DROP_COLUMN_GROUP procedure, 20-60
DROP_DELETE_RESOLUTION
procedure, 20-72
DROP_GROUPED_COLUMN procedure, 20-61
DROP_MASTER_REPGROUP procedure, 20-62
DROP_MASTER_REPOBJECT procedure, 20-64
DROP_MVIEW_REPGROUP procedure, 8-4,
8-6, 8-9, 20-65
DROP_MVIEW_REPOBIJECT procedure, 8-10,
20-66
DROP_PRIORITY procedure, 20-67
DROP_PRIORITY_CHAR procedure, 20-69
DROP_PRIORITY_datatype procedure, 20-69
DROP_PRIORITY_DATE procedure, 20-69
DROP_PRIORITY_GROUP procedure, 20-68
DROP_PRIORITY_NUMBER procedure, 20-69
DROP_PRIORITY_VARCHAR2
procedure, 20-69
DROP_SITE_PRIORITY procedure, 20-70
DROP_SITE_PRIORITY_SITE procedure, 20-71

DROP_UNIQUE_RESOLUTION
procedure, 20-72
DROP_UPDATE_RESOLUTION
procedure, 20-72
EXECUTE_DDL procedure, 20-74
GENERATE_MVIEW_SUPPORT
procedure, 20-75
GENERATE_REPLICATION_SUPPORT
procedure, 3-13, 3-14, 9-4, 20-77
MAKE_COLUMN_GROUP procedure, 6-4, 6-7,
6-11, 6-14, 6-17, 6-22, 20-79
PREPARE_INSTANTIATED_MASTER
procedure, 7-19,7-29
PREPARE_INSTANTIATED_MASTERS
procedure, 20-81
PURGE_MASTER_LOG procedure, 20-82
PURGE_STATISTICS procedure, 6-42, 20-83
REFRESH_MVIEW_REPGROUP
procedure, 20-84
REGISTER_MVIEW_REPGROUP
procedure, 20-86
REGISTER_STATISTICS procedure, 6-41, 20-87
RELOCATE_MASTERDEF procedure, 7-2,
20-88
REMOVE_MASTER_DATABASE
procedure, 7-42
REMOVE_MASTER_DATABASES
procedure, 20-90
RENAME_SHADOW_COLUMN_GROUP
procedure, 20-91
REPCAT_IMPORT_CHECK procedure, 20-92
RESUME_MASTER_ACTIVITY
procedure, 3-15, 20-93
RESUME_PROPAGATION_TO_MDEF
procedure, 7-16, 7-28, 20-94
SEND_OLD_VALUES procedure, 20-95
SET_COLUMNIS procedure, 20-47, 20-97
SPECIFY_NEW_MASTERS procedure, 7-12,
7-25, 20-99
SUSPEND_MASTER_ACTIVITY
procedure, 20-102
SWITCH_MVIEW_MASTER procedure, 8-2,
20-102
UNDO_ADD_NEW_MASTERS _REQUEST
procedure, 20-104

Index-5

UNREGISTER_MVIEW_REPGROUP
procedure, 8-11,20-105

VALIDATE procedure, 20-106

WAIT_MASTER_LOG procedure, 20-108

DBMS_REPCAT_ADMIN package

GRANT_ADMIN_ANY_SCHEMA

procedure, 2-6,2-26, 2-32, 21-3
GRANT_ADMIN_SCHEMA procedure, 21-3
REGISTER_USER_REPGROUP procedure, 2-7,

2-9, 2-14, 2-19, 2-27, 2-30, 21-4
REVOKE_ADMIN_ANY_SCHEMA

procedure, 21-6
REVOKE_ADMIN_SCHEMA procedure, 21-6
UNREGISTER_USER_REPGROUP

procedure, 21-7

DBMS_REPCAT_INSTANTIATE package

DROP_SITE_INSTANTIATION procedure, 8-4,
8-6, 22-3

INSTANTIATE_OFFLINE function, 22-3

INSTANTIATE_ONLINE function, 22-6

DBMS_REPCAT_RGT package

ALTER_REFRESH_TEMPLATE

procedure, 23-5
ALTER_TEMPLATE_OBIJECT procedure, 23-7
ALTER_TEMPLATE_PARM procedure, 23-10
ALTER_USER_AUTHORIZATION

procedure, 23-11
ALTER_USER_PARM_VALUE

procedure, 23-13
COMPARE_TEMPLATES function, 23-15
COPY_TEMPLATE function, 23-16
CREATE_OBJECT _FROM_EXISTING

function, 23-19
CREATE_REFRESH_TEMPLATE

function, 23-21
CREATE_REFRESH_TEMPLATE

procedure, 4-5
CREATE_TEMPLATE_OBIJECT function, 23-23
CREATE_TEMPLATE_OBIJECT procedure, 4-7
CREATE_TEMPLATE_PARM function, 23-26
CREATE_USER_AUTHORIZATION

function, 23-28
CREATE_USER_AUTHORIZATION

procedure, 4-12
CREATE_USER_PARM_VALUE

Index-6

function, 23-29
DELETE_RUNTIME_PARMS procedure, 23-31
DROP_ALL_OBJECTS procedure, 23-32
DROP_ALL_TEMPLATE_PARMS

procedure, 23-33
DROP_ALL_TEMPLATE_SITES

procedure, 23-34
DROP_ALL_TEMPLATES procedure, 23-35
DROP_ALL_USER_AUTHORIZATIONS

procedure, 23-35
DROP_ALL_USER_PARM_VALUES

procedure, 23-36
DROP_REFRESH_TEMPLATE

procedure, 23-37
DROP_SITE_INSTANTIATION

procedure, 23-38
DROP_TEMPLATE_OBIJECT procedure, 23-39
DROP_TEMPLATE_PARM procedure, 23-40
DROP_USER_AUTHORIZATION

procedure, 23-41
DROP_USER_PARM_VALUE procedure, 23-42
GET_RUNTIME_PARM_ID function, 23-43
INSERT_RUNTIME_PARMS procedure, 23-43
INSTANTIATE_OFFLINE function, 23-45
INSTANTIATE_OFFLINE procedure, 4-15
INSTANTIATE_ONLINE function, 23-48
INSTANTIATE_ONLINE procedure, 4-16
LOCK_TEMPLATE_EXCLUSIVE

procedure, 23-50
LOCK_TEMPLATE_SHARED procedure, 23-51

DBMS_REPUTIL package
FROM_REMOTE function, 24-4
GLOBAL_NAME function, 24-4
MAKE_INTERNAL_PKG procedure, 24-4
REPLICATION_IS_ON function, 24-3
REPLICATION_OFF procedure, 7-50, 9-5, 24-3
REPLICATION_ON procedure, 7-50, 9-6, 24-3
SYNC_UP_REP procedure, 24-5

DDL. See data definition language

DEFCALL view, 27-2

DEFCALLDEST view, 27-2

DEFDEFAULTDEST view, 27-2
adding destinations to, 14-4
removing destinations from, 14-5

DEFERRCOUNT view, 27-3

deferred transaction queues
deferred calls
determining value of, 9-16
managing, 9-14
purging propagated transactions, 9-15
pushing, 9-14
deferred transactions
data dictionary views, 27-1
DEFDEFAULTDEST view
adding destination to, 14-4
removing destinations from, 14-5
deferred remote procedure calls (RPCs)
argument types, 13-4
argument values, 13-7
argumentsto, 12-5
building, 12-3
executing immediately, 14-14
DEFSCHEDULE view
clearing statistics, 14-4
removing destinations from, 14-5
deleting from queue, 14-7
monitoring, 10-19
purge job, 10-22,10-23
push jobs, 10-20, 10-21
reexecuting, 14-9
scheduling execution, 14-19
starting, 12-6
DEFERROR view, 9-18, 27-3
deleting transactions from, 14-6
DEFLOB view, 27-3
DEFPROPAGATOR view, 27-4
DEFSCHEDULE view, 27-4
clearing statistics, 10-31, 14-4
DEFTRAN view, 27-6
DEFTRANDEST view, 27-7
deployment templates
adding objects to, 4-6
alter object, 23-7
alter parameters, 23-10
alter template, 23-5
alter user authorization, 23-11
alter user parameter values, 23-13
authorize users, 4-12
compare templates, 23-15
concepts, 4-2

copy template, 23-16

create object from existing, 23-19
create template, 23-21

creating, 4-3,4-5

data dictionary views for, 25-5
distributing files, 4-18

drop site instantiation, 22-3
dropping, 23-37

dropping all, 23-35

dropping materialized view group, 8-4

flowchart for creating, 4-4
instantiating, 4-19
instantiation script, 4-16
lock template, 23-50, 23-51
monitoring, 10-9
objects
creating, 23-23
dropping, 23-39
dropping all, 23-32
offline instantiation, 4-12, 22-3, 23-45
online instantiation, 22-6, 23-48
packaging, 4-12,4-14
for offline instantiation, 4-14
for online instantiation, 4-15
parameters
creating, 4-10, 23-26
dropping, 23-40
dropping all, 23-33
user values, 4-11
runtime parameters
creating, 23-43
deleting, 23-31

getID, 23-43
inserting, 23-43
sites

dropping, 23-38
dropping all, 23-34
user authorizations
creating, 23-28
dropping, 23-41
dropping all, 23-35
user parameter values
creating, 23-29
dropping, 23-42
dropping all, 23-36

Index-7

user-defined types, 4-2
differences
between tables, 18-3
rectifying, 18-5
disabling
propagation, 14-21
DROP MATERIALIZED VIEW LOG
statement, 8-24
dynamic ownership
conflict avoidance and, 6-35
locating owner of arow, 6-39
obtaining ownership, 6-39
workflow partitioning, 6-36
dynamic performance views
replication, 26-1

E

errors
error queues
DEFERROR view, 9-18
managing, 9-18
error transactions
monitoring, 10-24
reexecuting as alternate user, 9-20
reexecuting as receiver, 9-19
reexecuting multiple, 9-19
extended availability, 6-3, 7-4, 9-2, 20-9, 20-28,
20-81, 20-94, 20-99, 20-104

F

foreign key constraints
adding master sites, 7-4

G
generating
replication support, 3-13
procedural replication, 7-50
I
Import

materialized views
offline instantiation and, 17-3, 17-4

Index-8

replication groups
offline instantiation and, 16-4, 16-6
status check, 20-92
instantiation, 4-19
DROP_SITE_INSTANTIATION
procedure, 22-3,23-38

offline, 4-12
INSTANTIATE_OFFLINE function, 22-3,
23-45
online
INSTANTIATE_ONLINE function, 22-6,
23-48
refreshing after, 4-21
script, 4-16
J
jobs
gueues for
removing jobs from, 14-24
L

LONG columns
replication, 9-7

M

master definition site
relocating, 20-88
master groups
adding master sites to
with quiesce, 7-31
without quiesce, 7-4
adding objects to, 3-7
creating, 3-2, 3-6, 20-47
dropping, 20-62
flowchart for creating, 3-5
monitoring, 10-3
quiescing, 20-102
removing master sites from, 7-41
resuming replication activity, 20-93
master materialized views
monitoring, 10-6
reorganizing, 8-20

master sites

adding, 3-11,7-4
circular dependencies, 3-11, 7-4
flowchart for, 7-10, 7-21
flowchart for determining method, 7-6
foreign key constraints, 7-4
restrictions, 7-7
restrictions for change-based recovery,
restrictions for full database

export/import, 7-5

self-referential constraints, 3-11, 7-4
using change-based recovery, 7-9
using full database export/import, 7-9
using object-level export/import, 7-20
using offline instantiation, 7-35
with quiesce, 7-31
without quiesce, 7-4

changing master definition site, 7-2

cleaning up, 8-10

creating, 20-8

creating users for, 2-8,2-12, 2-17, 2-30

database links, 2-20

determining differences, 9-9

dropping, 20-90

flowchart for setting up, 2-4

monitoring, 10-2, 10-6

propagating changes between, 14-19

removing, 7-41

scheduled links for, 2-21

scheduled purges for, 2-7

setup, 2-5

master tables

adding columns to, 20-91
redefining online, 8-20
reorganizing, 8-20
methods, 8-21
truncating, 8-20

materialized view groups

adding objects to, 5-8, 5-16, 8-39
changing masters, 8-2
creating, 5-4, 5-6, 5-14, 20-52
dropping, 8-4,8-9

group owner, 8-36
monitoring, 10-11

refreshing, 20-84

unregistering from master, 8-11
materialized view logs
adding columns, 8-16
altering, 8-16
privileges required, 8-16
dropping, 8-24
managing, 8-16
space, 8-17
master table
purging, 15-7,15-8
monitoring, 10-7
purging
materialized views from, 8-11, 8-13
privileges required, 8-18
purging rows from
manually, 8-18
reducing space allocated to, 8-18
reorganizing masters with, 8-20
truncating, 8-18
truncating master table with, 8-20
materialized view sites
adding
using offline instantiation, 8-25
administrators
creating, 2-25
changing masters, 20-102
database links

creating, 2-34,4-20, 5-5, 5-6, 5-12, 5-13

dropping, 8-3, 20-65
dropping objects from, 8-8
flowchart for setting up, 2-24
group owner

using, 8-36
monitoring, 10-10
multitier

setting up, 2-24
propagating changes to master, 14-19
refresher
creating, 2-25, 2-32
schedule purge, 2-28,2-35
users
creating, 2-25
materialized views
data dictionary views, 28-1
deployment templates

Index-9

user-defined types, 4-2
dropping, 8-10
generating support for, 20-75
monitoring, 10-10, 10-12
multitier

setting up, 5-4

user-defined conflict resolution, B-4
offline instantiation of, 17-3,17-4
purging from materialized view logs, 8-11, 8-13
refresh groups

creating, 5-7,5-14
refreshing, 4-21, 8-2, 8-34, 15-9, 15-12, 15-13
security, A-7

trusted compared with untrusted, A-8
unregistering from master, 8-13

multimaster replication

monitoring, 10-2
security

trusted compared with untrusted, A-3

multitier materialized views

setting up, 2-24

N

notification log table
conflicts
creating, B-8
sample, B-8
notification methods
user-defined, B-8
notification package
conflicts
creating, B-9

O

objects
adding to materialized view sites, 20-53
altering, 20-25
altering replication, 9-2
creating
for master group, 20-47, 20-48
for materialized view sites, 20-53
dropping
from materialized view site, 8-8, 20-66

Index-10

generating replication support for, 20-77
offline instantiation

adding a master site, 7-35

adding a materialized view site, 8-25

INSTANTIATE_OFFLINE function, 22-3, 23-45

materialized views, 17-3,17-4

replication groups, 16-3, 16-4, 16-5, 16-6, 16-8
online instantiation

INSTANTIATE_ONLINE function, 22-6, 23-48
online redefinition of tables, 8-20
Oracle Replication Management tool

monitoring replication, 10-1

P

packaging
deployment templates, 4-12
parallel propagation
monitoring, 10-30, 10-31
parameters
deployment templates, 4-10
user values, 4-11
performance
replication
monitoring, 10-28
planning
for replication, 1-4
PRESERVE MATERIALIZED VIEW LOG option
TRUNCATE TABLE statement, 8-21
priority groups
adding members to, 20-14
altering members
priorities, 20-30
values, 20-31
creating, 20-57
dropping, 20-68
removing members from, 20-67, 20-69
site priority groups
adding members to, 20-16
procedural replication
conflicts and, 7-50
generating replication support for, 7-50
restrictions, 7-47
serialization of transactions, 7-50
user-defined types, 7-49

using, 7-47
propagation
altering method, 20-24, 20-29
disabling, 14-21
of changes, 20-24
parallel
monitoring, 10-30, 10-31
status of, 14-7
propagator
registering, 2-6, 2-7, 14-16
proxy materialized view administrator
creating, 2-8,2-12, 2-17, 2-30
purges
DBA_REPCATLOG table, 20-82
deferred transaction queue, 9-15
master sites, 2-7
materialized view sites, 2-28, 2-35
monitoring, 10-22
pushes
deferred transaction queue, 9-14

Q

quiescing
adding master sites with, 7-31
adding master sites without, 7-4
altering replicated objects without, 9-2
configuring conflict resolution methods
without, 6-3
master groups, 20-102

R

receiver
registering, 2-7
rectifying
tables, 9-9, 18-5
redefining tables
online
replication, 8-20
refresh
materialized view sites, 20-84

materialized views, 8-2, 8-34, 15-9, 15-12, 15-13

monitoring, 10-15, 10-16
refresh groups

adding members to, 19-3
adding objects to, 5-10, 5-18
creating, 5-7,5-14,19-6
data dictionary views, 28-1
deleting, 19-5
monitoring, 10-14
refresh, 8-2
refresh interval

changing, 19-3
refreshing

manually, 19-8
removing members from, 19-9

refresher

creating, 2-25, 2-32

replication

catalog views, 10-1, 25-1
column groups, 6-4,6-7, 6-11, 6-14, 6-17, 6-22
conflict resolution, 6-1
uniqueness, 6-25
creating an environment, 1-2
data dictionary views, 10-1, 25-1
database links
creating, 2-20
datetime datatypes
abbreviations, 11-4
deferred transaction queues
managing, 9-14
deferred transactions
data dictionary views, 27-1
deployment templates
user-defined types, 4-2
determining differences between tables, 9-9
disabling, 7-50, 9-5, 24-3
dynamic performance views, 26-1
enabling, 7-50, 9-5, 9-6, 24-3
error queues
managing, 9-18
flowchart for creating environment, 1-2
generating support for, 3-13
interval datatypes
abbreviations, 11-4
LONG column
converting to LOB, 9-7
managing an environment, 43
master groups

Index-11

creating, 3-2
master sites
adding, 3-11

materialized view groups
creating, 5-4,5-6,5-14
materialized view logs
managing, 8-16
monitoring, 10-1
deferred transactions, 10-19
error transactions, 10-24
master environments, 10-2
materialized view environments, 10-10
performance, 10-28
objects
adding to deployment template, 4-6
adding to master group, 3-7
altering, 6-10, 9-2
dropping from master sites, 20-64
parallel propagation
monitoring, 10-30, 10-31
planning for, 1-4
procedural replication, 7-47
restrictions, 7-47
user-defined types, 7-49
propagator
registering, 2-6, 2-7
receiver
registering, 2-7
replicated objects, 9-1
replication queues, 9-1
resuming, 3-15
scheduled links
creating, 2-21

security, A-1
setting up sites, 2-2
sites

setup, 2-2
statistics

clearing, 10-31
triggers, 9-7

replication catalog views, 25-1

comments
updating, 7-45
monitoring replication, 10-1

replication management API, 11-1

Index-12

conflict resolution, 6-1
deployment templates

creating, 4-3

instantiating, 4-19

packaging, 4-12
examples, 11-2
managing a replication environment,
managing replicated objects, 9-1
managing replication queues, 9-1
master groups

creating, 3-2
materialized view groups
creating, 5-4

overview, 1-1

packages, 35,36, 11-1

setting up replication sites, 2-2
replication objects

altering, 9-2

tables

altering, 9-5

resuming replication activity, 20-93

S

43

scheduled links
creating, 2-21
security
for materialized view replication, A-7
trusted compared with untrusted,
for multimaster replication, A-2
trusted compared with untrusted,
replication, A-1

trusted compared with untrusted, A-3, A-8

serialization

of transactions, 7-50
site priority

altering, 20-33
site priority groups

adding members to, 20-16

creating

syntax, 20-58

dropping, 20-70

removing members from, 20-71
snapshots. See materialized views
statistics

A-8

A-3

for conflict resolution
auditing, 6-41
cancelling, 6-42
clearing, 6-42,20-83
collecting, 6-41, 20-87
viewing, 6-41
for propagation
clearing, 10-31, 14-4
status
propagation, 14-7
storage parameters
materialized view log
altering, 8-16
SYS.ANYDATA, 13-7

T

tables
altering
without replicating changes, 9-5
altering replicated, 9-2
comparing, 18-3
differences between, 9-9
rectifying, 9-9, 18-5
redefining online
replication, 8-20
updating comments, 7-45
templates. See deployment templates
token passing, 6-37
sample implementation, 6-35
transactions
serialization of, 7-50
triggers
for site priority conflict resolution, 6-22
for timestamp conflict resolution, 6-11
replicating, 9-7
TRUNCATE statement, 8-19
TRUNCATE TABLE statement
PRESERVE MATERIALIZED VIEW LOG
option, 8-21
trusted security, A-3, A-8

U

USER_REPCAT_REFRESH_TEMPLATES

view, 25-43
USER_REPCAT_TEMP_OUTPUT view, 4-14
USER_REPCAT_TEMPLATE_OBJECTS

view, 25-44
USER_REPCAT_TEMPLATE_PARMS view, 25-44
USER_REPCAT_TEMPLATE_SITES view, 25-44
USER_REPCAT_USER_AUTHORIZATIONS

view, 25-44
USER_REPCAT_USER_PARM_VALUES

view, 25-45
USER_REPCATLOG view, 25-45
USER_REPCOLUMN view, 25-45
USER_REPCOLUMN_GROUP view, 25-45
USER_REPCONFLICT view, 25-46
USER_REPDDL view, 25-46
USER_REPGENOBJECTS view, 25-46
USER_REPGROUP view, 25-46
USER_REPGROUP_PRIVILEGES view, 25-46
USER_REPGROUPED_COLUMN view, 25-46
USER_REPKEY_COLUMNS view, 25-47
USER_REPOBJECT view, 25-47
USER_REPPARAMETER_COLUMN view, 25-47
USER_REPPRIORITY view, 25-47
USER_REPPRIORITY_GROUP view, 25-48
USER_REPPROP view, 25-48
USER_REPRESOL_STATS_CONTROL view, 25-48
USER_REPRESOLUTION view, 25-48
USER_REPRESOLUTION_METHOD view, 25-49
USER_REPRESOLUTION_STATISTICS

view, 25-49
USER_REPSITES view, 25-49
users

authorize for deployment template, 4-12
master materialized view sites, 2-30
master sites, 2-8, 2-12, 2-17

materialized view sites, 2-25

Vv

V$MVREFRESH view, 26-2
V$REPLPROP view, 10-31, 26-2
V$REPLQUEUE view, 26-4

Index-13

W

workflow, 6-36

Index-14

	Contents
	Send Us Your Comments
	Preface
	1 Replication Overview
	Creating a Replication Environment Overview
	Before You Start

	2 Create Replication Site
	Overview of Setting Up Replication Sites
	Setting Up Master Sites
	Setting Up orc1.world
	Setting Up orc2.world
	Setting Up orc3.world
	Creating Scheduled Links Between the Master Sites

	Setting Up Materialized View Sites
	Setting Up mv1.world
	Setting Up mv2.world

	3 Create a Master Group
	Overview of Creating a Master Group
	Before You Start

	Creating a Master Group

	4 Create a Deployment Template
	Oracle Deployment Templates Concepts
	Before Creating the Deployment Template
	Creating a Deployment Template
	Packaging a Deployment Template for Instantiation
	Packaging a Deployment Template
	Saving an Instantiation Script to File
	Distributing Instantiation Files
	Instantiating a Deployment Template
	Refreshing a Refresh Group After Instantiation

	5 Create Materialized View Group
	Overview of Creating a Materialized View Group
	Creating a Materialized View Group
	Creating the Materialized View Group at mv1.world
	Creating the Materialized View Group at mv2.world

	6 Configure Conflict Resolution
	Preparing for Conflict Resolution
	Creating Conflict Resolution Methods for Update Conflicts
	Overwrite and Discard Conflict Resolution Methods
	Minimum and Maximum Conflict Resolution Methods
	Timestamp Conflict Resolution Methods
	Additive and Average Conflict Resolution Methods
	Priority Groups Conflict Resolution Methods
	Site Priority Conflict Resolution Methods

	Creating Conflict Resolution Methods for Uniqueness Conflicts
	Creating Conflict Avoidance Methods for Delete Conflicts
	Using Dynamic Ownership Conflict Avoidance
	Workflow
	Token Passing
	Locating the Owner of a Row
	Obtaining Ownership
	Applying the Change

	Auditing Successful Conflict Resolution
	Collecting Conflict Resolution Statistics
	Viewing Conflict Resolution Statistics
	Canceling Conflict Resolution Statistics
	Clearing Statistics Information

	7 Managing a Master Replication Environment
	Changing the Master Definition Site
	Option 1: All Master Sites Are Available
	Option 2: The Old Master Definition Site Is Not Available

	Adding New Master Sites
	Adding New Master Sites Without Quiescing the Master Group
	Adding New Master Sites to a Quiesced Master Group

	Removing a Master Site from a Master Group
	Removing an Unavailable Master Site

	Updating the Comments Fields in Data Dictionary Views
	Using Procedural Replication
	Restrictions on Procedural Replication
	User-Defined Types and Procedural Replication
	Serializing Transactions
	Generating Support for Replicated Procedures

	8 Managing a Materialized View Replication Environment
	Refreshing Materialized Views
	Changing a Materialized View Group’s Master Site
	Dropping Materialized View Groups and Objects
	Dropping a Materialized View Groups Created with a Deployment Template
	Dropping a Materialized View Group or Objects Created Manually
	Cleaning Up a Master Site or Master Materialized View Site

	Managing Materialized View Logs
	Altering Materialized View Logs
	Managing Materialized View Log Space
	Reorganizing Master Tables that Have Materialized View Logs
	Dropping a Materialized View Log

	Performing an Offline Instantiation of a Materialized View Site Using Export/Import
	Using a Group Owner for a Materialized View Group

	9 Managing Replication Objects and Queues
	Altering a Replicated Object
	Altering a Replicated Object in a Quiesced Master Group

	Modifying Tables without Replicating the Modifications
	Disabling Replication
	Reenabling the Replication Facility
	Ensuring That Replicated Triggers Fire Only Once

	Converting a LONG Column to a LOB Column in a Replicated Table
	Determining Differences Between Replicated Tables
	Using the DIFFERENCES Procedure
	Using the RECTIFY Procedure

	Managing the Deferred Transactions Queue
	Pushing the Deferred Transaction Queue
	Purging the Deferred Transaction Queue
	Using the AnyData Type to Determine the Value of an Argument in a Deferred Call

	Managing the Error Queue
	Reexecuting Error Transaction as the Receiver
	Reexecuting Error Transaction as Alternate User

	10 Monitoring a Replication Environment
	Monitoring Master Replication Environments
	Monitoring Master Sites
	Monitoring Master Groups
	Monitoring Masters

	Monitoring Materialized View Sites
	Listing General Information About a Materialized View Site
	Listing General Information About Materialized View Groups
	Listing Information About Materialized Views
	Listing Information About the Refresh Groups at a Materialized View Site
	Determining the Job ID for Each Refresh Job at a Materialized View Site
	Determining Which Materialized Views Are Currently Refreshing

	Monitoring Administrative Requests
	Listing General Information About Administrative Requests
	Determining the Cause of Administrative Request Errors
	Listing General Information About the Job that Executes Administrative Requests

	Monitoring the Deferred Transactions Queue
	Monitoring Transaction Propagation
	Monitoring Purges of Successfully Propagated Transactions

	Monitoring the Error Queue
	Listing General Information About the Error Transactions at a Replication Site
	Determining the Percentage of Error Transactions
	Listing the Number of Error Transactions from Each Origin Master Site
	Listing the Error Messages for the Error Transactions at a Replication Site
	Determining the Error Operations at a Replication Site

	Monitoring Performance in a Replication Environment
	Tracking the Average Number of Row Changes in a Replication Transaction
	Tracking the Rate of Transactions Entering the Deferred Transactions Queue
	Determining the Average Network Traffic Created To Propagate a Transaction
	Determining the Average Amount of Time to Apply Transactions at Remote Sites
	Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping
	Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View
	Monitoring Parallel Propagation of Deferred Transactions Using V$REPLPROP

	11 Introduction to the Replication Management API Reference
	Examples of Using Oracle’s Replication Management API
	Issues to Consider When Using the Replication Management API
	The Replication Management Tool and the Replication Management API
	Abbreviations for Datetime and Interval Datatypes

	12 DBMS_DEFER
	Summary of DBMS_DEFER Subprograms
	CALL Procedure
	COMMIT_WORK Procedure
	datatype_ARG Procedure
	TRANSACTION Procedure

	13 DBMS_DEFER_QUERY
	Summary of DBMS_DEFER_QUERY Subprograms
	GET_ARG_FORM Function
	GET_ARG_TYPE Function
	GET_CALL_ARGS Procedure
	GET_datatype_ARG Function
	GET_OBJECT_NULL_VECTOR_ARG Function

	14 DBMS_DEFER_SYS
	Summary of DBMS_DEFER_SYS Subprograms
	ADD_DEFAULT_DEST Procedure
	CLEAR_PROP_STATISTICS Procedure
	DELETE_DEFAULT_DEST Procedure
	DELETE_DEF_DESTINATION Procedure
	DELETE_ERROR Procedure
	DELETE_TRAN Procedure
	DISABLED Function
	EXCLUDE_PUSH Function
	EXECUTE_ERROR Procedure
	EXECUTE_ERROR_AS_USER Procedure
	PURGE Function
	PUSH Function
	REGISTER_PROPAGATOR Procedure
	SCHEDULE_PURGE Procedure
	SCHEDULE_PUSH Procedure
	SET_DISABLED Procedure
	UNREGISTER_PROPAGATOR Procedure
	UNSCHEDULE_PURGE Procedure
	UNSCHEDULE_PUSH Procedure

	15 DBMS_MVIEW
	Summary of DBMS_MVIEW Subprograms
	BEGIN_TABLE_REORGANIZATION Procedure
	END_TABLE_REORGANIZATION Procedure
	EXPLAIN_MVIEW Procedure
	EXPLAIN_REWRITE Procedure
	I_AM_A_REFRESH Function
	PMARKER Function
	PURGE_DIRECT_LOAD_LOG Procedure
	PURGE_LOG Procedure
	PURGE_MVIEW_FROM_LOG Procedure
	REFRESH Procedure
	REFRESH_ALL_MVIEWS Procedure
	REFRESH_DEPENDENT Procedure
	REGISTER_MVIEW Procedure
	UNREGISTER_MVIEW Procedure

	16 DBMS_OFFLINE_OG
	Summary of DBMS_OFFLINE_OG Subprograms
	BEGIN_INSTANTIATION Procedure
	BEGIN_LOAD Procedure
	END_INSTANTIATION Procedure
	END_LOAD Procedure
	RESUME_SUBSET_OF_MASTERS Procedure

	17 DBMS_OFFLINE_SNAPSHOT
	Summary of DBMS_OFFLINE_SNAPSHOT Subprograms
	BEGIN_LOAD Procedure
	END_LOAD Procedure

	18 DBMS_RECTIFIER_DIFF
	Summary of DBMS_RECTIFIER_DIFF Subprograms
	DIFFERENCES Procedure
	RECTIFY Procedure

	19 DBMS_REFRESH
	Summary of DBMS_REFRESH Subprograms
	ADD Procedure
	CHANGE Procedure
	DESTROY Procedure
	MAKE Procedure
	REFRESH Procedure
	SUBTRACT Procedure

	20 DBMS_REPCAT
	Summary of DBMS_REPCAT Subprograms
	ADD_GROUPED_COLUMN Procedure
	ADD_MASTER_DATABASE Procedure
	ADD_NEW_MASTERS Procedure
	ADD_PRIORITY_datatype Procedure
	ADD_SITE_PRIORITY_SITE Procedure
	ADD_conflicttype_RESOLUTION Procedure
	ALTER_CATCHUP_PARAMETERS Procedure
	ALTER_MASTER_PROPAGATION Procedure
	ALTER_MASTER_REPOBJECT Procedure
	ALTER_MVIEW_PROPAGATION Procedure
	ALTER_PRIORITY Procedure
	ALTER_PRIORITY_datatype Procedure
	ALTER_SITE_PRIORITY Procedure
	ALTER_SITE_PRIORITY_SITE Procedure
	CANCEL_STATISTICS Procedure
	COMMENT_ON_COLUMN_GROUP Procedure
	COMMENT_ON_MVIEW_REPSITES Procedure
	COMMENT_ON_PRIORITY_GROUP/COMMENT_ON_SITE_PRIORITY Procedures
	COMMENT_ON_REPGROUP Procedure
	COMMENT_ON_REPOBJECT Procedure
	COMMENT_ON_REPSITES Procedure
	COMMENT_ON_conflicttype_RESOLUTION Procedure
	COMPARE_OLD_VALUES Procedure
	CREATE_MASTER_REPGROUP Procedure
	CREATE_MASTER_REPOBJECT Procedure
	CREATE_MVIEW_REPGROUP Procedure
	CREATE_MVIEW_REPOBJECT Procedure
	DEFINE_COLUMN_GROUP Procedure
	DEFINE_PRIORITY_GROUP Procedure
	DEFINE_SITE_PRIORITY Procedure
	DO_DEFERRED_REPCAT_ADMIN Procedure
	DROP_COLUMN_GROUP Procedure
	DROP_GROUPED_COLUMN Procedure
	DROP_MASTER_REPGROUP Procedure
	DROP_MASTER_REPOBJECT Procedure
	DROP_MVIEW_REPGROUP Procedure
	DROP_MVIEW_REPOBJECT Procedure
	DROP_PRIORITY Procedure
	DROP_PRIORITY_GROUP Procedure
	DROP_PRIORITY_datatype Procedure
	DROP_SITE_PRIORITY Procedure
	DROP_SITE_PRIORITY_SITE Procedure
	DROP_conflicttype_RESOLUTION Procedure
	EXECUTE_DDL Procedure
	GENERATE_MVIEW_SUPPORT Procedure
	GENERATE_REPLICATION_SUPPORT Procedure
	MAKE_COLUMN_GROUP Procedure
	PREPARE_INSTANTIATED_MASTER Procedure
	PURGE_MASTER_LOG Procedure
	PURGE_STATISTICS Procedure
	REFRESH_MVIEW_REPGROUP Procedure
	REGISTER_MVIEW_REPGROUP Procedure
	REGISTER_STATISTICS Procedure
	RELOCATE_MASTERDEF Procedure
	REMOVE_MASTER_DATABASES Procedure
	RENAME_SHADOW_COLUMN_GROUP Procedure
	REPCAT_IMPORT_CHECK Procedure
	RESUME_MASTER_ACTIVITY Procedure
	RESUME_PROPAGATION_TO_MDEF Procedure
	SEND_OLD_VALUES Procedure
	SET_COLUMNS Procedure
	SPECIFY_NEW_MASTERS Procedure
	SUSPEND_MASTER_ACTIVITY Procedure
	SWITCH_MVIEW_MASTER Procedure
	UNDO_ADD_NEW_MASTERS_REQUEST Procedure
	UNREGISTER_MVIEW_REPGROUP Procedure
	VALIDATE Function
	WAIT_MASTER_LOG Procedure

	21 DBMS_REPCAT_ADMIN
	Summary of DBMS_REPCAT_ADMIN Subprograms
	GRANT_ADMIN_ANY_SCHEMA Procedure
	GRANT_ADMIN_SCHEMA Procedure
	REGISTER_USER_REPGROUP Procedure
	REVOKE_ADMIN_ANY_SCHEMA Procedure
	REVOKE_ADMIN_SCHEMA Procedure
	UNREGISTER_USER_REPGROUP Procedure

	22 DBMS_REPCAT_INSTANTIATE
	Summary of DBMS_REPCAT_INSTANTIATE Subprograms
	DROP_SITE_INSTANTIATION Procedure
	INSTANTIATE_OFFLINE Function
	INSTANTIATE_ONLINE Function

	23 DBMS_REPCAT_RGT
	Summary of DBMS_REPCAT_RGT Subprograms
	ALTER_REFRESH_TEMPLATE Procedure
	ALTER_TEMPLATE_OBJECT Procedure
	ALTER_TEMPLATE_PARM Procedure
	ALTER_USER_AUTHORIZATION Procedure
	ALTER_USER_PARM_VALUE Procedure
	COMPARE_TEMPLATES Function
	COPY_TEMPLATE Function
	CREATE_OBJECT_FROM_EXISTING Function
	CREATE_REFRESH_TEMPLATE Function
	CREATE_TEMPLATE_OBJECT Function
	CREATE_TEMPLATE_PARM Function
	CREATE_USER_AUTHORIZATION Function
	CREATE_USER_PARM_VALUE Function
	DELETE_RUNTIME_PARMS Procedure
	DROP_ALL_OBJECTS Procedure
	DROP_ALL_TEMPLATE_PARMS Procedure
	DROP_ALL_TEMPLATE_SITES Procedure
	DROP_ALL_TEMPLATES Procedure
	DROP_ALL_USER_AUTHORIZATIONS Procedure
	DROP_ALL_USER_PARM_VALUES Procedure
	DROP_REFRESH_TEMPLATE Procedure
	DROP_SITE_INSTANTIATION Procedure
	DROP_TEMPLATE_OBJECT Procedure
	DROP_TEMPLATE_PARM Procedure
	DROP_USER_AUTHORIZATION Procedure
	DROP_USER_PARM_VALUE Procedure
	GET_RUNTIME_PARM_ID Function
	INSERT_RUNTIME_PARMS Procedure
	INSTANTIATE_OFFLINE Function
	INSTANTIATE_ONLINE Function
	LOCK_TEMPLATE_EXCLUSIVE Procedure
	LOCK_TEMPLATE_SHARED Procedure

	24 DBMS_REPUTIL
	Summary of DBMS_REPUTIL Subprograms
	REPLICATION_OFF Procedure
	REPLICATION_ON Procedure
	REPLICATION_IS_ON Function
	FROM_REMOTE Function
	GLOBAL_NAME Function
	MAKE_INTERNAL_PKG Procedure
	SYNC_UP_REP Procedure

	25 Replication Catalog Views
	Summary of Replication Catalog Views
	DBA_REGISTERED_MVIEW_GROUPS
	ALL_REPCAT_REFRESH_TEMPLATES
	ALL_REPCAT_TEMPLATE_OBJECTS
	ALL_REPCAT_TEMPLATE_PARMS
	ALL_REPCAT_TEMPLATE_SITES
	ALL_REPCAT_USER_AUTHORIZATIONS
	ALL_REPCAT_USER_PARM_VALUES
	ALL_REPCATLOG
	ALL_REPCOLUMN
	ALL_REPCOLUMN_GROUP
	ALL_REPCONFLICT
	ALL_REPDDL
	ALL_REPGENOBJECTS
	ALL_REPGROUP
	ALL_REPGROUP_PRIVILEGES
	ALL_REPGROUPED_COLUMN
	ALL_REPKEY_COLUMNS
	ALL_REPOBJECT
	ALL_REPPARAMETER_COLUMN
	ALL_REPPRIORITY
	ALL_REPPRIORITY_GROUP
	ALL_REPPROP
	ALL_REPRESOL_STATS_CONTROL
	ALL_REPRESOLUTION
	ALL_REPRESOLUTION_METHOD
	ALL_REPRESOLUTION_STATISTICS
	ALL_REPSITES
	DBA_REPCAT_REFRESH_TEMPLATES
	DBA_REPCAT_TEMPLATE_OBJECTS
	DBA_REPCAT_TEMPLATE_PARMS
	DBA_REPCAT_TEMPLATE_SITES
	DBA_REPCAT_USER_AUTHORIZATIONS
	DBA_REPCAT_USER_PARM_VALUES
	DBA_REPCATLOG
	DBA_REPCOLUMN
	DBA_REPCOLUMN_GROUP
	DBA_REPCONFLICT
	DBA_REPDDL
	DBA_REPEXTENSIONS
	DBA_REPGENOBJECTS
	DBA_REPGROUP
	DBA_REPGROUP_PRIVILEGES
	DBA_REPGROUPED_COLUMN
	DBA_REPKEY_COLUMNS
	DBA_REPOBJECT
	DBA_REPPARAMETER_COLUMN
	DBA_REPPRIORITY
	DBA_REPPRIORITY_GROUP
	DBA_REPPROP
	DBA_REPRESOL_STATS_CONTROL
	DBA_REPRESOLUTION
	DBA_REPRESOLUTION_METHOD
	DBA_REPRESOLUTION_STATISTICS
	DBA_REPSITES
	DBA_REPSITES_NEW
	USER_REPCAT_REFRESH_TEMPLATES
	USER_REPCAT_TEMPLATE_OBJECTS
	USER_REPCAT_TEMPLATE_PARMS
	USER_REPCAT_TEMPLATE_SITES
	USER_REPCAT_USER_AUTHORIZATION
	USER_REPCAT_USER_PARM_VALUES
	USER_REPCATLOG
	USER_REPCOLUMN
	USER_REPCOLUMN_GROUP
	USER_REPCONFLICT
	USER_REPDDL
	USER_REPGENOBJECTS
	USER_REPGROUP
	USER_REPGROUP_PRIVILEGES
	USER_REPGROUPED_COLUMN
	USER_REPKEY_COLUMNS
	USER_REPOBJECT
	USER_REPPARAMETER_COLUMN
	USER_REPPRIORITY
	USER_REPPRIORITY_GROUP
	USER_REPPROP
	USER_REPRESOL_STATS_CONTROL
	USER_REPRESOLUTION
	USER_REPRESOLUTION_METHOD
	USER_REPRESOLUTION_STATISTICS
	USER_REPSITES

	26 Replication Dynamic Performance Views
	V$MVREFRESH
	V$REPLPROP
	V$REPLQUEUE

	27 Deferred Transaction Views
	DEFCALL
	DEFCALLDEST
	DEFDEFAULTDEST
	DEFERRCOUNT
	DEFERROR
	DEFLOB
	DEFPROPAGATOR
	DEFSCHEDULE
	DEFTRAN
	DEFTRANDEST

	28 Materialized View and Refresh Group Views
	A Security Options
	Security Setup for Multimaster Replication
	Trusted Compared With Untrusted Security

	Security Setup for Materialized View Replication
	Trusted Compared With Untrusted Security

	B User-Defined Conflict Resolution Methods
	User-Defined Conflict Resolution Methods
	Conflict Resolution Method Parameters
	Resolving Update Conflicts
	Resolving Uniqueness Conflicts
	Resolving Delete Conflicts
	Multitier Materialized Views and User-Defined Conflict Resolution Methods
	Restrictions for User-Defined Conflict Resolution Methods
	Examples of User-Defined Conflict Resolution Method

	User-Defined Conflict Notification Methods
	Creating a Conflict Notification Log
	Creating a Conflict Notification Package

	Viewing Conflict Resolution Information

	Index

