
Oracle9 i

Replication Management API Reference

Release 2 (9.2)

March 2002

Part No. A96568-01

 Oracle9i Replication Management API Reference, Release 2 (9.2)

Part No. A96568-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.

Primary Author: Ted Burroughs

Contributing Author: Randy Urbano

Graphic Artist: Valarie Moore

Contributors: N. Arora, S. Balaraman, Y. Chan, A. Demers, A. Downing, C. Elsbernd, Y. Feng, J.
Galagali, D. Goddard, L. Kaplan, V. Krishnamurthy, A. Lakshminath, P. Lane, J. Liu, E. Lu, P. McElroy, M.
Pratt, A. Rajaram, N. Shodhan, W. Smith, J. Stamos, J. Stern, M. Subramaniam, E. Vandevelde, L. Wong,
D. Zhang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle9i, Oracle8i, Oracle7, Oracle8, SQL*Plus, and
PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

Send Us Your Comments ... xix

Preface .. xxi

Part I Configuring Your Replication Environment

1 Replication Overview

Creating a Replication Environment Overview ... 1-2
Before You Start... 1-4

2 Create Replication Site

Overview of Setting Up Replication Sites ... 2-2
Setting Up Master Sites ... 2-5

Setting Up orc1.world .. 2-5
Setting Up orc2.world .. 2-10
Setting Up orc3.world .. 2-15
Creating Scheduled Links Between the Master Sites .. 2-20

Setting Up Materialized View Sites .. 2-24
Setting Up mv1.world.. 2-25
Setting Up mv2.world.. 2-32

3 Create a Master Group

Overview of Creating a Master Group ... 3-2
Before You Start .. 3-3
iii

Creating a Master Group ... 3-6

4 Create a Deployment Template

Oracle Deployment Templates Concepts ... 4-2
Before Creating the Deployment Template ... 4-3
Creating a Deployment Template .. 4-3
Packaging a Deployment Template for Instantiation .. 4-12

Packaging a Deployment Template ... 4-14
Saving an Instantiation Script to File ... 4-16
Distributing Instantiation Files ... 4-18
Instantiating a Deployment Template ... 4-19
Refreshing a Refresh Group After Instantiation .. 4-21

5 Create Materialized View Group

Overview of Creating a Materialized View Group .. 5-2
Creating a Materialized View Group .. 5-4

Creating the Materialized View Group at mv1.world .. 5-4
Creating the Materialized View Group at mv2.world .. 5-12

6 Configure Conflict Resolution

Preparing for Conflict Resolution.. 6-2
Creating Conflict Resolution Methods for Update Conflicts ... 6-3

Overwrite and Discard Conflict Resolution Methods... 6-3
Minimum and Maximum Conflict Resolution Methods .. 6-6
Timestamp Conflict Resolution Methods.. 6-9
Additive and Average Conflict Resolution Methods.. 6-13
Priority Groups Conflict Resolution Methods.. 6-16
Site Priority Conflict Resolution Methods .. 6-20

Creating Conflict Resolution Methods for Uniqueness Conflicts... 6-25
Creating Conflict Avoidance Methods for Delete Conflicts ... 6-31
Using Dynamic Ownership Conflict Avoidance... 6-35

Workflow ... 6-36
Token Passing.. 6-37
Locating the Owner of a Row ... 6-39
iv

Obtaining Ownership .. 6-39
Applying the Change... 6-40

Auditing Successful Conflict Resolution ... 6-41
Collecting Conflict Resolution Statistics ... 6-41
Viewing Conflict Resolution Statistics .. 6-41
Canceling Conflict Resolution Statistics ... 6-42
Clearing Statistics Information ... 6-42

Part II Managing and Monitoring Your Replication Environment

7 Managing a Master Replication Environment

Changing the Master Definition Site .. 7-2
Option 1: All Master Sites Are Available .. 7-2
Option 2: The Old Master Definition Site Is Not Available.. 7-3

Adding New Master Sites ... 7-4
Adding New Master Sites Without Quiescing the Master Group .. 7-4
Adding New Master Sites to a Quiesced Master Group .. 7-31

Removing a Master Site from a Master Group ... 7-41
Removing an Unavailable Master Site .. 7-44

Updating the Comments Fields in Data Dictionary Views .. 7-45
Using Procedural Replication... 7-47

Restrictions on Procedural Replication ... 7-47
User-Defined Types and Procedural Replication .. 7-49
Serializing Transactions... 7-50
Generating Support for Replicated Procedures ... 7-50

8 Managing a Materialized View Replication Environment

Refreshing Materialized Views ... 8-2
Changing a Materialized View Group’s Master Site ... 8-2
Dropping Materialized View Groups and Objects.. 8-3

Dropping a Materialized View Groups Created with a Deployment Template................. 8-4
Dropping a Materialized View Group or Objects Created Manually................................... 8-8
Cleaning Up a Master Site or Master Materialized View Site.. 8-10

Managing Materialized View Logs ... 8-16
v

Altering Materialized View Logs ... 8-16
Managing Materialized View Log Space .. 8-17
Reorganizing Master Tables that Have Materialized View Logs .. 8-20
Dropping a Materialized View Log ... 8-24

Performing an Offline Instantiation of a Materialized View Site Using Export/Import 8-25
Using a Group Owner for a Materialized View Group... 8-36

9 Managing Replication Objects and Queues

Altering a Replicated Object .. 9-2
Altering a Replicated Object in a Quiesced Master Group... 9-2

Modifying Tables without Replicating the Modifications ... 9-5
Disabling Replication ... 9-5
Reenabling the Replication Facility.. 9-6
Ensuring That Replicated Triggers Fire Only Once... 9-7

Converting a LONG Column to a LOB Column in a Replicated Table 9-7
Determining Differences Between Replicated Tables... 9-9

Using the DIFFERENCES Procedure... 9-9
Using the RECTIFY Procedure ... 9-9

Managing the Deferred Transactions Queue... 9-14
Pushing the Deferred Transaction Queue... 9-14
Purging the Deferred Transaction Queue ... 9-15
Using the AnyData Type to Determine the Value of an Argument in a Deferred Call ... 9-16

Managing the Error Queue.. 9-18
Reexecuting Error Transaction as the Receiver .. 9-19
Reexecuting Error Transaction as Alternate User.. 9-20

10 Monitoring a Replication Environment

Monitoring Master Replication Environments ... 10-2
Monitoring Master Sites... 10-2
Monitoring Master Groups ... 10-3
Monitoring Masters .. 10-6

Monitoring Materialized View Sites... 10-10
Listing General Information About a Materialized View Site ... 10-10
Listing General Information About Materialized View Groups 10-11
Listing Information About Materialized Views ... 10-12
vi

Listing Information About the Refresh Groups at a Materialized View Site 10-14
Determining the Job ID for Each Refresh Job at a Materialized View Site 10-15
Determining Which Materialized Views Are Currently Refreshing 10-16

Monitoring Administrative Requests... 10-16
Listing General Information About Administrative Requests .. 10-17
Determining the Cause of Administrative Request Errors .. 10-17
Listing General Information About the Job that Executes Administrative Requests..... 10-18

Monitoring the Deferred Transactions Queue .. 10-19
Monitoring Transaction Propagation .. 10-20
Monitoring Purges of Successfully Propagated Transactions ... 10-22

Monitoring the Error Queue ... 10-24
Listing General Information About the Error Transactions at a Replication Site 10-25
Determining the Percentage of Error Transactions ... 10-26
Listing the Number of Error Transactions from Each Origin Master Site 10-26
Listing the Error Messages for the Error Transactions at a Replication Site.................... 10-27
Determining the Error Operations at a Replication Site ... 10-27

Monitoring Performance in a Replication Environment .. 10-28
Tracking the Average Number of Row Changes in a Replication Transaction 10-28
Tracking the Rate of Transactions Entering the Deferred Transactions Queue 10-28
Determining the Average Network Traffic Created To Propagate a Transaction 10-29
Determining the Average Amount of Time to Apply Transactions at Remote Sites 10-29
Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping 10-30
Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View............... 10-31
Monitoring Parallel Propagation of Deferred Transactions Using V$REPLPROP......... 10-31

Part III Replication Management API Packages Reference

11 Introduction to the Replication Management API Reference

Examples of Using Oracle’s Replication Management API ... 11-2
Issues to Consider When Using the Replication Management API 11-3
The Replication Management Tool and the Replication Management API 11-3
Abbreviations for Datetime and Interval Datatypes ... 11-4
vii

12 DBMS_DEFER

CALL Procedure ... 12-3
COMMIT_WORK Procedure .. 12-4
datatype_ARG Procedure ... 12-5
TRANSACTION Procedure .. 12-6

13 DBMS_DEFER_QUERY

GET_ARG_FORM Function .. 13-3
GET_ARG_TYPE Function.. 13-4
GET_CALL_ARGS Procedure ... 13-6
GET_datatype_ARG Function .. 13-7
GET_OBJECT_NULL_VECTOR_ARG Function ... 13-10

14 DBMS_DEFER_SYS

ADD_DEFAULT_DEST Procedure.. 14-4
CLEAR_PROP_STATISTICS Procedure.. 14-4
DELETE_DEFAULT_DEST Procedure.. 14-5
DELETE_DEF_DESTINATION Procedure... 14-5
DELETE_ERROR Procedure ... 14-6
DELETE_TRAN Procedure ... 14-7
DISABLED Function .. 14-7
EXCLUDE_PUSH Function... 14-8
EXECUTE_ERROR Procedure .. 14-9
EXECUTE_ERROR_AS_USER Procedure... 14-10
PURGE Function... 14-11
PUSH Function.. 14-14
REGISTER_PROPAGATOR Procedure... 14-16
SCHEDULE_PURGE Procedure... 14-17
SCHEDULE_PUSH Procedure ... 14-19
SET_DISABLED Procedure ... 14-21
UNREGISTER_PROPAGATOR Procedure .. 14-23
UNSCHEDULE_PURGE Procedure .. 14-24
UNSCHEDULE_PUSH Procedure... 14-24
viii

15 DBMS_MVIEW

BEGIN_TABLE_REORGANIZATION Procedure... 15-3
END_TABLE_REORGANIZATION Procedure .. 15-3
EXPLAIN_MVIEW Procedure ... 15-4
EXPLAIN_REWRITE Procedure .. 15-5
I_AM_A_REFRESH Function ... 15-6
PMARKER Function .. 15-6
PURGE_DIRECT_LOAD_LOG Procedure... 15-7
PURGE_LOG Procedure.. 15-7
PURGE_MVIEW_FROM_LOG Procedure ... 15-8
REFRESH Procedure .. 15-9
REFRESH_ALL_MVIEWS Procedure ... 15-12
REFRESH_DEPENDENT Procedure ... 15-13
REGISTER_MVIEW Procedure .. 15-15
UNREGISTER_MVIEW Procedure.. 15-18

16 DBMS_OFFLINE_OG

BEGIN_INSTANTIATION Procedure .. 16-3
BEGIN_LOAD Procedure ... 16-4
END_INSTANTIATION Procedure .. 16-5
END_LOAD Procedure ... 16-6
RESUME_SUBSET_OF_MASTERS Procedure... 16-8

17 DBMS_OFFLINE_SNAPSHOT

BEGIN_LOAD Procedure ... 17-3
END_LOAD Procedure ... 17-4

18 DBMS_RECTIFIER_DIFF

DIFFERENCES Procedure... 18-3
RECTIFY Procedure ... 18-5

19 DBMS_REFRESH

ADD Procedure... 19-3
ix

CHANGE Procedure .. 19-3
DESTROY Procedure.. 19-5
MAKE Procedure.. 19-6
REFRESH Procedure .. 19-8
SUBTRACT Procedure... 19-9

20 DBMS_REPCAT

ADD_GROUPED_COLUMN Procedure .. 20-7
ADD_MASTER_DATABASE Procedure .. 20-8
ADD_NEW_MASTERS Procedure .. 20-9
ADD_PRIORITY_datatype Procedure .. 20-14
ADD_SITE_PRIORITY_SITE Procedure ... 20-16
ADD_conflicttype_RESOLUTION Procedure.. 20-17
ALTER_CATCHUP_PARAMETERS Procedure.. 20-22
ALTER_MASTER_PROPAGATION Procedure .. 20-24
ALTER_MASTER_REPOBJECT Procedure .. 20-25
ALTER_MVIEW_PROPAGATION Procedure .. 20-29
ALTER_PRIORITY Procedure .. 20-30
ALTER_PRIORITY_datatype Procedure .. 20-31
ALTER_SITE_PRIORITY Procedure.. 20-33
ALTER_SITE_PRIORITY_SITE Procedure.. 20-34
CANCEL_STATISTICS Procedure... 20-35
COMMENT_ON_COLUMN_GROUP Procedure... 20-36
COMMENT_ON_MVIEW_REPSITES Procedure ... 20-37
COMMENT_ON_PRIORITY_GROUP/COMMENT_ON_SITE_PRIORITY

Procedures ... 20-38
COMMENT_ON_REPGROUP Procedure.. 20-39
COMMENT_ON_REPOBJECT Procedure.. 20-40
COMMENT_ON_REPSITES Procedure.. 20-41
COMMENT_ON_conflicttype_RESOLUTION Procedure... 20-43
COMPARE_OLD_VALUES Procedure... 20-44
CREATE_MASTER_REPGROUP Procedure.. 20-47
CREATE_MASTER_REPOBJECT Procedure ... 20-48
CREATE_MVIEW_REPGROUP Procedure.. 20-52
CREATE_MVIEW_REPOBJECT Procedure ... 20-53
x

DEFINE_COLUMN_GROUP Procedure .. 20-56
DEFINE_PRIORITY_GROUP Procedure.. 20-57
DEFINE_SITE_PRIORITY Procedure.. 20-58
DO_DEFERRED_REPCAT_ADMIN Procedure .. 20-59
DROP_COLUMN_GROUP Procedure.. 20-60
DROP_GROUPED_COLUMN Procedure .. 20-61
DROP_MASTER_REPGROUP Procedure .. 20-62
DROP_MASTER_REPOBJECT Procedure.. 20-64
DROP_MVIEW_REPGROUP Procedure .. 20-65
DROP_MVIEW_REPOBJECT Procedure.. 20-66
DROP_PRIORITY Procedure.. 20-67
DROP_PRIORITY_GROUP Procedure ... 20-68
DROP_PRIORITY_datatype Procedure .. 20-69
DROP_SITE_PRIORITY Procedure ... 20-70
DROP_SITE_PRIORITY_SITE Procedure ... 20-71
DROP_conflicttype_RESOLUTION Procedure.. 20-72
EXECUTE_DDL Procedure... 20-74
GENERATE_MVIEW_SUPPORT Procedure ... 20-75
GENERATE_REPLICATION_SUPPORT Procedure .. 20-77
MAKE_COLUMN_GROUP Procedure... 20-79
PREPARE_INSTANTIATED_MASTER Procedure... 20-81
PURGE_MASTER_LOG Procedure ... 20-82
PURGE_STATISTICS Procedure.. 20-83
REFRESH_MVIEW_REPGROUP Procedure.. 20-84
REGISTER_MVIEW_REPGROUP Procedure .. 20-86
REGISTER_STATISTICS Procedure .. 20-87
RELOCATE_MASTERDEF Procedure .. 20-88
REMOVE_MASTER_DATABASES Procedure .. 20-90
RENAME_SHADOW_COLUMN_GROUP Procedure .. 20-91
REPCAT_IMPORT_CHECK Procedure.. 20-92
RESUME_MASTER_ACTIVITY Procedure.. 20-93
RESUME_PROPAGATION_TO_MDEF Procedure .. 20-94
SEND_OLD_VALUES Procedure .. 20-95
SET_COLUMNS Procedure .. 20-97
SPECIFY_NEW_MASTERS Procedure ... 20-99
xi

SUSPEND_MASTER_ACTIVITY Procedure... 20-102
SWITCH_MVIEW_MASTER Procedure .. 20-102
UNDO_ADD_NEW_MASTERS_REQUEST Procedure .. 20-104
UNREGISTER_MVIEW_REPGROUP Procedure ... 20-105
VALIDATE Function... 20-106
WAIT_MASTER_LOG Procedure ... 20-108

21 DBMS_REPCAT_ADMIN

GRANT_ADMIN_ANY_SCHEMA Procedure .. 21-3
GRANT_ADMIN_SCHEMA Procedure ... 21-3
REGISTER_USER_REPGROUP Procedure... 21-4
REVOKE_ADMIN_ANY_SCHEMA Procedure .. 21-6
REVOKE_ADMIN_SCHEMA Procedure ... 21-6
UNREGISTER_USER_REPGROUP Procedure .. 21-7

22 DBMS_REPCAT_INSTANTIATE

DROP_SITE_INSTANTIATION Procedure.. 22-3
INSTANTIATE_OFFLINE Function .. 22-3
INSTANTIATE_ONLINE Function ... 22-6

23 DBMS_REPCAT_RGT

ALTER_REFRESH_TEMPLATE Procedure.. 23-5
ALTER_TEMPLATE_OBJECT Procedure... 23-7
ALTER_TEMPLATE_PARM Procedure ... 23-10
ALTER_USER_AUTHORIZATION Procedure ... 23-11
ALTER_USER_PARM_VALUE Procedure... 23-13
COMPARE_TEMPLATES Function... 23-15
COPY_TEMPLATE Function .. 23-16
CREATE_OBJECT_FROM_EXISTING Function ... 23-19
CREATE_REFRESH_TEMPLATE Function ... 23-21
CREATE_TEMPLATE_OBJECT Function .. 23-23
CREATE_TEMPLATE_PARM Function ... 23-26
CREATE_USER_AUTHORIZATION Function ... 23-28
CREATE_USER_PARM_VALUE Function .. 23-29
xii

DELETE_RUNTIME_PARMS Procedure ... 23-31
DROP_ALL_OBJECTS Procedure.. 23-32
DROP_ALL_TEMPLATE_PARMS Procedure... 23-33
DROP_ALL_TEMPLATE_SITES Procedure... 23-34
DROP_ALL_TEMPLATES Procedure... 23-35
DROP_ALL_USER_AUTHORIZATIONS Procedure... 23-35
DROP_ALL_USER_PARM_VALUES Procedure .. 23-36
DROP_REFRESH_TEMPLATE Procedure ... 23-37
DROP_SITE_INSTANTIATION Procedure ... 23-38
DROP_TEMPLATE_OBJECT Procedure .. 23-39
DROP_TEMPLATE_PARM Procedure ... 23-40
DROP_USER_AUTHORIZATION Procedure ... 23-41
DROP_USER_PARM_VALUE Procedure .. 23-42
GET_RUNTIME_PARM_ID Function... 23-43
INSERT_RUNTIME_PARMS Procedure .. 23-43
INSTANTIATE_OFFLINE Function.. 23-45
INSTANTIATE_ONLINE Function... 23-48
LOCK_TEMPLATE_EXCLUSIVE Procedure... 23-50
LOCK_TEMPLATE_SHARED Procedure .. 23-51

24 DBMS_REPUTIL

REPLICATION_OFF Procedure... 24-3
REPLICATION_ON Procedure.. 24-3
REPLICATION_IS_ON Function... 24-3
FROM_REMOTE Function.. 24-4
GLOBAL_NAME Function ... 24-4
MAKE_INTERNAL_PKG Procedure .. 24-4
SYNC_UP_REP Procedure.. 24-5

Part IV Replication Data Dictionary Reference

25 Replication Catalog Views

Summary of Replication Catalog Views .. 25-2
DBA_REGISTERED_MVIEW_GROUPS... 25-5
xiii

ALL_REPCAT_REFRESH_TEMPLATES ... 25-5
ALL_REPCAT_TEMPLATE_OBJECTS .. 25-6
ALL_REPCAT_TEMPLATE_PARMS ... 25-8
ALL_REPCAT_TEMPLATE_SITES .. 25-10
ALL_REPCAT_USER_AUTHORIZATIONS ... 25-11
ALL_REPCAT_USER_PARM_VALUES .. 25-12
ALL_REPCATLOG .. 25-15
ALL_REPCOLUMN .. 25-16
ALL_REPCOLUMN_GROUP .. 25-18
ALL_REPCONFLICT .. 25-19
ALL_REPDDL .. 25-20
ALL_REPGENOBJECTS ... 25-20
ALL_REPGROUP .. 25-21
ALL_REPGROUP_PRIVILEGES ... 25-22
ALL_REPGROUPED_COLUMN .. 25-22
ALL_REPKEY_COLUMNS .. 25-23
ALL_REPOBJECT .. 25-24
ALL_REPPARAMETER_COLUMN ... 25-25
ALL_REPPRIORITY .. 25-26
ALL_REPPRIORITY_GROUP .. 25-27
ALL_REPPROP .. 25-28
ALL_REPRESOL_STATS_CONTROL .. 25-29
ALL_REPRESOLUTION ... 25-30
ALL_REPRESOLUTION_METHOD .. 25-31
ALL_REPRESOLUTION_STATISTICS .. 25-32
ALL_REPSITES .. 25-33
DBA_REPCAT_REFRESH_TEMPLATES .. 25-34
DBA_REPCAT_TEMPLATE_OBJECTS ... 25-34
DBA_REPCAT_TEMPLATE_PARMS .. 25-34
DBA_REPCAT_TEMPLATE_SITES .. 25-35
DBA_REPCAT_USER_AUTHORIZATIONS .. 25-35
DBA_REPCAT_USER_PARM_VALUES ... 25-35
DBA_REPCATLOG ... 25-35
DBA_REPCOLUMN ... 25-36
DBA_REPCOLUMN_GROUP ... 25-36
xiv

DBA_REPCONFLICT ... 25-36
DBA_REPDDL ... 25-36
DBA_REPEXTENSIONS ... 25-36
DBA_REPGENOBJECTS .. 25-39
DBA_REPGROUP .. 25-39
DBA_REPGROUP_PRIVILEGES .. 25-39
DBA_REPGROUPED_COLUMN ... 25-39
DBA_REPKEY_COLUMNS ... 25-39
DBA_REPOBJECT ... 25-40
DBA_REPPARAMETER_COLUMN .. 25-40
DBA_REPPRIORITY ... 25-40
DBA_REPPRIORITY_GROUP ... 25-40
DBA_REPPROP ... 25-40
DBA_REPRESOL_STATS_CONTROL ... 25-41
DBA_REPRESOLUTION .. 25-41
DBA_REPRESOLUTION_METHOD ... 25-41
DBA_REPRESOLUTION_STATISTICS ... 25-41
DBA_REPSITES ... 25-41
DBA_REPSITES_NEW... 25-42
USER_REPCAT_REFRESH_TEMPLATES .. 25-43
USER_REPCAT_TEMPLATE_OBJECTS .. 25-44
USER_REPCAT_TEMPLATE_PARMS .. 25-44
USER_REPCAT_TEMPLATE_SITES .. 25-44
USER_REPCAT_USER_AUTHORIZATION ... 25-44
USER_REPCAT_USER_PARM_VALUES ... 25-45
USER_REPCATLOG ... 25-45
USER_REPCOLUMN .. 25-45
USER_REPCOLUMN_GROUP ... 25-45
USER_REPCONFLICT .. 25-46
USER_REPDDL .. 25-46
USER_REPGENOBJECTS ... 25-46
USER_REPGROUP .. 25-46
USER_REPGROUP_PRIVILEGES ... 25-46
USER_REPGROUPED_COLUMN .. 25-46
USER_REPKEY_COLUMNS ... 25-47
xv

USER_REPOBJECT .. 25-47
USER_REPPARAMETER_COLUMN ... 25-47
USER_REPPRIORITY .. 25-47
USER_REPPRIORITY_GROUP ... 25-48
USER_REPPROP .. 25-48
USER_REPRESOL_STATS_CONTROL ... 25-48
USER_REPRESOLUTION .. 25-48
USER_REPRESOLUTION_METHOD .. 25-49
USER_REPRESOLUTION_STATISTICS .. 25-49
USER_REPSITES .. 25-49

26 Replication Dynamic Performance Views

V$MVREFRESH ... 26-2
V$REPLPROP ... 26-2
V$REPLQUEUE ... 26-4

27 Deferred Transaction Views

DEFCALL .. 27-2
DEFCALLDEST .. 27-2
DEFDEFAULTDEST .. 27-2
DEFERRCOUNT .. 27-3
DEFERROR ... 27-3
DEFLOB ... 27-3
DEFPROPAGATOR .. 27-4
DEFSCHEDULE ... 27-4
DEFTRAN ... 27-6
DEFTRANDEST ... 27-7

28 Materialized View and Refresh Group Views

Part V Appendixes

A Security Options

Security Setup for Multimaster Replication.. A-2
xvi

Trusted Compared With Untrusted Security ... A-3
Security Setup for Materialized View Replication .. A-7

Trusted Compared With Untrusted Security ... A-8

B User-Defined Conflict Resolution Methods

User-Defined Conflict Resolution Methods .. B-2
Conflict Resolution Method Parameters ... B-2
Resolving Update Conflicts... B-3
Resolving Uniqueness Conflicts ... B-3
Resolving Delete Conflicts .. B-4
Multitier Materialized Views and User-Defined Conflict Resolution Methods.................. B-4
Restrictions for User-Defined Conflict Resolution Methods.. B-5
Examples of User-Defined Conflict Resolution Method .. B-6

User-Defined Conflict Notification Methods... B-8
Creating a Conflict Notification Log.. B-8
Creating a Conflict Notification Package.. B-9

Viewing Conflict Resolution Information ... B-12

Index
xvii

xviii

Send Us Your Comments

Oracle9 i Replication Management API Reference, Release 2 (9.2)

Part No. A96568-01

Oracle Corporation welcomes your comments and suggestions on the quality and

usefulness of this document. Your input is an important part of the information

used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please

indicate the document title and part number, and the chapter, section, and page

number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA
xix

If you would like a reply, please give your name, address, telephone number, and

(optionally) electronic mail address.

If you have problems with the software, please contact your local Oracle Support

Services.
xx

Preface

Oracle9i Replication Management API Reference contains information that

describes the features and functionality of the replication management API.

Specifically, the Oracle9i Replication Management API Reference contains reference

information for the packages in the replication management API, as well as

examples of their use.

In addition, Oracle9i Replication Management API Reference contains reference

information about the replication catalog and other data dictionary views that are

important for replication.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xxi

Audience
Oracle9i Replication Management API Reference is intended for database

administrators and application developers who develop and maintain replication

environments. These administrators and application developers perform one or

more of the following tasks:

■ Configure replication sites

■ Create master groups

■ Create deployment templates

■ Create materialized view groups

■ Configure conflict resolution

■ Manage replication environments

■ Use the replication management API

■ Monitor replication environments using data dictionary views

■ Plan and configure security options

To use this document, you need to be familiar with relational database concepts,

distributed database administration, PL/SQL (if using procedural replication), and

the operating system under which you run an Advanced Replication environment.

Organization
This document contains:

Part I, "Configuring Your Replication Environment"
Includes instructions on using the replication management API to set up both

multimaster replication and materialized view replication. This part also contains

instructions for configuring conflict resolution methods and instructions for

managing your replication environment using the replication management API.

Chapter 1, "Replication Overview"
Provides an overview of the process for building a replication environment with the

replication management API. This chapter also contains some prerequisites for

building a replication environment.
xxii

Chapter 2, "Create Replication Site"
Describes in detail the process of setting up both a master and materialized view

site. Consult this chapter when building a new replication environment and when

adding either a new master or materialized view site to an established replication

environment.

Chapter 3, "Create a Master Group"
Describes how to build a master group for use with multimaster replication or as a

master for a materialized view site. Chapter 3 builds a master group that replicates

data between the three master sites that were set up in Chapter 2.

Chapter 4, "Create a Deployment Template"
Describes how to build a materialized view environment with deployment

templates, which are the most effective method of distributing a materialized view

environment to any number of materialized view sites.

Chapter 5, "Create Materialized View Group"
Describes how to build a materialized view environment with materialized view

groups. If deployment templates do not meet your requirements, then Chapter 5

describes in detail how to build a materialized view environment at the

materialized view site.

Chapter 6, "Configure Conflict Resolution"
Describes the conflict resolution methods that can help your data converge at all

sites when a data conflict arises.

Part II, "Managing and Monitoring Your Replication Environment"
Includes instructions on managing a replication environment using the replication

management API.

Chapter 7, "Managing a Master Replication Environment"
Describes many of the management tasks that you may need to perform to manage

a multimaster replication environment. Topics include adding new master sites,

master group management, and more.

Chapter 8, "Managing a Materialized View Replication Environment"
Describes many of the management tasks that you may need to perform to manage

a materialized view replication environment. Topics include using a group owner,

managing materialized view logs, offline instantiation, and more.
xxiii

Chapter 9, "Managing Replication Objects and Queues"
Describes many of the management tasks that you may need to perform to manage

your replication environment. Topics include altering replicated objects, managing

the deferred transactions queue, managing the error queue, and more.

Chapter 10, "Monitoring a Replication Environment"
Describes many of the queries you can run to monitor your replication

environment.

Part III, "Replication Management API Packages Reference"
Includes reference information about the replication management API, including:

the procedures and functions in each package, the parameters for each packaged

procedure and function, and exceptions that each procedure or function can raise.

Chapter 11, "Introduction to the Replication Management API Reference"
Introduces the replication management API and includes examples for its use.

Chapter 12, "DBMS_DEFER"
Describes the procedures in the DBMS_DEFER package.

Chapter 13, "DBMS_DEFER_QUERY"
Describes the procedures and functions in the DBMS_DEFER_QUERY package.

Chapter 14, "DBMS_DEFER_SYS"
Describes the procedures and functions in the DBMS_DEFER_SYS package.

Chapter 15, "DBMS_MVIEW"
Describes the procedures and functions in the DBMS_MVIEW package.

Chapter 16, "DBMS_OFFLINE_OG"
Describes the procedures in the DBMS_OFFLINE_OG package.

Chapter 17, "DBMS_OFFLINE_SNAPSHOT"
Describes the procedures in the DBMS_OFFLINE_SNAPSHOT package.

Chapter 18, "DBMS_RECTIFIER_DIFF"
Describes the procedures in the DBMS_RECTIFIER_DIFF package.
xxiv

Chapter 19, "DBMS_REFRESH"
Describes the procedures in the DBMS_REFRESH package.

Chapter 20, "DBMS_REPCAT"
Describes the procedures and functions in the DBMS_REPCAT package.

Chapter 21, "DBMS_REPCAT_ADMIN"
Describes the procedures in the DBMS_REPCAT_ADMIN package.

Chapter 22, "DBMS_REPCAT_INSTANTIATE"
Describes the procedures and functions in the DBMS_REPCAT_INSTANTIATE
package.

Chapter 23, "DBMS_REPCAT_RGT"
Describes the procedures and functions in the DBMS_REPCAT_RGT package.

Chapter 24, "DBMS_REPUTIL"
Describes the procedures and functions in the DBMS_REPUTIL package.

Part IV, "Replication Data Dictionary Reference"
Describes data dictionary views that provide information about your replication

environment.

Chapter 25, "Replication Catalog Views"
Describes the replication catalog, which contains data dictionary views that are

used by master and materialized view sites to determine such information as what

objects are being replicated, where they are being replicated, and if any errors have

occurred during replication.

Chapter 26, "Replication Dynamic Performance Views"
Describes the dynamic performance views that are used by master and materialized

view sites to determine such information as which materialized views are being

refreshed currently and statistics about the deferred transaction queue.
xxv

Chapter 27, "Deferred Transaction Views"
Describes the data dictionary views that contain information about deferred

transactions. These views provide information about each deferred transaction,

such as the transaction destinations, the deferred calls that make up the

transactions, and any errors encountered during attempted execution of the

transaction.

Chapter 28, "Materialized View and Refresh Group Views"
Describes data dictionary views that provide information about materialized views

and materialized view refresh groups.

Part V, "Appendixes"
Includes the following appendixes:

Appendix A, "Security Options"
Describes setting up security for multimaster and materialized view replication

using the replication management API.

Appendix B, "User-Defined Conflict Resolution Methods"
Describes building user-defined conflict resolution methods and notification

functions using the replication management API.
xxvi

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Replication

■ Oracle9i Database Concepts

■ Oracle9i Database Administrator’s Guide

■ Oracle9i SQL Reference

■ PL/SQL User’s Guide and Reference (if you plan to use procedural replication)

You may find more information about a particular topic in the other documents in

the Oracle9i documentation set.

Many of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com
xxvii

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xxviii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xxix

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME =database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xxx

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and

provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"
C:\>imp SYSTEM/ password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_NAMETNSListener
xxxi

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90 . The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example
xxxii

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xxxiii

xxxiv

Part I

 Configuring Your Replication Environment

Part I contains instructions for using the replication management API to set up both

multimaster replication and materialized view replication. This part also contains

instructions for configuring conflict resolution methods using the replication

management API.

Part I contains the following chapters:

■ Chapter 1, "Replication Overview"

■ Chapter 2, "Create Replication Site"

■ Chapter 3, "Create a Master Group"

■ Chapter 4, "Create a Deployment Template"

■ Chapter 5, "Create Materialized View Group"

■ Chapter 6, "Configure Conflict Resolution"

Replication Ove
1

Replication Overview

This chapter reviews the process of building a replication environment with the

replication management API.

This chapter contains these topics:

■ Creating a Replication Environment Overview

■ Before You Start
rview 1-1

Creating a Replication Environment Overview
Creating a Replication Environment Overview
Figure 1–1 illustrates the basic steps required to build a replication environment.

Regardless of the type of replication site or sites that you are building, you begin by

setting up the replicated site.

After you have set up your replication sites, you are ready to begin building your

master groups and materialized view groups. After you have built your replication

environment, make sure that you review Chapter 6 and the chapters in Part II,

"Managing and Monitoring Your Replication Environment", to learn about conflict

resolution and managing your replication environment.
1-2 Oracle9i Replication Management API Reference

Creating a Replication Environment Overview
Figure 1–1 Create Replication Environment Process

What type
of replication

site?

No

Yes

Set Up Master Sites
(Chapter 2)

1

Configure Conflict Resolution
Methods on Master
(Chapter 6)

3

Create Master Group
(Chapter 3)

2

Master
Materialized

View

1

Are
data conflicts

possible?

No

Yes

Does
master for

materialized view site
exist?

How do
you want to build the

environment?

At Master site with
Deployment
Template

At Materialized
View
Site

2

3

Create Materialized View Group
(Chapter 5)

Create a Deployment
(Chapter 4)

Package for Instantiation and
Instantiate Deployment Template
(Chapter 4)

2

START

END

Set Up Materialized View
(Chapter 2)

1

Replication Overview 1-3

Before You Start
Before You Start
Before you begin setting up your replication site, make sure you plan your

replication environment so that it meets your needs. Planning considerations

include:

■ Designing your replicated database objects

■ Deciding on the settings of initialization parameters that are important for

replication

■ Deciding whether you want to create a multimaster replication environment or

a materialized view replication environment, or if you want to combine both

types of replication environments into a hybrid environment

■ Deciding how you want to configure your scheduled links

■ Deciding how you want to configure your scheduled purges

■ Deciding whether you want to use serial or parallel propagation

■ If you use parallel propagation, then deciding on the degree of parallelism

■ If you plan to create a materialized view environment, then deciding whether

you want to use deployment templates to create the environment

■ Analyzing your environment for possible conflicts and, if conflicts are possible,

then deciding which conflict resolution methods to use

■ Configuring security for your replication environment

■ Designing your replication environment for survivability

See Also: Oracle9i Replication for more information planning your

replication environment
1-4 Oracle9i Replication Management API Reference

Create Replicatio
2

Create Replication Site

This chapter illustrates how to set up both a master site and a materialized view

replication site using the replication management API.

This chapter contains these topics:

■ Overview of Setting Up Replication Sites

■ Setting Up Master Sites

■ Setting Up Materialized View Sites
n Site 2-1

Overview of Setting Up Replication Sites
Overview of Setting Up Replication Sites
Before you build your replication environment, you need to set up the sites that will

participate in the replication environment. As illustrated in Figure 2–2 and

Figure 2–3, there are separate processes for setting up a master site versus setting up

a materialized view site.

The examples in this chapter, and in other chapters, use the following nine

databases:

■ orc1.world

■ orc2.world

■ orc3.world

■ orc4.world

■ orc5.world

■ mv1.world

■ mv2.world

■ mv3.world

■ mv4.world
2-2 Oracle9i Replication Management API Reference

Overview of Setting Up Replication Sites
Chapters 2 - 6 work with the replication environment illustrated in Figure 2–1. You

start to create this environment using the instructions in this chapter. Notice that

mv2.world is a materialized view based on the mv1.world materialized view,

creating a multitier materialized view environment. The arrows in Figure 2–1

represent database links.

Figure 2–1 Three Master Sites and Two Materialized View Sites

Follow the procedures identified in Figure 2–2 when you build a new master site or

in Figure 2–3 when you build a new materialized view site.

orc1.world orc2.world

mv1.worldmv2.world orc3.world

Materialized
View
Site

Materialized
View
Site

Master
Site

Master
Site

Master
Site
Create Replication Site 2-3

Overview of Setting Up Replication Sites
Figure 2–2 Setting Up Master Sites

1

Add
Materialized View

Support?

START

Register Receiver
5

1
Schedule Purge at Master Site

1
Register Propagator

4

1
Grant Privileges to Replication
Administrator

3

1
Create Scheduled Links

9

1
Create Database Links
Between Master Sites

8

1
Create Replication
Administrator

2

Connect as System at
Master Site

1

6

1
Create Proxy Master Site Users

7

Yes

Add
another site?*

No

No

Yes

END

* Multiple master sites (multimaster replication) can be
used only with the Enterprise Edition of Oracle.
2-4 Oracle9i Replication Management API Reference

Setting Up Master Sites
Setting Up Master Sites
The following sections contain step-by-step instructions for setting up the three

master sites in our sample replication environment: orc1.world , orc2.world ,

and orc3.world .

/************************* BEGINNING OF SCRIPT ******************************

Setting Up orc1.world
Complete the following steps to set up the orc1.world master site.

Step 1 Connect as SYSTEM at a master site at orc1.world .
Connect as SYSTEM to the database that you want to set up for replication. After

you set up orc1.world , begin again with Step 1 for site orc2.world on page 2-10

and Step 1 for site orc3.world on page 2-15.

*/

SET ECHO ON

SPOOL setup_masters.out

CONNECT system/manager@orc1.world

/*

Step 2 Create replication administrator at orc1.world.
The replication administrator must be granted the necessary privileges to create and

manage a replication environment. The replication administrator must be created at

each database that participates in the replication environment.

*/

CREATE USER repadmin IDENTIFIED BY repadmin;

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 2-36 into a text editor and then edit

the text to create a script for your environment.
Create Replication Site 2-5

Setting Up Master Sites
/*

Step 3 Grant privileges to replication administrator at orc1.world by
completing the following steps:

a. Execute the GRANT_ADMIN_ANY_SCHEMA procedure to grant the

replication administrator powerful privileges to create and manage a

replicated environment.

*/

BEGIN
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (

 username => 'repadmin');
END;
/

/*

b. If you want your repadmin to be able to create materialized view logs for

any replicated table, then grant COMMENT ANY TABLEand LOCK ANY TABLE
to repadmin :

*/

GRANT COMMENT ANY TABLE TO repadmin;
GRANT LOCK ANY TABLE TO repadmin;

/*

c. If you want your repadmin to be able to connect to the Replication

Management tool, then grant SELECT ANY DICTIONARY to repadmin :

*/

GRANT SELECT ANY DICTIONARY TO repadmin;

/*

Step 4 Register propagator at orc1.world .
The propagator is responsible for propagating the deferred transaction queue to

other master sites.

*/
2-6 Oracle9i Replication Management API Reference

Setting Up Master Sites
BEGIN
DBMS_DEFER_SYS.REGISTER_PROPAGATOR (

 username => 'repadmin');
END;
/

/*

Step 5 Register receiver at orc1.world .
The receiver receives the propagated deferred transactions sent by the propagator

from other master sites.

*/

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (

 username => 'repadmin',
 privilege_type => 'receiver',
 list_of_gnames => NULL);
END;
/

/*

Step 6 Schedule purge at master site orc1.world .
In order to keep the size of the deferred transaction queue in check, you should

purge successfully completed deferred transactions. The SCHEDULE_PURGE
procedure automates the purge process for you. You must execute this procedure as

the replication administrator.

*/

Note: Date expressions are used for the NEXT_DATE and

INTERVAL parameters. For example:

■ Now is specified as: SYSDATE

■ An interval of one hour is specified as: SYSDATE + 1/24

■ An interval of seven days could be specified as: SYSDATE + 7
Create Replication Site 2-7

Setting Up Master Sites
CONNECT repadmin/repadmin@orc1.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PURGE (

 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 delay_seconds => 0);
END;
/

/*

Step 7 If you plan to create materialized view sites based on this master site,
then create proxy master site users at orc1.world that correspond to users at
the materialized view site by completing the following steps:

a. Create proxy materialized view administrator.

The proxy materialized view administrator performs tasks at the target

master site on behalf of the materialized view administrator at the

materialized view site.

*/

CONNECT SYSTEM/MANAGER@orc1.world

CREATE USER proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;

See Also: Oracle9i Database Administrator’s Guide and Oracle9i SQL
Reference for more information about date expressions
2-8 Oracle9i Replication Management API Reference

Setting Up Master Sites
BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (

 username => 'proxy_mviewadmin',
 privilege_type => 'proxy_snapadmin',
 list_of_gnames => NULL);
END;
/

-- Place GRANT SELECT_CATALOG_ROLE statement here if necessary.

/*

If you want your materialized view administrator at materialized view sites

to be able to perform administrative operations using the Replication

Management tool, then grant SELECT_CATALOG_ROLE to proxy_
mviewadmin :

GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;

Granting this privilege to the proxy_mviewadmin is not required if you

do not plan to use the Replication Management tool. However, if you plan

to use the Replication Management tool, then move the GRANTstatement to

the line directly after the previous REGISTER_USER_REPGROUP statement.

b. Create proxy refresher.

The proxy refresher performs tasks at the master site on behalf of the

refresher at the materialized view site.

*/

CREATE USER proxy_refresher IDENTIFIED BY proxy_refresher;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy_refresher;

/*

See Also: "Security Setup for Materialized View Replication" on

page A-7
Create Replication Site 2-9

Setting Up Master Sites
Setting Up orc2.world
Complete the following steps to set up the orc2.world master site.

Step 1 Connect as SYSTEM at orc2.world .

You must connect as SYSTEMto the database that you want to set up for replication.

After you set up orc2.world , begin with Step 1 for site orc3.world on

page 2-15.

*/

CONNECT system/manager@orc2.world

/*

Step 2 Create replication administrator at orc2.world .
The replication administrator must be granted the necessary privileges to create and

manage a replication environment. The replication administrator must be created at

each database that participates in the replication environment.

*/

CREATE USER repadmin IDENTIFIED BY repadmin;

/*

Step 3 Grant privileges to replication administrator at orc2.world by
completing the following steps:

a. Execute the GRANT_ADMIN_ANY_SCHEMA procedure to grant the

replication administrator powerful privileges to create and manage a

replicated environment.

*/

Note: Multiple master sites (multimaster replication) can only be

used with Oracle Enterprise Edition. If you are not using Oracle

Enterprise Edition, then skip to "Setting Up Materialized View

Sites" on page 2-24.
2-10 Oracle9i Replication Management API Reference

Setting Up Master Sites
BEGIN
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (

 username => 'repadmin');
END;
/

/*

b. If you want your repadmin to be able to create materialized view logs for

any replicated table, then grant COMMENT ANY TABLEand LOCK ANY TABLE
privileges to repadmin :

*/

GRANT COMMENT ANY TABLE TO repadmin;
GRANT LOCK ANY TABLE TO repadmin;

/*

c. If you want your repadmin to be able to connect to the Replication

Management tool, then grant SELECT ANY DICTIONARY to repadmin :

*/

GRANT SELECT ANY DICTIONARY TO repadmin;

/*

Step 4 Register propagator at orc2.world .
The propagator is responsible for propagating the deferred transaction queue to

other master sites.

*/

BEGIN
DBMS_DEFER_SYS.REGISTER_PROPAGATOR (

 username => 'repadmin');
END;
/

/*
Create Replication Site 2-11

Setting Up Master Sites
Step 5 Register receiver at orc2.world .
The receiver receives the propagated deferred transactions sent by the propagator

from the other master sites.

*/

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (

 username => 'repadmin',
 privilege_type => 'receiver',
 list_of_gnames => NULL);
END;
/

/*

Step 6 Schedule purge at master site at orc2.world .
In order to keep the size of the deferred transaction queue in check, you should

purge successfully completed deferred transactions. The SCHEDULE_PURGE
procedure automates the purge process for you. You must execute this procedure as

the replication administrator.

*/

CONNECT repadmin/repadmin@orc2.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PURGE (

 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 delay_seconds => 0);
END;
/

/*

Step 7 If you plan to create materialized view sites based on this master site,
then create proxy master site users at orc2.world that correspond to users at
the materialized view site by completing the following steps:

a. Create proxy materialized view administrator.
2-12 Oracle9i Replication Management API Reference

Setting Up Master Sites
The proxy materialized view administrator performs tasks at the target

master site on behalf of the materialized view administrator at the

materialized view site.

*/

CONNECT SYSTEM/MANAGER@orc2.world

CREATE USER proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;
Create Replication Site 2-13

Setting Up Master Sites
BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (

 username => 'proxy_mviewadmin',
 privilege_type => 'proxy_snapadmin',
 list_of_gnames => NULL);
END;
/

-- Place GRANT SELECT_CATALOG_ROLE statement here if necessary.

/*

If you want your materialized view administrator at materialized view sites

to be able to perform administrative operations using the Replication

Management tool, then grant SELECT_CATALOG_ROLE to proxy_
mviewadmin :

*/

GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;

/*

Granting this privilege to the proxy_mviewadmin is not required if you

do not plan to use the Replication Management tool. However, if you plan

to use the Replication Management tool, then move the GRANTstatement to

the line directly after the previous REGISTER_USER_REPGROUP statement.

b. Create proxy refresher.

The proxy refresher performs tasks at the master site on behalf of the

refresher at the materialized view site.

*/

CREATE USER proxy_refresher IDENTIFIED BY proxy_refresher;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy_refresher;

/*

See Also: "Security Setup for Materialized View Replication" on

page A-7
2-14 Oracle9i Replication Management API Reference

Setting Up Master Sites
Setting Up orc3.world
Complete the following steps to set up the orc3.world master site.

Step 1 Connect as SYSTEM at orc3.world .

You must connect as SYSTEM to the database that you want to set up for replication.

*/

CONNECT system/manager@orc3.world

/*

Step 2 Create replication administrator at orc3.world .
The replication administrator must be granted the necessary privileges to create and

manage a replication environment. The replication administrator must be created at

each database that participates in the replication environment.

*/

CREATE USER repadmin IDENTIFIED BY repadmin;

/*

Step 3 Grant privileges to replication administrator at orc3.world by
completing the following steps:

a. Execute the GRANT_ADMIN_ANY_SCHEMA procedure to grant the

replication administrator powerful privileges to create and manage a

replicated environment.

*/

BEGIN
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (

Note: Multiple master sites (multimaster replication) can be used

only with Oracle Enterprise Edition. If you are not using Oracle

Enterprise Edition, then skip to "Setting Up Materialized View

Sites" on page 2-24.
Create Replication Site 2-15

Setting Up Master Sites
 username => 'repadmin');
END;
/

/*

b. If you want your repadmin to be able to create materialized view logs for

any replicated table, then grant COMMENT ANY TABLEand LOCK ANY TABLE
to repadmin :

*/

GRANT COMMENT ANY TABLE TO repadmin;
GRANT LOCK ANY TABLE TO repadmin;

/*

c. If you want your repadmin to be able to connect to the Replication

Management tool, then grant SELECT ANY DICTIONARY to repadmin :

*/

GRANT SELECT ANY DICTIONARY TO repadmin;

/*

Step 4 Register propagator at orc3.world .
The propagator is responsible for propagating the deferred transaction queue to

other master sites.

*/

BEGIN
DBMS_DEFER_SYS.REGISTER_PROPAGATOR (

 username => 'repadmin');
END;
/

/*
2-16 Oracle9i Replication Management API Reference

Setting Up Master Sites
Step 5 Register receiver at orc3.world .
The receiver receives the propagated deferred transactions sent by the propagator

from the other master sites.

*/

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (

 username => 'repadmin',
 privilege_type => 'receiver',
 list_of_gnames => NULL);
END;
/

/*

Step 6 Schedule purge at master site at orc3.world .
In order to keep the size of the deferred transaction queue in check, you should

purge successfully completed deferred transactions. The SCHEDULE_PURGE API

automates the purge process for you. You must execute this procedure as the

replication administrator.

*/

CONNECT repadmin/repadmin@orc3.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PURGE (

 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 delay_seconds => 0);
END;
/

/*

Step 7 If you plan to create materialized view sites based on this master site,
then create proxy master site users at orc1.world that correspond to users at
the materialized view site by completing the following steps:

a. Create proxy materialized view administrator.
Create Replication Site 2-17

Setting Up Master Sites
The proxy materialized view administrator performs tasks at the target

master site on behalf of the materialized view administrator at the

materialized view site.

*/

CONNECT SYSTEM/MANAGER@orc3.world

CREATE USER proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;
2-18 Oracle9i Replication Management API Reference

Setting Up Master Sites
BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (

 username => 'proxy_mviewadmin',
 privilege_type => 'proxy_snapadmin',
 list_of_gnames => NULL);
END;
/

-- Place GRANT SELECT_CATALOG_ROLE statement here if necessary.

/*

If you want your materialized view administrator at materialized view sites

to be able to perform administrative operations using the Replication

Management tool, then grant SELECT_CATALOG_ROLE to proxy_
mviewadmin :

*/

GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;

/*

Granting this privilege to the proxy_mviewadmin is not required if you

do not plan to use the Replication Management tool. However, if you plan

to use the Replication Management tool, then move the GRANTstatement to

the line directly after the previous REGISTER_USER_REPGROUP statement.

b. Create proxy refresher.

The proxy refresher performs tasks at the master site on behalf of the

refresher at the materialized view site.

*/

CREATE USER proxy_refresher IDENTIFIED BY proxy_refresher;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy_refresher;

/*

See Also: "Security Setup for Materialized View Replication" on

page A-7
Create Replication Site 2-19

Setting Up Master Sites
Creating Scheduled Links Between the Master Sites
Complete the following steps to create scheduled links between the master sites.

Step 1 Create database links between master sites.
The database links provide the necessary distributed mechanisms to allow the

different replication sites to replicate data among themselves. Before you create any

private database links, you must create the public database links that each private

database link will use. You then must create a database link between all replication

administrators at each of the master sites that you have set up.

*/

CONNECT SYSTEM/MANAGER@orc1.world
CREATE PUBLIC DATABASE LINK orc2.world USING 'orc2.world';
CREATE PUBLIC DATABASE LINK orc3.world USING 'orc3.world';

CONNECT repadmin/repadmin@orc1.world
CREATE DATABASE LINK orc2.world CONNECT TO repadmin IDENTIFIED BY repadmin;
CREATE DATABASE LINK orc3.world CONNECT TO repadmin IDENTIFIED BY repadmin;

CONNECT SYSTEM/MANAGER@orc2.world
CREATE PUBLIC DATABASE LINK orc1.world USING 'orc1.world';
CREATE PUBLIC DATABASE LINK orc3.world USING 'orc3.world';

CONNECT repadmin/repadmin@orc2.world
CREATE DATABASE LINK orc1.world CONNECT TO repadmin IDENTIFIED BY repadmin;
CREATE DATABASE LINK orc3.world CONNECT TO repadmin IDENTIFIED BY repadmin;

CONNECT SYSTEM/MANAGER@orc3.world
CREATE PUBLIC DATABASE LINK orc1.world USING 'orc1.world';
CREATE PUBLIC DATABASE LINK orc2.world USING 'orc2.world';

CONNECT repadmin/repadmin@orc3.world
CREATE DATABASE LINK orc1.world CONNECT TO repadmin IDENTIFIED BY repadmin;
CREATE DATABASE LINK orc2.world CONNECT TO repadmin IDENTIFIED BY repadmin;

/*

See Also: Oracle9i Database Administrator’s Guide for more

information about database links
2-20 Oracle9i Replication Management API Reference

Setting Up Master Sites
Step 2 Define a schedule for each database link to create scheduled links.
Create a scheduled link by defining a database link when you execute the

SCHEDULE_PUSH procedure. The scheduled link determines how often your

deferred transaction queue is propagated to each of the other master sites. You need

to execute the SCHEDULE_PUSH procedure for each database link that you created

in Step 1. The database link is specified in the destination parameter of the

SCHEDULE_PUSH procedure.

Even when using Oracle’s asynchronous replication mechanisms, you can configure

a scheduled link to simulate continuous, real-time replication. The scheduled links

in this example simulate continuous replication.

*/

CONNECT repadmin/repadmin@orc1.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PUSH (

 destination => 'orc2.world',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PUSH (

 destination => 'orc2.world',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc3.world',

See Also: Oracle9i Replication for more information about

simulating continuous replication
Create Replication Site 2-21

Setting Up Master Sites
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

CONNECT repadmin/repadmin@orc2.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PUSH (

 destination => 'orc1.world',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PUSH (

 destination => 'orc3.world',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

CONNECT repadmin/repadmin@orc3.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PUSH (

 destination => 'orc1.world',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

2-22 Oracle9i Replication Management API Reference

Setting Up Master Sites
BEGIN
DBMS_DEFER_SYS.SCHEDULE_PUSH (

 destination => 'orc2.world',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

SET ECHO OFF

SPOOL OFF

/**************************END OF SCRIPT***********************************/
Create Replication Site 2-23

Setting Up Materialized View Sites
Setting Up Materialized View Sites

Figure 2–3 Setting Up Materialized View Sites

1

Add
another

site?

END

START

Schedule Push at Materialized
View Site

5

1
Create Proxy Users

1
Schedule Purge At Materialized
View Site

4

1
Create Database Links
to Master

3

1
Create Materialized View
Site Users

2

Connect as System at
Materialized View Site

1

6

NO

YES
2-24 Oracle9i Replication Management API Reference

Setting Up Materialized View Sites
Setting Up mv1.world
Complete the following steps to set up the mv1.world master materialized view

site. mv1.world is a master materialized view site because mv2.world will be

based on it.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as SYSTEM at materialized view site at mv1.world .
You must connect as SYSTEM to the database that you want to set up as a

materialized view site.

*/

SET ECHO ON

SPOOL setup_mvs.out

CONNECT SYSTEM/MANAGER@mv1.world

/*

Step 2 Create materialized view site users at mv1.world .
Several users must be created at the materialized view site. These users are:

■ Materialized view administrator

■ Propagator

■ Refresher

■ Receiver (if the site will serve as a master materialized view site for other

materialized views, as mv1.world is)

Complete the following steps to create these users.

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 2-36 into a text editor and then edit

the text to create a script for your environment.
Create Replication Site 2-25

Setting Up Materialized View Sites
a. Create materialized view administrator.

The materialized view administrator is responsible for creating and

managing the materialized view site. Execute the GRANT_ADMIN_ANY_
SCHEMA procedure to grant the materialized view administrator the

appropriate privileges.

*/

CREATE USER mviewadmin IDENTIFIED BY mviewadmin;

BEGIN
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (

 username => 'mviewadmin');
END;
/

GRANT COMMENT ANY TABLE TO mviewadmin;

GRANT LOCK ANY TABLE TO mviewadmin;

/*

b. If you want your mviewadmin to be able to connect to the Replication

Management tool, then grant SELECT ANY DICTIONARY to mviewadmin :

*/

GRANT SELECT ANY DICTIONARY TO mviewadmin;

/*

c. Create propagator.

The propagator is responsible for propagating the deferred transaction

queue to the target master site.

*/

CREATE USER propagator IDENTIFIED BY propagator;

BEGIN
DBMS_DEFER_SYS.REGISTER_PROPAGATOR (

 username => 'propagator');
END;
/

2-26 Oracle9i Replication Management API Reference

Setting Up Materialized View Sites
/*

d. Create refresher.

The refresher is responsible for "pulling" changes made to the replicated

tables at the target master site to the materialized view site. This user

refreshes one or more materialized views. If you want the mviewadmin

user to be the refresher, then this step is not required.

*/

CREATE USER refresher IDENTIFIED BY refresher;

GRANT CREATE SESSION TO refresher;

GRANT ALTER ANY MATERIALIZED VIEW TO refresher;

/*

e. Register receiver.

The receiver receives the propagated deferred transactions sent by the

propagator from materialized view sites. The receiver is necessary only if

the site will function as a master materialized view site for other

materialized view sites.

*/

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (

 username => 'mviewadmin',
 privilege_type => 'receiver',
 list_of_gnames => NULL);
END;
/

/*

Step 3 Create database links to the master site by completing the following
steps.

a. Create public database link.

*/
Create Replication Site 2-27

Setting Up Materialized View Sites
CONNECT SYSTEM/MANAGER@mv1.world

CREATE PUBLIC DATABASE LINK orc1.world USING 'orc1.world';

/*

b. Create materialized view administrator database link.

You need to create a database link from the materialized view administrator

at the materialized view site to the proxy materialized view administrator

at the master site.

*/

CONNECT mviewadmin/mviewadmin@mv1.world;

CREATE DATABASE LINK orc1.world
 CONNECT TO proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;

/*

c. Create propagator/receiver database link.

You need to create a database link from the propagator at the materialized

view site to the receiver at the master site. The receiver was defined when

you created the master site.

*/

CONNECT propagator/propagator@mv1.world

CREATE DATABASE LINK orc1.world
 CONNECT TO repadmin IDENTIFIED BY repadmin;

/*

Step 4 Schedule purge at the mv1.world materialized view site.
In order to keep the size of the deferred transaction queue in check, you should

purge successfully completed deferred transactions. The SCHEDULE_PURGE
procedure automates the purge process for you. If your materialized view site only

contains "read-only" materialized views, then you do not need to execute this

procedure.

See Also: Step 5 on page 2-12
2-28 Oracle9i Replication Management API Reference

Setting Up Materialized View Sites
*/

CONNECT mviewadmin/mviewadmin@mv1.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PURGE (

 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 delay_seconds => 0,
 rollback_segment => '');
END;
/

/*

Step 5 If the materialized view site has a constant connection to its master
site, then you can optionally schedule push at the mv1.world materialized
view site. If the materialized view site is disconnected from its master site for
extended periods of time, then it is typically better not to schedule push and
refresh on demand, which pushes changes to the master site.
The SCHEDULE_PUSH procedure schedules when the deferred transaction queue

should be propagated to the target master site.

*/

CONNECT mviewadmin/mviewadmin@mv1.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PUSH (

 destination => 'orc1.world',
 interval => 'SYSDATE + 1/24',
 next_date => SYSDATE,
 stop_on_error => FALSE,
 delay_seconds => 0,
 parallelism => 0);
END;
/

/*
Create Replication Site 2-29

Setting Up Materialized View Sites
Step 6 Create proxy users at the mv1.world materialized view site by
completing the following steps.

a. Create proxy materialized view administrator.

The proxy materialized view administrator performs tasks at the target

master materialized view site on behalf of the materialized view

administrator at the materialized view sites based on this materialized view

site. This user is not required if the site will not function as a master

materialized view site for other materialized view sites.

*/

CONNECT SYSTEM/MANAGER@mv1.world

CREATE USER proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;

BEGIN
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (

 username => 'proxy_mviewadmin',
 privilege_type => 'proxy_snapadmin',
 list_of_gnames => NULL);
END;
/

-- Place GRANT SELECT_CATALOG_ROLE statement here if necessary.

/*
2-30 Oracle9i Replication Management API Reference

Setting Up Materialized View Sites
If you want your materialized view administrator at materialized view sites

based on this materialized view site to be able to perform administrative

operations using the Replication Management tool, then grant SELECT_
CATALOG_ROLE to proxy_mviewadmin :

GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;

Granting this privilege to the proxy_mviewadmin is not required if you

do not plan to use the Replication Management tool. However, if you plan

to use the Replication Management tool, then move the GRANTstatement to

the line directly after the previous REGISTER_USER_REPGROUP statement.

b. Create proxy refresher.

The proxy refresher performs tasks at the master materialized view site on

behalf of the refresher at the materialized view sites based on this

materialized view site. This user is not required if the site will not function

as a master materialized view site for other materialized view sites.

*/

CREATE USER proxy_refresher IDENTIFIED BY proxy_refresher;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy_refresher;

/*

See Also: "Security Setup for Materialized View Replication" on

page A-7
Create Replication Site 2-31

Setting Up Materialized View Sites
Setting Up mv2.world
Complete the following steps to set up the mv2.world materialized view site.

mv2.world is part of a multitier materialized view configuration because it is

based on mv1.world , another materialized view.

Step 1 Connect as SYSTEM at level 2 materialized view site mv2.world .
You must connect as SYSTEM to the database that you want to set up as a level 2

materialized view site. This site, mv2.world , will be a materialized view site that is

based on mv1.world.

*/

CONNECT SYSTEM/MANAGER@mv2.world

/*

Step 2 Create level 2 materialized view site users at mv2.world .
Several users must be created at the level 2 materialized view site. These users are:

■ Materialized view administrator

■ Propagator

■ Refresher

Complete the following steps to create these users.

a. Create materialized view administrator.

The materialized view administrator is responsible for creating and

managing the level 2 materialized view site. Execute the GRANT_ADMIN_
ANY_SCHEMA procedure to grant the materialized view administrator the

appropriate privileges.

*/

CREATE USER mviewadmin IDENTIFIED BY mviewadmin;

BEGIN
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (

 username => 'mviewadmin');
END;
/

2-32 Oracle9i Replication Management API Reference

Setting Up Materialized View Sites
/*

b. If you want your mviewadmin to be able to connect to the Replication

Management tool, then grant SELECT ANY DICTIONARY to mviewadmin :

*/

GRANT SELECT ANY DICTIONARY TO mviewadmin;

/*

c. Create propagator.

The propagator is responsible for propagating the deferred transaction

queue to the target master materialized view site.

*/

CREATE USER propagator IDENTIFIED BY propagator;

BEGIN
DBMS_DEFER_SYS.REGISTER_PROPAGATOR (

 username => 'propagator');
END;
/

/*

d. Create refresher.

The refresher is responsible for "pulling" changes made to the replicated

materialized views at the target master materialized view site to the level 2

materialized view site.

*/

CREATE USER refresher IDENTIFIED BY refresher;

GRANT CREATE SESSION TO refresher;
GRANT ALTER ANY MATERIALIZED VIEW TO refresher;

/*
Create Replication Site 2-33

Setting Up Materialized View Sites
Step 3 Create database links to master materialized view site by completing
the following steps.

a. Create public database link.

*/

CONNECT SYSTEM/MANAGER@mv2.world

CREATE PUBLIC DATABASE LINK mv1.world USING 'mv1.world';

/*

b. Create materialized view administrator database link.

You need to create a database link from the materialized view administrator

at the level 2 materialized view site to the proxy materialized view

administrator at the master materialized view site.

*/

CONNECT mviewadmin/mviewadmin@mv2.world;

CREATE DATABASE LINK mv1.world
 CONNECT TO proxy_mviewadmin IDENTIFIED BY proxy_mviewadmin;

/*

c. Create propagator/receiver database link.

You need to create a database link from the propagator at the level 2

materialized view site to the receiver at the master materialized view site.

The receiver was defined when you created the master materialized view

site.

*/

CONNECT propagator/propagator@mv2.world

CREATE DATABASE LINK mv1.world
 CONNECT TO mviewadmin IDENTIFIED BY mviewadmin;

/*
2-34 Oracle9i Replication Management API Reference

Setting Up Materialized View Sites
Step 4 Schedule purge at level 2 materialized view site at mv2.world .
In order to keep the size of the deferred transaction queue in check, you should

purge successfully completed deferred transactions. The SCHEDULE_PURGE
procedure automates the purge process for you. If your level 2 materialized view

site only contains "read-only" materialized views, then you do not need to execute

this procedure.

*/

CONNECT mviewadmin/mviewadmin@mv2.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PURGE (

 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 delay_seconds => 0,
 rollback_segment => '');
END;
/

/*

Step 5 If the materialized view site has a constant connection to its master
materialized view site, then you can optionally schedule push at the
mv2.world materialized view site. If the materialized view site is disconnected
from its master materialized view site for extended periods of time, then it is
typically better not to schedule push and refresh on demand, which pushes
changes to the master materialized view site.
The SCHEDULE_PUSH procedure schedules when the deferred transaction queue

should be propagated to the target master materialized view site.

*/

CONNECT mviewadmin/mviewadmin@mv2.world

BEGIN
DBMS_DEFER_SYS.SCHEDULE_PUSH (

 destination => 'mv1.world',
 interval => 'SYSDATE + 1/24',
 next_date => SYSDATE,
 stop_on_error => FALSE,
 delay_seconds => 0,
 parallelism => 0);
Create Replication Site 2-35

Setting Up Materialized View Sites
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/
2-36 Oracle9i Replication Management API Reference

Create a Master G
3

Create a Master Group

This chapter illustrates how to create a master group at a master replication site.

This chapter contains these topics:

■ Overview of Creating a Master Group

■ Creating a Master Group
roup 3-1

Overview of Creating a Master Group
Overview of Creating a Master Group
After you have set up your master sites, you are ready to build a master group. As

illustrated in Figure 3–2, you need to follow a specific sequence to successfully

build a replication environment.

In this chapter, you create the hr_repg master group and replicate the objects

illustrated in Figure 3–1.

Figure 3–1 Replicate the Tables in the hr Schema Between All Sites

See Also: "Create Replication Site" on page 2-1 for information

about setting up master sites

orc2.world

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions

orc1.world

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions

orc3.world

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions
3-2 Oracle9i Replication Management API Reference

Overview of Creating a Master Group
Before You Start
In order for the script in this chapter to work as designed, it is assumed that the hr
schema exists at orc1.world , orc2.world , and orc3.world . The hr schema

includes the following database objects:

■ countries table

■ departments table

■ employees table

■ jobs table

■ job_history table

■ locations table

■ regions table

■ dept_location_ix index

■ emp_department_ix index

■ emp_job_ix index

■ emp_manager_ix index

■ jhist_department_ix index

■ jhist_employee_ix index

■ jhist_job_ix index

■ loc_country_ix index

The indexes listed are the indexes based on foreign key columns in the hr schema.

When replicating tables with foreign key referential constraints, Oracle Corporation

recommends that you always index foreign key columns and replicate these

indexes, unless no updates and deletes are allowed in the parent table. Indexes are

not replicated automatically.

By default, the hr schema is installed automatically when you install Oracle9i. The

example script in this chapter assumes that the hr schema exists at all master sites

and that the schema contains all of these database objects at each site. The example

script also assumes that the tables contain the data that is inserted automatically

during Oracle installation. If the hr schema is not installed at your replication sites,

then you can install it manually.
Create a Master Group 3-3

Overview of Creating a Master Group
See Also: Oracle9i Sample Schemas for information about the hr
schema and the other sample schemas, and for information about

installing the sample schemas manually
3-4 Oracle9i Replication Management API Reference

Overview of Creating a Master Group
Figure 3–2 Creating a Master Group

Add
another object?

START

1
Add objects to Master Group

3

Configure Confilict Resolution
Methods

5

1
Create Master Group

2

Create Schema At Master Sites
1

1
Add Additional Master Sites

4

1
Generate Replication Support

6

1
Resume Replication

7

No

More
Support?

No

Add
another master

site?

No

Yes

Yes

Are
data conflicts

possible?

Yes

No

Yes

Repeat
STEP 6 for
each object
that was
added during
STEP 3.

END
Create a Master Group 3-5

Creating a Master Group
Creating a Master Group
Complete the following steps to create the hr_repg master group.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Create schema at master sites.
If the schema does not already exist at all of the master sites participating in the

master group, then create the schema now and grant it all of the necessary

privileges. This example uses the hr schema, which is one of the sample schemas

that are installed by default when you install Oracle. So, the hr schema should exist

at all master sites.

*/

SET ECHO ON

SPOOL create_mg.out

PAUSE Press <RETURN> to continue when the schema exists at all master sites.

/*

Step 2 Create master group.
Use the CREATE_MASTER_REPGROUP procedure to define a new master group.

When you add an object to your master group or perform other replication

administrative tasks, you reference the master group name defined during this step.

This step must be completed by the replication administrator.

*/

CONNECT repadmin/repadmin@orc1.world

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPGROUP (

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 3-15 into a text editor and then edit

the text to create a script for your environment.
3-6 Oracle9i Replication Management API Reference

Creating a Master Group
 gname => 'hr_repg');
END;
/

/*

Step 3 Add objects to master group.
Use the CREATE_MASTER_REPOBJECT procedure to add an object to your master

group. In most cases, you probably will be adding tables and indexes to your

master group, but you can also add procedures, views, synonyms, and so on.

*/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'countries',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'departments',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'employees',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
Create a Master Group 3-7

Creating a Master Group
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'jobs',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'job_history',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'locations',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'regions',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
3-8 Oracle9i Replication Management API Reference

Creating a Master Group
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'dept_location_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'emp_department_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'emp_job_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'emp_manager_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

Create a Master Group 3-9

Creating a Master Group
BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'jhist_department_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'jhist_employee_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'jhist_job_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'loc_country_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

3-10 Oracle9i Replication Management API Reference

Creating a Master Group
/*

Step 4 Add additional master sites.
After you have defined your master group at the master definition site (the site

where the master group was created becomes the master definition site by default),

you can define the other sites that will participate in the replication environment.

You might have guessed that you will be adding the orc2.world and

orc3.world sites to the replication environment. This example creates the master

group at all master sites, but you have the option of creating the master group at

one master site now and adding additional master sites later without quiescing the

database. In this case, you can skip this step.

In this example, the use_existing_objects parameter in the ADD_MASTER_
DATABASE procedure is set to TRUE because it is assumed that the hr schema

already exists at all master sites. In other words, it is assumed that the objects in the

hr schema are precreated at all master sites. Also, the copy_rows parameter is set

to FALSE because it is assumed that the identical data is stored in the tables at each

master site.

*/

BEGIN
DBMS_REPCAT.ADD_MASTER_DATABASE (

 gname => 'hr_repg',
 master => 'orc2.world',
 use_existing_objects => TRUE,
 copy_rows => FALSE,
 propagation_mode => 'ASYNCHRONOUS');

See Also: "Adding New Master Sites Without Quiescing the

Master Group" on page 7-4 for more information

Note: When adding a master site to a master group that contains

tables with circular dependencies or a table that contains a

self-referential constraint, you must precreate the table definitions

and manually load the data at the new master site. The following is

an example of a circular dependency: Table A has a foreign key

constraint on table B, and table B has a foreign key constraint on

table A.
Create a Master Group 3-11

Creating a Master Group
END;
/

/*

*/

PAUSE Press <RETURN> to continue.

BEGIN
DBMS_REPCAT.ADD_MASTER_DATABASE (

 gname => 'hr_repg',
 master => 'orc3.world',
 use_existing_objects => TRUE,
 copy_rows => FALSE,
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

*/

PAUSE Press <RETURN> to continue.

/*

Note: You should wait until orc2.world appears in the DBA_
REPSITES view before continuing. Execute the following SELECT
statement in another SQL*Plus session to make sure that

orc2.world has appeared:

SELECT DBLINK FROM DBA_REPSITES WHERE GNAME = 'HR_REPG';

Note: You should wait until orc3.world appears in the DBA_
REPSITES view before continuing. Execute the following SELECT
statement in another SQL*Plus session to make sure that

orc3.world has appeared:

SELECT DBLINK FROM DBA_REPSITES WHERE GNAME = 'HR_REPG';
3-12 Oracle9i Replication Management API Reference

Creating a Master Group
Step 5 If conflicts are possible, then configure conflict resolution methods.

*/

PAUSE Press <RETURN> to continue after configuring conflict resolution methods
or if no conflict resolution methods are required.

/*

Step 6 Generate replication support.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'countries',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'departments',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',

Caution: If you added one or more tables to a master group

during creation of the group, then do not resume replication

activity immediately. First consider the possibility of replication

conflicts, and configure conflict resolution for the replicated tables

in the group.

See Also: Chapter 6, "Configure Conflict Resolution" for

information about configuring conflict resolution methods
Create a Master Group 3-13

Creating a Master Group
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'jobs',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'job_history',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'locations',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*
3-14 Oracle9i Replication Management API Reference

Creating a Master Group
*/

PAUSE Press <RETURN> to continue.

/*

Step 7 Start replication.
After creating your master group, adding replication objects, generating replication

support, and adding additional master databases, you need to start replication

activity. Use the RESUME_MASTER_ACTIVITY procedure to "turn on" replication

for the specified master group.

*/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Note: You should wait until the DBA_REPCATLOG view is empty

before resuming master activity. Execute the following SELECT
statement to monitor your DBA_REPCATLOG view:

SELECT COUNT(*) FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';
Create a Master Group 3-15

Creating a Master Group
3-16 Oracle9i Replication Management API Reference

Create a Deployment Tem
4

Create a Deployment Template

This chapter illustrates how to build a deployment template using the replication

managment API. This chapter contains these topics:

■ Oracle Deployment Templates Concepts

■ Before Creating the Deployment Template

■ Creating a Deployment Template

■ Packaging a Deployment Template for Instantiation

■ Instantiating a Deployment Template

Before you build materialized view environments, you must set up your master

site, create a master group, and set up your intended materialized view sites. Also,

if conflicts are possible at the master site due to activity at the materialized view

sites you are creating, then configure conflict resolution for the master tables of the

materialized views before you create the materialized view group.

See Also:

■ "Setting Up Master Sites" on page 2-5

■ "Overview of Creating a Master Group" on page 3-2

■ "Setting Up Materialized View Sites" on page 2-24

■ Chapter 6, "Configure Conflict Resolution"
plate 4-1

Oracle Deployment Templates Concepts
Oracle Deployment Templates Concepts
Oracle offers deployment templates to allow the database administrator to package

a materialized view environment for easy, custom, and secure distribution and

installation. A deployment template can be simple (for example, it can contain a

single materialized view with a fixed data set), or complex (for example, it can

contain hundreds of materialized views with a dynamic data set based on one or

more variables). The goal is to define the environment once and deploy the

deployment template as often as necessary. Oracle deployment templates feature:

■ Central control

■ Repeated deployment of a materialized view environment

■ Data subsetting at remote sites using template parameters

■ Authorized user list to control template instantiation and data access

To prepare a materialized view environment for deployment, the DBA creates a

deployment template at the master site. This template stores all of the information

needed to deploy a materialized view environment, including the DDL to create the

objects at the remote site and the target refresh group. This template also maintains

links to user security information and template parameters for custom materialized

view creation.

You cannot use deployment templates to instantiate the following types of objects:

■ User-defined types

■ User-defined type bodies

■ User-defined operators

■ Indextypes

Nor can you use deployment templates to instantiate any objects based on these

types of objects.

See Also: Oracle9i Replication for more conceptual information

about deployment templates
4-2 Oracle9i Replication Management API Reference

Creating a Deployment Template
Before Creating the Deployment Template
If you want one of your master sites to support a materialized views that can be fast

refreshed, then you need to create materialized view logs for each master table that

is replicated to a materialized view.

The example in this chapter uses the hr sample schema. Enter the following to

create materialized view logs for the tables in the hr schema:

CONNECT hr/hr@orc3.world

CREATE MATERIALIZED VIEW LOG ON hr.countries;
CREATE MATERIALIZED VIEW LOG ON hr.departments;
CREATE MATERIALIZED VIEW LOG ON hr.employees;
CREATE MATERIALIZED VIEW LOG ON hr.jobs;
CREATE MATERIALIZED VIEW LOG ON hr.job_history;
CREATE MATERIALIZED VIEW LOG ON hr.locations;
CREATE MATERIALIZED VIEW LOG ON hr.regions;

Creating a Deployment Template
This section contains a complete script example of how to construct a deployment

template using the replication management API.

See Also: The CREATE MATERIALIZED VIEW LOG statement in

the Oracle9i SQL Reference for detailed information about this SQL

statement

See Also: Oracle9i Replication for conceptual and architectural

information about deployment templates
Create a Deployment Template 4-3

Creating a Deployment Template
Figure 4–1 Creating a Deployment Template

Add
another object?

START

Authorize Users for Private
Template

1
Add Objects to Template

2

Create Deployment Template
1

1
Define Parameter Defaults

3

1
Define User Parameter Values

4

No

Define
another

parameter?

Authorize
users?

No

No

Define
another

parameter?

No

END

Yes

Yes

Yes

Authorize
additional users?

No

5

Yes

Yes
4-4 Oracle9i Replication Management API Reference

Creating a Deployment Template
Be sure to read the comments contained within the scripts, as they contain

important and useful information about building templates with the replication

management API.

/************************* BEGINNING OF SCRIPT ******************************

This script creates a private deployment template that contains four template

objects, two template parameters, a set of user parameter values, and an authorized

user. Complete the following steps to build a template:

Step 1 Create deployment template.
Before assembling the components of your deployment template, use the CREATE_
RERESH_TEMPLATE procedure to define the name of your deployment template,

along with several other template characteristics (Public/Private status, target

refresh group, and owner).

*/

SET ECHO ON

SPOOL create_dt.out

CONNECT repadmin/repadmin@orc3.world

DECLARE
 a NUMBER;
BEGIN
 a := DBMS_REPCAT_RGT.CREATE_REFRESH_TEMPLATE (
 owner => 'hr',

Note: You must use the Replication Management tool if you want

to create materialized views with a subset of the columns their

master tables. See Oracle9i Replication and the Replication

Management tool online help for more information about column

subsetting.

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 4-12 into a text editor and then edit

the text to create a script for your environment.
Create a Deployment Template 4-5

Creating a Deployment Template
 refresh_group_name => 'hr_refg',
 refresh_template_name => 'hr_refg_dt',
 template_comment => 'Human Resources Deployment Template',
 public_template => 'N');
END;
/

/*

Step 2 Add objects to template by completing the following steps.
a. Create countries_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.countries_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 country_id, country_name, region_id
 FROM hr.countries@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'countries_mv',
 object_type => 'SNAPSHOT',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

/*

Whenever you create a materialized view, always specify the schema name

of the table owner in the query for the materialized view. In the example

above, hr is specified as the owner of the countries table.
4-6 Oracle9i Replication Management API Reference

Creating a Deployment Template
b. Create departments_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.departments_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 department_id, department_name, manager_id, location_id
 FROM hr.departments@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'departments_mv',
 object_type => 'SNAPSHOT',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

/*

c. Create employees_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.employees_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 employee_id, first_name, last_name, email, phone_number,
 hire_date, job_id, salary, commission_pct, manager_id,
 department_id
 FROM hr.employees@:dblink WHERE department_id = :dept';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'employees_mv',
 object_type => 'SNAPSHOT',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

Create a Deployment Template 4-7

Creating a Deployment Template
/*

d. Create jobs_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.jobs_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 job_id, job_title, min_salary, max_salary
 FROM hr.jobs@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'jobs_mv',
 object_type => 'SNAPSHOT',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

/*

e. Create job_history_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.job_history_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 employee_id, start_date, end_date, job_id, department_id
 FROM hr.job_history@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'job_history_mv',
 object_type => 'SNAPSHOT',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
 END;
/

4-8 Oracle9i Replication Management API Reference

Creating a Deployment Template
/*

f. Create locations_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.locations_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 location_id, street_address, postal_code, city,
 state_province, country_id
 FROM hr.locations@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'locations_mv',
 object_type => 'SNAPSHOT',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

/*

g. Create regions_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.regions_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 region_id, region_name
 FROM hr.regions@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'regions_mv',
 object_type => 'SNAPSHOT',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

Create a Deployment Template 4-9

Creating a Deployment Template
/*

Step 3 Define parameter defaults.
Rather than using the CREATE_*functions and procedures as in the other steps, use

the ALTER_TEMPLATE_PARM procedure to define a template parameter value and

prompt string. You use the ALTER_* procedure because the actual parameter was

created in Step 1b and 1c. Recall that you defined the :dblink and :dept template

parameters in the ddl_text parameter. Oracle detects these parameters in the

DDL and automatically creates the template parameter. Use the ALTER_
TEMPLATE_PARM procedure to define the remainder of the template parameter

information (that is, default parameter value and prompt string).

Complete the following steps to define parameter defaults.

a. Define the default value for the dept parameter.

*/

BEGIN
DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM (

 refresh_template_name => 'hr_refg_dt',
 parameter_name => 'dept',
 new_default_parm_value => '30',
 new_prompt_string => 'Enter your department number:',
 new_user_override => 'Y');
END;
/

/*

b. Define the default value for the dblink parameter.

*/

BEGIN
DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM (

 refresh_template_name => 'hr_refg_dt',
 parameter_name => 'dblink',
 new_default_parm_value => 'orc3.world',
 new_prompt_string => 'Enter your master site:',
 new_user_override => 'Y');
END;
/

4-10 Oracle9i Replication Management API Reference

Creating a Deployment Template
/*

Step 4 Define user parameter values.
To automate the instantiation of custom data sets at individual remote materialized

view sites, you can define user parameter values that will be used automatically

when the specified user instantiates the target template. The CREATE_USER_PARM_
VALUE procedure enables you to assign a value to a parameter for a user.

Complete the following steps to define user parameter values.

a. Define dept user parameter value for user hr .

*/

DECLARE
 a NUMBER;
BEGIN
 a := DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE (
 refresh_template_name => 'hr_refg_dt',
 parameter_name => 'dept',
 user_name => 'hr',
 parm_value => '20');
END;
/

/*

b. Define dblink user parameter value for user hr .

*/

DECLARE
 a NUMBER;
BEGIN
 a := DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE (
 refresh_template_name => 'hr_refg_dt',
 parameter_name => 'dblink',
 user_name => 'hr',
 parm_value => 'orc3.world');
END;
/

/*
Create a Deployment Template 4-11

Packaging a Deployment Template for Instantiation
Step 5 Authorize users for private template.
Because this is a private template (public_template => 'n' in the DBMS_
REPCAT_RGT.CREATE_REFRESH_TEMPLATE function defined in Step on

page 4-3), you need to authorize users to instantiate the dt_personnel
deployment template. Use the CREATE_USER_AUTHORIZATION function in the

DBMS_REPCAT_RGT package to create authorized users.

*/

DECLARE
 a NUMBER;
BEGIN
 a := DBMS_REPCAT_RGT.CREATE_USER_AUTHORIZATION (

USER_NAME => 'hr',
REFRESH_TEMPLATE_NAME => 'hr_refg_dt');

END;
/

COMMIT;

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Packaging a Deployment Template for Instantiation
After building your deployment template, you need to package the template for

instantiation. This example illustrates how to use both the online and offline

instantiation procedures. Notice that the instantiation procedures are very similar:

you simply use either the INSTANTIATE_ONLINE function or INSTANTIATE_
OFFLINE function according to your needs. This section describes two tasks: create

the instantiation script and save the instantiation script to a file.
4-12 Oracle9i Replication Management API Reference

Packaging a Deployment Template for Instantiation
Figure 4–2 Packaging and Instantiating a Deployment Template

Package Template
1

Save Instantiation Script to File
2

Distribute Files
3

START

Use SQL*Plus to Instantiate
Deployment Template

4

Use Replication Management tool
or Replication Management API
(PL/SQL) to Refresh After
Instantiation

5

END

Was template
instantiated online

or offline?

Offline

Online
Create a Deployment Template 4-13

Packaging a Deployment Template for Instantiation
Packaging a Deployment Template
When you execute either the INSTANTIATE_OFFLINE or the INSTANTIATE_
ONLINE function, Oracle populates the USER_REPCAT_TEMP_OUTPUT data

dictionary view with the script to create the remote materialized view environment.

Both online and offline scripts contain the SQL statements to create the objects

specified in the deployment template. The difference is that an offline instantiation

script also contains the data to populate the objects. The online instantiation script

does not contain the data. Rather, during online instantiation, the materialized view

site connects to the master site to download the data.

Complete the steps in either the "Packaging a Deployment Template for Offline

Instantiation" or "Packaging a Deployment Template for Online Instantiation"

according to your needs. These sections only apply to packaging templates for

materialized view sites running Oracle Enterprise Edition, Oracle Standard Edition,

or Oracle Personal Edition.

Packaging a Deployment Template for Offline Instantiation
The INSTANTIATE_OFFLINE function creates a script that creates the materialized

view environment according to the contents of a specified deployment template. In

addition to containing the DDL (CREATE statements) to create the materialized

view environment, this script also contains the DML (INSERT statements) to

populate the materialized view environment with the appropriate data set.

Note: If you need to execute either the INSTANTIATE_OFFLINE
or the INSTANTIATE_ONLINE function more than once for a

particular materialized view site, then run the DROP_SITE_
INSTANTIATION procedure in the DBMS_REPCAT_RGT package

before you attempt to repackage a template for the site. Otherwise,

Oracle returns an error stating that there is a duplicate template

site.

Note: If you are packaging your template at the same master site

that contains the target master objects for your deployment

template, then you must create a loopback database link.
4-14 Oracle9i Replication Management API Reference

Packaging a Deployment Template for Instantiation
--Use the INSTANTIATE_OFFLINE function to package the
--template for offline instantiation by a remote materialized view
--site. Executing this procedure both creates a script that
--creates that materialized view environment and populates the
--environment with the proper data set. This script is stored
--in the temporary USER_REPCAT_TEMP_OUTPUT view.

CONNECT repadmin/repadmin@orc3.world

SET SERVEROUTPUT ON
DECLARE
 dt_num NUMBER;
BEGIN
 dt_num := DBMS_REPCAT_RGT.INSTANTIATE_OFFLINE(
 refresh_template_name => 'hr_refg_dt',
 user_name => 'hr',
 site_name => 'mv4.world',
 next_date => SYSDATE,
 interval => 'SYSDATE + (1/144)');
 DBMS_OUTPUT.PUT_LINE('Template ID = ' || dt_num);
END;
/
COMMIT;
/

Make a note of the number that is returned for the dt_num variable. You must use

this number when you select from the USER_REPCAT_TEMP_OUTPUT data

dictionary view to retrieve the generated script. Be sure that you complete the steps

in "Saving an Instantiation Script to File" on page 4-16 after you complete this

section. This script is unique to an individual materialized view site and cannot be

used for other materialized view sites.

Packaging a Deployment Template for Online Instantiation
The INSTANTIATE_ONLINE function creates a script that creates the materialized

view environment according to the contents of a specified deployment template.

When this script is executed at the remote materialized view site, Oracle creates the

materialized view site according to the DDL (CREATE statements) in the script and

populates the environment with the appropriate data set from the master site. This

requires that the remote materialized view site has a "live" connection to the master

site.

See Also: Oracle9i Replication for additional materialized view site

requirements
Create a Deployment Template 4-15

Packaging a Deployment Template for Instantiation
--Use the INSTANTIATE_ONLINE function to "package" the
--template for online instantiation by a remote materialized view
--site. Executing this procedure creates a script which can
--then be used to create a materialized view environment. This script
--is stored in the temporary USER_REPCAT_TEMP_OUTPUT view.

CONNECT repadmin/repadmin@orc3.world

SET SERVEROUTPUT ON
DECLARE
 dt_num NUMBER;
BEGIN
 dt_num := DBMS_REPCAT_RGT.INSTANTIATE_ONLINE(
 refresh_template_name => 'hr_refg_dt',
 user_name => 'hr',
 site_name => 'mv4.world',
 next_date => SYSDATE,
 interval => 'SYSDATE + (1/144)');
 DBMS_OUTPUT.PUT_LINE('Template ID = ' || dt_num);
END;
/
COMMIT;
/

Make a note of the number that is returned for the dt_num variable. You must use

this number when you select from the USER_REPCAT_TEMP_OUTPUT data

dictionary view to retrieve the generated script. Be sure that you complete the steps

in "Saving an Instantiation Script to File" after you complete this task.

Saving an Instantiation Script to File
The best way to save the contents of the USER_REPCAT_TEMP_OUTPUT data

dictionary view is to use the UTL_FILE package to save the contents of the TEXT
column in the USER_REPCAT_TEMP_OUTPUT view to a file.

Note: The following action must be performed immediately after

you have called either the INSTANTIATE_OFFLINE or

INSTANTIATE_ONLINE functions, because the contents of the

USER_REPCAT_TEMP_OUTPUTdata dictionary view are temporary.

If you have not completed the steps in "Packaging a Deployment

Template" on page 4-14, then do so now and then complete the

following action.
4-16 Oracle9i Replication Management API Reference

Packaging a Deployment Template for Instantiation

INE;
Enter the following to save the deployment template script to a file.

DECLARE
 fh UTL_FILE.FILE_TYPE;
 CURSOR ddlcursor(myid NUMBER) IS

SELECT TEXT FROM USER_REPCAT_TEMP_OUTPUT WHERE OUTPUT_ID = myid ORDER BY L
BEGIN
 fh := UTL_FILE.FOPEN (' file_location ', ' file_name ', 'w');
 UTL_FILE.PUT_LINE (fh, 'SET ECHO OFF;');
 FOR myrec IN ddlcursor(template_id) LOOP
 UTL_FILE.PUT_LINE(fh, myrec.text);
 END LOOP;
 UTL_FILE.PUT_LINE (fh, 'SET ECHO ON;');
 UTL_FILE.FFLUSH(fh);
 UTL_FILE.FCLOSE(fh);
END;
/

Notice that file_location , file_name , and template_id are placeholders.

Substitute the correct values for your environment:

■ Replace the file_location placeholder with the full directory path where

you want to save the template script.

■ Replace the file_name placeholder with name you want to use for the

template script.

■ Replace the template_id placeholder with the number returned by the

INSTANTIATE_OFFLINE or INSTANTIATE_ONLINE function when you

packaged the template previously.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about the UTL_FILE package

Note: The location you specify for the template script must be a

location listed in the UTL_FILE_DIR initialization parameter. If

you specify a location that is not listed in the UTL_FILE_DIR
initialization parameter, then Oracle returns errors when you try to

save the template script to a file. See Oracle9i Replication for more

information about UTL_FILE_DIR .
Create a Deployment Template 4-17

Packaging a Deployment Template for Instantiation
 For example, suppose you have the following values:

Given these values, connect to the master site as the replication administrator and

run the following procedure to save the template script to a file:

CONNECT repadmin/repadmin@orc3.world

DECLARE
 fh UTL_FILE.FILE_TYPE;
 CURSOR ddlcursor(myid NUMBER) IS
 SELECT TEXT FROM USER_REPCAT_TEMP_OUTPUT WHERE OUTPUT_ID = myid
 ORDER BY LINE;
BEGIN
 fh := UTL_FILE.FOPEN ('/home/gen_files/', 'sf.sql', 'w');
 UTL_FILE.PUT_LINE (fh, 'SET ECHO OFF;');
 FOR myrec IN ddlcursor(18) LOOP
 UTL_FILE.PUT_LINE(fh, myrec.text);
 END LOOP;
 UTL_FILE.PUT_LINE (fh, 'SET ECHO ON;');
 UTL_FILE.FFLUSH(fh);
 UTL_FILE.FCLOSE(fh);
END;
/

Distributing Instantiation Files
After creating the instantiation script and saving it to a file, you must distribute this

file to the remote materialized view sites that need to instantiate the template. You

can distribute this file by posting the file on an FTP site or saving the file to a

CD-ROM, floppy disk, or other distribution medium.

Placeholder Value

file_location /home/gen_files/

file_name sf.sql

template_id 18
4-18 Oracle9i Replication Management API Reference

Packaging a Deployment Template for Instantiation
Instantiating a Deployment Template
After the instantiation script has been distributed to the remote materialized view

sites, you are ready to instantiate the deployment template at the remote

materialized view site. Make sure you have set up the materialized view site before

you instantiate the deployment template.

The following script demonstrates how to complete the instantiation process at a

remote materialized view site with Oracle Enterprise Edition, Oracle Standard

Edition, or Oracle Personal Edition installed.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 If it does not already exist, create the schema at the materialized view
site.
Before executing the instantiation script at the remote materialized view site, you

must create the schema that contains the replicated objects.

The following illustrates creating the hr schema. This schema may already exist in

your database.

*/

SET ECHO ON

SPOOL instant_mv.out

CONNECT system/manager@mv4.world

CREATE TABLESPACE demo_mv
 DATAFILE 'demo_mv.dbf' SIZE 10M AUTOEXTEND ON

See Also:

■ Oracle9i Replication for materialized view site requirements that

must be met before instantiating your deployment template

■ "Setting Up Materialized View Sites" on page 2-24

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 4-21 into a text editor and then edit

the text to create a script for your environment.
Create a Deployment Template 4-19

Packaging a Deployment Template for Instantiation
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv
 TEMPFILE 'temp_mv.dbf' SIZE 5M AUTOEXTEND ON;

CREATE USER hr IDENTIFIED BY hr;

ALTER USER hr DEFAULT TABLESPACE demo_mv
 QUOTA UNLIMITED ON demo_mv;

ALTER USER hr TEMPORARY TABLESPACE temp_mv;

GRANT
 CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,
 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK
 TO hr;

/*

Step 2 If they do not already exist, create the database links for the replicated
schema.
Before instantiating the deployment template, you must make sure that the

necessary database links exist for the replicated schema. The owner of the

materialized views needs a database link pointing to the proxy_refresher that

was created when the master site was set up.

*/

CREATE PUBLIC DATABASE LINK orc3.world USING 'orc3.world';

CONNECT hr/hr@mv4.world

CREATE DATABASE LINK orc3.world
 CONNECT TO proxy_refresher IDENTIFIED BY proxy_refresher;
4-20 Oracle9i Replication Management API Reference

Packaging a Deployment Template for Instantiation
/*

Step 3 Execute the instantiation script.
*/

@d:\sf.sql

SET ECHO OFF

SPOOL OFF

/*

Depending on the size of the materialized view environment created and the

amount of data loaded, the instantiation procedure may take a substantial amount

of time.

************************** END OF SCRIPT **********************************/

Refreshing a Refresh Group After Instantiation
If you have just instantiated a deployment template using the offline instantiation

method, then you should perform a refresh of the refresh group as soon as possible

by issuing the following execute statement:

CONNECT hr/hr@mv4.world

EXECUTEDBMS_REFRESH.REFRESH ('hr_refg');

See Also: Step 7 on page 2-8 for more information about creating

proxy master site users
Create a Deployment Template 4-21

Packaging a Deployment Template for Instantiation
4-22 Oracle9i Replication Management API Reference

Create Materialized View G
5

Create Materialized View Group

This chapter illustrates how to create a materialized view group at a remote

materialized view replication site. This chapter contains these topics:

■ Overview of Creating a Materialized View Group

■ Creating a Materialized View Group

Before you build materialized view environments, you must set up your master

site, create a master group, and set up your intended materialized view sites. Also,

if conflicts are possible at the master site due to activity at the materialized view

sites you are creating, then configure conflict resolution for the master tables of the

materialized views before you create the materialized view group.

See Also:

■ "Setting Up Master Sites" on page 2-5

■ "Overview of Creating a Master Group" on page 3-2

■ "Setting Up Materialized View Sites" on page 2-24

■ Chapter 6, "Configure Conflict Resolution"
roup 5-1

Overview of Creating a Materialized View Group
Overview of Creating a Materialized View Group
After setting up your materialized view site and creating at least one master group,

you are ready to create a materialized view group at a remote materialized view

site. Figure 5–1 illustrates the process of creating a materialized view group.

See Also: Chapter 2, "Create Replication Site" for information

about setting up a materialized view site, and see Chapter 3,

"Create a Master Group" for information about creating a master

group.
5-2 Oracle9i Replication Management API Reference

Overview of Creating a Materialized View Group
Figure 5–1 Creating a Materialized View Group

Add
another
object?

START

1
Add Objects to Materialized
View Group

5

1
Add Objects to Refresh Group

6

1
Create Refresh Group

4

1
Create Materialized View Group

3

1
Create Replicated Schema
and Links

2

Create Materialized View Logs
at Master

1

YES

NO

Add
another
object?

YES

NO

END

Repeat STEP 6 for
each object that
was added during
STEP 5.
Create Materialized View Group 5-3

Creating a Materialized View Group
Creating a Materialized View Group
This chapter guides you through the process of creating two materialized view

groups at two different materialized view sites: mv1.world and mv2.world :

■ The materialized view group at mv1.world is based on the objects in the hr_
repg master group at the orc1.world master site.

■ The materialized view group at mv2.world is based on the objects in the hr_
repg materialized view group at the mv1.world materialized view site.

Therefore, the examples in this chapter illustrate how to create a multitier

materialized view environment, where one or more materialized views are based on

other materialized views.

Complete the following steps to create these two materialized view groups.

/************************* BEGINNING OF SCRIPT ******************************

Creating the Materialized View Group at mv1.world
Complete the following steps to create the hr_repg materialized view group at the

mv1.world materialized view site. This materialized view group is based on the

hr_repg master group at the orc1.world master site.

Step 1 Create materialized view logs at the master site.
If you want one of your master sites to support a materialized view site, then you

need to create materialized view logs for each master table that is replicated to a

materialized view. Recall from Figure 2–1 on page 2-3 that orc1.world serves as

the target master site for the mv1.world materialized view site. The required

materialized view logs must be created at orc1.world .

*/

SET ECHO ON

SPOOL create_mv_group.out

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 5-19 into a text editor and then edit

the text to create a script for your environment.
5-4 Oracle9i Replication Management API Reference

Creating a Materialized View Group
CONNECT hr/hr@orc1.world

CREATE MATERIALIZED VIEW LOG ON hr.countries;
CREATE MATERIALIZED VIEW LOG ON hr.departments;
CREATE MATERIALIZED VIEW LOG ON hr.employees;
CREATE MATERIALIZED VIEW LOG ON hr.jobs;
CREATE MATERIALIZED VIEW LOG ON hr.job_history;
CREATE MATERIALIZED VIEW LOG ON hr.locations;
CREATE MATERIALIZED VIEW LOG ON hr.regions;

/*

Step 2 If they do not already exist, then create the replicated schema its
database link by completing the following steps. Before building your
materialized view group, you must make sure that the replicated schema exists
at the remote materialized view site and that the necessary database links
have been created.

a. If the hr schema does not exist, then create the schema. For this example, if

the hr schema already exists at the materialized view site, then go to Step b.

*/

CONNECT system/manager@mv1.world

CREATE TABLESPACE demo_mv1
 DATAFILE 'demo_mv1.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv1
 TEMPFILE 'temp_mv1.dbf' SIZE 5M AUTOEXTEND ON;

CREATE USER hr IDENTIFIED BY hr;

ALTER USER hr DEFAULT TABLESPACE demo_mv1
 QUOTA UNLIMITED ON demo_mv1;

ALTER USER hr TEMPORARY TABLESPACE temp_mv1;

GRANT
 CREATE SESSION,

See Also: The CREATE MATERIALIZED VIEW LOG statement in

the Oracle9i SQL Reference for detailed information about this SQL

statement
Create Materialized View Group 5-5

Creating a Materialized View Group
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,
 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK
 TO hr;

/*

b. If it does not already exist, then create the database link for the replicated

schema.

Before building your materialized view group, you must make sure that the

necessary database links exist for the replicated schema. The owner of the

materialized views needs a database link pointing to the proxy_
refresher that was created when the master site was set up.

*/

CONNECT hr/hr@mv1.world

CREATE DATABASE LINK orc1.world
 CONNECT TO proxy_refresher IDENTIFIED BY proxy_refresher;

/*

Step 3 Create the materialized view group.
The following procedures must be executed by the materialized view administrator

at the remote materialized view site.

*/

CONNECT mviewadmin/mviewadmin@mv1.world

/*

See Also: Step 7 on page 2-8 for more information about creating

proxy master site users
5-6 Oracle9i Replication Management API Reference

Creating a Materialized View Group
The master group that you specify in the gname parameter must match the name of

the master group that you are replicating at the target master site.

*/
BEGIN

DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'orc1.world',
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

Step 4 Create the refresh group.
All materialized views that are added to a particular refresh group are refreshed at

the same time. This ensures transactional consistency between the related

materialized views in the refresh group.

*/

BEGIN
DBMS_REFRESH.MAKE (

 name => 'mviewadmin.hr_refg',
 list => '',
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 implicit_destroy => FALSE,
 rollback_seg => '',
 push_deferred_rpc => TRUE,
 refresh_after_errors => FALSE);
END;
/

/*

Step 5 Add objects to the materialized view group by completing the following
steps.

a. Create the materialized views based on the master tables.

Whenever you create a materialized view, always specify the schema name

of the table owner in the query for the materialized view. In the examples

below, hr is specified as the owner of the table in each query.

*/
Create Materialized View Group 5-7

Creating a Materialized View Group
CREATE MATERIALIZED VIEW hr.countries_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.countries@orc1.world;

CREATE MATERIALIZED VIEW hr.departments_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.departments@orc1.world;

CREATE MATERIALIZED VIEW hr.employees_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.employees@orc1.world;

CREATE MATERIALIZED VIEW hr.jobs_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.jobs@orc1.world;

CREATE MATERIALIZED VIEW hr.job_history_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.job_history@orc1.world;

CREATE MATERIALIZED VIEW hr.locations_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.locations@orc1.world;

CREATE MATERIALIZED VIEW hr.regions_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.regions@orc1.world;

/*

b. Add the objects to the materialized view group.

*/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'countries_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

5-8 Oracle9i Replication Management API Reference

Creating a Materialized View Group
BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'jobs_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'job_history_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

Create Materialized View Group 5-9

Creating a Materialized View Group
BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'locations_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'regions_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

/*

Step 6 Add objects to refresh group.
All of the materialized view group objects that you add to the refresh group are

refreshed at the same time to preserve referential integrity between related

materialized views.

*/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.countries_mv1',
 lax => TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.departments_mv1',
 lax => TRUE);
END;
/

5-10 Oracle9i Replication Management API Reference

Creating a Materialized View Group
BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.employees_mv1',
 lax => TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.jobs_mv1',
 lax => TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.job_history_mv1',
 lax => TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.locations_mv1',
 lax => TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.regions_mv1',
 lax => TRUE);
END;
/

/*
Create Materialized View Group 5-11

Creating a Materialized View Group
Creating the Materialized View Group at mv2.world
Complete the following steps to create the hr_repg materialized view group at the

mv2.world materialized view site. This materialized view group is based on the

hr_repg materialized view group at the mv1.world materialized view site.

Step 1 Create materialized view logs at the master materialized view site.
If you want one of your master materialized view sites to support another

materialized view site, then you need to create materialized view logs for each

materialized view that is replicated to another materialized view site. Recall from

Figure 2–1 on page 2-3 that mv1.world serves as the target master internalized

view site for the mv2.world materialized view site. The required materialized view

logs must be created at mv1.world .

*/

CONNECT hr/hr@mv1.world

CREATE MATERIALIZED VIEW LOG ON hr.countries_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.departments_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.employees_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.jobs_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.job_history_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.locations_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.regions_mv1;

/*

Step 2 If they do not already exist, then create the replicated schema its
database link by completing the following steps. Before building your
materialized view group, you must make sure that the replicated schema exists
at the remote materialized view site and that the necessary database links
have been created.

a. For this example, if the hr schema does not exist, then create the schema. If

the hr schema already exists at the materialized view site, then go to Step b.

*/

CONNECT system/manager@mv2.world

See Also: The CREATE MATERIALIZED VIEW LOG statement in

the Oracle9i SQL Reference for detailed information about this SQL

statement
5-12 Oracle9i Replication Management API Reference

Creating a Materialized View Group
CREATE TABLESPACE demo_mv2
 DATAFILE 'demo_mv2.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv2
 TEMPFILE 'temp_mv2.dbf' SIZE 5M AUTOEXTEND ON;

CREATE USER hr IDENTIFIED BY hr;

ALTER USER hr DEFAULT TABLESPACE demo_mv2
 QUOTA UNLIMITED ON demo_mv2;

ALTER USER hr TEMPORARY TABLESPACE temp_mv2;

GRANT
 CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,
 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK
 TO hr;

/*

b. If it does not already exist, then create the database link for the replicated

schema.

Before building your materialized view group, you must make sure that the

necessary database links exist for the replicated schema. The owner of the

materialized views needs a database link pointing to the proxy_
refresher that was created when the master materialized view site was

set up.

*/

CONNECT hr/hr@mv2.world

CREATE DATABASE LINK mv1.world
 CONNECT TO proxy_refresher IDENTIFIED BY proxy_refresher;
Create Materialized View Group 5-13

Creating a Materialized View Group
/*

Step 3 Create the materialized view group.
The following procedures must be executed by the materialized view administrator

at the remote materialized view site.

*/

CONNECT mviewadmin/mviewadmin@mv2.world

/*

The replication group that you specify in the gname parameter must match the

name of the replication group that you are replicating at the target master

materialized view site.

*/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (

 gname => 'hr_repg',
 master => 'mv1.world',
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

Step 4 Create the refresh group.
All materialized views that are added to a particular refresh group are refreshed at

the same time. This ensures transactional consistency between the related

materialized views in the refresh group.

*/

BEGIN
DBMS_REFRESH.MAKE (

 name => 'mviewadmin.hr_refg',
 list => '',

See Also: Step 6 on page 2-30 for more information about creating

proxy master materialized view site users
5-14 Oracle9i Replication Management API Reference

Creating a Materialized View Group
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 implicit_destroy => FALSE,
 rollback_seg => '',
 push_deferred_rpc => TRUE,
 refresh_after_errors => FALSE);
END;
/

/*

Step 5 Add objects to the materialized view group by completing the following
steps.

a. Create the materialized views based on the master materialized views.

Whenever you create a materialized view that is based on another

materialized view, always specify the schema name of the materialized

view owner in the query for the materialized view. In the examples below,

hr is specified as the owner of the materialized view in each query.

*/

CREATE MATERIALIZED VIEW hr.countries_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.countries_mv1@mv1.world;

CREATE MATERIALIZED VIEW hr.departments_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.departments_mv1@mv1.world;

CREATE MATERIALIZED VIEW hr.employees_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.employees_mv1@mv1.world;

CREATE MATERIALIZED VIEW hr.jobs_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.jobs_mv1@mv1.world;

CREATE MATERIALIZED VIEW hr.job_history_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.job_history_mv1@mv1.world;

CREATE MATERIALIZED VIEW hr.locations_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.locations_mv1@mv1.world;
Create Materialized View Group 5-15

Creating a Materialized View Group
CREATE MATERIALIZED VIEW hr.regions_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.regions_mv1@mv1.world;

/*

b. Add the materialized views to the materialized view group.

*/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'countries_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

5-16 Oracle9i Replication Management API Reference

Creating a Materialized View Group
BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'jobs_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'job_history_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'locations_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'regions_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

/*
Create Materialized View Group 5-17

Creating a Materialized View Group
Step 6 Add objects to refresh group.
All of the materialized view group objects that you add to the refresh group are

refreshed at the same time to preserve referential integrity between related

materialized views.

*/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.countries_mv2',
 lax => TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.departments_mv2',
 lax => TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.employees_mv2',
 lax => TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.jobs_mv2',
 lax => TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.job_history_mv2',
 lax => TRUE);
END;
5-18 Oracle9i Replication Management API Reference

Creating a Materialized View Group
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.locations_mv2',
 lax => TRUE);
END;
/

BEGIN
DBMS_REFRESH.ADD (

 name => 'mviewadmin.hr_refg',
 list => 'hr.regions_mv2',
 lax => TRUE);
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/
Create Materialized View Group 5-19

Creating a Materialized View Group
5-20 Oracle9i Replication Management API Reference

Configure Conflict Reso
6

Configure Conflict Resolution

This chapter illustrates how to define conflict resolution methods for your

replication environment. This chapter contains these topics:

■ Preparing for Conflict Resolution

■ Creating Conflict Resolution Methods for Update Conflicts

■ Creating Conflict Resolution Methods for Uniqueness Conflicts

■ Creating Conflict Avoidance Methods for Delete Conflicts

■ Using Dynamic Ownership Conflict Avoidance

■ Auditing Successful Conflict Resolution
lution 6-1

Preparing for Conflict Resolution
Preparing for Conflict Resolution
Though you may take great care in designing your database and front-end

application to avoid conflicts that may arise between multiple sites in a replication

environment, you may not be able to completely eliminate the possibility of

conflicts. One of the most important aspects of replication is to ensure data

convergence at all sites participating in the replication environment.

When data conflicts occur, you need a mechanism to ensure that the conflict is

resolved in accordance with your business rules and that the data converges

correctly at all sites.

Advanced Replication lets you define a conflict resolution system for your database

that resolves conflicts in accordance with your business rules. If you have a unique

situation that Oracle’s pre-built conflict resolution methods cannot resolve, then you

have the option of building and using your own conflict resolution methods.

Before you begin implementing conflict resolution methods for your replicated

tables, analyze the data in your system to determine where the most conflicts may

occur. For example, static data such as an employee number may change very

infrequently and is not subject to a high occurrence of conflicts. An employee’s

customer assignments, however, may change often and would therefore be prone to

data conflicts.

After you have determined where the conflicts are most likely to occur, you need to

determine how to resolve the conflict. For example, do you want the latest change

to have precedence, or should one site have precedence over another?

As you read each of the sections describing the different conflict resolution

methods, you will learn what each method is best suited for. So, read each section

and then think about how your business would want to resolve any potential

conflicts.

After you have identified the potential problem areas and have determined what

business rules would resolve the problem, use Oracle’s conflict resolution methods

(or one of your own) to implement a conflict resolution system.

See Also: Oracle9i Replication for conceptual information about

conflict resolution methods and detailed information about data

convergence for each method
6-2 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
Creating Conflict Resolution Methods for Update Conflicts
The most common data conflict occurs when the same row at two or more different

sites are updated at nearly the same time, or before the deferred transaction from

one site was successfully propagated to the other sites.

One method to avoid update conflicts is to implement a synchronous replication

environment, though this solution requires large network resource.

The other solution is to use the Oracle conflict resolution methods to deal with

update conflicts that may occur when the same row receives two or more updates.

Overwrite and Discard Conflict Resolution Methods
The overwrite and discard methods ignore the values from either the originating or

destination site and therefore can never guarantee convergence with more than one

master site. These methods are designed to be used by a single master site and

multiple materialized view sites, or with some form of a user-defined notification

facility.

The overwrite method replaces the current value at the destination site with the

new value from the originating site. Conversely, the discard method ignores the

new value from the originating site.

Complete the following steps to create an overwrite or discard conflict resolution

method. This example illustrates the use of the discard conflict resolution method at

the master site. Therefore, in the event of a conflict, the data from a materialized

view site is discarded and the master site data remains.

Creating Conflict Resolution Methods and Quiescing: The

instructions in the following sections specify that you must quiesce

your master group to add conflict resolution methods. However, if

your master site is running Oracle release 8.1.7 or higher in a single

master environment, then you may not need to quiesce the master

group to add conflict resolution methods. See the "What’s New in

Replication?" section at the beginning of Oracle9i Replication for

information about when quiesce is not required.

See Also: "ADD_conflicttype_RESOLUTION Procedure" on

page 20-17 and Oracle9i Replication for more information about

overwrite and discard
Configure Conflict Resolution 6-3

Creating Conflict Resolution Methods for Update Conflicts
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.
*/

SET ECHO ON

SPOOL discard_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Before you define overwrite or discard conflict resolution methods,
quiesce the master group that contains the table to which you want to apply
the conflict resolution method. In a single master replication environment,
quiescing the master group may not be required. See "Creating Conflict
Resolution Methods and Quiescing" on page 6-3 for more information.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

Step 3 Create a column group for your target table by using the DBMS_
REPCAT.MAKE_COLUMN_GROUP procedure. All Oracle conflict resolution
methods are based on logical column groupings called column groups.
*/

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 6-6 into a text editor and then edit

the text to create a script for your environment.
6-4 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
 sname => 'hr',
 oname => 'departments',
 column_group => 'dep_cg',
 list_of_column_names => 'manager_id,location_id');
END;
/

/*

Step 4 Use the DBMS_REPCAT.ADD_UPDATE_RESOLUTION procedure to define
the conflict resolution method for a specified table. This example creates an
OVERWRITE conflict resolution method.
*/

BEGIN
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (

 sname => 'hr',
 oname => 'departments',
 column_group => 'dep_cg',
 sequence_no => 1,
 method => 'DISCARD',
 parameter_column_name => 'manager_id,location_id');
END;
/

/*

Step 5 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'departments',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*
Configure Conflict Resolution 6-5

Creating Conflict Resolution Methods for Update Conflicts
Step 6 Resume master activity after replication support has been regenerated.
*/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Minimum and Maximum Conflict Resolution Methods
When Advanced Replication detects a conflict with a column group and calls either

the minimum or maximum value conflict resolution methods, it compares the new

value from the originating site with the current value from the destination site for a

designated column in the column group. You must designate this column when you

define your conflict resolution method.

If the new value of the designated column is less than or greater than (depending on

the method used) the current value, then the column group values from the origi-

nating site are applied at the destination site, assuming that all other errors were

successfully resolved for the row. Otherwise the rows remain unchanged.

Complete the following steps to create an maximum or minimum conflict resolution

method.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.
*/

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 6-9 into a text editor and then edit

the text to create a script for your environment.
6-6 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
SET ECHO ON

SPOOL min_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Before you define maximum or minimum conflict resolution methods,
quiesce the master group that contains the table to which you want to apply
the conflict resolution method. In a single master replication environment,
quiescing the master group may not be required. See "Creating Conflict
Resolution Methods and Quiescing" on page 6-3 for more information.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

Step 3 Create a column group for your target table by using the DBMS_
REPCAT.MAKE_COLUMN_GROUP procedure. All Oracle conflict resolution
methods are based on logical column groupings called column groups.
*/

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (

 sname => 'hr',
 oname => 'jobs',
 column_group => 'job_minsal_cg',
 list_of_column_names => 'min_salary');
END;
/

/*
Configure Conflict Resolution 6-7

Creating Conflict Resolution Methods for Update Conflicts
Step 4 Use the DBMS_REPCAT.ADD_UPDATE_RESOLUTION procedure to define
the conflict resolution method for a specified table. This example creates a
MINIMUM conflict resolution method.
*/

BEGIN
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (

 sname => 'hr',
 oname => 'jobs',
 column_group => 'job_minsal_cg',
 sequence_no => 1,
 method => 'MINIMUM',
 parameter_column_name => 'min_salary');
END;
/

/*

Step 5 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'jobs',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 6 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

SET ECHO OFF
6-8 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
SPOOL OFF

/************************* END OF SCRIPT **********************************/

Timestamp Conflict Resolution Methods
The earliest timestamp and latest timestamp methods are variations on the

minimum and maximum value methods. To use the timestamp method, you must

designate a column in the replicated table of type DATE. When an application

updates any column in a column group, the application must also update the value

of the designated timestamp column with the local SYSDATE. For a change applied

from another site, the timestamp value should be set to the timestamp value from

the originating site.

 Two elements are needed to make timestamp conflict resolution work well:

■ Synchronized time settings between computers

■ Timestamp field and trigger to automatically record timestamp

Complete the following steps to create a timestamp conflict resolution method.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.
*/

SET ECHO ON

SPOOL timestamp_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 6-13 into a text editor and then edit

the text to create a script for your environment.
Configure Conflict Resolution 6-9

Creating Conflict Resolution Methods for Update Conflicts
Step 2 Before defining timestamp conflict resolution methods, quiesce the
master group that contains the table to which you want to apply the conflict
resolution method. In a single master replication environment, quiescing the
master group may not be required. See "Creating Conflict Resolution Methods
and Quiescing" on page 6-3 for more information.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

Step 3 If the target table does not already contain a timestamp field, then add
an additional column to your table to record the timestamp value when a row is
inserted or updated. You must use the ALTER_MASTER_REPOBJECT procedure
to apply the DDL to the target table. Simply issuing the DDL may cause the
replicated object to become invalid.
*/

BEGIN
DBMS_REPCAT.ALTER_MASTER_REPOBJECT (

 sname => 'hr',
 oname => 'countries',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.countries ADD (timestamp DATE)');
END;
/

/*

Step 4 Regenerate replication support for altered table.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'countries',
 type => 'TABLE',
 min_communication => TRUE);
END;
6-10 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
/

/*

Step 5 Create a trigger that records the timestamp when a row is either
inserted or updated. This recorded value is used in the resolution of conflicts
based on the Timestamp method. Instead of directly executing the DDL, you
should use the DBMS_REPCAT.CREATE_MASTER_REPOBJECT procedure to
create the trigger and add it to your master group.

*/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'TRIGGER',
 oname => 'insert_time',
 sname => 'hr',
 ddl_text => 'CREATE TRIGGER hr.insert_time
 BEFORE
 INSERT OR UPDATE ON hr.countries FOR EACH ROW
 BEGIN
 IF DBMS_REPUTIL.FROM_REMOTE = FALSE THEN
 :NEW.TIMESTAMP := SYSDATE;
 END IF;
 END;');
END;
/

/*

Step 6 Create a column group for your target table by using the DBMS_
REPCAT.MAKE_COLUMN_GROUP procedure. All Oracle conflict resolution
methods are based on logical column groupings called column groups.
*/

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (

 sname => 'hr',

Note: You cannot use columns of datetime and interval
datatypes for priority group conflict resolution.
Configure Conflict Resolution 6-11

Creating Conflict Resolution Methods for Update Conflicts
 oname => 'countries',
 column_group => 'countries_timestamp_cg',
 list_of_column_names => 'country_name,region_id,timestamp');
END;
/

/*

Step 7 Use the DBMS_REPCAT.ADD_UPDATE_RESOLUTION procedure to define
the conflict resolution method for a specified table. This example specifies the
LATEST TIMESTAMP conflict resolution method using the timestamp column
that you created earlier.
*/

BEGIN
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (

 sname => 'hr',
 oname => 'countries',
 column_group => 'countries_timestamp_cg',
 sequence_no => 1,
 method => 'LATEST TIMESTAMP',
 parameter_column_name => 'timestamp');
END;
/

/*

Step 8 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'countries',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*
6-12 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
Step 9 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Additive and Average Conflict Resolution Methods
The additive and average methods work with column groups consisting of a single

numeric column only. Instead of "accepting" one value over another, this conflict

resolution method either adds the two compared values together or takes an aver-

age of the two compared values.

Complete the following steps to create an additive or average conflict resolution

method. This example averages the commission percentage for an employee in the

event of a conflict.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.
*/

SET ECHO ON

SPOOL average_conflictres.out

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 6-15 into a text editor and then edit

the text to create a script for your environment.
Configure Conflict Resolution 6-13

Creating Conflict Resolution Methods for Update Conflicts
CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Before you define additive and average conflict resolution methods,
quiesce the master group that contains the table to which you want to apply
the conflict resolution method. In a single master replication environment,
quiescing the master group may not be required. See "Creating Conflict
Resolution Methods and Quiescing" on page 6-3 for more information.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

Step 3 Create a column group for your target table by using the DBMS_
REPCAT.MAKE_COLUMN_GROUP procedure. All Oracle conflict resolution
methods are based on logical column groupings called column groups.
*/

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (

 sname => 'hr',
 oname => 'employees',
 column_group => 'commission_average_cg',
 list_of_column_names => 'commission_pct');
END;
/

/*

Step 4 Use the DBMS_REPCAT.ADD_UPDATE_RESOLUTION procedure to define
the conflict resolution method for a specified table. This example specifies the
ADDITIVE conflict resolution method using the sal column.
*/

BEGIN
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (

 sname => 'hr',
6-14 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
 oname => 'employees',
 column_group => 'commission_average_cg',
 sequence_no => 1,
 method => 'AVERAGE',
 parameter_column_name => 'commission_pct');
END;
/

/*

Step 5 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 6 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/
Configure Conflict Resolution 6-15

Creating Conflict Resolution Methods for Update Conflicts
Priority Groups Conflict Resolution Methods
Priority groups allow you to assign a priority level to each possible value of a

particular column. If Oracle detects a conflict, then Oracle updates the table whose

"priority" column has a lower value using the data from the table with the higher

priority value.

Complete the following steps to create a priority groups conflict resolution method.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.
*/

SET ECHO ON

SPOOL priority_groups_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Before you define a priority groups conflict resolution method, quiesce
the master group that contains the table to which you want to apply the
conflict resolution method. In a single master replication environment,
quiescing the master group may not be required. See "Creating Conflict
Resolution Methods and Quiescing" on page 6-3 for more information.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 6-20 into a text editor and then edit

the text to create a script for your environment.
6-16 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
Step 3 Make sure that the job column is part of the column group for which
your site priority conflict resolution mechanism is used. Use the ADD_
GROUPED_COLUMN procedure to add this field to an existing column group. If
you do not already have a column group, then you can create a new column
group using the DBMS_REPCAT.MAKE_COLUMN_GROUP procedure.
*/

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (

 sname => 'hr',
 oname => 'employees',
 column_group => 'employees_priority_cg',
 list_of_column_names => 'manager_id,hire_date,salary,job_id');
END;
/

/*

Step 4 Before you begin assigning a priority value to the values in your table,
create a priority group that holds the values you defined.
*/

BEGIN
DBMS_REPCAT.DEFINE_PRIORITY_GROUP (

 gname => 'hr_repg',
 pgroup => 'job_pg',
 datatype => 'VARCHAR2');
END;
/

/*

Step 5 The DBMS_REPCAT.ADD_PRIORITY_datatype procedure is available in
several different versions. There is a version for each available datatype
(NUMBER, VARCHAR2, and so on). Execute this procedure as often as necessary
until you have defined a priority value for all possible table values.

*/

BEGIN

See Also: "ADD_PRIORITY_datatype Procedure" on page 20-14

for more information
Configure Conflict Resolution 6-17

Creating Conflict Resolution Methods for Update Conflicts
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'ad_pres',
 priority => 100);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'sa_man',
 priority => 80);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'sa_rep',
 priority => 60);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'pu_clerk',
 priority => 40);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'st_clerk',
 priority => 20);
END;
/

/*
6-18 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
Step 6 Add the PRIORITY GROUP resolution method to your replicated table.
The following example shows that it is the second conflict resolution method
for the specified column group (sequence_no parameter).
*/

BEGIN
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (

 sname => 'hr',
 oname => 'employees',
 column_group => 'employees_priority_cg',
 sequence_no => 2,
 method => 'PRIORITY GROUP',
 parameter_column_name => 'job_id',
 priority_group => 'job_pg');
END;
/

/*

Step 7 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 8 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

Configure Conflict Resolution 6-19

Creating Conflict Resolution Methods for Update Conflicts
SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Site Priority Conflict Resolution Methods
Site priority is a specialized form of a priority group. Therefore, many of the

procedures associated with site priority behave similarly to the procedures

associated with priority groups. Instead of resolving a conflict based on the priority

of a field’s value, the conflict is resolved based on the priority of the sites involved.

For example, if you assign orc2.world a higher priority value than orc1.world
and a conflict arises between these two sites, then the value from orc2.world is

used.

Complete the following steps to create a site priority conflict resolution method.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator. The procedures in the
following steps must be executed by the replication administrator.
*/

SET ECHO ON

SPOOL site_priority_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Before you define a site priority conflict resolution method, quiesce the
master group that contains the table to which you want to apply the conflict
resolution method. In a single master replication environment, quiescing the

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 6-25 into a text editor and then edit

the text to create a script for your environment.
6-20 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
master group may not be required. See "Creating Conflict Resolution Methods
and Quiescing" on page 6-3 for more information.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

Step 3 Add a site column to your table to store the site value. Use the DBMS_
REPCAT.ALTER_MASTER_REPOBJECT procedure to apply the DDL to the target
table. Simply issuing the DDL may cause the replicated object to become
invalid.
*/

BEGIN
DBMS_REPCAT.ALTER_MASTER_REPOBJECT (

 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.regions ADD (site VARCHAR2(20))');
END;
/

/*

Step 4 Regenerate replication support for the affected object.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*
Configure Conflict Resolution 6-21

Creating Conflict Resolution Methods for Update Conflicts
Step 5 Create a trigger that records the global name of the site when a row is
either inserted or updated. This recorded value is used in the resolution of
conflicts based on the site priority method. Instead of directly executing the
DDL, you should use the DBMS_REPCAT.CREATE_MASTER_REPOBJECT
procedure to create the trigger and add it to your master group.
*/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'TRIGGER',
 oname => 'insert_site',
 sname => 'hr',
 ddl_text => 'CREATE TRIGGER hr.insert_site
 BEFORE
 INSERT OR UPDATE ON hr.regions FOR EACH ROW
 BEGIN
 IF DBMS_REPUTIL.FROM_REMOTE = FALSE THEN
 SELECT global_name INTO :NEW.SITE FROM GLOBAL_NAME;
 END IF;
 END;');
END;
/

/*

Step 6 Make sure the new column is part of the column group for which your
site priority conflict resolution mechanism is used. Use the ADD_GROUPED_
COLUMN procedure to add this column to an existing column group. If you do
not already have a column group, then you can create a new column group
using the DBMS_REPCAT.MAKE_COLUMN_GROUP procedure.
*/

BEGIN
DBMS_REPCAT.MAKE_COLUMN_GROUP (

 sname => 'hr',
 oname => 'regions',
 column_group => 'regions_sitepriority_cg',
 list_of_column_names => 'region_id,region_name,site');
END;
/

/*
6-22 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Update Conflicts
Step 7 Before assigning a site priority value to the sites in your replicated
environment, create a site priority group that holds the values you defined.
*/

BEGIN
DBMS_REPCAT.DEFINE_SITE_PRIORITY (

 gname => 'hr_repg',
 name => 'regions_sitepriority_pg');
END;
/

/*

Step 8 Define the priority value for each of the sites in your replication
environment using the DBMS_REPCAT.ADD_SITE_PRIORITY_SITE procedure.
Execute this procedure as often as necessary until you have defined a site
priority value for each of the sites in our replication environment.
*/

BEGIN
DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (

 gname => 'hr_repg',
 name => 'regions_sitepriority_pg',
 site => 'orc1.world',
 priority => 100);
END;
/

BEGIN
DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (

 gname => 'hr_repg',
 name => 'regions_sitepriority_pg',
 site => 'orc2.world',
 priority => 50);
END;
/

BEGIN
DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (

 gname => 'hr_repg',
 name => 'regions_sitepriority_pg',
 site => 'orc3.world',
 priority => 25);
END;
Configure Conflict Resolution 6-23

Creating Conflict Resolution Methods for Update Conflicts
/

/*

Step 9 After assigning your site priority values, add the SITE PRIORITY
resolution method to your replicated table. The following example shows that
it is the third conflict resolution method for the specified column group
(sequence_no parameter).
*/

BEGIN
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (

 sname => 'hr',
 oname => 'regions',
 column_group => 'regions_sitepriority_cg',
 sequence_no => 1,
 method => 'SITE PRIORITY',
 parameter_column_name => 'site',
 priority_group => 'regions_sitepriority_pg');
END;
/

/*

Step 10 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 11 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*/
6-24 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Uniqueness Conflicts
BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

GNAME => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Creating Conflict Resolution Methods for Uniqueness Conflicts
In a replication environment, you may have situations where you encounter a

conflict on a unique constraint, often resulting from an insert. If your business rules

allow you to delete the duplicate row, then you can define a resolution method with

Oracle’ s pre-built conflict resolution methods.

More often, however, you probably want to modify the conflicting value so that it

no longer violates the unique constraint. Modifying the conflicting value ensures

that you do not lose important data. Oracle’s pre-built uniqueness conflict

resolution method can make the conflicting value unique by appending a site name

or a sequence number to the value.

An additional component that accompanies the uniqueness conflict resolution

method is a notification facility. The conflicting information is modified by Oracle so

that it can be inserted into the table, but you should be notified so that you can

analyze the conflict to determine whether the record should be deleted, or the data

merged into another record, or a completely new value be defined for the

conflicting data.

A uniqueness conflict resolution method detects and resolves conflicts encountered

on columns with a UNIQUE constraint. The example in this section uses the

employees table in the hr sample schema, which has the unique constraint emp_
email_uk on the email column.

Note: To add unique conflict resolution method for a column, the

name of the unique index on the column must match the name of

the unique or primary key constraint.
Configure Conflict Resolution 6-25

Creating Conflict Resolution Methods for Uniqueness Conflicts
Complete the following steps to create a uniqueness conflict resolution method.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.
*/

SET ECHO ON

SPOOL unique_conflictres.out

CONNECTrepadmin/repadmin@orc1.world

/*

Step 2 Before you define a uniqueness conflict resolution method, quiesce the
master group that contains the table to which you want to apply the conflict
resolution method.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

Step 3 Create a table that stores the messages received from your notification
facility. In this example, the table name is conf_report .
*/

BEGIN
DBMS_REPCAT.EXECUTE_DDL (

 gname => 'hr_repg',
 ddl_text => 'CREATE TABLE hr.conf_report (

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 6-31 into a text editor and then edit

the text to create a script for your environment.
6-26 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Uniqueness Conflicts
 line NUMBER(2),
 txt VARCHAR2(80),
 timestamp DATE,
 table_name VARCHAR2(30),
 table_owner VARCHAR2(30),
 conflict_type VARCHAR2(7))');
END;
/

/*

Step 4 Connect as the owner of the table you created in Step 3.
*/

CONNECT hr/hr@orc1.world

/*

Step 5 Create a package that sends a notification to the conf_report table
when a conflict is detected. In this example, the package name is notify .

*/

CREATE OR REPLACE PACKAGE notify AS
 FUNCTION emp_unique_violation (email IN OUT VARCHAR2,
 discard_new_values IN OUT BOOLEAN)
 RETURN BOOLEAN;
END notify;
/

CREATE OR REPLACE PACKAGE BODY notify AS
 TYPE message_table IS TABLE OF VARCHAR2(80) INDEX BY BINARY_INTEGER;
 PROCEDURE report_conflict(conflict_report IN MESSAGE_TABLE,
 report_length IN NUMBER,
 conflict_time IN DATE,
 conflict_table IN VARCHAR2,
 table_owner IN VARCHAR2,
 conflict_type IN VARCHAR2) IS
 BEGIN

See Also: Appendix B, "User-Defined Conflict Resolution

Methods" describes the conflict resolution notification package that

is created in this script
Configure Conflict Resolution 6-27

Creating Conflict Resolution Methods for Uniqueness Conflicts
 FOR idx IN 1..report_length LOOP
 BEGIN
 INSERT INTO hr.conf_report
 (line, txt, timestamp, table_name, table_owner, conflict_type)
 VALUES (idx, SUBSTR(conflict_report(idx),1,80), conflict_time,
 conflict_table, table_owner, conflict_type);
 EXCEPTION WHEN others THEN NULL;
 END;
 END LOOP;
 END report_conflict;
 FUNCTION emp_unique_violation(email IN OUT VARCHAR2,
 discard_new_values IN OUT BOOLEAN)
 RETURN BOOLEAN IS
 local_node VARCHAR2(128);
 conf_report MESSAGE_TABLE;
 conf_time DATE := SYSDATE;
 BEGIN
 BEGIN
 SELECT global_name INTO local_node FROM global_name;
 EXCEPTION WHEN others THEN local_node := '?';
 END;
 conf_report(1) := 'UNIQUENESS CONFLICT DETECTED IN EMPLOYEES ON ' ||
 TO_CHAR(conf_time, 'MM-DD-YYYY HH24:MI:SS');
 conf_report(2) := ' AT NODE ' || local_node;
 conf_report(3) := 'ATTEMPTING TO RESOLVE CONFLICT USING' ||
 ' APPEND SITE NAME METHOD';
 conf_report(4) := 'EMAIL: ' || email;
 conf_report(5) := NULL;
 report_conflict(conf_report,5,conf_time,'employees','hr','UNIQUE');
 discard_new_values := FALSE;
 RETURN FALSE;
 END emp_unique_violation;
END notify;
/

/*

Step 6 Connect as the replication administrator.
*/

CONNECTrepadmin/repadmin@orc1.world

/*
6-28 Oracle9i Replication Management API Reference

Creating Conflict Resolution Methods for Uniqueness Conflicts
Step 7 Replicate the package you created in Step 5 to all of the master sites in
your replication environment, which ensures that the notification facility is
available at all master sites.
*/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'PACKAGE',
 oname => 'notify',
 sname => 'hr');
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'PACKAGE BODY',
 oname => 'notify',
 sname => 'hr');
END;
/

/*

Step 8 Add the notification facility as one of your conflict resolution methods,
even though it only notifies of a conflict. The following example demonstrates
adding the notification facility as a USER FUNCTION.
*/

BEGIN
DBMS_REPCAT.ADD_UNIQUE_RESOLUTION(

 sname => 'hr',
 oname => 'employees',
 constraint_name => 'emp_email_uk',
 sequence_no => 1,
 method => 'USER FUNCTION',
 comment => 'Notify DBA',
 parameter_column_name => 'email',
 function_name => 'hr.notify.emp_unique_violation');
END;
/

Configure Conflict Resolution 6-29

Creating Conflict Resolution Methods for Uniqueness Conflicts
/*

Step 9 Add the actual conflict resolution method to your table. The following
example demonstrates adding the APPEND SITE NAME uniqueness conflict
resolution method to your replicated table.
*/

BEGIN
DBMS_REPCAT.ADD_UNIQUE_RESOLUTION(

 sname => 'hr',
 oname => 'employees',
 constraint_name => 'emp_email_uk',
 sequence_no => 2,
 method => 'APPEND SITE NAME',
 parameter_column_name => 'email');
END;
/

/*

Step 10 Regenerate replication support for the table that received the conflict
resolution methods.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 11 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

 gname => 'hr_repg');
6-30 Oracle9i Replication Management API Reference

Creating Conflict Avoidance Methods for Delete Conflicts
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Creating Conflict Avoidance Methods for Delete Conflicts
Unlike update conflicts, where there are two values to compare, simply deleting a

row makes the update conflict resolution methods described in the previous section

ineffective because only one value would exist.

The best way to deal with deleting rows in a replication environment is to avoid the

conflict by marking a row for deletion and periodically purging the table of all

marked records. Because you are not physically removing this row, your data can

converge at all master sites if a conflict arises because you still have two values to

compare, assuming that no other errors have occurred. After you are sure that your

data has converged, you can purge marked rows using a replicated purge

procedure.

When developing the front-end application for your database, you probably want

to filter out the rows that have been marked for deletion, because doing so makes it

appear to your users as though the row was physically deleted. Simply exclude the

rows that have been marked for deletion in the SELECT statement for your data set.

For example, a select statement for a current employee listing might be similar to

the following:

SELECT * FROM hr.locations WHERE remove_date IS NULL;

This section describes how to prepare your replicated table to avoid delete conflicts.

You also learn how to use procedural replication to purge those records that have

been marked for deletion.

Complete the following steps to create a conflict avoidance method for delete

conflicts.
Configure Conflict Resolution 6-31

Creating Conflict Avoidance Methods for Delete Conflicts
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator at the master definition site.
*/

SET ECHO ON

SPOOL delete_conflictres.out

CONNECTrepadmin/repadmin@orc1.world

/*

Step 2 Quiesce the master group that contains the table to which you want to
apply the conflict resolution method.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

Step 3 Add a column to the replicated table that stores the mark for deleted
records. It is advisable to use a timestamp to mark your records for deletion
(timestamp reflects when the record was marked for deletion). Because you
are using a timestamp, the new column can be a DATEdatatype. Use the DBMS_
REPCAT.ALTER_MASTER_REPOBJECT procedure to add the remove_date
column to your existing replicated table.
*/

BEGIN
DBMS_REPCAT.ALTER_MASTER_REPOBJECT (

 sname => 'hr',

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 6-35 into a text editor and then edit

the text to create a script for your environment.
6-32 Oracle9i Replication Management API Reference

Creating Conflict Avoidance Methods for Delete Conflicts
 oname => 'locations',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.locations ADD (remove_date DATE)');
END;
/

/*

Step 4 Regenerate replication support for the altered table.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'locations',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 5 Create a package that is replicated to all of the master sites in your
replication environment. This package purges all marked records from the
specified table.
*/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'PACKAGE',
 oname => 'purge',
 sname => 'hr',
 ddl_text => 'CREATE OR REPLACE PACKAGE hr.purge AS
 PROCEDURE remove_locations(purge_date DATE);
 END;');
END;
/

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'PACKAGE BODY',
 oname => 'purge',
Configure Conflict Resolution 6-33

Creating Conflict Avoidance Methods for Delete Conflicts
 sname => 'hr',
 ddl_text => 'CREATE OR REPLACE PACKAGE BODY hr.purge AS
 PROCEDURE remove_locations(purge_date IN DATE) IS
 BEGIN
 DBMS_REPUTIL.REPLICATION_OFF;
 LOCK TABLE hr.locations IN EXCLUSIVE MODE;
 DELETE hr.locations WHERE remove_date IS NOT NULL
 AND remove_date < purge_date;
 DBMS_REPUTIL.REPLICATION_ON;
 EXCEPTION WHEN others THEN
 DBMS_REPUTIL.REPLICATION_ON;
 END;
 END;');
END;
/

/*

Step 6 Generate replication support for each package and package body. After
generating replication support, a synonym is created for you and added to
your master group as a replicated object. This synonym is labeled as defer_
purge.remove_locations .
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'purge',
 type => 'PACKAGE',
 min_communication => TRUE);
END;
/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'purge',
 type => 'PACKAGE BODY',
 min_communication => TRUE);
END;
/

/*
6-34 Oracle9i Replication Management API Reference

Using Dynamic Ownership Conflict Avoidance
Step 7 In a separate terminal window, manually push any administrative
requests at all other master sites. You may need to execute the DO_DEFERRED_
REPCAT_ADMIN procedure in the DBMS_REPCAT package several times,
because some administrative operations have multiple steps. The following is
an example:
BEGIN

DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN (
 gname => 'hr_repg',
 all_sites => FALSE);
END;
/

*/

PAUSE Press <RETURN> to continue when you have verified that there are no
pending administrative requests in the DBA_REPCATLOG data dictionary view.

/*

Step 8 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Using Dynamic Ownership Conflict Avoidance
This section describes a more advanced method of designing your applications to

avoid conflicts. This method, known as token passing, is similar to the workflow

method described below. Although this section describes how to use this method to

control the ownership of an entire row, you can use a modified form of this method

to control ownership of the individual column groups within a row.
Configure Conflict Resolution 6-35

Using Dynamic Ownership Conflict Avoidance
Both workflow and token passing allow dynamic ownership of data. With dynamic

ownership, only one site at a time is allowed to update a row, but ownership of the

row can be passed from site to site. Both workflow and token passing use the value

of one or more "identifier" columns to determine who is currently allowed to

update the row.

Workflow
With workflow partitioning, you can think of data ownership as being "pushed"

from site to site. Only the current owner of the row is allowed to push the

ownership of the row to another site, by changing the value of the "identifier"

columns.

Take the simple example of separate sites for ordering, shipping, and billing. Here,

the identifier columns are used to indicate the status of an order. The status

determines which site can update the row. After a user at the ordering site has

entered the order, the user updates the status of this row to ship . Users at the

ordering site are no longer allowed to modify this row — ownership has been

pushed to the shipping site.

After shipping the order, the user at the shipping site updates the status of this row

to bill , thus pushing ownership to the billing site, and so on.

To successfully avoid conflicts, applications implementing dynamic data ownership

must ensure that the following conditions are met:

■ Only the owner of the row can update the row.

■ The row is never owned by more than one site.

■ Ordering conflicts can be successfully resolved at all sites.

With workflow partitioning, only the current owner of the row can push the

ownership of the row to the next site by updating the "identifier" columns. No site is

given ownership unless another site has given up ownership; thus ensuring there is

never more than one owner.

Because the flow of work is ordered, ordering conflicts can be resolved by applying

the change from the site that occurs latest in the flow of work. Any ordering

conflicts can be resolved using a form of the priority conflict resolution method,

where the priority value increases with each step in the work flow process. The

priority conflict resolution method successfully converges for more than one master

site as long as the priority value is always increasing.
6-36 Oracle9i Replication Management API Reference

Using Dynamic Ownership Conflict Avoidance
Token Passing
Token passing uses a more generalized approach to meeting these criteria. To

implement token passing, instead of the "identifier" columns, your replicated tables

must have owner and epoch columns. The owner column stores the global database

name of the site currently believed to own the row.

Once you have designed a token passing mechanism, you can use it to implement a

variety of forms of dynamic partitioning of data ownership, including workflow.

You should design your application to implement token passing for you

automatically. You should not allow the owner or epoch columns to be updated

outside this application.

Whenever you attempt to update a row, your application should:

Step 1 Locate the current owner of the row.

Step 2 Lock the row to prevent updates while ownership is changing.

Step 3 Establish ownership of the row.

Step 4 Perform the update. Oracle releases the lock when you commit your
transaction.
For example, Figure 6–1 illustrates how ownership of employee 100 passes from

the acct_sf database to the acct_ny database.
Configure Conflict Resolution 6-37

Using Dynamic Ownership Conflict Avoidance
Figure 6–1 Grabbing the Token

acct_ny.ny.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_hq.hq.com
acct_hq.hq.com

Step 1. Identify True Owner

Step 2. Grab Ownership and Broadcast Change

acct_hq.hq.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_sf.sf.com
acct_hq.hq.com

acct_sf.sf.com

empno ename deptno owner

100

101

Jones

Kim

10

20

acct_sf.sf.com

acct_hq.hq.com

acct_la.la.com

empno ename deptno owner

100

101

Jones

Kim

10

20

acct_hq.hq.com

acct_hq.hq.com

acct_ny.ny.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_ny.ny.com
acct_hq.hq.com

acct_hq.hq.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_sf.sf.com
acct_hq.hq.com

acct_sf.sf.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_ny.ny.com
acct_hq.hq.com

acct_la.la.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_hq.hq.com
acct_hq.hq.com

asynch

synchronous
6-38 Oracle9i Replication Management API Reference

Using Dynamic Ownership Conflict Avoidance
Locating the Owner of a Row
To obtain ownership, the acct_ny database uses a simple recursive algorithm to

locate the owner of the row. The sample code for this algorithm is shown below:

-- Sample code for locating the token owner.
-- This is for a table TABLE_NAME with primary key PK.
-- Initial call should initialize loc_epoch to 0 and loc_owner
-- to the local global name.
get_owner(PK IN primary_key_type, loc_epoch IN OUT NUMBER,
 loc_owner IN OUT VARCHAR2)
{
 -- use dynamic SQL (dbms_sql) to perform a select similar to
 -- the following:
 SELECT owner, epoch into rmt_owner, rmt_epoch
 FROM TABLE_NAME@loc_owner
 WHERE primary_key = PK FOR UPDATE;
 IF rmt_owner = loc_owner AND rmt_epoch >= loc_epoch THEN
 loc_owner := rmt_owner;
 loc_epoch := rmt_epoch;
 RETURN;
 ELSIF rmt_epoch >= loc_epoch THEN
 get_owner(PK, rmt_epoch, rmt_owner);
 loc_owner := rmt_owner;
 loc_epoch := rmt_epoch;
 RETURN;
 ELSE
 raise_application_error(-20000, 'No owner for row');
 END IF;
}

Obtaining Ownership
After locating the owner of the row, the acct_ny site gets ownership from the

acct_sf site by completing the following steps:

Step 1 Lock the row at the sf site to prevent any changes from occurring
while ownership is being exchanged.

Step 2 Synchronously update the owner information at both the sf and ny
sites. This operation ensures that only one site considers itself to be the
owner at all times. The update at the sf site should not be replicated using
DBMS_REPUTIL.REPLICATION_OFF. The replicated change of ownership at the
Configure Conflict Resolution 6-39

Using Dynamic Ownership Conflict Avoidance
ny site in Step 4 will ultimately be propagated to all other sites in the
replication environment, including the sf site, where it will have no effect.

Step 3 Update the row information at the new owner site, ny, with the
information from the current owner site, sf . This data is guaranteed to be the
most recent. This time, the change at the ny site should not be replicated. Any
queued changes to this data at the sf site are propagated to all other sites in
the usual manner. When the sf change is propagated to ny, it is ignored
because of the values of the epoch numbers, as described in the next bullet
point.

Step 4 Update the epoch number at the new owner site to be one greater than
the value at the previous site. Perform this update at the new owner only, and
then asynchronously propagate this update to the other master sites.
Incrementing the epoch number at the new owner site prevents ordering
conflicts.
When the sf changes (that were in the deferred queue in Step 2 above) are

ultimately propagated to the ny site, the ny site ignores them because they have a

lower epoch number than the epoch number at the ny site for the same data.

As another example, suppose the hq site received the sf changes after receiving the

ny changes, the hq site would ignore the sf changes because the changes applied

from the ny site would have the greater epoch number.

Applying the Change
You should design your application to implement this method of token passing for

you automatically whenever you perform an update. You should not allow the

owner or epoch columns to be updated outside this application. The lock that you

grab when you change ownership is released when you apply your actual update.

The changed information, along with the updated owner and epoch information,

are asynchronously propagated to the other sites in the usual manner.
6-40 Oracle9i Replication Management API Reference

Auditing Successful Conflict Resolution
Auditing Successful Conflict Resolution
Whenever Oracle detects and successfully resolves an update, delete, or uniqueness

conflict, you can view information about what method was used to resolve the

conflict by querying the ALL_REPRESOLUTION_STATISTICSdata dictionary view.

This view is updated only if you have enabled conflict resolution statistics gathering

for the table involved in the conflict.

Collecting Conflict Resolution Statistics
Use the REGISTER_STATISTICS procedure in the DBMS_REPCAT package to

collect information about the successful resolution of update, delete, and

uniqueness conflicts for a table. The following example gathers statistics for the

employees table in the hr schema:

BEGIN
DBMS_REPCAT.REGISTER_STATISTICS (

 sname => 'hr',
 oname => 'employees');
END;
/

Viewing Conflict Resolution Statistics
After calling REGISTER_STATISTICS for a table, each conflict that is successfully

resolved for that table is logged in the ALL_REPRESOLUTION_STATISTICS data

dictionary view. Information about unresolved conflicts is always logged in the

DEFERROR view, whether the object is registered or not.

See Also: The ALL_REPRESOLUTION_STATISTICS view on

page 25-32 for more information

See Also: The ALL_REPRESOLUTION_STATISTICS view on

page 25-32 and the DEFERROR view on page 27-3 for more

information
Configure Conflict Resolution 6-41

Auditing Successful Conflict Resolution
Canceling Conflict Resolution Statistics
Use the CANCEL_STATISTICS procedure in the DBMS_REPCAT package if you no

longer want to collect information about the successful resolution of update, delete,

and uniqueness conflicts for a table. The following example cancels statistics

gathering on the employees table in the hr schema:

BEGIN
DBMS_REPCAT.CANCEL_STATISTICS (

 sname => 'hr',
 oname => 'employees');
END;
/

Clearing Statistics Information
If you registered a table to log information about the successful resolution of

update, delete, and uniqueness conflicts, then you can remove this information

from the DBA_REPRESOLUTION_STATISTICS data dictionary view by calling the

PURGE_STATISTICS procedure in the DBMS_REPCAT package.

The following example purges the statistics gathered about conflicts resolved due to

inserts, updates, and deletes on the employees table between January 1 and

March 31:

BEGIN
DBMS_REPCAT.PURGE_STATISTICS (

 sname => 'hr',
 oname => 'employees',
 start_date => '01-JAN-2001',
 end_date => '31-MAR-2001');
END;
/

6-42 Oracle9i Replication Management API Reference

Part II

Managing and Monitoring Your Replication

Environment

Part II contains instructions on using the replication management API to manage

your replication environment, as well as instructions on using the data dictionary to

monitor your replication environment.

Part II contains the following chapters:

■ Chapter 7, "Managing a Master Replication Environment"

■ Chapter 8, "Managing a Materialized View Replication Environment"

■ Chapter 9, "Managing Replication Objects and Queues"

■ Chapter 10, "Monitoring a Replication Environment"

Managing a Master Replication Environ
7

Managing a Master Replication

Environment

As your data delivery needs change due to growth, shrinkage, or emergencies, you

are undoubtedly going to need to change the configuration of your replication

environment. This chapter discusses managing the master sites of your replication

environment. Specifically, this section describes altering and reconfiguring your

master sites.

This chapter contains these topics:

■ Changing the Master Definition Site

■ Adding New Master Sites

■ Removing a Master Site from a Master Group

■ Updating the Comments Fields in Data Dictionary Views

■ Using Procedural Replication
ment 7-1

Changing the Master Definition Site
Changing the Master Definition Site
Many replication administrative tasks can be performed only from the master

definition site. Use the RELOCATE_MASTERDEF procedure in the DBMS_REPCAT
package to move the master definition site to another master site. This API is

especially useful when the master definition site becomes unavailable and you need

to specify a new master definition site (see "Option 2: The Old Master Definition

Site Is Not Available" on page 7-3).

Option 1: All Master Sites Are Available
Perform the actions in this section to change the master definition site if all master

sites are available. Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Any Master Site

Replication Status: Running Normally (Not Quiesced)

Complete the following steps:

Step 1 Connect to a master site as the replication administrator.
CONNECT repadmin/repadmin@orc1.world

Step 2 Relocate the master definition site.
BEGIN

DBMS_REPCAT.RELOCATE_MASTERDEF (
 gname => 'hr_repg',
 old_masterdef => 'orc1.world',
 new_masterdef => 'orc2.world',
 notify_masters => TRUE,
 include_old_masterdef => TRUE);
END;
/

7-2 Oracle9i Replication Management API Reference

Changing the Master Definition Site
Option 2: The Old Master Definition Site Is Not Available
Perform the actions in this section to change the master definition site if the old

master definition site is not available. Meet the following requirements to complete

these actions:

Executed As: Replication Administrator

Executed At: Any Master Site

Replication Status: Normal

Complete the following steps:

Step 1 Connect to a master site as the replication administrator.
CONNECT repadmin/repadmin@orc4.world

Step 2 Relocate the master definition site.
BEGIN

DBMS_REPCAT.RELOCATE_MASTERDEF (
 gname => 'hr_repg',
 old_masterdef => 'orc1.world',
 new_masterdef => 'orc2.world',
 notify_masters => TRUE,
 include_old_masterdef => FALSE);
END;
/

Managing a Master Replication Environment 7-3

Adding New Master Sites
Adding New Master Sites
As your replication environment expands, you may need to add new master sites to

a master group. You can either add new master sites to a master group that is

running normally or to a master group that is quiesced. If the master group is not

quiesced, then users can perform data manipulation language (DML) operations on

the data while the new master sites are being added. However, more administrative

actions are required when adding new master sites if the master group is not

quiesced.

Follow the instructions in the appropriate section to add new master sites to a

master group:

■ Adding New Master Sites Without Quiescing the Master Group

■ Adding New Master Sites to a Quiesced Master Group

Adding New Master Sites Without Quiescing the Master Group
This section contains procedures for adding new master sites to an existing master

group that is not quiesced. These new sites may or may not already be replication

sites (master sites or materialized view sites) in other replication groups.

You can use one of the following methods when you are adding a new master site

without quiescing the master group:

■ Use full database export/import or change-based recovery to add a new master

site that does not currently have any replication groups. See "Using Full

Database Export/Import or Change-Based Recovery" on page 7-9 for

instructions.

■ Use object-level export/import to add a new master site that already has other

replication groups or to add a new master site that does not currently have any

replication groups. See "Using Object-Level Export/Import" on page 7-20 for

instructions.

Note: When adding a master site to a master group that contains

tables with circular dependencies or a table that contains a

self-referential constraint, you must precreate the table definitions

and manually load the data at the new master site. The following is

an example of a circular dependency: Table A has a foreign key

constraint on table B, and table B has a foreign key constraint on

table A.
7-4 Oracle9i Replication Management API Reference

Adding New Master Sites
Use full database export/import and change-based recovery to add all of the

replication groups at the master definition site to the new master sites. When you

use this method, the following conditions apply:

■ The new master sites cannot have any existing replication groups.

■ The master definition site cannot have any materialized view groups.

■ The master definition site must be the same for all of the master groups. If one

or more of these master groups have a different master definition site, then do

not use full database export/import or change-based recovery. Use object-level

export/import instead.

■ The new master site must include all of the replication groups in the master

definition site when the extension process is complete. That is, you cannot add a

subset of the master groups at the master definition site to the new master site.

All of the groups must be added.

If your environment does not meet all of these conditions, then you must use

object-level export/import to add the new master sites. Figure 7–1 summarizes

these conditions.

Note: To use change-based recovery, the existing master site and

the new master site must be running under the same operating

system, although the release of the operating system can differ. This

condition does not apply to full database export/import.
Managing a Master Replication Environment 7-5

Adding New Master Sites
Figure 7–1 Determining Which Method to Use When Adding Master Sites

END

Set up new master sites for
multimaster replication.

No

Do the
new master sites

have one or more existing
replication groups?

No

Does the
master definition site

have any materialized view
groups?

No

Do any of
the master groups

have a different master
definition site?

Do you
want to add a subset

of the master groups to the
new master sites?

START

Use full database export / import
or change-based recovery to add
new databases.

Use object-level export / import
to add new master sites.

Yes

Yes

Yes

Yes

No
7-6 Oracle9i Replication Management API Reference

Adding New Master Sites
Use object-level export/import to add a master group to master sites that already

have other replication groups or to add a master group to master sites that do not

currently have any replication groups. This method can add one or more master

groups to new master sites at a time, and you can choose a subset of the master

groups at the master definition site to add to the new master sites during the

operation.

If you use object-level export/import and there are integrity constraints that span

more than one master group, then you must temporarily disable these integrity

constraints on the table being added to a new master site, if the other tables to

which these constraints refer already exist at the new master site. Initially, there are

two rows in the DEFSCHEDULE data dictionary view that refer to the new master

sites. When propagation is caught up, there is one row in this view, and when

propagation from all the master sites to the new master site is caught up, you can

re-enable the integrity constraints you disabled.

Again, the two methods for adding new master sites without quiescing the master

groups are the following:

■ Full database export/import or change-based recovery

■ Object-level export/import

When you use either method, propagation of deferred transactions to the new

master site is partially or completely disabled while the new master sites are being

added. Therefore, make sure each existing master site has enough free space to store

the largest unpropagated deferred transaction queue that you may encounter.

In addition, the following restrictions apply to both methods:

■ All affected master groups must be using asynchronous replication.

Synchronous replication is not allowed.

■ All scheduled links must use parallel propagation with parallelism set to 1 or

higher.

■ Either the database links of all affected master groups must have no connection

qualifier or they must all have the same connection qualifier.

■ After you begin the process of adding new master sites to one or more master

groups, you must wait until these new master sites are added before you begin

to add another set of master sites to any of the affected master groups. If there is

information about an affected master group in the DBA_NEW_REPSITES data

dictionary view at the master definition site, then the process is started and is

not yet complete for that master group.
Managing a Master Replication Environment 7-7

Adding New Master Sites
■ After you begin the process of adding new master sites to one or more master

groups, you cannot relocate the master definition site for these master groups

until the new master sites are added. If there is information about an affected

master group in the DBA_NEW_REPSITES data dictionary view, then the

process is started and is not yet complete for that master group.

■ Only one add master site request at a time is allowed at a master site. For

example, if hq1.world is the master definition site for mgroup1 and

hq2.world is the master definition site for mgroup2 , then you cannot add

hq1.world to mgroup2 and hq2.world to mgroup1 at the same time.

■ All master sites must be at 9.0.0 or higher compatibility level. You control the

compatibility level with the COMPATIBLEinitialization parameter. If any master

sites are lower than 9.0.0 compatibility level, then the master group must be

quiesced to extend it with new master sites. In this case, follow the instructions

in "Adding New Master Sites to a Quiesced Master Group" on page 7-31.

■ If you are using object-level or full database export/import, then make sure

there is enough space in your rollback segments or undo tablespace for the

export.

Also, before adding new master sites with either method, make sure you properly

set up your new master sites for multimaster replication.

Note: If progress appears to stop during one of the procedures

described in the following sections, then check your trace files and

the alert log for messages.

See Also:

■ "Setting Up Master Sites" on page 2-5 for information about

setting up your new master sites for multimaster replication

■ Oracle9i Database Administrator’s Guide for more information

about trace files and the alert log

■ Oracle9i Database Administrator’s Guide for information about

managing undo space
7-8 Oracle9i Replication Management API Reference

Adding New Master Sites
Using Full Database Export/Import or Change-Based Recovery
Figure 7–2 shows the major steps for using full database export/import or

change-based recovery to add new master sites to a master group without

quiescing. The following example script adds the new master sites orc4.world
and orc5.world to the hr_repg master group. In this example, orc4.world is

added using full database export/import and orc5.world is added using

change-based recovery.
Managing a Master Replication Environment 7-9

Adding New Master Sites
Figure 7–2 Using Full Database Export/Import or Change-Based Recovery

END

Are you
using full database

export / import or change-
based recovery?

START

Perform change-based recovery.Perform full database export of
master database.

Add new master sites.

Specify new master sites for
each master group.

Change-based
recovery

Full database
export / import

Allow new masters to receive
deferred transactions.

Resume propagation to master
definition site.

Transfer export dump file to
new master sites.

Perform full database import.

Allow new masters to receive
deferred transactions.
7-10 Oracle9i Replication Management API Reference

Adding New Master Sites
Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At:

■ Step 1 at Each New Master Site

■ Steps 2 - 6b at Master Definition Site

■ Step 6c requires a file transfer between sites.

■ Steps 6d - 9 at Each New Master Site

Replication Status: Running Normally (Not Quiesced)

Complete the following steps to use full database export/import or change-based

recovery to add sites to a master group.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 If you are using full database export/import, then create the databases
that you want to add to the master group.
This step is not required if you are using change-based recovery.

*/

SET ECHO ON

SPOOL add_masters_full.out

PAUSE Press <RETURN> when the databases for the new master sites are created.

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 7-20 into a text editor and then edit

the text to create a script for your environment.

See Also: Oracle9i Database Administrator’s Guide for information

about creating a database
Managing a Master Replication Environment 7-11

Adding New Master Sites
Step 2 Set up each new master site as a replication site. Remember that you
need to configure the following:

■ The replication administrator at each new master site

■ A scheduled link from each existing master site to each new master site

■ A scheduled link from each new master site to each existing master site

■ A schedule purge job at each new master site

*/

PAUSE Press <RETURN> to continue the new master sites have been setup and the
required scheduled links have been created.

/*

Step 3 Connect as the replication administrator to the master definition site.
*/

CONNECTrepadmin/repadmin@orc1.world

/*

Step 4 Specify new master sites for each master group.
Before you begin, create the required scheduled links between existing master sites

and each new master site if they do not already exist.

*/

BEGIN

See Also:

■ Oracle9i Replication for information about scheduled links

■ "Setting Up Master Sites" on page 2-5

■ "Creating Scheduled Links Between the Master Sites" on

page 2-20

See Also:

■ Oracle9i Replication for information about scheduled links

■ "Creating Scheduled Links Between the Master Sites" on

page 2-20 for examples
7-12 Oracle9i Replication Management API Reference

Adding New Master Sites
DBMS_REPCAT.SPECIFY_NEW_MASTERS (
 gname => 'HR_REPG',
 master_list => 'orc4.world,orc5.world');
END;
/

/*

You can begin to track the extension process by querying the following data

dictionary views in another SQL*Plus session:

■ DBA_REPSITES_NEW

■ DBA_REPEXTENSIONS

*/

PAUSE Press <RETURN> when you have completed the these steps.

/*

Step 5 Add the new master sites.
Before running the following procedure, ensure that there are an adequate number

of background jobs running at each new master site. If you are using full database

export/import, then make sure there is enough space in your rollback segments or

undo tablespace for the export before you run this procedure.

*/

VARIABLE masterdef_flashback_scn NUMBER;
VARIABLE extension_id VARCHAR2(32);
BEGIN

DBMS_REPCAT.ADD_NEW_MASTERS (
 export_required => true,
 available_master_list => NULL,
 masterdef_flashback_scn => :masterdef_flashback_scn,

See Also:

■ Oracle9i Replication for information about setting the JOB_
QUEUE_PROCESSES initialization parameter properly for a

replication environment

■ Oracle9i Database Administrator’s Guide for information about

managing undo space
Managing a Master Replication Environment 7-13

Adding New Master Sites
 extension_id => :extension_id,
 break_trans_to_masterdef => false,
 break_trans_to_new_masters => false,
 percentage_for_catchup_mdef => 80,
 cycle_seconds_mdef => 60,
 percentage_for_catchup_new => 80,
 cycle_seconds_new => 60);
END;
/

/*

The values for masterdef_flashback_scn and extension_id are saved into

variables to be used later in the process. To see these values, you can query the

DBA_REPSITES_NEW and DBA_REPEXTENSIONS data dictionary views.

*/

PAUSE Press <RETURN> when you have completed the these steps.

/*

If you need to undo the changes made to a particular master site by the SPECIFY_
NEW_MASTERS and ADD_NEW_MASTERS procedures, then use the DBMS_
REPCAT.UNDO_ADD_NEW_MASTERS_REQUEST procedure.

For the export_required parameter, true is specified because orc4.world is

being added using full database export/import. Although orc5.world is using

change-based recovery, the true setting is correct because at least one new master

site is added using export/import.

After successfully executing this procedure, monitor its progress by querying the

DBA_REPCATLOGdata dictionary view in another SQL*Plus session. Do not proceed

to Step 6 until there is no remaining information in this view about adding the new

master sites. Assuming no extraneous information exists in DBA_REPCATLOG from

other operations, you can enter the following statement:

SELECT COUNT(*) FROM DBA_REPCATLOG;

All of the processing is complete when this statement returns zero (0).

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*
7-14 Oracle9i Replication Management API Reference

Adding New Master Sites
Step 6 Perform the following substeps for the master sites being added using
full database export/import. For master sites being added using change-based
recovery, these substeps are not required and you can proceed to Step 7 on
page 7-17.

a. Perform full database export of master definition database. Use the system

change number (SCN) returned by the masterdef_flashback_scn
parameter in Step 5 for the FLASHBACK_SCN export parameter.

You can query the DBA_REPEXTENSIONS data dictionary view for the

FLASHBACK_SCN value:

SELECT FLASHBACK_SCN FROM DBA_REPEXTENSIONS;

In this example, orc4.world is using full database export/import.

Therefore, perform the full database export of the master definition

database so that it can be imported into orc4.world during a later step.

However, the orc5.world database is using change-based recovery.

Therefore, the export would not be required if you were adding only

orc5.world .

The following is an example of an export statement:

exp system/manager FILE=fulldb_orc1.dmp FULL=y DIRECT=n
GRANTS=y ROWS=y COMPRESS=y STATISTICS=compute LOG=exp_orc1.log
FLASHBACK_SCN=124723

Consider the following when you run the Export utility:

– Only users with the DBA role or the EXP_FULL_DATABASE role can

export in full database mode.

– Make sure the UNDO_RETENTION initialization parameter is set

correctly before performing the export.

– Do not use the CONSISTENT export parameter.

Note: You can also perform database exports by entering exp
system/manager at the command line prompt and then

answering the subsequent prompts
Managing a Master Replication Environment 7-15

Adding New Master Sites
*/

PAUSE Press <RETURN> to continue when the export is complete.

/*

b. Resume propagation to the master definition site.

Running the following procedure indicates that export is effectively

finished and propagation can be enabled for both extended and unaffected

master groups at the master sites.

*/

BEGIN
DBMS_REPCAT.RESUME_PROPAGATION_TO_MDEF (

 extension_id => :extension_id);
END;
/

/*

You can find the extension_id by querying the DBA_REPSITES_NEW
data dictionary view.

c. Transfer the export dump file to the new master sites.

Using FTP or some other method, transfer the export dump file to the other

new master sites that are being added with full database export/import.

You will need this export dump file at each new site to perform the import

described in the next step.

*/

PAUSE Press <RETURN> to continue after transferring the dump file.

/*

See Also:

■ Oracle9i Database Utilities for information about performing a

full database export

■ Oracle9i Database Administrator’s Guide for information about

managing undo space and setting this parameter
7-16 Oracle9i Replication Management API Reference

Adding New Master Sites
d. Set the JOB_QUEUE_PROCESSES initialization parameter to zero for each

new master site.

*/

PAUSE Press <RETURN> to continue after JOB_QUEUE_PROCESSES is set to
zero at each new master site.

/*

Step 7 Perform import or change-based recovery at each new master site.
■ If you are using full database export/import, then complete the full

database import of the database you exported in Step 6a at each new master

site that is being added with full database export/import.

The following is an example of an import statement:

imp system/manager FILE=fulldb_orc1.dmp FULL=y BUFFER=30720
IGNORE=y GRANTS=y ROWS=y DESTROY=y COMMIT=y LOG=import.log

Only users with the DBA role or the IMP_FULL_DATABASErole can import

in full database mode.

*/

PAUSE Press <RETURN> to continue when the import is complete.

/*

■ If you are using change-based recovery, then perform change-based

recovery using the system change number (SCN) returned by the

masterdef_flashback_scn parameter in Step 5. You can query the

DBA_REPEXTENSIONS data dictionary view for the masterdef_
flashback_scn value.

Note: You can also perform database imports by entering imp
system/manager at the command line prompt and then

answering the subsequent prompts.

See Also: Oracle9i Database Utilities for information about

performing a full database import
Managing a Master Replication Environment 7-17

Adding New Master Sites
You can perform a change-based recovery in one of the following ways:

* Using the SQL*Plus RECOVER command. See the Oracle9i User-Managed
Backup and Recovery Guide for instructions.

* Using the Recovery Manager (RMAN) DUPLICATE command. See the

Oracle9i Recovery Manager User’s Guide for instructions.

Connect to the site where you will perform the change-based recovery:

*/

CONNECT repadmin/repadmin@orc5.world

PAUSE Press <RETURN> to continue when the change-based recovery is
complete. You can use a separate terminal window to perform the
change-based recovery.

/*

Step 8 Configure the new sites for multimaster replication by completing the
following steps:

a. Ensure that the database structures, such as the datafiles, exist for the

replicated schemas at each new master site. In this example, the replicated

schema is hr .

b. Set the global name for each new master site. The global name for each new

master site must match the global names specified in the SPECIFY_NEW_
MASTERS procedure that you ran in Step 4. You can query the DBLINK
column in the DBA_REPSITES_NEW data dictionary view to see the global

name for each new master site.

You can set the global name using the ALTER DATABASE statement, as in

the following example:

ALTER DATABASE RENAME GLOBAL_NAME TO orc4.WORLD;

c. Create the appropriate scheduled links between the new master sites and

the existing master sites, including the master definition site.

*/

PAUSE Press <RETURN> when you have completed the these steps.

See Also: "Creating Scheduled Links Between the Master Sites"

on page 2-20 for information
7-18 Oracle9i Replication Management API Reference

Adding New Master Sites
/*

Step 9 Allow new masters to receive deferred transactions.
The following procedure enables the propagation of deferred transactions from

other prepared new master sites and existing master sites to the invocation master

site. This procedure also enables the propagation of deferred transactions from the

invocation master site to the other new master sites and existing master sites.

*/

CONNECT repadmin/repadmin@orc4.world

BEGIN
DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (

 extension_id => :extension_id);
END;
/

CONNECT repadmin/repadmin@orc5.world

BEGIN
DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (

 extension_id => :extension_id);
END;
/

SET ECHO OFF

SPOOL OFF

/*

Caution: Do not invoke this procedure until instantiation

(export/import or change-based recovery) of the new master site is

complete.

Do not allow any data manipulation language (DML) statements

directly on the objects in the extended master group in the new

master site until execution of this procedure returns successfully,

because these DML statements may not be replicated.
Managing a Master Replication Environment 7-19

Adding New Master Sites
************************** END OF SCRIPT **********************************/

Using Object-Level Export/Import
Figure 7–3 shows the major steps for using object-level export/import to add new

master sites to a master group without quiescing. The following example procedure

adds the new master sites orc4.world and orc5.world to the hr_repg master

group. An object-level export/import involves exporting and importing the tables

in a master group. When you export and import the tables, other dependent

database objects, such as indexes, are exported and imported as well.

If you have an integrity constraint that spans two master groups, then you have a

child table in one master group (the child master group) and a parent table in a

different master group (the parent master group). In this case, Oracle Corporation

recommends that you add new master sites to both master groups at the same time.

However, if you cannot do this, then you must quiesce the child master group

before adding new master sites to it. Here, the child table includes a foreign key,

which makes it dependent on the values in the parent table. If you do not quiesce

the child master group, then conflicts may result when you add master sites to it.

You can still add master sites to the parent master group without quiescing it.

Note: You can find the extension_id by querying the DBA_
REPSITES_NEW data dictionary view.
7-20 Oracle9i Replication Management API Reference

Adding New Master Sites
Figure 7–3 Using Object-Level Export/Import

END

START

Add new master sites.

Specify new master sites for
each master group.

Perform object-level export of
each table in master groups.

Resume propagation to the
master definition site.

Transfer export dump file to
new master sites.

Perfom object-level imports of
all exported tables.

Allow new masters to receive
deferred transactions.
Managing a Master Replication Environment 7-21

Adding New Master Sites
Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At:

■ Steps 1 - 8 at Master Definition Site

■ Step 9 requires a file transfer between sites.

■ Steps 10 - 11 at Each New Master Site

Replication Status: Running Normally (Not Quiesced)

Complete the following steps to use object-level export/import to add sites to a

master group.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 If the users for the replicated schemas do not exist at the new master
sites, then create them now. In this example, the replicated schema is hr . This
schema probably already exist at the new master sites because it is a sample
schema that is typically installed when you install Oracle.

*/

SET ECHO ON

SPOOL add_masters_object.out

PAUSE Press <RETURN> to continue when the users are created at the new master
sites.

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 7-30 into a text editor and then edit

the text to create a script for your environment.

See Also: Oracle9i Sample Schemas for general information about

the sample schemas and for information about installing them
7-22 Oracle9i Replication Management API Reference

Adding New Master Sites
Step 2 If any of the tables in the master group have circular dependencies,
then precreate these tables at the new master sites. Failure to precreate these
tables will result in errors later in the procedure. If there are no circular
dependencies, then this step is not required, and you can proceed to Step 3.
Some of the tables in the hr schema contain circular dependencies. Therefore, in

this example, the tables in the hr schema must be precreated at each new master

site. Again, the hr schema tables are typically created during Oracle installation

and so may already exist at the new master sites.

If you need to precreate tables, then disable referential integrity constraints for these

tables at the new master sites before the import. Referential integrity constraints can

cause errors when you import data into existing tables. This example disables the

referential integrity constraints for the precreated tables in the hr schema at the new

master site orc4.world .

Further, the precreated tables at the new master sites should not contain any data.

This example truncates the tables in the hr schema at the new master site

orc4.world to ensure that they do not contain any data.

*/

PAUSE Press <RETURN> to continue when the tables are precreated at the new
master sites, if table precreation is required. After the tables are precreated,
the following statements disable the referential integrity constraints in the hr
schema and truncate the tables in the hr schema at the new site.

CONNECT hr/hr@orc4.world

ALTER TABLE hr.countries
 DISABLE CONSTRAINT countr_reg_fk;

ALTER TABLE hr.departments
 DISABLE CONSTRAINT dept_mgr_fk
 DISABLE CONSTRAINT dept_loc_fk;

ALTER TABLE hr.employees

See Also:

■ The note under "Adding New Master Sites" on page 7-4 for

more information about circular dependencies

■ Oracle9i Database Utilities for information about importing data

into existing tables
Managing a Master Replication Environment 7-23

Adding New Master Sites
 DISABLE CONSTRAINT emp_dept_fk
 DISABLE CONSTRAINT emp_job_fk
 DISABLE CONSTRAINT emp_manager_fk;

ALTER TABLE hr.job_history
 DISABLE CONSTRAINT jhist_job_fk
 DISABLE CONSTRAINT jhist_emp_fk
 DISABLE CONSTRAINT jhist_dept_fk;

ALTER TABLE hr.locations
 DISABLE CONSTRAINT loc_c_id_fk;

TRUNCATE TABLE hr.countries;
TRUNCATE TABLE hr.departments;
TRUNCATE TABLE hr.employees;
TRUNCATE TABLE hr.jobs;
TRUNCATE TABLE hr.job_history;
TRUNCATE TABLE hr.locations;
TRUNCATE TABLE hr.regions;

/*

Step 3 Set up each new master site as a replication site. Remember that you
need to configure the following:

■ The replication administrator at each new master site

■ A scheduled link from each existing master site to each new master site

■ A scheduled link from each new master site to each existing master site

■ A schedule purge job at each new master site

*/

PAUSE Press <RETURN> to continue the new master sites have been setup and the
required scheduled links have been created.

/*

See Also:

■ Oracle9i Replication for information about scheduled links

■ "Setting Up Master Sites" on page 2-5

■ "Creating Scheduled Links Between the Master Sites" on

page 2-20
7-24 Oracle9i Replication Management API Reference

Adding New Master Sites
Step 4 Connect to the master definition site as the replication administrator.
*/

CONNECTrepadmin/repadmin@orc1.world

/*

Step 5 Specify new master sites for each master group.
*/

BEGIN
DBMS_REPCAT.SPECIFY_NEW_MASTERS (

 gname => 'hr_repg',
 master_list => 'orc4.world,orc5.world');
END;
/

/*

You can begin to track the extension process by querying the following data

dictionary views in another SQL*Plus session:

■ DBA_REPSITES_NEW

■ DBA_REPEXTENSIONS

Step 6 Add the new master sites.
Before running the following procedure, ensure that there are an adequate number

of background jobs running at each new master site. Also, make sure there is

enough space in your rollback segments or undo tablespace for the export before

you run this procedure.

*/

VARIABLE masterdef_flashback_scn NUMBER;

See Also:

■ Oracle9i Replication for information about setting the JOB_
QUEUE_PROCESSES initialization parameter properly for a

replication environment

■ Oracle9i Database Administrator’s Guide for information about

managing undo space
Managing a Master Replication Environment 7-25

Adding New Master Sites
VARIABLE extension_id VARCHAR2(32);
BEGIN

DBMS_REPCAT.ADD_NEW_MASTERS (
 export_required => true,
 available_master_list => 'orc4.world,orc5.world',
 masterdef_flashback_scn => :masterdef_flashback_scn,
 extension_id => :extension_id,
 break_trans_to_masterdef => false,
 break_trans_to_new_masters => false,
 percentage_for_catchup_mdef => 80,
 cycle_seconds_mdef => 60,
 percentage_for_catchup_new => 80,
 cycle_seconds_new => 60);
END;
/

/*

The sites specified for the available_master_list parameter must be same as

the sites specified in the SPECIFY_NEW_MASTERS procedure in Step 5.

The values for masterdef_flashback_scn and extension_id are saved into

variables to be used later in the process. To see these values, you can also query the

DBA_REPSITES_NEW and DBA_REPEXTENSIONS data dictionary views.

If you need to undo the changes made to a particular master site by the SPECIFY_
NEW_MASTERS and ADD_NEW_MASTERS procedures, then use the UNDO_ADD_NEW_
MASTERS_REQUEST procedure.

After successfully executing this procedure, monitor its progress by querying the

DBA_REPCATLOGdata dictionary view in another SQL*Plus session. Do not proceed

to Step 7 until there is no remaining information in this view about adding the new

master sites. Assuming there is no extraneous information in DBA_REPCATLOG
from other operations, you can enter the following statement:

SELECT COUNT(*) FROM DBA_REPCATLOG;

All of the processing is complete when this statement returns zero (0).

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*
7-26 Oracle9i Replication Management API Reference

Adding New Master Sites
Step 7 Perform object-level export of tables at master definition database.
At the master definition database, perform an object-level export for each master

table in the master groups that will be created at the new master sites. An

object-level export includes exports performed in table mode, user mode, or

tablespace mode.

Use the system change number (SCN) returned by the masterdef_flashback_
scn parameter in Step 6 for the FLASHBACK_SCN export parameter. You can query

the DBA_REPEXTENSIONS data dictionary view for the FLASHBACK_SCN value:

SELECT FLASHBACK_SCN FROM DBA_REPEXTENSIONS;

The following is an example of an object-level export that exports the entire hr
schema in user mode:

exp system/manager FILE=hr_schema.dmp OWNER=hr DIRECT=n GRANTS=y
ROWS=y COMPRESS=y INDEXES=y CONSTRAINTS=y STATISTICS=compute
FLASHBACK_SCN=3456871

When you export tables, their indexes are exported automatically.

Consider the following when you run the Export utility:

■ Make sure the UNDO_RETENTION initialization parameter is set correctly

before performing the export.

■ Do not use the CONSISTENT export parameter.

*/

PAUSE Press <RETURN> to continue when the export is complete.

Note: You can also perform database exports by entering exp
system/manager at the command line prompt and then

answering the subsequent prompts.

See Also:

■ Oracle9i Database Utilities for information about performing an

object-level database export

■ Oracle9i Database Administrator’s Guide for information about

managing undo space and setting the UNDO_RETENTION
initialization parameter
Managing a Master Replication Environment 7-27

Adding New Master Sites
/*

Step 8 Resume propagation to the master definition site.
Running the following procedure indicates that export is effectively finished and

propagation can be enabled for both extended and unaffected master groups at the

master sites.

*/

BEGIN
DBMS_REPCAT.RESUME_PROPAGATION_TO_MDEF (

 extension_id => :extension_id);
END;
/

/*

You can find the extension_id by querying the DBA_REPSITES_NEW data

dictionary view.

Step 9 Transfer the export dump files to the new master sites.
Using FTP or some other method, transfer the export dump files to the other new

master sites that are being added with object-level export/import. You will need

these export dump files at each new site to perform the import described in the next

step.

*/

PAUSE Press <RETURN> to continue when the export dump files have been
transfered to the new master sites that are being added with object-level
export/import.

/*

Step 10 Perform object-level imports at each new master site of each object
you exported in Step 7.
The following is an example of an object-level import that imports the entire hr
schema:

imp system/manager FILE=hr_schema.dmp FROMUSER=hr BUFFER=30720 IGNORE=y
GRANTS=y ROWS=y DESTROY=y COMMIT=y
7-28 Oracle9i Replication Management API Reference

Adding New Master Sites
Other objects, such as the indexes based on the tables, are imported automatically.

Connect to the site where you will perform the object-level imports and then

perform the imports at each site:

*/

CONNECT repadmin/repadmin@orc4.world

PAUSE Press <RETURN> to continue when the imports are complete at this site. You
can use a separate terminal window to perform the object-level imports.

CONNECT repadmin/repadmin@orc5.world

PAUSE Press <RETURN> to continue when the imports are complete at this site. You
can use a separate terminal window to perform the object-level imports.

/*

Step 11 Allow new masters to receive deferred transactions.
The following procedure enables the propagation of deferred transactions from

other prepared new master sites and existing master sites to the invocation master

site. This procedure also enables the propagation of deferred transactions from the

invocation master site to the other new master sites and existing master sites.

Note: You can also perform database exports and imports by

entering exp system/manager at the command line prompt and

then answering the subsequent prompts.

See Also: Oracle9i Database Utilities for information about

performing object-level imports

Caution: Do not invoke this procedure until object-level

export/import for the new master site is complete.

Do not allow any data manipulation language (DML) statements

directly on the objects in the extended master group in the new

master site until execution of this procedure returns successfully,

because these DML statements may not be replicated.
Managing a Master Replication Environment 7-29

Adding New Master Sites
*/

CONNECT repadmin/repadmin@orc4.world

BEGIN
DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (

 extension_id => :extension_id);
END;
/

CONNECT repadmin/repadmin@orc5.world

BEGIN
DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (

 extension_id => :extension_id);
END;
/

SET ECHO OFF

SPOOL OFF

/*

************************** END OF SCRIPT **********************************/

Note: You can find the extension_id by querying the DBA_
REPSITES_NEW data dictionary view.
7-30 Oracle9i Replication Management API Reference

Adding New Master Sites
Adding New Master Sites to a Quiesced Master Group
You can add new master sites to a quiesced master group in one of the following

ways:

■ Adding New Master Sites Using the ADD_MASTER_DATABASE Procedure

■ Adding New Master Sites with Offline Instantiation Using Export/Import

Typically, you should only use the ADD_MASTER_DATABASE procedure if you have

a relatively small master group or if you plan to precreate the replication tables and

load the data into them at the new master sites. If this is not the case, the ADD_
MASTER_DATABASE procedure may not be a good option because the entire master

group is copied over the network. For larger master groups, either precreate the

objects in the master group at the new master sites or use offline instantiation.

Adding New Master Sites Using the ADD_MASTER_DATABASE Procedure
You can use the ADD_MASTER_DATABASE procedure to add additional master sites

to an existing master group that is quiesced. Executing this procedure replicates

existing master objects to the new site. If any master site is lower than 9.0.0

compatibility level, then you must use the following procedure. That is, the master

group must be quiesced to extend it with new master sites. You control the

compatibility level of a database with the COMPATIBLE initialization parameter.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Definition Site

Replication Status: Quiesced

Complete the following steps to use the ADD_MASTER_DATABASEprocedure to add

sites to a master group.

/************************* BEGINNING OF SCRIPT ******************************

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 7-34 into a text editor and then edit

the text to create a script for your environment.
Managing a Master Replication Environment 7-31

Adding New Master Sites
Step 1 Set up the new master site.
Make sure the appropriate schema and database links have been created before

adding your new master site. Be sure to create the database links from the new

master site to each of the existing masters sites. Also, create a database link from

each of the existing master sites to the new master site. After the database links

have been created, make sure that you also define the scheduled links for each of

the new database links.

*/

SET ECHO ON

SPOOL add_masters_quiesced.out

PAUSE Press <RETURN> to the new master site has been set up.

/*

Step 2 Connect to the master definition site as the replication administrator.
*/

CONNECTrepadmin/repadmin@orc1.world

/*

Step 3 If the replication status is normal, then change the status to quiesced.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

See Also:

■ "Setting Up Master Sites" section on page 2-5

■ "Creating Scheduled Links Between the Master Sites" on

page 2-20
7-32 Oracle9i Replication Management API Reference

Adding New Master Sites
Step 4 Use the ADD_MASTER_DATABASE procedure to add the new master
sites.
This example assumes that the replicated objects do not exist at the new master site.

Therefore, the copy_rows parameter is set to true to copy the rows in the

replicated objects at the master definition site to the new master site, and the use_
existing_objects parameter is set to false so that Advanced Replication

creates the replicated objects at the new site. If the replicated objects already exist at

the new site but do not contain any data, then set use_existing_objects to

true .

*/

BEGIN
DBMS_REPCAT.ADD_MASTER_DATABASE (

 gname => 'hr_repg',
 master => 'orc4.world',
 use_existing_objects => FALSE,
 copy_rows => TRUE,
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

You should wait until the DBA_REPCATLOGview is empty. This view has temporary

information that is cleared after successful execution. Execute the following SELECT
statement in another SQL*Plus session to monitor the DBA_REPCATLOG view:

SELECT COUNT(*) FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';

All of the processing is complete when this statement returns zero (0).

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*

Step 5 Resume replication activity by using the RESUME_MASTER_ACTIVITY
procedure.
*/

BEGIN
Managing a Master Replication Environment 7-33

Adding New Master Sites
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/
7-34 Oracle9i Replication Management API Reference

Adding New Master Sites
Adding New Master Sites with Offline Instantiation Using Export/Import
Expanding established replication environments can cause network traffic when

you add a new master site to your replication environment using the ADD_MASTER_
DATABASE procedure. This is caused by propagating the entire contents of the table

or materialized view through the network to the new replicated site.

To minimize such network traffic, you can expand your replication environment by

using the offline instantiation procedure. Offline instantiation takes advantage of

Oracle’s Export and Import utilities, which allow you to create an export file and

transfer the data to the new site through another storage medium, such as

CD-ROM, tape, and so on.

The following script is an example of how to perform an offline instantiation of a

master site. This script can potentially eliminate large amounts of network traffic

caused by the normal method of adding a new master site to an existing master

group.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Definition Site and New Master Site

Replication Status: Quiesced and Partial

Complete the following steps to use offline instantiation to add sites to a master

group.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Set up the new master site.
Make sure the appropriate schema and database links have been created before

performing the offline instantiation of your new master site. Be sure to create the

database links from the new master site to each of the existing masters sites. Also,

create a database link from each of the existing master sites to the new master site.

After the database links have been created, make sure that you also define the

scheduled links for each of the new database links.

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 7-41 into a text editor and then edit

the text to create a script for your environment.
Managing a Master Replication Environment 7-35

Adding New Master Sites
*/

SET ECHO ON

SPOOL add_masters_instant.out

PAUSE Press <RETURN> to the new master site has been set up.

/*

Step 2 Connect to the master definition site as the replication administrator.
*/

CONNECTrepadmin/repadmin@orc1.world

/*

Step 3 Suspend master activity.
You need to suspend master activity for the existing master sites before exporting

your master data and beginning the offline instantiation process.

*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

See Also:

■ "Setting Up Master Sites" section on page 2-5

■ "Creating Scheduled Links Between the Master Sites" on

page 2-20
7-36 Oracle9i Replication Management API Reference

Adding New Master Sites
Step 4 Verify that there are no pending transactions in a separate SQL*Plus
session.
This includes pushing any outstanding deferred transactions, resolving any error

transactions, and pushing any administrative transactions. This step must be

performed at each of the existing master sites.

Check the error transaction queue.

SELECT * FROM DEFERROR;

If any deferred transactions have been entered into the error queue, then you need

to resolve the error situation and then manually reexecute the deferred transaction.

The following is an example:

BEGIN
DBMS_DEFER_SYS.EXECUTE_ERROR (

 deferred_tran_id => '128323',
 destination => 'orc1.world');
END;
/

Check for outstanding administrative requests.

SELECT * FROM DBA_REPCATLOG;

If any administrative requests remain, then you can manually push these

transactions or wait for them to be executed automatically. You may need to execute

the DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN procedure several times,

because some administrative operations have multiple steps. The following is an

example:

BEGIN
DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN (

 gname => 'hr_repg',
 all_sites => TRUE);
END;
/

*/

PAUSE Press <RETURN> to continue when you have verified that there are no
pending requests.

/*
Managing a Master Replication Environment 7-37

Adding New Master Sites
Step 5 Begin offline instantiation procedure.
*/

BEGIN
DBMS_OFFLINE_OG.BEGIN_INSTANTIATION (

 gname => 'hr_repg',
 new_site => 'orc4.world');
END;
/

/*

You should wait until the DBA_REPCATLOGview is empty. This view has temporary

information that is cleared after successful execution. Execute the following SELECT
statement in another SQL*Plus session to monitor the DBA_REPCATLOG view:

SELECT * FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*

Step 6 In a separate terminal window, connect as hr/hr to export.
Use the Oracle Export utility to generate the export file that you will transfer to the

new master site. The export file contains the replicated objects to be added at the

new master site.

The following is an example of an export command for the hr schema:

exp hr/hr@orc1.world

*/

PAUSE Press <RETURN> to continue when the export is complete.

See Also: Oracle9i Database Utilities for additional information

Note: You can also perform database exports by entering exp
system/manager at the command line prompt and then

answering the subsequent prompts.
7-38 Oracle9i Replication Management API Reference

Adding New Master Sites
/*

Step 7 Resume partial replication activity.
Because it may take some time to complete the offline instantiation process, you can

resume replication activity for the remaining master sites (excluding the new master

site) by executing the RESUME_SUBSET_OF_MASTERS procedure in the DBMS_
OFFLINE_OG package after the export is complete. In the example below,

replication activity is resumed at all master sites except the new master site --

orc4.world .

*/

BEGIN
DBMS_OFFLINE_OG.RESUME_SUBSET_OF_MASTERS (

 gname => 'hr_repg',
 new_site => 'orc4.world');
END;
/

/*

Step 8 Connect to the new master site as the replication administrator.
*/

CONNECTrepadmin/repadmin@orc4.world

/*

Step 9 Prepare new master site.
After transferring the export file from the master definition site to the new master

site, you must prepare the new site to import the data in your export file. Make sure

you execute the following procedure at the new master site.

*/

BEGIN
DBMS_OFFLINE_OG.BEGIN_LOAD (

 gname => 'hr_repg',
 new_site => 'orc4.world');
END;
/

Managing a Master Replication Environment 7-39

Adding New Master Sites
/*

Step 10 In a separate terminal window, import data from export file.
After importing the export file that you generated earlier, you have transferred the

data from your master definition site to your new master site.

The following is an example of an import command for the hr schema:

imp hr/hr@orc4.world FULL=y IGNORE=y

*/

PAUSE Press <RETURN> to continue when the import is complete.

/*

Step 11 Complete load process at new master site.
After importing the export file, you are ready to complete the offline instantiation

process at the new master site. Executing the DBMS_OFFLINE_OG.END_LOAD
procedure prepares the new site for normal replication activity.

*/

BEGIN
DBMS_OFFLINE_OG.END_LOAD (

 gname => 'hr_repg',
 new_site => 'orc4.world');
END;
/

/*

Step 12 Connect to the master definition site as the replication administrator.
*/

CONNECTrepadmin/repadmin@orc1.world

Note: You can also perform database imports by entering imp
system/manager at the command line prompt and then

answering the subsequent prompts.
7-40 Oracle9i Replication Management API Reference

Removing a Master Site from a Master Group
/*

Step 13 Complete instantiation process.
After completing the steps at the new master site, you are ready to complete the

offline instantiation process. Executing the END_INSTANTIATION procedure in the

DBMS_OFFLINE_OGpackage completes the process and resumes normal replication

activity at all master sites. Make sure you execute the following procedure at the

master definition site.

*/

BEGIN
DBMS_OFFLINE_OG.END_INSTANTIATION (

 gname => 'hr_repg',
 new_site => 'orc4.world');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Removing a Master Site from a Master Group
When it becomes necessary to remove a master site from a master group, use the

REMOVE_MASTER_DATABASES procedure to drop one or more master sites.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Definition Site

Replication Status: Quiesced

Complete the following steps to remove a master site.

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 7-43 into a text editor and then edit

the text to create a script for your environment.
Managing a Master Replication Environment 7-41

Removing a Master Site from a Master Group
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master definition site as the replication administrator.
*/

SET ECHO ON

SPOOL remove_masters.out

CONNECTrepadmin/repadmin@orc1.world

/*

Step 2 If the replication status is normal for the master group, then change the
status to quiesced.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

Step 3 Remove the master site using the REMOVE_MASTER_DATABASES
procedure.
*/

BEGIN
DBMS_REPCAT.REMOVE_MASTER_DATABASES (

 gname => 'hr_repg',
 master_list => 'orc4.world');
END;
/

/*

You should wait until the DBA_REPCATLOG view is empty. Execute the following

SELECT statement in another SQL*Plus session to monitor the DBA_REPCATLOG
view:

SELECT * FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';
7-42 Oracle9i Replication Management API Reference

Removing a Master Site from a Master Group
*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty for the master
group.

/*

Step 4 Resume master activity for the master group.
*/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/
Managing a Master Replication Environment 7-43

Removing a Master Site from a Master Group
Removing an Unavailable Master Site
The sites being removed from a master group do not have to be accessible. When a

master site will not be available for an extended period of time due to a system or

network failure, you might decide to drop the master site from the master group.

However, because the site is unavailable, you most likely cannot suspend

replication activity for the master group. You can use the REMOVE_MASTER_
DATABASESprocedure in the DBMS_REPCATpackage to remove master sites from a

master group, even if the master group is not quiesced.

If this is the case, you are responsible for:

■ Cleaning the deferred transaction queue

■ Removing any data inconsistencies

Specifically, the next time that you suspend replication activity for a master group,

you must complete the following steps as soon as possible after the unavailable

master sites are removed:

Step 1 Suspend replication activity for the master group. See "SUSPEND_
MASTER_ACTIVITY Procedure" on page 20-102 for information.

Step 2 Delete all deferred transactions from each master site where the
destination for the transaction is a removed master site. See "DELETE_TRAN
Procedure" on page 14-7 for information.

Step 3 Remove all deferred transactions from removed master sites. See
"DELETE_TRAN Procedure" on page 14-7 for information.

Step 4 Reexecute or delete all error transactions at each remaining master
site. See "Managing the Error Queue" on page 9-18 for information about
reexecuting error transactions, and see "DELETE_TRAN Procedure" on
page 14-7 for information about removing error transactions.

Step 5 Ensure that no deferred or error transactions exist at each remaining
master. If you cannot remove one or more deferred transactions from a
7-44 Oracle9i Replication Management API Reference

Updating the Comments Fields in Data Dictionary Views
remaining master, execute the DBMS_DEFER_SYS.DELETE_TRAN procedure at
the master site.

Step 6 Ensure that all replicated data is consistent. See Chapter 18, "DBMS_
RECTIFIER_DIFF" for information about determining and correcting
differences.

Step 7 Resume replication activity for the master group. See "RESUME_
MASTER_ACTIVITY Procedure" on page 20-93 for information.

Updating the Comments Fields in Data Dictionary Views
Several procedures in the DBMS_REPCAT package enable you to update the

comment information in the various data dictionary views associated with

replication. Table 7–1 lists the appropriate procedure to call for each view.

Note: After dropping an unavailable master site from a master

group, you should also remove the master group from the dropped

site to finish the cleanup.

Table 7–1 Updating Comments in Advanced Replication Facility Views

View DBMS_REPCAT Procedure See for Parameter Information

DBA_REPGROUP COMMENT_ON_REPGROUP(
 gname IN VARCHAR2,
 comment IN VARCHAR2)

"COMMENT_ON_REPGROUP
Procedure" on page 20-39.

DBA_REPOBJECT COMMENT_ON_REPOBJECT(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 comment IN VARCHAR2)

"COMMENT_ON_REPOBJECT
Procedure" on page 20-40.

DBA_REPSITES COMMENT_ON_REPSITES(
 gname IN VARCHAR2,
 master IN VARCHAR,
 comment IN VARCHAR2)

"COMMENT_ON_REPSITES
Procedure" on page 20-41.
Managing a Master Replication Environment 7-45

Updating the Comments Fields in Data Dictionary Views
DBA_REPCOLUMN_GROUP COMMENT_ON_COLUMN_GROUP(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 comment IN VARCHAR2)

"COMMENT_ON_COLUMN_
GROUP Procedure" on page 20-36.

DBA_REPPRIORITY_GROUP COMMENT_ON_PRIORITY_GROUP(
 gname IN VARCHAR2,
 pgroup IN VARCHAR2)
 comment IN VARCHAR2)

"COMMENT_ON_PRIORITY_
GROUP/COMMENT_ON_SITE_
PRIORITY Procedures" on
page 20-38.

DBA_REPPRIORITY_GROUP
(site priority group)

COMMENT_ON_SITE_PRIORITY(
 gname IN VARCHAR2,
 name IN VARCHAR2,
 comment IN VARCHAR2)

"COMMENT_ON_PRIORITY_
GROUP/COMMENT_ON_SITE_
PRIORITY Procedures" on
page 20-38.

DBA_REPRESOLUTION
(uniqueness conflicts)

COMMENT_ON_UNIQUE_RESOLUTION(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2)

The parameters for the COMMENT_
ON_UNIQUE_RESOLUTION
procedures are described in
"COMMENT_ON_conflicttype_
RESOLUTION Procedure" on
page 20-43.

DBA_REPRESOLUTION
(update conflicts)

COMMENT_ON_UPDATE_RESOLUTION(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2)

The parameters for the COMMENT_
ON_UNIQUE_RESOLUTION
procedures are described in
"COMMENT_ON_conflicttype_
RESOLUTION Procedure" on
page 20-43.

DBA_REPRESOLUTION
(delete conflicts)

COMMENT_ON_DELETE_RESOLUTION(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2)

The parameters for the COMMENT_
ON_UNIQUE_RESOLUTION
procedures are described in
"COMMENT_ON_conflicttype_
RESOLUTION Procedure" on
page 20-43.

Table 7–1 Updating Comments in Advanced Replication Facility Views (Cont.)

View DBMS_REPCAT Procedure See for Parameter Information
7-46 Oracle9i Replication Management API Reference

Using Procedural Replication
Using Procedural Replication
Procedural replication can offer performance advantages for large batch-oriented

operations operating on large numbers of rows that can be run serially within a

replication environment.

A good example of an appropriate application is a purge operation, also referred to

as an archive operation, that you run infrequently (for example, once in each

quarter) during off hours to remove old data, or data that was "logically" deleted

from the online database. An example using procedural replication to purge deleted

rows is described in the "Avoiding Delete Conflicts" section in Chapter 5, "Conflict

Resolution Concepts and Architecture", of Oracle9i Replication.

Restrictions on Procedural Replication
All parameters for a replicated procedure must be IN parameters; OUT and IN/OUT
modes are not supported. The following datatypes are supported for these

parameters:

■ VARCHAR2

■ NVARCHAR2

■ NUMBER

■ DATE

■ RAW

■ ROWID

■ CHAR

■ NCHAR

■ Binary LOB (BLOB)

■ Character LOB (CLOB)

■ National character LOB (NCLOB)

■ User-defined datatypes

Oracle cannot detect update conflicts produced by replicated procedures.

Replicated procedures must detect and resolve conflicts themselves. Because of the

difficulties involved in writing your own conflict resolution routines, it is best to

simply avoid the possibility of conflicts altogether.
Managing a Master Replication Environment 7-47

Using Procedural Replication
Adhering to the following guidelines helps you ensure that your tables remain

consistent at all sites when you plan to use procedural replication:

■ You must disable row-level replication within the body of the deferred

procedure. See "Updating the Comments Fields in Data Dictionary Views" on

page 7-45.

■ Only one replicated procedure should be run at a time, as described in

"Serializing Transactions" on page 7-50.

■ Deferred transactions should be propagated serially. For more information

about guidelines for scheduled links, see Oracle9i Replication.

■ The replicated procedure must be packaged and the package cannot contain

any functions. Standalone deferred procedures and standalone or packaged

deferred functions are not currently supported.

■ The deferred procedures must reference only locally owned data.

■ The procedures should not use locally generated fields, values, or

environmentally dependent SQL functions. For example, the procedure should

not call SYSDATE.

■ Your data ownership should be statically partitioned. That is, ownership of a

row should not change between sites.

■ If you have multiple master groups at a master site, and one or more master

groups are quiesced, then you cannot perform procedural replication on any

master group at the master site. This restriction is enforced because a procedure

in one master group may update objects in another master group. You can only

perform procedural replication when all of the master groups on a master site

are replicating data normally (that is, when none of the master groups is

quiesced).

For example, if you have a procedure named sal_raise in master group A on

master site db1 , then you cannot run the sal_raise procedure if master group B

on master site db1 is quiesced, even if master group A is replicating normally.

■ When using procedural replication, a procedure call is only propagated to

master replication sites. The procedure call is not propagated to materialized

view sites. However, procedural replication can be initiated at a materialized

view site. In this case, the procedure call is propagated to all of the master sites

in the replication environment, but the procedure call is not propagated to any

other materialized view sites. Other materialized view sites must pull changes

made at the master site by performing a materialized view refresh.
7-48 Oracle9i Replication Management API Reference

Using Procedural Replication
For example, suppose a replication environment includes two master sites named

msite1 and msite2 and two materialized view sites named mview1 and mview2 .

If procedural replication is initiated at mview1 , then the procedure is run at mview1
and the procedure call is propagated to the two master sites, msite1 and msite2 ,

where the procedure is also run. However, the procedure call is not propagated to

mview2 . Therefore, during the next refresh, mview2 pulls down all of the changes

made by the procedure at its master site.

User-Defined Types and Procedural Replication
When using procedural replication, the user-defined types and the objects

referenced in the procedure must meet the following conditions:

■ For an object type, all replication sites must agree about the order of attributes

in the object type. You establish the attribute order when you create the object

type. Consider the following object type:

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

At all replication sites, street_address must be the first attribute, postal_code
must be the second attribute, city must be the third attribute, and so on.

■ For an Oracle object, all replication sites must have the same object identifier

(OID), schema owner, and type name for each replicated object type.

You can meet these conditions by always using distributed schema management to

create or modify any replicated object, including object types, tables with column

objects, and object tables. If you do not use distributed schema management to

create and modify object types, then replication errors may result.

See Also: Oracle9i Replication for more information about type

agreement at replication sites
Managing a Master Replication Environment 7-49

Using Procedural Replication
Serializing Transactions
Serial execution ensures that your data remains consistent. The replication facility

propagates and executes replicated transactions one at a time. For example, assume

that you have two procedures, A and B, that perform updates on local data. Now

assume that you perform the following actions, in order:

Step 1 Execute A and B locally.

Step 2 Queue requests to execute other replicas of A and B on other nodes.

Step 3 Commit.
The replicas of A and B on the other nodes are executed completely serially, in the

same order that they were committed at the originating site. If A and B execute

concurrently at the originating site, however, then they may produce different

results locally than they do remotely. Executing A and B serially at the originating

site ensures that all sites have identical results. Propagating the transaction serially

ensures that A and B are executing in serial order at the target site in all cases.

Alternatively, you could write the procedures carefully, to ensure serialization. For

example, you could use SELECT... FOR UPDATE for queries to ensure serialization

at the originating site and at the target site if you are using parallel propagation.

Generating Support for Replicated Procedures
You must disable row-level replication support at the start of your procedure, and

then re-enable support at the end. This operation ensures that any updates that

occur as a result of executing the procedure are not propagated to other sites.

Row-level replication is enabled and disabled by calling the following procedures,

respectively:

■ DBMS_REPUTIL.REPLICATION_ON

■ DBMS_REPUTIL.REPLICATION_OFF

See Also:

■ "Disabling Replication" on page 9-5

■ "REPLICATION_ON Procedure" on page 24-3

■ "REPLICATION_OFF Procedure" on page 24-3
7-50 Oracle9i Replication Management API Reference

Using Procedural Replication
When you generate replication support for your replicated package, Oracle creates

a wrapper package in the schema of the replication propagator.

The wrapper package has the same name as the original package, but its name is

prefixed with the string you supply when you generate replication support for the

procedure. If you do not supply a prefix, then Oracle uses the default prefix,

defer_ . The wrapper procedure has the same parameters as the original, along

with two additional parameters: call_local and call_remote . These two CHAR
parameters determine where the procedure is executed. When call_local is 'Y' ,

the procedure is executed locally. When call_remote is 'Y' , the procedure will

ultimately be executed at all other master sites in the replication environment.

The remote procedures are called directly if you are propagating changes

synchronously, or calls to these procedures are added to the deferred transaction

queue if you are propagating changes asynchronously. By default, call_local is

'N' , and call_remote is 'Y' .

Oracle generates replication support for a package in two phases. The first phase

creates the package specification at all sites. Phase two generates the package body

at all sites. These two phases are necessary to support synchronous replication.

For example, suppose you create the package emp_mgmt containing the procedure

new_dept , which takes one argument, email . To replicate this package to all

master sites in your system, you can use the Replication Management tool to add

the package to a master group and then generate replication support for the object.

After completing these steps, an application can call procedure in the replicated

package as follows:

BEGIN
defer_emp_mgmt.new_dept(email => 'jones',
 call_local => 'Y',
 call_remote => 'Y');
END;
/

Note: Unregistering the current propagator drops all existing

generated wrappers in the propagator’s schema. Replication

support for wrapped stored procedures must be regenerated after

you register a new propagator.
Managing a Master Replication Environment 7-51

Using Procedural Replication
As shown in Figure 7–4, the logic of the wrapper procedure ensures that the

procedure is called at the local site and subsequently at all remote sites. The logic of

the wrapper procedure also ensures that when the replicated procedure is called at

the remote sites, call_remote is false , ensuring that the procedure is not further

propagated.

If you are operating in a mixed replication environment with static partitioning of

data ownership (that is, if you are not preventing row-level replication), then

Advanced Replication preserves the order of operations at the remote node, because

both row-level and procedural replication use the same asynchronous queue.

See Also: The Replication Management tool’s online help for

more information about managing master groups and replicated

objects using the Replication Management tool
7-52 Oracle9i Replication Management API Reference

Using Procedural Replication
Figure 7–4 Asynchronous Procedural Replication

new_dept(arg1)
BEGIN
 lock table in EXCLUSIVE mode
 disable row–level replication
 update employees
 enable row–level replication
END;

new_dept(arg1)
BEGIN
 lock table in EXCLUSIVE mode
 disable row–level replication
 update employees
 enable row–level replication
END;

Wrapper

defer_emp_mgmt.new_dept('Jones' 'Y', 'Y')

Deferred Transaction Queue

. . . packagename procname . . .

Employees table

employee_id last_name department_id

100
101
102

Jones

Braun

20
20
20

Kim

Employees table

employee_id last_name department_id

100
101
102

Jones

Braun

20
20
20

Kim

update(oldargs newargs)
insert(newargs)
update(oldargs newargs)
delete(oldargs)
new_dept(Jones)

new_dept(args...)

if call_local='Y'
 call new_dept(Jones)
if call_remote='Y'
 build call to new_dept
 for deferred queue
 with call_remote='N'

Site A Site B
Managing a Master Replication Environment 7-53

Using Procedural Replication
7-54 Oracle9i Replication Management API Reference

Managing a Materialized View Replication Environ
8

Managing a Materialized View Replication

Environment

Materialized view replication provides the flexibility to build data sets to meet the

needs of your users and front-end applications, while still meeting the requirements

of your security configuration. This chapter describes how to manage materialized

view sites with the replication management API.

This chapter contains these topics:

■ Refreshing Materialized Views

■ Changing a Materialized View Group’s Master Site

■ Dropping Materialized View Groups and Objects

■ Managing Materialized View Logs

■ Performing an Offline Instantiation of a Materialized View Site Using

Export/Import

■ Using a Group Owner for a Materialized View Group
ment 8-1

Refreshing Materialized Views
Refreshing Materialized Views
Refreshing a materialized view synchronizes the data in the materialized view’s

master(s) and the data in the materialized view. You can either refresh all of the

materialized views in a refresh group at once, or you can refresh materialized views

individually. If you have applications that depend on more than one materialized

view at a materialized view site, then Oracle Corporation recommends using

refresh groups so that the data is transactionally consistent in all of the materialized

views used by the application.

The following example refreshes the hr_refg refresh group:

EXECUTEDBMS_REFRESH.REFRESH ('hr_refg');

The following example refreshes the hr.departments_mv materialized view:

BEGIN
DBMS_MVIEW.REFRESH (

 list => 'hr.departments_mv',
 method => '?');
END;
/

Changing a Materialized View Group’s Master Site
To change the master site of a materialized view group at a level 1 materialized

view site to another master site, call the SWITCH_MVIEW_MASTER procedure in the

DBMS_REPCAT package, as shown in the following example:

BEGIN
DBMS_REPCAT.SWITCH_MVIEW_MASTER (

 gname => 'hr_repg',
 master => 'orc3.world');
END;
/

In this example, the master site for the hr_repg replication group is changed to the

orc3.world master site. You must call this procedure at the materialized view site

whose master site you want to change. The new database must be a master site in

the replication environment. When you call this procedure, Oracle uses the new

master to perform a full refresh of each materialized view in the local materialized

view group. Make sure you have set up the materialized view site to use the new

master site before you run the SWITCH_MVIEW_MASTER procedure.
8-2 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects
The entries in the SYS.SLOG$ table at the old master site for the switched

materialized view are not removed. As a result, the materialized view log (MLOG$
table) of the switched updatable materialized view at the old master site has the

potential to grow indefinitely, unless you purge it by calling DBMS_MVIEW.PURGE_
LOG.

Dropping Materialized View Groups and Objects
You may need to drop replication activity at a materialized view site for a number

of reasons. Perhaps the data requirements have changed or an employee has left the

company. In any case, as a DBA you will need to drop the replication support for

the target materialized view site.

This section contains the following sections:

■ Dropping a Materialized View Groups Created with a Deployment Template

■ Dropping a Materialized View Group or Objects Created Manually

■ Cleaning Up a Master Site or Master Materialized View Site

Note: You cannot switch the master of materialized views that are

based on other materialized views (level 2 and greater materialized

views). Such a materialized view must be dropped and re-created if

you want to base it on a different master.

See Also: "Setting Up Materialized View Sites" on page 2-24
Managing a Materialized View Replication Environment 8-3

Dropping Materialized View Groups and Objects
Dropping a Materialized View Groups Created with a Deployment Template
If a materialized view group was created with a deployment template, then, before

you drop the materialized view group at the remote materialized view site, you

need to execute the DROP_SITE_INSTANTIATION procedure at the target master

site of the materialized view group. In addition to removing the metadata relating

to the materialized view group, this procedure also removes the related deployment

template data regarding this site.

The DROP_SITE_INSTANTIATION procedure has a public and a private version.

The public version allows the owner of the materialized view group to drop the

materialized view site, while the private version allows the replication

administrator to drop a materialized view site on behalf of the materialized view

group owner.

Using the Public Version of DROP_SITE_INSTANTIATION
Meet the following requirements to complete these actions:

Executed As:

■ Materialized View Group Owner at Master Site

■ Materialized View Administrator at Materialized View Site

Executed At:

■ Master Site for Target Materialized View Site

■ Materialized View Site

Replication Status: Normal

Complete the following steps to drop a materialized view group created with a

deployment template.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site as the materialized view group owner.
*/

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 8-6 into a text editor and then edit

the text to create a script for your environment.
8-4 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects
SET ECHO ON

SPOOL drop_mv_group_public.out

CONNECT hr/hr@orc3.world

/*

Step 2 Drop the instantiated materialized view site from the master site.
*/

BEGIN
DBMS_REPCAT_INSTANTIATE.DROP_SITE_INSTANTIATION(

 refresh_template_name => 'hr_refg_dt',
 site_name => 'orc3.world');
END;
/

/*

Step 3 Connect to the remote materialized view site as the materialized view
administrator.
*/

CONNECT mviewadmin/mviewadmin@mv4.world

/*

If you are not able to connect to the remote materialized view site, then the target

materialized view group cannot refresh, but the existing data still remains at the

materialized view site.

Step 4 Drop the materialized view group.
*/

BEGIN
DBMS_REPCAT.DROP_MVIEW_REPGROUP (

 gname => 'hr_repg',
 drop_contents => TRUE);
END;
/

/*
Managing a Materialized View Replication Environment 8-5

Dropping Materialized View Groups and Objects
If you want to physically remove the contents of the materialized view group from

the materialized view database, then be sure that you specify TRUE for the drop_
contents parameter.

Step 5 Remove the refresh group.
*/

BEGIN
DBMS_REFRESH.DESTROY (

 name => 'hr_refg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Using the Private Version of DROP_SITE_INSTANTIATION
The following steps are to be performed by the replication administrator on behalf

of the materialized view group owner. Meet the following requirements to complete

these actions:

Executed As:

■ Replication Administrator at Master Site

■ Materialized View Administrator at Materialized View Site

Executed At:

■ Master Site for Target Materialized View Site

■ Materialized View Site

Replication Status: Normal

Complete the following steps to drop a materialized view group created with a

deployment template.
8-6 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site as the replication administrator.
*/

SET ECHO ON

SPOOL drop_mv_group_private.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Drop the instantiated materialized view site from the master site.
*/

BEGIN
DBMS_REPCAT_RGT.DROP_SITE_INSTANTIATION (

 refresh_template_name => 'hr_refg_dt',
 user_name => 'hr',
 site_name => 'orc3.world');
END;
/

/*

Step 3 Connect to the remote materialized view site as the materialized view
administrator.
*/

CONNECT mviewadmin/mviewadmin@mv4.world

/*

If you are unable to connect to the remote materialized view site, then the target

materialized view group cannot refresh, but the existing data still remains at the

materialized view site.

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 8-8 into a text editor and then edit

the text to create a script for your environment.
Managing a Materialized View Replication Environment 8-7

Dropping Materialized View Groups and Objects
Step 4 Drop the materialized view group.
*/

BEGIN
DBMS_REPCAT.DROP_MVIEW_REPGROUP (

 gname => 'hr_repg',
 drop_contents => TRUE
 gowner => 'hr');
END;
/

/*

If you want to physically remove the contents of the materialized view group from

the materialized view database, then be sure that you specify TRUE for the drop_
contents parameter.

Step 5 Remove the refresh group.
*/

BEGIN
DBMS_REFRESH.DESTROY (

 name => 'hr_refg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Dropping a Materialized View Group or Objects Created Manually
The most secure method of removing replication support for a materialized view

site is to physically drop the replicated objects or groups at the materialized view

site. The following two sections describe how to drop these objects and groups

while connected to the materialized view group.

Ideally, these procedures should be executed while the materialized view is

connected to its target master site or master materialized view site. A connection

ensures that any related metadata at the master site or master materialized view site

is removed. If a connection to the master site or master materialized view site is not
8-8 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects
possible, then be sure to complete the procedure described in "Cleaning Up a

Master Site or Master Materialized View Site" on page 8-10 to manually remove the

related metadata.

Dropping a Materialized View Group Created Manually
When it becomes necessary to remove a materialized view group from a

materialized view site, use the DROP_MVIEW_REPGROUP procedure to drop a

materialized view group. When you execute this procedure and are connected to

the target master site or master materialized view site, the metadata for the target

materialized view group at the master site or master materialized view site is

removed. If you cannot connect, then see "Cleaning Up a Master Site or Master

Materialized View Site" on page 8-10 for more information.

Meet the following requirements to complete these actions:

Executed As: Materialized View Administrator

Executed At: Remote Materialized View Site

Replication Status: N/A

Complete the following steps to drop a materialized view group at a materialized

view site:

Step 1 Connect to the materialized view site as the materialized view
administrator.
CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Drop the materialized view group.
BEGIN

DBMS_REPCAT.DROP_MVIEW_REPGROUP (
 gname => 'hr_repg',
 drop_contents => TRUE);
END;
/

If you want to physically remove the contents of the materialized view group from

the materialized view database, then be sure that you specify TRUE for the drop_
contents parameter.
Managing a Materialized View Replication Environment 8-9

Dropping Materialized View Groups and Objects
Dropping Objects at a Materialized View Site
When it becomes necessary to remove an individual materialized view from a

materialized view site, use the DROP_MVIEW_REPOBJECT procedure API to drop a

materialized view. When you execute this procedure and are connected to the target

master site or master materialized view site, the metadata for the target

materialized view at the master site or master materialized view site is removed. If

you cannot connect, then see "Cleaning Up a Master Site or Master Materialized

View Site" on page 8-10 for more information.

Meet the following requirements to complete these actions:

Executed As: Materialized View Administrator

Executed At: Remote Materialized View Site

Replication Status: N/A

Complete the following steps to drop an individual materialized view at a

materialized view site.

Step 1 Connect to the materialized view site as the materialized view
administrator.
CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Drop the materialized view.
BEGIN

DBMS_REPCAT.DROP_MVIEW_REPOBJECT (
 sname => 'hr',
 oname => 'employees_mv1',
 type => 'SNAPSHOT',
 drop_objects => TRUE);
END;
/

If you want to physically remove the contents of the materialized view from the

materialized view database, then be sure that you specify TRUE for the drop_
contents parameter.

Cleaning Up a Master Site or Master Materialized View Site
If you are unable to drop a materialized view group or materialized view object

while connected to the target master site or master materialized view site, then you

must remove the related metadata at the master site or master materialized view

site manually. Cleaning up the metadata also ensures that you are not needlessly
8-10 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects
maintaining master table or master materialized view changes to a materialized

view log. The following sections describe how to clean up your master site or

master materialized view site after dropping a materialized view group or object.

Cleaning Up After Dropping a Materialized View Group
If you have executed the steps described in "Dropping a Materialized View Group

Created Manually" on page 8-9 and were not connected to the master site or master

materialized view site, then you are encouraged to complete the following steps to

clean up the target master site or master materialized view site.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Site or Master Materialized View Site for Target Materialized

View Site

Replication Status: Normal

Complete the following steps to clean up a master site or master materialized view

site after dropping a materialized view group:

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site or master materialized view site as the
replication administrator.
*/

SET ECHO ON

SPOOL cleanup_master1.out

CONNECT repadmin/repadmin@orc1.world

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 8-13 into a text editor and then edit

the text to create a script for your environment.
Managing a Materialized View Replication Environment 8-11

Dropping Materialized View Groups and Objects
Step 2 Unregister the materialized view groups.
*/

BEGIN
DBMS_REPCAT.UNREGISTER_MVIEW_REPGROUP (

 gname => 'hr_repg',
 mviewsite => 'mv1.world');
END;
/

/*

Step 3 Purge the materialized view logs of the entries that were marked for the
target materialized views. Execute the PURGE_MVIEW_FROM_LOGprocedure for
each materialized view that was in the materialized view groups you
unregistered in Step 2.

*/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (

 mviewowner => 'hr',
 mviewname => 'countries_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (

 mviewowner => 'hr',
 mviewname => 'departments_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (

 mviewowner => 'hr',
 mviewname => 'employees_mv1',
 mviewsite => 'mv1.world');
END;

Note: If for some reason unregistering the materialized view

group fails, then you should still complete this step.
8-12 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (

 mviewowner => 'hr',
 mviewname => 'jobs_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (

 mviewowner => 'hr',
 mviewname => 'job_history_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (

 mviewowner => 'hr',
 mviewname => 'locations_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (

 mviewowner => 'hr',
 mviewname => 'regions_mv1',
 mviewsite => 'mv1.world');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Cleaning Up Individual Materialized View Support
If you have executed the steps described in "Dropping Objects at a Materialized

View Site" on page 8-10 and were not connected to the master site or master
Managing a Materialized View Replication Environment 8-13

Dropping Materialized View Groups and Objects
materialized view site, then you are encouraged to complete the following steps to

clean up the target master site or master materialized view site.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Site or Master Materialized View Site for Target Materialized

View Site

Replication Status: Normal

Complete the following steps to clean up a master site or master materialized view

site after dropping an individual materialized view.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site or master materialized view site as the
replication administrator.
*/

SET ECHO ON

SPOOL cleanup_master2.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Unregister the materialized view.
*/

BEGIN
DBMS_MVIEW.UNREGISTER_MVIEW (

 mviewowner => 'hr',
 mviewname => 'employees_mv1',
 mviewsite => 'mv1.world');
END;
/

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 8-15 into a text editor and then edit

the text to create a script for your environment.
8-14 Oracle9i Replication Management API Reference

Dropping Materialized View Groups and Objects
/*

Step 3 Purge the associated materialized view log of the entries that were
marked for the target materialized views.

*/

BEGIN
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (

 mviewowner => 'hr',
 mviewname => 'employees_mv1',
 mviewsite => 'mv1.world');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Note: If for some reason unregistering the materialized view fails,

then you should still complete this step.
Managing a Materialized View Replication Environment 8-15

Managing Materialized View Logs
Managing Materialized View Logs
The following sections explain how to manage materialized view logs:

■ Altering Materialized View Logs

■ Managing Materialized View Log Space

■ Reorganizing Master Tables that Have Materialized View Logs

■ Dropping a Materialized View Log

Altering Materialized View Logs
After creating a materialized view log, you can alter its storage parameters and

support for corresponding materialized views. The following sections explain more

about altering materialized view logs. Only the following users can alter a

materialized view log:

■ The owner of the master table or master materialized view

■ A user with the SELECT privilege for the master table or master materialized

view and ALTERprivilege on the MLOG$_master_name, where master_name is the

name of the master for the materialized view log. For example, if the master

table is employees , then the materialized view log table name is MLOG$_
employees .

Altering Materialized View Log Storage Parameters
To alter a materialized view log’s storage parameters, use the ALTER
MATERIALIZED VIEW LOG statement. For example, the following statement alters a

materialized view log on the employees table in the hr schema:

ALTER MATERIALIZED VIEW LOG ON hr.employees
 PCTFREE 25
 PCTUSED 40;

Altering a Materialized View Log to Add Columns
To add new columns to a materialized view log, use the SQL statement ALTER
MATERIALIZED VIEW LOG. For example, the following statement alters a

materialized view log on the customers table in the sales schema:

ALTER MATERIALIZED VIEW LOG ON hr.employees
 ADD (department_id);
8-16 Oracle9i Replication Management API Reference

Managing Materialized View Logs
Managing Materialized View Log Space
Oracle automatically tracks which rows in a materialized view log have been used

during the refreshes of materialized views, and purges these rows from the log so

that the log does not grow endlessly. Because multiple simple materialized views

can use the same materialized view log, rows already used to refresh one

materialized view may still be needed to refresh another materialized view. Oracle

does not delete rows from the log until all materialized views have used them.

For example, suppose two materialized views were created against the customers
table in a master site. Oracle refreshes the customers materialized view at the

spdb1 database. However, the server that manages the master table and associated

materialized view log does not purge the materialized view log rows used during

the refresh of this materialized view until the customers materialized view at the

spdb2 database also refreshes using these rows.

Because Oracle must wait for all dependent materialized views to refresh before

purging rows from a materialized view log, unwanted situations can occur that

cause a materialized view log to grow indefinitely when multiple materialized

views are based on the same master table or master materialized view. For example,

such situations can occur when more than one materialized view is based on a

master table or master materialized view and one of the following conditions is

true:

■ One materialized view is not configured for automatic refreshes and has not

been manually refreshed for a long time.

■ One materialized view has an infrequent refresh interval, such as every year

(365 days).

■ A network failure has prevented an automatic refresh of one or more of the

materialized views based on the master table or master materialized view.

■ A network or site failure has prevented a master table or master materialized

view from becoming aware that a materialized view has been dropped.

See Also: Oracle9i Replication for more information about adding

columns to a materialized view log

Note: If you purge or TRUNCATE a materialized view log before a

materialized view has refreshed the changes that were deleted, then

the materialized view must perform a complete refresh.
Managing a Materialized View Replication Environment 8-17

Managing Materialized View Logs
Purging Rows from a Materialized View Log
Always try to keep a materialized view log as small as possible to minimize the

database space that it uses. To remove rows from a materialized view log and make

space for newer log records, you can perform one of the following actions:

■ Refresh the materialized views associated with the log so that Oracle can purge

rows from the materialized view log.

■ Manually purge records in the log by deleting rows required only by the nth

least recently refreshed materialized views.

To manually purge rows from a materialized view log, execute the PURGE_LOG
procedure of the DBMS_MVIEW package at the database that contains the log. For

example, to purge entries from the materialized view log of the customers table

that are necessary only for the least recently refreshed materialized view, execute

the following procedure:

BEGIN
DBMS_MVIEW.PURGE_LOG (

 master => 'hr.employees',
 num => 1,
 flag => 'DELETE');
END;
/

Only the owner of a materialized view log or a user with the EXECUTE privilege for

the DBMS_MVIEW package can purge rows from the materialized view log by

executing the PURGE_LOG procedure.

Truncating a Materialized View Log
If a materialized view log grows and allocates many extents, then purging the log of

rows does not reduce the amount of space allocated for the log. In such cases, you

should truncate the materialized view log. Only the owner of a materialized view

log or a user with the DELETE ANY TABLE system privilege can truncate a

materialized view log.
8-18 Oracle9i Replication Management API Reference

Managing Materialized View Logs
To reduce the space allocated for a materialized view log by truncating it, complete

the following steps:

Step 1 Acquire an exclusive lock on the master table or master materialized
view to prevent updates from occurring during the following process. For
example, issue a statement similar to the following:
LOCK TABLE hr.employees IN EXCLUSIVE MODE;

Step 2 Using a second database session, copy the rows in the materialized
view log (in other words, the MLOG$ base table) to a temporary table. For
example, issue a statement similar to the following:
CREATE TABLE hr.templog AS SELECT * FROM hr.MLOG$_employees;

Step 3 Using the second session, truncate the log using the SQL statement
TRUNCATE. For example, issue a statement similar to the following:
TRUNCATE hr.MLOG$_employees;

Step 4 Using the second session, reinsert the old rows so that you do not
have to perform a complete refresh of the dependent materialized views. For
example, issue statements similar to the following:
INSERT INTO hr.MLOG$_employees SELECT * FROM hr.templog;

DROP TABLE hr.templog;

Step 5 Using the first session, release the exclusive lock on the master table
or master materialized view by performing a rollback:
ROLLBACK;

Note: Any changes made to the master table or master

materialized view between the time you copy the rows to a new

location and when you truncate the log do not appear until after

you perform a complete refresh.
Managing a Materialized View Replication Environment 8-19

Managing Materialized View Logs
Reorganizing Master Tables that Have Materialized View Logs
To improve performance and optimize disk use, you can periodically reorganize

master tables. This section describes how to reorganize a master and preserve the

fast refresh capability of associated materialized views.

Reorganization Notification
When you reorganize a table, any ROWID information of the materialized view log

must be invalidated. Oracle detects a table reorganization automatically only if the

table is truncated as part of the reorganization.

If the table is not truncated, then Oracle must be notified of the table reorganization.

To support table reorganizations, two procedures in the DBMS_MVIEW package,

BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION, notify

Oracle that the specified table has been reorganized. The procedures perform

clean-up operations, verify the integrity of the logs and triggers that the fast refresh

mechanism needs, and invalidate the ROWID information in the table’s materialized

view log. The inputs are the owner and name of the master to be reorganized. There

is no output.

Truncating Masters
When a table is truncated, its materialized view log is also truncated. However, for

primary key materialized views, you can preserve the materialized view log,

allowing fast refreshes to continue. Although the information stored in a

materialized view log is preserved, the materialized view log becomes invalid with

respect to rowids when the master is truncated. The rowid information in the

materialized view log will seem to be newly created and cannot be used by rowid

materialized views for fast refresh.

Note: These sections do not discuss online redefinition of tables.

Online redefinition is not allowed on master tables with

materialized view logs, master materialized views, or materialized

views. Online redefinition is allowed only on master tables that do

not have materialized view logs. See the Oracle9i Database
Administrator’s Guide for more information about online redefinition

of tables.

See Also: "Method 2 for Reorganizing Table employees" on

page 8-22
8-20 Oracle9i Replication Management API Reference

Managing Materialized View Logs
The PRESERVE MATERIALIZED VIEW LOG option is the default. Therefore, if you

specify the PRESERVE MATERIALIZED VIEW LOG option or no option, then the

information in the master’s materialized view log is preserved, but current rowid

materialized views can use the log for a fast refresh only after a complete refresh has

been performed.

If the PURGE MATERIALIZED VIEW LOG option is specified, then the materialized

view log is purged along with the master.

Examples Either of the following two statements preserves materialized view log

information when the master table named orders is truncated:

TRUNCATE TABLE hr.employees PRESERVE MATERIALIZED VIEW LOG;
TRUNCATE TABLE hr.employees;

The following statement truncates the materialized view log along with the master

table:

TRUNCATE TABLE hr.employees PURGE MATERIALIZED VIEW LOG;

Methods of Reorganizing a Database Table
Oracle provides four table reorganization methods that preserve the capability for

fast refresh. These appear in the following sections. Other reorganization methods

require an initial complete refresh to enable subsequent fast refreshes.

Note: To ensure that any previously fast refreshable materialized

view is still refreshable, follow the guidelines in "Methods of

Reorganizing a Database Table" on page 8-21.

Note: Do not use Direct Loader during a reorganization of a

master. Direct Loader can cause reordering of the columns, which

could invalidate the log information used in subquery and LOB

materialized views.
Managing a Materialized View Replication Environment 8-21

Managing Materialized View Logs
Method 1 for Reorganizing Table employees Complete the following steps:

Step 1 Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table
employees .

Step 2 Rename table employees to employees_old .

Step 3 Create table employees as SELECT * FROM employees_old .

Step 4 Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table
employees .

Ensure that no transaction is issued against the reorganized table between calling

BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Method 2 for Reorganizing Table employees Complete the following steps:

Step 1 Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table
employees .

Step 2 Export table employees .

Step 3 Truncate table employees with PRESERVE MATERIALIZED VIEW LOG
option.

Step 4 Import table employees using conventional path.

Step 5 Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table
employees .

Caution: When a table is renamed, its associated PL/SQL triggers

are also adjusted to the new name of the table.

Caution: When you truncate masters as part of a reorganization,

you must use the PRESERVE MATERIALIZED VIEW LOG clause of

the truncate table DDL.
8-22 Oracle9i Replication Management API Reference

Managing Materialized View Logs
Ensure that no transaction is issued against the reorganized table between calling

BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Method 3 for Reorganizing Table employees Complete the following steps:

Step 1 Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table
employees .

Step 2 Export table employees .

Step 3 Rename table employees to employees_old .

Step 4 Import table employees using conventional path.

Step 5 Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table
employees .

Ensure that no transaction is issued against the reorganized table between calling

BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Method 4 for Reorganizing Table employees Complete the following steps:

Caution: When a table is renamed, its associated PL/SQL triggers

are also adjusted to the new name of the table.
Managing a Materialized View Replication Environment 8-23

Managing Materialized View Logs
Step 1 Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table
employees .

Step 2 Select contents of table employees to a flat file.

Step 3 Rename table employees to employees_old .

Step 4 Create table employees with the same shape as employees_old .

Step 5 Run SQL*Loader using conventional path.

Step 6 Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table
employees .

Ensure that no transaction is issued against the reorganized table between calling

BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Dropping a Materialized View Log
You can delete a materialized view log regardless of its master or any existing

materialized views. For example, you might decide to drop a materialized view log

if one of the following conditions is true:

■ All materialized views of a master have been dropped.

■ All materialized views of a master are to be completely refreshed, not fast

refreshed.

■ A master no longer supports materialized views that require fast refreshes.

Here, a master can be a master table or a master materialized view. To delete a

materialized view log, execute the DROP MATERIALIZED VIEW LOG statement in

Caution: When a table is renamed, its associated PL/SQL triggers

are also adjusted to the new name of the table.

See Also:

■ "BEGIN_TABLE_REORGANIZATION Procedure" on page 15-3

■ "END_TABLE_REORGANIZATION Procedure" on page 15-3
8-24 Oracle9i Replication Management API Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
SQL*Plus. For example, the following statement deletes the materialized view log

for a table named customers in the sales schema:

DROP MATERIALIZED VIEW LOG ON hr.employees;

Only the owner of the master or a user with the DROP ANY TABLE system privilege

can drop a materialized view log.

Performing an Offline Instantiation of a Materialized View Site Using
Export/Import

Expanding established replication environments can cause network traffic when

you add a new materialized view site to your replication environment. This is

caused by propagating the entire contents of the table or materialized view through

the network to the new replicated site.

To minimize such network traffic, you can expand your replication environment by

using the offline instantiation procedure. Offline instantiation takes advantage of

Oracle’s Export and Import utilities, which allow you to create an export file and

transfer the data to the new site through another storage medium, such as

CD-ROM, tape, and so on.

For the same reasons that you might want to perform an offline instantiation of a

master site, you may also want to create a new materialized view group at a

materialized view site using the offline instantiation process. In some cases, it is

even more useful for materialized views considering that the target computer could

very well be a laptop using a modem connection.

The following script performs an offline instantiation for a new materialized view

group. Meet the following requirements to complete these actions:

Executed As:

■ Replication Administrator at Master Site

■ Materialized View Administrator at New Materialized View Site

Executed At:

■ Master Site for Target Materialized View Site

■ New Materialized View Site

Replication Status: Normal
Managing a Materialized View Replication Environment 8-25

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
Complete the following steps to perform an offline instantiation of a materialized

view site using export/import.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 In a separate terminal window, set up the new materialized view site.
Make sure that the appropriate schema and database links have been created before

you perform the offline instantiation of your materialized view.

*/

SET ECHO ON

SPOOL offline_instant_mv.out

PAUSE Press <RETURN> to continue the new materialized view site is set up.

/*

Step 2 Connect to the master site as the replication administrator.
*/

CONNECT repadmin/repadmin@orc1.world

/*

Step 3 Create the necessary materialized view logs.
If materialized view logs do not already exist for the target master tables, then

create them at the target master site.

*/

CREATE MATERIALIZED VIEW LOG ON hr.countries;
CREATE MATERIALIZED VIEW LOG ON hr.departments;

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 8-35 into a text editor and then edit

the text to create a script for your environment.

See Also: "Setting Up Materialized View Sites" on page 2-24
8-26 Oracle9i Replication Management API Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
CREATE MATERIALIZED VIEW LOG ON hr.employees;
CREATE MATERIALIZED VIEW LOG ON hr.jobs;
CREATE MATERIALIZED VIEW LOG ON hr.job_history;
CREATE MATERIALIZED VIEW LOG ON hr.locations;
CREATE MATERIALIZED VIEW LOG ON hr.regions;

/*

Step 4 Create temporary materialized views at the master site. These
materialized views contain the data that you transfer to your new materialized
view site using the export file.

*/

CREATE MATERIALIZED VIEW hr.countries_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 country_id, country_name, region_id
 FROM hr.countries;

CREATE MATERIALIZED VIEW hr.departments_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 department_id, department_name, manager_id, location_id
 FROM hr.departments;

CREATE MATERIALIZED VIEW hr.employees_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 employee_id, first_name, last_name, email, phone_number,
 hire_date, job_id, salary, commission_pct, manager_id,
 department_id
 FROM hr.employees;

CREATE MATERIALIZED VIEW hr.jobs_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 job_id, job_title, min_salary, max_salary
 FROM hr.jobs;

Note: If you added any of the conflict resolution routines

described in Chapter 6, "Configure Conflict Resolution", then you

may have additional columns in your tables. Be certain to include

these additional columns in the SELECT statements below.

Updatable materialized views require that you explicitly select all

columns in the master table. So, do not use SELECT * statements.
Managing a Materialized View Replication Environment 8-27

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
CREATE MATERIALIZED VIEW hr.job_history_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 employee_id, start_date, end_date, job_id, department_id
 FROM hr.job_history;

CREATE MATERIALIZED VIEW hr.locations_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 location_id, street_address, postal_code, city,
 state_province, country_id
 FROM hr.locations;

CREATE MATERIALIZED VIEW hr.regions_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 region_id, region_name
 FROM hr.regions;

/*

Step 5 In a separate terminal window, connect as the owner of the materialized
views to export the temporary materialized views you created in Step 4.
Use the Oracle Export utility to generate the export file that you will transfer to the

new materialized view site. The export file will contain the base tables of your

temporary materialized views.

The following is an example of an export command for the hr schema.

exp hr/hr@orc1.world TABLES='countries_mv','departments_mv','employees_mv',
'jobs_mv','job_history_mv','locations_mv','regions_mv'

*/

PAUSE Press <RETURN> to continue when the export is complete.

/*

Note: The following example is for Oracle8i and higher databases

only. Base tables in database versions earlier than Oracle8i are

preceded by the SNAP$ prefix (that is, SNAP$_employees_mv).

See Also: Oracle9i Database Utilities for additional information

about exporting
8-28 Oracle9i Replication Management API Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
Step 6 Connect to the new materialized view site as SYSTEM user.
*/

CONNECT system/manager@mview.world

/*

Step 7 Create necessary schema and database link at the materialized view
site, if they do not exist.
Before you perform the offline instantiation of your materialized views, create the

schema that will contain the materialized views at the new materialized view site

and the database link from the materialized view site to the master site. The

materialized views must be in the same schema that contains the master objects at

the master site.

*/

CREATE TABLESPACE demo_mview
 DATAFILE 'demo_mview.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mview
 TEMPFILE 'temp_mview.dbf' SIZE 5M AUTOEXTEND ON;

CREATE USER hr IDENTIFIED BY hr;

ALTER USER hr DEFAULT TABLESPACE demo_mview
 QUOTA UNLIMITED ON demo_mview;

ALTER USER hr TEMPORARY TABLESPACE temp_mview;

GRANT
 CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,
 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK,
TO hr;
Managing a Materialized View Replication Environment 8-29

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
CONNECT hr/hr@mview.world

CREATE DATABASE LINK orc1.world CONNECT TO hr IDENTIFIED by hr;

/*

Step 8 Connect to the new materialized view site as the materialized view
administrator.
*/

CONNECT mviewadmin/mviewadmin@mview.world

/*

Step 9 Create an empty materialized view group.
Run the DBMS_REPCAT.CREATE_MVIEW_REPGROUP procedure at the new

materialized view site to create an empty materialized view group to which you

will add your materialized views.

*/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (

 gname => 'hr_repg',
 master => 'orc1.world',
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

Step 10 Prepare the materialized view site for offline instantiation.
The DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD procedure creates the necessary

support mechanisms for the new materialized views. This step also adds the new

materialized views to the materialized view group that you created in the previous

step. Be sure to execute the BEGIN_LOAD procedure for each materialized view that

you will be importing.

*/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (
8-30 Oracle9i Replication Management API Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
 gname => 'hr_repg',
 sname => 'hr',
 master_site => 'orc1.world',
 snapshot_oname => 'countries_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 master_site => 'orc1.world',
 snapshot_oname => 'departments_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 master_site => 'orc1.world',
 snapshot_oname => 'employees_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 master_site => 'orc1.world',
 snapshot_oname => 'jobs_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 master_site => 'orc1.world',
 snapshot_oname => 'job_history_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (
Managing a Materialized View Replication Environment 8-31

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
 gname => 'hr_repg',
 sname => 'hr',
 master_site => 'orc1.world',
 snapshot_oname => 'locations_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 master_site => 'orc1.world',
 snapshot_oname => 'regions_mv');
END;
/

/*

Step 11 In a separate terminal window, connect as the owner of the
materialized views to import at the new materialized view site.
Use the Oracle Import utility to import the file that you exported in Step 5. Make

sure that you import your data as the same user who exported the data. This user

hr in the following example:

imp hr/hr@mview.world FULL=y IGNORE=y

*/

PAUSE Press <RETURN> to continue when the import is complete.

/*

Step 12 Complete the offline instantiation.
Execute the DBMS_OFFLINE_SNAPSHOT.END_LOAD procedure to finish the offline

instantiation of the imported materialized views.

*/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 snapshot_oname => 'countries_mv');
END;
8-32 Oracle9i Replication Management API Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 snapshot_oname => 'departments_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 snapshot_oname => 'employees_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 snapshot_oname => 'jobs_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 snapshot_oname => 'job_history_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (

 gname => 'hr_repg',
 sname => 'hr',
 snapshot_oname => 'locations_mv');
END;
/

BEGIN
DBMS_OFFLINE_SNAPSHOT.END_LOAD (

 gname => 'hr_repg',
Managing a Materialized View Replication Environment 8-33

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
 sname => 'hr',
 snapshot_oname => 'regions_mv');
END;
/

/*

Step 13 Connect as the owner of the materialized views at the materialized
view site.
*/

CONNECT hr/hr@mview.world

/*

Step 14 Refresh materialized views to register them at master site.
In addition to retrieving the latest changes from the master tables, refreshing the

materialized views at the new materialized view site registers the offline

instantiated materialized views at the target master site.

*/

BEGIN
DBMS_MVIEW.REFRESH ('countries_mv');

END;
/

BEGIN
DBMS_MVIEW.REFRESH ('departments_mv');

END;
/

BEGIN
DBMS_MVIEW.REFRESH ('employees_mv');

END;
/

BEGIN
DBMS_MVIEW.REFRESH ('jobs_mv');

END;
/

BEGIN
DBMS_MVIEW.REFRESH ('job_history_mv');
8-34 Oracle9i Replication Management API Reference

Performing an Offline Instantiation of a Materialized View Site Using Export/Import
END;
/

BEGIN
DBMS_MVIEW.REFRESH ('locations_mv');

END;
/

BEGIN
DBMS_MVIEW.REFRESH ('regions_mv');

END;
/

/*

Step 15 Connect to the master site as the replication administrator.
*/

CONNECT repadmin/repadmin@orc1.world

/*

Step 16 Delete the temporary materialized views you created in Step 4 at the
master site.
*/

DROP MATERIALIZED VIEW hr.countries_mv;
DROP MATERIALIZED VIEW hr.departments_mv;
DROP MATERIALIZED VIEW hr.employees_mv;
DROP MATERIALIZED VIEW hr.jobs_mv;
DROP MATERIALIZED VIEW hr.job_history_mv;
DROP MATERIALIZED VIEW hr.locations_mv;
DROP MATERIALIZED VIEW hr.regions_mv;

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/
Managing a Materialized View Replication Environment 8-35

Using a Group Owner for a Materialized View Group
Using a Group Owner for a Materialized View Group
Specifying a group owner when you define a new materialized view group and its

related objects enables you to create multiple materialized view groups based on

the same replication group at a single materialized view site. At a materialized view

site, specifying group owners enables you to create multiple materialized view

groups that are based on the same replication group at a master site or master

materialized view site. You accomplish this by creating the materialized view

groups under different schemas at the materialized view site.

Complete the following steps to use a group owner.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the materialized view site as the materialized view
administrator.
*/

SET ECHO ON

SPOOL mv_group_owner.out

CONNECT mviewadmin/mviewadmin@mv1.world

/*

Step 2 Create materialized view group with group owner (gowner) bob using
the CREATE_MVIEW_REPGROUP procedure.
The replication group that you specify in the gname parameter must match the

name of the replication group that you are replicating at the target master site or

master materialized view site. The gowner parameter enables you to specify an

additional identifier that lets you create multiple materialized view groups based

on the same replication group at the same materialized view site.

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 8-41 into a text editor and then edit

the text to create a script for your environment.

See Also: Oracle9i Replication for a complete description of using

group owners and the advantages of using multiple data sets
8-36 Oracle9i Replication Management API Reference

Using a Group Owner for a Materialized View Group
In this example, materialized view groups are created for the group owners bob
and jane , and these two materialized view groups are based on the same

replication group.

*/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (

 gname => 'hr_repg',
 master => 'orc1.world',
 propagation_mode => 'ASYNCHRONOUS',
 gowner => 'bob');
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (

 gname => 'hr_repg',
 master => 'orc1.world',
 propagation_mode => 'ASYNCHRONOUS',
 gowner => 'jane');
END;
/

/*

Step 3 Create the materialized views owned by bob .
The gowner value used when creating your materialized view objects must match

the gowner value specified when you created the materialized view group in the

previous procedures. After creating the materialized view groups, you can create

materialized views based on the same master in the hr_repg materialized view

group owned by bob and jane .

Caution: Each object must have a unique name. When using a

gowner to create multiple materialized view groups, duplicate

object names could become a problem. To avoid any object-naming

conflicts, you may want to append the gowner value to the end of

the object name that you create, as illustrated in the following

procedures (that is, CREATEMATERIALIZED VIEW hr.countries_
bob). Such a naming method ensures that you do not create any

objects with conflicting names.
Managing a Materialized View Replication Environment 8-37

Using a Group Owner for a Materialized View Group
Whenever you create a materialized view, always specify the schema name of the

table owner in the query for the materialized view. In the examples below, hr is

specified as the owner of the table in each query.

*/

CREATE MATERIALIZED VIEW hr.countries_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.countries@orc1.world;

CREATE MATERIALIZED VIEW hr.departments_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.departments@orc1.world;

CREATE MATERIALIZED VIEW hr.employees_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.employees@orc1.world;

CREATE MATERIALIZED VIEW hr.jobs_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.jobs@orc1.world;

CREATE MATERIALIZED VIEW hr.job_history_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.job_history@orc1.world;

CREATE MATERIALIZED VIEW hr.locations_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.locations@orc1.world;

CREATE MATERIALIZED VIEW hr.regions_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.regions@orc1.world;

/*

Step 4 Create the materialized views owned by jane .
*/

CREATE MATERIALIZED VIEW hr.departments_jane
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.departments@orc1.world;

CREATE MATERIALIZED VIEW hr.employees_jane
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
8-38 Oracle9i Replication Management API Reference

Using a Group Owner for a Materialized View Group
 AS SELECT * FROM hr.employees@orc1.world;

/*

Step 5 Add the materialized views owned by bob to the materialized view
group.
*/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'countries_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
Managing a Materialized View Replication Environment 8-39

Using a Group Owner for a Materialized View Group
 sname => 'hr',
 oname => 'jobs_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'job_history_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'locations_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'regions_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

/*
8-40 Oracle9i Replication Management API Reference

Using a Group Owner for a Materialized View Group
Step 6 Add the materialized views owned by jane to the materialized view
group.
*/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments_jane',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'jane');
END;
/

BEGIN
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees_jane',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'jane');
END;
/

SET ECHO OFF

SPOOL OFF

Step 7 Add your materialized views to a refresh group.

/************************* END OF SCRIPT **********************************/

See Also: Chapter 5, "Create Materialized View Group" (Step 6)

for more information about adding materialized views to a refresh

group
Managing a Materialized View Replication Environment 8-41

Using a Group Owner for a Materialized View Group
8-42 Oracle9i Replication Management API Reference

Managing Replication Objects and Qu
9

Managing Replication Objects and Queues

This chapter illustrates how to manage the replication objects and queues in your

replication environment using the replication management API. This chapter

contains these topics:

■ Altering a Replicated Object

■ Modifying Tables without Replicating the Modifications

■ Converting a LONG Column to a LOB Column in a Replicated Table

■ Determining Differences Between Replicated Tables

■ Managing the Deferred Transactions Queue

■ Managing the Error Queue
eues 9-1

Altering a Replicated Object
Altering a Replicated Object
As your database needs change, you may need to modify the characteristics of your

replicated objects. It is important that you do not directly execute DDL to alter your

replicated objects. Doing so may cause your replication environment to fail.

Altering a Replicated Object in a Quiesced Master Group
Use the ALTER_MASTER_REPOBJECT procedure in the DBMS_REPCAT package to

alter the characteristics of your replicated objects in a quiesced master group. From

the example below, notice that you simply include the necessary DDL within the

procedure call (see the ddl_text parameter).

If any master site is lower than 9.0.0 compatibility level, then you must use the

following procedure. That is, the master group must be quiesced to modify a

replicated object. You control the compatibility level of a database with the

COMPATIBLE initialization parameter.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Definition Site

Replication Status: Quiesced

Complete the following steps to alter a replicated object in a quiesced master group.

/************************* BEGINNING OF SCRIPT ******************************

Note:

■ If your master site is running Oracle release 8.1.7 or higher in a

single master environment and you are making a safe change to

a replicated object, then you may not need to quiesce the

master group. See the "ALTER_MASTER_REPOBJECT

Procedure" on page 20-25 for information about when quiesce

is not required.

■ If you are viewing this document online, then you can copy the

text from the "BEGINNING OF SCRIPT" line on this page to the

"END OF SCRIPT" line on page 9-5 into a text editor and then

edit the text to create a script for your environment.
9-2 Oracle9i Replication Management API Reference

Altering a Replicated Object
Step 1 Connect to the master definition site as the replication administrator.
*/

SET ECHO ON

SPOOL alter_rep_object.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 If necessary, then quiesce the master group. See the "ALTER_
MASTER_REPOBJECT Procedure" on page 20-25 for information about when
quiesce is not required.
*/

BEGIN
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

 gname => 'hr_repg');
END;
/

/*

Step 3 In a separate SQL*Plus session, check the status of the master group
you are quiescing, and do not proceed until the group’s status is QUIESCED.
To check the status, run the following query:

SELECT GNAME, STATUS FROM DBA_REPGROUP;

*/

PAUSE Press <RETURN> to continue when the master group’s status is QUIESCED.

/*

Step 4 Alter the replicated object.
*/

BEGIN
DBMS_REPCAT.ALTER_MASTER_REPOBJECT (

 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
Managing Replication Objects and Queues 9-3

Altering a Replicated Object
 ddl_text => 'ALTER TABLE hr.employees ADD (timestamp DATE)';
END;
/

/*

Step 5 Regenerate replication support for the altered object.
*/

BEGIN
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 6 In a separate SQL*Plus session, check if DBA_REPCATLOGis empty, and
do not proceed until it is empty.
Execute the following SELECT statement in another SQL*Plus session to monitor

the DBA_REPCATLOG view:

SELECT * FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*

Step 7 Resume replication activity.
*/

BEGIN
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

GNAME => 'hr_repg');
END;
/

SET ECHO OFF
9-4 Oracle9i Replication Management API Reference

Modifying Tables without Replicating the Modifications
SPOOL OFF

/************************* END OF SCRIPT **********************************/

Modifying Tables without Replicating the Modifications
You may have a situation in which you need to modify a replicated object, but you

do not want this modification replicated to the other sites in the replication

environment. For example, you may want to disable replication in the following

situations:

■ When you are using procedural replication to propagate a change, always

disable row-level replication at the start of your procedure.

■ You may need to disable replication in triggers defined on replicated tables to

avoid replicating trigger actions multiple times. See "Ensuring That Replicated

Triggers Fire Only Once" on page 9-7.

■ Sometimes when you manually resolve a conflict, you may not want to replicate

this modification to the other copies of the table.

You may need to do this, for example, if you need to correct the state of a record at

one site so that a conflicting replicated update will succeed when you reexecute the

error transaction. Or, you may use an unreplicated modification to undo the effects

of a transaction at its origin site because the transaction could not be applied at the

destination site. In this example, you can use the Replication Management tool to

delete the conflicting transaction from the destination site.

To modify tables without replicating the modifications, use the REPLICATION_ON
and REPLICATION_OFF procedures in the DBMS_REPUTIL package. These

procedures take no arguments and are used as flags by the generated replication

triggers.

Disabling Replication
The DBMS_REPUTIL.REPLICATION_OFF procedure sets the state of an internal

replication variable for the current session to false . Because all replicated triggers

check the state of this variable before queuing any transactions, modifications made

to the replicated tables that use row-level replication do not result in any queued

deferred transactions.

Note: To enable and disable replication, you must have the

EXECUTE privilege on the DBMS_REPUTIL package.
Managing Replication Objects and Queues 9-5

Modifying Tables without Replicating the Modifications
If you are using procedural replication, then call REPLICATION_OFF at the start of

your procedure, as shown in the following example. This ensures that the

replication facility does not attempt to use row-level replication to propagate the

changes that you make.

CREATE OR REPLACE PACKAGE update AS
 PROCEDURE update_emp(adjustment IN NUMBER);
END;
/

CREATE OR REPLACE PACKAGE BODY update AS
 PROCEDURE update_emp(adjustment IN NUMBER) IS
 BEGIN
 --turn off row-level replication for set update
 DBMS_REPUTIL.REPLICATION_OFF;
 UPDATE emp . . .;
 --re-enable replication
 DBMS_REPUTIL.REPLICATION_ON;
 EXCEPTION WHEN OTHERS THEN
 . . .
 DBMS_REPUTIL.REPLICATION_ON;
 END;
END;
/

Reenabling the Replication Facility
After resolving any conflicts, or at the end of your replicated procedure, be certain

to call DBMS_REPUTIL.REPLICATION_ONto resume normal replication of changes

to your replicated tables or materialized views. This procedure takes no arguments.

Calling REPLICATION_ON sets the internal replication variable to true .

Caution: Turning replication on or off affects only the current

session. That is, other users currently connected to the same server

are not restricted from placing committed changes in the deferred

transaction queue.
9-6 Oracle9i Replication Management API Reference

Converting a LONG Column to a LOB Column in a Replicated Table
Ensuring That Replicated Triggers Fire Only Once
If you have defined a replicated trigger on a replicated table, then you may need to

ensure that the trigger fires only once for each change that you make. Typically, you

only want the trigger to fire when the change is first made, and you do not want the

remote trigger to fire when the change is replicated to the remote site.

You should check the value of the DBMS_REPUTIL.FROM_REMOTE package

variable at the start of your trigger. The trigger should update the table only if the

value of this variable is false .

Alternatively, you can disable replication at the start of the trigger and re-enable it

at the end of the trigger when modifying rows other than the one that caused the

trigger to fire. Using this method, only the original change is replicated to the

remote sites. Then the replicated trigger fires at each remote site. Any updates

performed by the replicated trigger are not pushed to any other sites.

Using this approach, conflict resolution is not invoked. Therefore, you must ensure

that the changes resulting from the trigger do not affect the consistency of the data.

Converting a LONG Column to a LOB Column in a Replicated Table
LOB columns can be replicated, but LONG columns cannot be replicated. You can

convert the datatype of a LONG column to a CLOB column and the datatype of a

LONG_RAW column to a BLOB column.

Converting a LONG column to a LOB column can result in increased network

bandwidth requirements because the data in such a column is replicated after

conversion. Make sure you have adequate network bandwidth before completing

the procedure in this section.

Complete the following steps to convert a LONG column to a LOB column in a

replicated table:

Step 1 Make sure the data in the LONG column is consistent at all replication
sites.
If a table containing a LONG column is configured as a master table, then Oracle

does not replicate changes to the data in the LONGcolumn. Therefore, the data in the

LONGcolumn may not match at all of your replication sites. You must make sure the

data in the LONG column matches at all master sites before proceeding.

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs) for more information about applications and LONG to LOB

conversion
Managing Replication Objects and Queues 9-7

Converting a LONG Column to a LOB Column in a Replicated Table
Step 2 Connect to the master definition site as the replication administrator.
For example:
CONNECT repadmin/repadmin@orc1.world

Step 3 If the replication status is normal, then change the status to quiesced.
For example:
BEGIN

DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'sales_mg');
END;
/

Step 4 Run the ALTER_MASTER_REPOBJECT procedure in the DBMS_REPCAT
package to convert the LONG column to a LOB column. For example:
BEGIN

DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'staff',
 oname => 'positions',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE positions MODIFY (job_desc CLOB)');
END;
/

A LONG_RAW column can be converted to a BLOB column using a similar ALTER
TABLE statement.

Step 5 Regenerate replication support for the altered master table. For
example:
BEGIN

DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'staff',
 oname => 'positions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

Step 6 Resume replication. For example:
BEGIN

DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
GNAME => 'sales_mg');

END;
9-8 Oracle9i Replication Management API Reference

Determining Differences Between Replicated Tables
/

Step 7 If materialized views are based on the altered table at any of the master
sites, then rebuild these materialized views.

Determining Differences Between Replicated Tables
It is possible for the differences to arise in replicated tables. When administering a

replication environment, you may want to check, periodically, whether the contents

of two replicated tables are identical. The following procedures in the DBMS_
RECTIFIER_DIFF package let you identify, and optionally rectify, the differences

between two tables when both sites are Oracle release 7.3 or higher.

Using the DIFFERENCES Procedure
The DIFFERENCES procedure compares two replicas of a table, and determines all

rows in the first replica that are not in the second and all rows in the second that are

not in the first. The output of this procedure is stored in two user-created tables. The

first table stores the values of the missing rows, and the second table is used to

indicate which site contains each row.

Using the RECTIFY Procedure
The RECTIFY procedure uses the information generated by the DIFFERENCES
procedure to rectify the two tables. Any rows found in the first table and not in the

second are inserted into the second table. Any rows found in the second table and

not in the first are deleted from the second table.

To restore equivalency between all copies of a replicated table, complete the

following steps:

Step 1 Select one copy of the table to be the "reference" table. This copy will
be used to update all other replicas of the table as needed.

Step 2 Determine if it is necessary to check all rows and columns in the table
for differences, or only a subset.
For example, it may not be necessary to check rows that have not been updated

since the last time that you checked for differences. Although it is not necessary to

check all columns, your column list must include all columns that make up the

primary key (or that you designated as a substitute identity key) for the table.
Managing Replication Objects and Queues 9-9

Determining Differences Between Replicated Tables
Step 3 After determining which columns you will be checking in the table,
create two tables to hold the results of the comparison.
You must create one table that can hold the data for the columns being compared.

For example, if you decide to compare the employee_id , salary , and

department_id columns of the employees table, then your CREATE statement

would need to be similar to the following:

CREATE TABLE hr.missing_rows_data (
 employee_id NUMBER(6),
 salary NUMBER(8,2),
 department_id NUMBER(4));

You must also create a table that indicates where the row is found. This table must

contain three columns with the datatypes shown in the following example:

CREATE TABLE hr.missing_rows_location (
 present VARCHAR2(128),
 absent VARCHAR2(128),
 r_id ROWID);

Step 4 Suspend replication activity for the replication group containing the
tables that you want to compare. Although suspending replication activity for
the group is not a requirement, rectifying tables that were not quiesced first
can result in inconsistencies in your data.
BEGIN

DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

Step 5 At the site containing the "reference" table, call the DIFFERENCES
procedure in the DBMS_RECTIFIER_DIFF package.
For example, if you wanted to compare the employees tables at the New York and

San Francisco sites, then your procedure call would look similar to the following:

BEGIN
DBMS_RECTIFIER_DIFF.DIFFERENCES (

 sname1 => 'hr',
 oname1 => 'employees',
 reference_site => 'ny.world',
 sname2 => 'hr',
 oname2 => 'employees',
 comparison_site => 'mv4.world',
 where_clause => '',
9-10 Oracle9i Replication Management API Reference

Determining Differences Between Replicated Tables
 column_list => 'employee_id,salary,department_id',
 missing_rows_sname => 'hr',
 missing_rows_oname1 => 'missing_rows_data',
 missing_rows_oname2 => 'missing_rows_location',
 missing_rows_site => 'ny.world',
 max_missing => 500,
 commit_rows => 50);
END;
/

Figure 9–1 shows an example of two replicas of the employee table and what the

resulting missing rows tables would look like if you executed the DIFFERENCES
procedure on these replicas.
Managing Replication Objects and Queues 9-11

Determining Differences Between Replicated Tables
Figure 9–1 Determining Differences Between Replicas

Notice that the two missing rows tables are related by the ROWID and r_id
columns.

Step 6 Rectify the table at the "comparison" site to be equivalent to the table
at the "reference" site by calling the RECTIFY procedure in the as shown in the
DBMS_RECTIFIER_DIFF package following example:
BEGIN

DBMS_RECTIFIER_DIFF.RECTIFY (
 sname1 => 'hr',
 oname1 => 'employees',

employees Table at NY.COM

employee_id last_name department_id

100
101

102

Jones

Braun

20
20

20

Kim

salary commission_pct

55,000
62,000

43,500

.4

.25

.1

employees Table at SF.COM

employee_id last_name department_id

100
101

102

Jones

Braun

20
20

20

Kim

salary commission_pct

55,000
62,000

43,500

.4

.3

.1
103 Rama 20 48,750 .35

missing_rows_data Table

employee_id

101

101
103

salary commission_pct

62,000

62,000
48,750

.25

.3

.35

rowid

000015E8.0000.0002

000015E8.0001.0002
000015E8.0002.0002

missing_rows_location Table

present

ny.com

sf.com
sf.com

absent

sf.com

ny.com
ny.com

r_id

000015E8.0000.0002

000015E8.0001.0002
000015E8.0002.0002

Replicas
9-12 Oracle9i Replication Management API Reference

Determining Differences Between Replicated Tables
 reference_site => 'ny.world',
 sname2 => 'hr',
 oname2 => 'employees',
 comparison_site => 'mv4.world',
 column_list => 'employee_id,salary,department_id',
 missing_rows_sname => 'hr',
 missing_rows_oname1 => 'missing_rows_data',
 missing_rows_oname2 => 'missing_rows_location',
 missing_rows_site => 'ny.world',
 commit_rows => 50);
END;
/

The RECTIFY procedure temporarily disables replication at the "comparison" site

while it performs the necessary insertions and deletions, as you would not want to

propagate these changes. RECTIFY first performs all of the necessary DELETE
operations and then performs all of the INSERT operations. This ensures that there

are no violations of a PRIMARY KEY constraint.

After you have successfully executed the RECTIFY procedure, your missing rows

tables should be empty.

Step 7 Repeat Steps 5 and 6 for the remaining copies of the replicated table.
Remember to use the same "reference" table each time to ensure that all
copies are identical when you complete this procedure.

Step 8 Resume replication activity for the master group.
BEGIN

DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

Caution: If you have any additional constraints on the

"comparison" table, then you must ensure that they are not violated

when you call RECTIFY. You may need to update the table directly

using the information in the missing rows table. If so, then be sure

to DELETE the appropriate rows from the missing rows tables.
Managing Replication Objects and Queues 9-13

Managing the Deferred Transactions Queue
Managing the Deferred Transactions Queue
Typically, Advanced Replication is configured to push and purge the deferred

transaction queue automatically. At times, however, you may need to push or purge

the deferred transaction queue manually. The process for pushing the deferred

transaction queue is the same at master sites and materialized view sites.

Pushing the Deferred Transaction Queue
Master sites are configured to push the deferred transaction queue automatically at

set intervals. At materialized view sites, if you do not automatically propagate the

transactions in your deferred transaction queue during the refresh of your

materialized view, then you must complete the following steps to propagate

changes made to the updatable materialized view to its master table or master

materialized view.

This example illustrates pushing the deferred transaction queue at a materialized

view site, but the process is the same at master sites and materialized view sites.

Executed As: Materialized View Administrator

Executed At: Materialized View Site

Complete the following steps:

Step 1 Connect to the materialized view site as the materialized view
administrator.
CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Execute the following SELECT statement to view the deferred
transactions and their destinations. Propagation of the deferred transaction
queue is based on the destination of the transaction. Each distinct destination
and the number of transactions pending for the destination will be displayed.
SELECT DISTINCT(dblink), COUNT(deferred_tran_id)
 FROM deftrandest GROUP BY dblink;

Step 3 Execute the DBMS_DEFER_SYS.PUSHfunction for each site that is listed
as a destination for a deferred transaction.
DECLARE
 temp INTEGER;
BEGIN
 temp := DBMS_DEFER_SYS.PUSH (
 destination => 'orc1.world',
 stop_on_error => FALSE,
 delay_seconds => 0,
9-14 Oracle9i Replication Management API Reference

Managing the Deferred Transactions Queue
 parallelism => 0);
END;
/

Run the PUSH procedure for each destination that was returned in the SELECT
statement you ran in Step 2.

Purging the Deferred Transaction Queue
If your system is not set to automatically purge the successfully propagated

transactions in your deferred transaction queue periodically, then you must

complete the following steps to purge them manually.

This example illustrates purging the deferred transaction queue at a materialized

view site, but the process is the same at master sites and materialized view sites.

Executed As: Materialized View Administrator

Executed At: Materialized View Site

Complete the following steps:

Step 1 Connect to the materialized view site as the materialized view
administrator.
CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Purge the deferred transaction queue.
DECLARE
 temp INTEGER;
BEGIN
 temp := DBMS_DEFER_SYS.PURGE (
 purge_method => dbms_defer_sys.purge_method_quick);
END;
/

Note: If you use the purge_method_quick parameter, deferred

transactions and deferred procedure calls that have been

successfully pushed may remain in the DEFTRAN and DEFCALL
data dictionary views for longer than expected before they are

purged. See the "Usage Notes" for DBMS_DEFER_SYS.PURGE on

page 14-13 for details.
Managing Replication Objects and Queues 9-15

Managing the Deferred Transactions Queue
Using the AnyData Type to Determine the Value of an Argument in a Deferred Call
If you are using column objects, collections, or REFs in a replicated table, then you

can use the GET_AnyData_ARG function in the DBMS_DEFER_QUERY package to

determine the value of an argument in a deferred call that involves one of these

user-defined types.

The following example illustrates how to use the GET_AnyData_ARGfunction. This

example uses the following user-defined types in the oe sample schema.

CREATE TYPE phone_list_typ AS VARRAY(5) OF VARCHAR2(25);
/

CREATE TYPE warehouse_typ AS OBJECT
 (warehouse_id NUMBER(3),
 warehouse_name VARCHAR2(35),
 location_id NUMBER(4)
);
/

CREATE TYPE inventory_typ AS OBJECT
 (product_id NUMBER(6),
 warehouse warehouse_typ,
 quantity_on_hand NUMBER(8)
);
/

CREATE TYPE inventory_list_typ AS TABLE OF inventory_typ;
/

The following procedure retrieves the argument value for collection, object, and

REF instances of calls stored in the deferred transactions queue. This procedure

assumes that the call number and transaction id are available.
9-16 Oracle9i Replication Management API Reference

Managing the Deferred Transactions Queue
The user who creates the procedure must have EXECUTE privilege on the DBMS_
DEFER_QUERY package and must have CREATE PROCEDURE privilege. This

example uses the oe sample schema. Therefore, to run the example, you must grant

the oe user these privileges.

CONNECT system/manager as sysdba

GRANT EXECUTE ON DBMS_DEFER_QUERY TO oe;

GRANT CREATE PROCEDURE TO oe;

CONNECT oe/oe@orc1.world

CREATE OR REPLACE PROCEDURE get_userdef_arg AS
 call_no NUMBER := 0;
 txn_id VARCHAR2(128) := 'xx.xx.xx';
 anydata_val Sys.AnyData;
 t SYS.AnyType;
 data_pl phone_list_typ; -- varray
 data_ntt inventory_list_typ; -- nested table type
 data_p warehouse_typ; -- object type
 ref1 REF inventory_typ; -- REF type
 rval PLS_INTEGER; -- return value
 tc PLS_INTEGER; -- return value
 prec PLS_INTEGER; -- precision
 scale PLS_INTEGER; -- scale
 len PLS_INTEGER; -- length
 csid PLS_INTEGER; -- character set id
 csfrm PLS_INTEGER; -- character set form
 cnt PLS_INTEGER; -- count of varray elements or number of
 -- object attributes
 sname VARCHAR2(35); -- schema name
 type_name VARCHAR2(35); -- type name
 version VARCHAR2(35);
BEGIN
 FOR i IN 1 .. 5 LOOP
 anydata_val := DBMS_DEFER_QUERY.GET_AnyData_ARG(call_no, i, txn_id);
 -- Get the type information, including type name.
 tc := anydata_val.GetType(t);
 tc := t.GetInfo(prec, scale, len, csid, csfrm, sname, type_name,
 version, cnt);
 -- Based on the type name, convert the anydata value to the appropriate
 -- user-defined types.
 IF type_name = 'PHONE_LIST_TYP' THEN
 -- The anydata_val contains phone_list_typ varray instance.
Managing Replication Objects and Queues 9-17

Managing the Error Queue
 rval := anydata_val.GetCollection(data_pl);
 -- Do something with data_pl.
 ELSIF type_name = 'INVENTORY_LIST_TYP' THEN
 -- anydata_val contains inventory_list_typ nested table instance.
 rval := anydata_val.GetCollection(data_ntt);
 -- Do something with data_ntt.
 ELSIF type_name = 'WAREHOUSE_TYP' THEN
 -- The anydata_val contains warehouse_typ object instance.
 rval := anydata_val.GetObject(data_p);
 -- Do something with data_p.
 ELSIF type_name = 'INVENTORY_TYP' THEN
 -- The anydata_val contains a reference to inventory_typ object instance.
 rval := anydata_val.GetRef(ref1);
 -- Do something with ref1.
 END IF;
 END LOOP;
END;
/

Managing the Error Queue
As an administrator of a replication environment, you should regularly monitor the

error queue to determine if any deferred transactions were not successfully applied

at the target master site.

To check the error queue, issue the following SELECT statement (as the replication

administrator) when connected to the target master site:

SELECT * FROM deferror;

If the error queue contains errors, then you should resolve the error condition and

reexecute the deferred transaction. You have two options when reexecuting a

deferred transaction: you can reexecute in the security context of the user who

received the deferred transaction, or you can reexecute the deferred transaction

with an alternate security context.

See Also:

■ "GET_datatype_ARG Function" on page 13-7

■ Oracle9i SQL Reference and Oracle9i Application Developer’s Guide
- Object-Relational Features for more information about the

AnyData datatype
9-18 Oracle9i Replication Management API Reference

Managing the Error Queue
Reexecuting Error Transaction as the Receiver
The following procedure reexecutes a specified deferred transaction in the security

context of the user who received the deferred transaction. This procedure should

not be executed until the error situation has been resolved.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Site Containing Errors

Replication Status: Normal

Complete the following steps:

Step 1 Connect to the master site as the replication administrator.
CONNECT repadmin/repadmin@orc2.world

Step 2 Reexecute the error transaction.
BEGIN

DBMS_DEFER_SYS.EXECUTE_ERROR (
 deferred_tran_id => '1.12.2904',
 destination => 'orc2.world');
END;
/

Caution: If you have multiple error transactions and you want to

make sure they are reexecuted in the correct order, then you can

specify NULL for the deferred_tran_id parameter in the

procedures in the following sections. If you do not specify NULL,

then reexecuting individual transactions in the wrong order can

cause conflicts.
Managing Replication Objects and Queues 9-19

Managing the Error Queue
Reexecuting Error Transaction as Alternate User
The following procedure reexecutes a specified deferred transaction in the security

context of the currently connected user. This procedure should not be executed until

the error situation has been resolved.

Meet the following requirements to complete these actions:

Executed As: Connected User

Executed At: Site Containing Errors

Replication Status: Normal

Complete the following steps:

Step 1 Connect to the master site as the alternate user.
CONNECT hr/hr@orc2.world

Step 2 Reexecute the error transaction.
BEGIN

DBMS_DEFER_SYS.EXECUTE_ERROR_AS_USER (
 deferred_tran_id => '1.12.2904',
 destination => 'orc2.world');
END;
/

9-20 Oracle9i Replication Management API Reference

Monitoring a Replication Envir
10

Monitoring a Replication Environment

This chapter illustrates how to monitor a replication a replication environment

using the data dictionary. This chapter contains these topics:

■ Monitoring Master Replication Environments

■ Monitoring Materialized View Sites

■ Monitoring Administrative Requests

■ Monitoring the Deferred Transactions Queue

■ Monitoring the Error Queue

■ Monitoring Performance in a Replication Environment

■ Monitoring Performance in a Replication Environment

Note: The Replication Management tool in Oracle Enterprise

Manager is also an excellent way to monitor a replication

environment. Most of the information obtained by the queries in

this chapter can be found in the reports available in the Replication

Management tool. See the Replication Management tool online help

for more information.
onment 10-1

Monitoring Master Replication Environments
Monitoring Master Replication Environments
This section contains queries that you can run to display information about a master

replication environment. The replication environment can be a multimaster

environment, a master materialized view environment, or a hybrid environment

that includes multiple master sites and materialized views.

Monitoring Master Sites
This section contains queries that you can run to display information about master

sites.

Listing General Information About a Master Site
You can find the following general information about a master site by running the

query in this section:

■ The number of administrative requests

■ The number of administrative request errors

■ The number of unpropagated deferred transaction-destination pairs. Each

deferred transaction may have multiple destinations to which it will be

propagated, and each destination is a single deferred transaction-destination

pair.

For example, if there are ten deferred transactions and each one must be propagated

to three sites, then there are 30 deferred transaction-pairs returned by this query.

After some time, if the first deferred transaction is propagated to two of the three

destination sites, then there are still ten deferred transactions, but there are two

fewer deferred-transaction pairs, and this query returns 28 unpropagated deferred

transaction-pairs. In this case, the first deferred transaction only has one

transaction-pair remaining.

■ The number of deferred transaction errors (error transactions)

■ The number of successfully propagated transactions that are still in the queue.

These transactions should be purged from the queue.
10-2 Oracle9i Replication Management API Reference

Monitoring Master Replication Environments
Run the following query to list this information for the current master site:

COLUMN GLOBAL_NAME HEADING 'Database' FORMAT A25
COLUMN ADMIN_REQUESTS HEADING 'Admin|Reqests' FORMAT 9999
COLUMN STATUS HEADING 'Admin|Errors' FORMAT 9999
COLUMN TRAN HEADING 'Def|Trans|Pairs' FORMAT 9999
COLUMN ERRORS HEADING 'Def|Trans|Errors' FORMAT 9999
COLUMN COMPLETE HEADING 'Propagated|Trans' FORMAT 9999

SELECT G.GLOBAL_NAME, D.ADMIN_REQUESTS, E.STATUS, DT.TRAN, DE.ERRORS, C.COMPLETE
 FROM (SELECT GLOBAL_NAME FROM GLOBAL_NAME) G,
 (SELECT COUNT(ID) ADMIN_REQUESTS FROM DBA_REPCATLOG) D,

(SELECT COUNT(STATUS) STATUS FROM DBA_REPCATLOG WHERE STATUS = 'ERROR') E,
 (SELECT COUNT(*) TRAN FROM DEFTRANDEST) DT,
 (SELECT COUNT(*) ERRORS FROM DEFERROR) DE,
 (SELECT COUNT(A.DEFERRED_TRAN_ID) COMPLETE FROM DEFTRAN A
 WHERE A.DEFERRED_TRAN_ID NOT IN (
 SELECT B.DEFERRED_TRAN_ID FROM DEFTRANDEST B)) C;

Your output looks similar to the following:

 Def Def
 Admin Admin Trans Trans Propagated
Database Reqests Errors Pairs Errors Trans
------------------------- ------- ------ ----- ------ ----------
mv4.world 5 0 37 0 53

Monitoring Master Groups
This section contains queries that you can run to display information about the

master groups at a replication site.

Listing the Master Sites Participating in a Master Group
Run the following query to list the master sites for each master group at a

replication site and indicate which master site is the master definition site for each

master group:

COLUMN GNAME HEADING 'Master Group' FORMAT A20
COLUMN DBLINK HEADING 'Sites' FORMAT A25
COLUMN MASTERDEF HEADING 'Master|Definition|Site?' FORMAT A10

Note: This query can be expensive if you have a large number of

transactions in the deferred transactions queue.
Monitoring a Replication Environment 10-3

Monitoring Master Replication Environments
SELECT GNAME, DBLINK, MASTERDEF
 FROM DBA_REPSITES
 WHERE MASTER = 'Y'
 AND GNAME NOT IN (SELECT GNAME FROM DBA_REPSITES WHERE SNAPMASTER = 'Y')
 ORDER BY GNAME;

The subquery in the SELECT statement ensures that materialized view groups do

not appear in the output. Your output looks similar to the following:

 Master
 Definition
Master_Group Sites Site?
-------------------- ------------------------- ----------
HR_RG mv4.world Y
HR_RG NY.WORLD N

This list indicates that mv4.world is the master definition site for the hr_rg master

group.

Listing General Information About Master Groups
You can use the query in this section to list the following general information about

the master groups at a master site:

■ The name of each master group

■ The number of unpropagated deferred transaction-destination pairs. Each

deferred transaction may have multiple destinations to which it will be

propagated, and each destination is a single deferred transaction-destination

pair.

For example, if there are ten deferred transactions and each one must be propagated

to three sites, then there are 30 deferred transaction-pairs returned by this query.

After some time, if the first deferred transaction is propagated to two of the three

destination sites, then there are still ten deferred transactions, but there are two

fewer deferred-transaction pairs, and this query returns 28 unpropagated deferred

transaction-pairs. In this case, the first deferred transaction only has one

transaction-pair remaining.

■ The number of deferred transaction errors (error transactions) for each master

group

■ The number of administrative requests for each master group

■ The number of administrative request errors for each master group
10-4 Oracle9i Replication Management API Reference

Monitoring Master Replication Environments
Run the following query to list this information:

COLUMN GNAME HEADING 'Master Group' FORMAT A15
COLUMN deftran HEADING 'Number of|Deferred|Transaction|Pairs' FORMAT 9999
COLUMN deftranerror HEADING 'Number of|Deferred|Transaction|Errors' FORMAT 9999
COLUMN adminreq HEADING 'Number of|Administrative|Requests' FORMAT 9999
COLUMN adminreqerror HEADING 'Number of|Administrative|Request|Errors'
COLUMN adminreqerror FORMAT 9999

SELECT G.GNAME,
 NVL(T.CNT1, 0) deftran,
 NVL(IE.CNT2, 0) deftranerror,
 NVL(A.CNT3, 0) adminreq,
 NVL(B.CNT4, 0) adminreqerror
 FROM
 (SELECT DISTINCT GNAME FROM DBA_REPGROUP WHERE MASTER='Y') G,
 (SELECT DISTINCT RO.GNAME, COUNT(DISTINCT D.DEFERRED_TRAN_ID) CNT1
 FROM DBA_REPOBJECT RO, DEFCALL D, DEFTRANDEST TD
 WHERE RO.SNAME = D.SCHEMANAME
 AND RO.ONAME = D.PACKAGENAME
 AND RO.TYPE IN ('TABLE', 'PACKAGE', 'SNAPSHOT')
 AND TD.DEFERRED_TRAN_ID = D.DEFERRED_TRAN_ID
 GROUP BY RO.GNAME) T,
 (SELECT DISTINCT RO.GNAME, COUNT(DISTINCT E.DEFERRED_TRAN_ID) CNT2
 FROM DBA_REPOBJECT RO, DEFCALL D, DEFERROR E
 WHERE RO.SNAME = D.SCHEMANAME
 AND RO.ONAME = D.PACKAGENAME
 AND RO.TYPE IN ('TABLE', 'PACKAGE', 'SNAPSHOT')
 AND E.DEFERRED_TRAN_ID = D.DEFERRED_TRAN_ID
 AND E.CALLNO = D.CALLNO
 GROUP BY RO.GNAME) IE,
 (SELECT GNAME, COUNT(*) CNT3 FROM DBA_REPCATLOG GROUP BY GNAME) A,
 (SELECT GNAME, COUNT(*) CNT4 FROM DBA_REPCATLOG
 WHERE STATUS = 'ERROR'
 GROUP BY GNAME) B WHERE G.GNAME = IE.GNAME (+)
 AND G.GNAME = T.GNAME (+)
 AND G.GNAME = A.GNAME (+)
 AND G.GNAME = B.GNAME (+) ORDER BY G.GNAME;
Monitoring a Replication Environment 10-5

Monitoring Master Replication Environments
Your output looks similar to the following:

 Number of Number of Number of
 Deferred Deferred Number of Administrative
 Transaction Transaction Administrative Request
Master Group Pairs Errors Requests Errors
--------------- ----------- ----------- -------------- --------------
HR_RG 54 0 0 0
OE_RG 33 1 5 0

Monitoring Masters
A master can be either a master site or a master materialized view site. This section

contains queries that you can run to display information about masters.

Listing Information About Materialized Views Based on a Master
If you have materialized view sites based on a master, then you can use the query in

this section to list the following information about the master:

■ The number of replication groups at a master. The replication groups can be

either master groups or materialized view groups.

■ The number of registered materialized view groups based on the replication

groups at the master

■ The number of registered materialized views based on objects at the master. The

objects can be either master tables or master materialized views.

■ The number of materialized view logs at the master

■ The number of deployment templates at the master

Run the following query to list this information:

COLUMN repgroup HEADING 'Number of|Replication|Groups' FORMAT 9999
COLUMN mvgroup HEADING 'Number of|Registered|MV Groups' FORMAT 9999
COLUMN mv HEADING 'Number of|Registered MVs' FORMAT 9999
COLUMN mvlog HEADING 'Number of|MV Logs' FORMAT 9999
COLUMN template HEADING 'Number of|Templates' FORMAT 9999

Note: This query can be expensive if you have a large number of

transactions waiting to be propagated.
10-6 Oracle9i Replication Management API Reference

Monitoring Master Replication Environments
SELECT A.REPGROUP repgroup,
 B.MVGROUP mvgroup,
 C.MV mv,
 D.MVLOG mvlog,
 E.TEMPLATE template
 FROM (SELECT COUNT(G.GNAME) REPGROUP
 FROM DBA_REPGROUP G, DBA_REPSITES S
 WHERE G.MASTER = 'Y'
 AND S.MASTER = 'Y'
 AND G.GNAME = S.GNAME
 AND S.MY_DBLINK = 'Y') A,
 (SELECT COUNT(*) MVGROUP
 FROM DBA_REGISTERED_MVIEW_GROUPS) B,
 (SELECT COUNT(*) MV
 FROM DBA_REGISTERED_MVIEWS) C,
 (SELECT COUNT(*) MVLOG
 FROM (SELECT 1 FROM DBA_MVIEW_LOGS
 GROUP BY LOG_OWNER, LOG_TABLE)) D,
 (SELECT COUNT(*) TEMPLATE FROM DBA_REPCAT_REFRESH_TEMPLATES) E;

Your output looks similar to the following:

 Number of Number of
Replication Registered Number of Number of Number of
 Groups MV Groups Registered MVs MV Logs Templates
----------- ---------- -------------- --------- ---------
 1 5 27 6 3

Listing Information About the Materialized View Logs at a Master
A materialized view log enables you to fast refresh materialized views based on a

master. A master can be a master table or a master materialized view. If you have

materialized view logs based at a master, then you can use the query in this section

to list the following information about them:

■ The name of each log table that stores the materialized view log data

■ The owner of each materialized view log

■ The master on which each materialized view log is based

■ Whether a materialized view log is a row id materialized view log

■ Whether a materialized view log is a primary key materialized view log

■ Whether the materialized view log is an object id materialized view log

■ Whether a materialized view log has filter columns
Monitoring a Replication Environment 10-7

Monitoring Master Replication Environments
Run the following query to list this information:

COLUMN LOG_TABLE HEADING 'Log Table' FORMAT A20
COLUMN LOG_OWNER HEADING 'Log|Owner' FORMAT A5
COLUMN MASTER HEADING 'Master' FORMAT A15
COLUMN ROWIDS HEADING 'Row|ID?' FORMAT A3
COLUMN PRIMARY_KEY HEADING 'Primary|Key?' FORMAT A7
COLUMN OBJECT_ID HEADING 'Object|ID?' FORMAT A6
COLUMN FILTER_COLUMNS HEADING 'Filter|Columns?' FORMAT A8

SELECT DISTINCT LOG_TABLE,
 LOG_OWNER,
 MASTER,
 ROWIDS,
 PRIMARY_KEY,
 OBJECT_ID,
 FILTER_COLUMNS
 FROM DBA_MVIEW_LOGS
 ORDER BY 1;

Your output looks similar to the following:

 Log Row Primary Object Filter
Log Table Owner Master ID? Key? ID? Columns?
-------------------- ----- --------------- --- ------- ------ --------
MLOG$_COUNTRIES HR COUNTRIES NO YES NO NO
MLOG$_DEPARTMENTS HR DEPARTMENTS NO YES NO NO
MLOG$_EMPLOYEES HR EMPLOYEES NO YES NO NO
MLOG$_JOBS HR JOBS NO YES NO NO
MLOG$_JOB_HISTORY HR JOB_HISTORY NO YES NO NO
MLOG$_LOCATIONS HR LOCATIONS NO YES NO NO

Listing the Materialized Views That Use a Materialized View Log
More than one materialized view can use a materialized view log. If you have

materialized view logs based at a master, then you can use the query in this section

to list the following the materialized views that use each log:

■ The name of each log table that stores the materialized view log data

■ The owner of each materialized view log

■ The master on which each materialized view log is based

See Also: Oracle9i Replication for information about materialized

view logs
10-8 Oracle9i Replication Management API Reference

Monitoring Master Replication Environments
■ The materialized view identification number of each materialized view that

uses the materialized view log

■ The name of each materialized view that uses the materialized view log

Run the following query to list this information:

COLUMN LOG_TABLE HEADING 'Mview|Log Table' FORMAT A20
COLUMN LOG_OWNER HEADING 'Mview|Log Owner' FORMAT A10
COLUMN MASTER HEADING 'Master' FORMAT A20
COLUMN MVIEW_ID HEADING 'Mview|ID' FORMAT 9999
COLUMN NAME HEADING 'Mview Name' FORMAT A20

SELECT L.LOG_TABLE, L.LOG_OWNER, B.MASTER, B.MVIEW_ID, R.NAME
FROM ALL_MVIEW_LOGS L, ALL_BASE_TABLE_MVIEWS B, ALL_REGISTERED_MVIEWS R
WHERE B.MVIEW_ID = R.MVIEW_ID
AND B.OWNER = L.LOG_OWNER
AND B.MASTER = L.MASTER;

Your output looks similar to the following:

Mview Mview
Log Table Owner Master ID Mview Name
-------------------- ---------- -------------------- ----- --------------------
MLOG$_COUNTRIES HR COUNTRIES 24 COUNTRIES_MVIEW1
MLOG$_COUNTRIES HR COUNTRIES 31 COUNTRIES_MVIEW2
MLOG$_DEPARTMENTS HR DEPARTMENTS 19 DEPARTMENTS_MVIEW1
MLOG$_DEPARTMENTS HR DEPARTMENTS 64 DEPARTMENTS_MVIEW2
MLOG$_DEPARTMENTS HR DEPARTMENTS 15 DEPARTMENTS_MVIEW3

Listing Information About the Deployment Templates at a Master
Deployment templates enable you to create multiple materialized view

environments quickly. They also enable you to use variables to customize each

materialized view environment for its individual needs. You can use the query in

this section to list the following information about the deployment templates at a

master:

■ The name of each deployment template

■ The owner of each deployment template

■ Whether a deployment template is public

■ The number of instantiated materialized view sites based on each deployment

template

■ The comment associated with each deployment template
Monitoring a Replication Environment 10-9

Monitoring Materialized View Sites
Run the following query to list this information:

COLUMN REFRESH_TEMPLATE_NAME HEADING 'Template|Name' FORMAT A10
COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN PUBLIC_TEMPLATE HEADING 'Public?' FORMAT A7
COLUMN INSTANTIATED HEADING 'Number of|Instantiated|Sites' FORMAT 9999
COLUMN TEMPLATE_COMMENT HEADING 'Comment' FORMAT A35

SELECT DISTINCT RT.REFRESH_TEMPLATE_NAME,
 OWNER,
 PUBLIC_TEMPLATE,
 RS.INSTANTIATED,
 RT.TEMPLATE_COMMENT
 FROM DBA_REPCAT_REFRESH_TEMPLATES RT,
 (SELECT Y.REFRESH_TEMPLATE_NAME, COUNT(X.STATUS) INSTANTIATED
 FROM DBA_REPCAT_TEMPLATE_SITES X, DBA_REPCAT_REFRESH_TEMPLATES Y
 WHERE X.REFRESH_TEMPLATE_NAME(+) = Y.REFRESH_TEMPLATE_NAME
 GROUP BY Y.REFRESH_TEMPLATE_NAME) RS
 WHERE RT.REFRESH_TEMPLATE_NAME(+) = RS.REFRESH_TEMPLATE_NAME
 ORDER BY 1;

Your output looks similar to the following:

 Number of
Template Instantiated
Name Owner Public? Sites Comment
---------- ---------- ------- ------------ -----------------------------------
HR_REFG_DT HR N 2 Human Resources Deployment Template

The N in the Public? column means that the deployment template is private.

Therefore, it can only be instantiated by authorized users. A Y in this column means

that the deployment template is public. Any user can instantiate a public

deployment template.

Monitoring Materialized View Sites
This section contains queries that you can run to display information about the

materialized view sites.

Listing General Information About a Materialized View Site
You can use the query in this section to list the following general information about

the current materialized view site:
10-10 Oracle9i Replication Management API Reference

Monitoring Materialized View Sites
■ The number of materialized view groups at the site

■ The number of materialized views at the site

■ The number of refresh groups at the site

Run the following query to list this information:

COLUMN MVGROUP HEADING 'Number of|Materialized|View Groups' FORMAT 9999
COLUMN MV HEADING 'Number of|Materialized|Views' FORMAT 9999
COLUMN RGROUP HEADING 'Number of|Refresh Groups' FORMAT 9999

SELECT A.MVGROUP, B.MV, C.RGROUP
 FROM
 (SELECT COUNT(S.GNAME) MVGROUP
 FROM DBA_REPSITES S
 WHERE S.SNAPMASTER = 'Y') A,
 (SELECT COUNT(*) MV
 FROM DBA_MVIEWS) B,
 (SELECT COUNT(*) RGROUP
 FROM DBA_REFRESH) C;

Your output looks similar to the following:

 Number of Number of
Materialized Materialized Number of
 View Groups Views Refresh Groups
------------ ------------ --------------
 5 25 5

Listing General Information About Materialized View Groups
You can use the query in this section to list the following general information about

the materialized view groups at the current materialized view site:

■ The name of each materialized view group

■ The master of each materialized view group

■ The method of propagation to a materialized view group’ s master, either

asynchronous or synchronous

■ The comment associated with each materialized view group

Run the following query to list this information:

COLUMN GNAME HEADING 'Group Name' FORMAT A10
COLUMN DBLINK HEADING 'Master' FORMAT A25
Monitoring a Replication Environment 10-11

Monitoring Materialized View Sites
COLUMN Propagation HEADING 'Propagation|Method' FORMAT A12
COLUMN SCHEMA_COMMENT HEADING 'Comment' FORMAT A30

SELECT S.GNAME,
 S.DBLINK,
 DECODE(S.PROP_UPDATES,
 0, 'ASYNCHRONOUS',
 1, 'SYNCHRONOUS') Propagation,
 G.SCHEMA_COMMENT
 FROM DBA_REPSITES S, DBA_REPGROUP G
 WHERE S.GNAME = G.GNAME
 AND S.SNAPMASTER = 'Y';

Your output looks similar to the following:

 Propagation
Group Name Master Method Comment
---------- ------------------------- ------------ ------------------------------
HR_RG mv4.world ASYNCHRONOUS Human Resources Group

Listing Information About Materialized Views
This section contains queries that you can run to display information about the

materialized views at a replication site.

Listing Master Information For Materialized Views
The following query shows the master for each materialized view at a replication

site and whether the materialized view can be fast refreshed:

COLUMN MVIEW_NAME HEADING 'Materialized|View Name' FORMAT A15
COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN MASTER_LINK HEADING 'Master Link' FORMAT A30
COLUMN Fast_Refresh HEADING 'Fast|Refreshable?' FORMAT A16

SELECT MVIEW_NAME,
 OWNER,
 MASTER_LINK,
 DECODE(FAST_REFRESHABLE,
 'NO', 'NO',
 'DML', 'YES',
 'DIRLOAD', 'DIRECT LOAD ONLY',
 'DIRLOAD_DML', 'YES',
 'DIRLOAD_LIMITEDDML', 'LIMITED') Fast_Refresh
 FROM DBA_MVIEWS;
10-12 Oracle9i Replication Management API Reference

Monitoring Materialized View Sites
Your output looks similar to the following:

Materialized Fast
View Name Owner Master Link Refreshable?
--------------- ---------- ------------------------------ ----------------
DEPARTMENTS_MV HR @mv4.world YES
EMPLOYEES_MV HR @mv4.world YES
JOBS_MV HR @mv4.world YES
JOB_HISTORY_MV HR @mv4.world YES
LOCATIONS_MV HR @mv4.world YES

Listing the Properties of Materialized Views
You can use the query in this section to list the following information about the

materialized views at the current replication site:

■ The name of each materialized view

■ The owner of each materialized view

■ The refresh method used by each materialized view: COMPLETE, FORCE, FAST,
or NEVER

■ Whether a materialized view is updatable

■ The last date on which each materialized view was refreshed

Run the following query to list this information:

COLUMN MVIEW_NAME HEADING 'Materialized|View Name' FORMAT A15
COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN REFRESH_METHOD HEADING 'Refresh|Method' FORMAT A10
COLUMN UPDATABLE HEADING 'Updatable?' FORMAT A10
COLUMN LAST_REFRESH_DATE HEADING 'Last|Refresh|Date'
COLUMN LAST_REFRESH_TYPE HEADING 'Last|Refresh|Type' FORMAT A15

SELECT MVIEW_NAME,
 OWNER,
 REFRESH_METHOD,
 UPDATABLE,
 LAST_REFRESH_DATE,
 LAST_REFRESH_TYPE
 FROM DBA_MVIEWS;

Your output looks similar to the following:
Monitoring a Replication Environment 10-13

Monitoring Materialized View Sites
 Last Last
Materialized Refresh Refresh Refresh
View Name Owner Method Updatable? Date Type
--------------- ---------- ---------- ---------- --------------- ---------------
DEPARTMENTS_MV HR FORCE Y 22-JAN-01 FAST
EMPLOYEES_MV HR FAST Y 22-JAN-01 COMPLETE
JOBS_MV HR COMPLETE Y 22-JAN-01 COMPLETE
JOB_HISTORY_MV HR FAST Y 22-JAN-01 FAST
LOCATIONS_MV HR FAST Y 22-JAN-01 FAST

Listing Information About the Refresh Groups at a Materialized View Site
Each refresh group at a materialized view site is associated with a refresh job that

refreshes the materialized views in the refresh group at a set interval. You can query

the DBA_REFRESH data dictionary view to list the following information about the

refresh jobs at a materialized view site:

■ The name of the refresh group

■ The owner of the refresh group

■ Whether the refresh job is broken

■ The next date and time when the refresh job will run

■ The current interval setting for the refresh job. The interval setting specifies the

amount of time between the start of a job and the next start of the same job.

The following query displays this information:

COLUMN RNAME HEADING 'Refresh|Group|Name' FORMAT A10
COLUMN ROWNER HEADING 'Refresh|Group|Owner' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_refresh HEADING 'Next Refresh'
COLUMN INTERVAL HEADING 'Interval' FORMAT A20

SELECT RNAME,
 ROWNER,
 BROKEN,
 TO_CHAR(NEXT_DATE, 'DD-MON-YYYY HH:MI:SS AM') next_refresh,
 INTERVAL
 FROM DBA_REFRESH
 ORDER BY 1;
10-14 Oracle9i Replication Management API Reference

Monitoring Materialized View Sites
Your output looks similar to the following:

Refresh Refresh
Group Group
Name Owner Broken? Next Refresh Interval
---------- ---------- ------- ----------------------- --------------------
HR_REFG MVIEWADMIN N 01-JAN-4000 12:00:00 AM SYSDATE + 1/24

The N in the Broken? column means that the job is not broken. Therefore, the

refresh job will run at the next start time. A Y in this column means that the job is

broken.

Determining the Job ID for Each Refresh Job at a Materialized View Site
You can use the query in this section to list the following information about the

refresh jobs at a materialized view site:

■ The job identification number of each refresh job. Each job created by the DBMS_
JOBS package is assigned a unique identification number.

■ The privilege schema, which is the schema whose default privileges apply to

the job

■ The schema that owns each refresh job. Typically, the materialized view

administrator owns a refresh job. A common username for the materialized

view administrator is mviewadmin .

■ The name of the refresh group that the job refreshes

■ The status of the refresh job, either normal or broken

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN RNAME HEADING 'Refresh|Group|Name' FORMAT A10
COLUMN ROWNER HEADING 'Refresh|Group|Owner' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7

SELECT J.JOB,
 J.PRIV_USER,
 R.ROWNER,
 R.RNAME,
 J.BROKEN
 FROM DBA_REFRESH R, DBA_JOBS J
 WHERE R.JOB = J.JOB
 ORDER BY 1;
Monitoring a Replication Environment 10-15

Monitoring Administrative Requests
Your output looks similar to the following:

 Refresh Refresh
 Privilege Group Group
 Job ID Schema Owner Name Broken?
------- ---------- ---------- ---------- -------
 21 MVIEWADMIN MVIEWADMIN HR_REFG N

The N in the Broken? column means that the job is not broken. Therefore, the job

will run at the next start time. A Y in this column means that the job is broken.

Determining Which Materialized Views Are Currently Refreshing
The following query shows the materialized views that are currently refreshing:

COLUMN SID HEADING 'Session|Identifier' FORMAT 9999
COLUMN SERIAL# HEADING 'Serial|Number' FORMAT 999999
COLUMN CURRMVOWNER HEADING 'Owner' FORMAT A15
COLUMN CURRMVNAME HEADING 'Materialized|View' FORMAT A25

SELECT * FROM V$MVREFRESH;

Your output looks similar to the following:

 Session Serial Materialized
Identifier Number Owner View
---------- ------- --------------- -------------------------
 19 233 HR COUNTRIES_MV
 5 647 HR EMPLOYEES_MV

Monitoring Administrative Requests
This section contains queries that you can run to display information about the

administrative requests at a master site.

Note: The V$MVREFRESH dynamic performance view does not

contain information about updatable materialized views when the

materialized views’ deferred transactions are being pushed to its

master.
10-16 Oracle9i Replication Management API Reference

Monitoring Administrative Requests
Listing General Information About Administrative Requests
You can use the query in this section to list the following general information about

the administrative requests at a master site:

■ The identification number of each administrative request

■ The action requested by each administrative request

■ The status of each request

■ The master site where the request is being executed

The following query displays this information:

COLUMN ID HEADING 'Admin|Request|ID' FORMAT 999999
COLUMN REQUEST HEADING 'Request' FORMAT A25
COLUMN STATUS HEADING 'Status' FORMAT A15
COLUMN MASTER HEADING 'Master|Site' FORMAT A25

SELECT ID, REQUEST, STATUS, MASTER FROM DBA_REPCATLOG;

Your output looks similar to the following:

 Admin
Request Master
 ID Request Status Site
------- ------------------------- --------------- -------------------------
 44 RESUME_MASTER_ACTIVITY AWAIT_CALLBACK NY.WORLD

Determining the Cause of Administrative Request Errors
You can determine the cause of an administrative request error by displaying its

error message. The following query displays the error message for each

administrative request that resulted in an error:

COLUMN ID HEADING 'Admin|Request|ID' FORMAT 999999
COLUMN REQUEST HEADING 'Request' FORMAT A30
COLUMN ERRNUM HEADING 'Error|Number' FORMAT 999999
COLUMN MESSAGE HEADING 'Error|Message' FORMAT A32

SELECT ID, REQUEST, ERRNUM, MESSAGE
 FROM DBA_REPCATLOG WHERE STATUS = 'ERROR';
Monitoring a Replication Environment 10-17

Monitoring Administrative Requests
Your output looks similar to the following:

 Admin
Request Error Error
 ID Request Number Message
------- ------------------------------ ------- ------------------------------
 70 CREATE_MASTER_REPOBJECT -2292 ORA-02292: integrity constrain
 t (HR.DEPT_LOC_FK) violated -
 child record found
 ORA-02266: unique/primary keys
 in table referenced by enable
 d foreign keys

 71 GENERATE_INTERNAL_PKG_SUPPORT -23308 ORA-23308: object HR.LOCATIONS
 does not exist or is invalid

Listing General Information About the Job that Executes Administrative Requests
Each master group is associated with a do_deferred_repcat_admin job that

executes administrative requests. You can query the DBA_JOBS data dictionary

view to list the following information about this job at a replication site:

■ The job identification number of each do_deferred_repcat_admin job. Each

job created by the DBMS_JOBS package is assigned a unique identification

number.

■ The privilege schema, which is the schema whose default privileges apply to

the job

■ The status of each do_deferred_repcat_admin job, either normal or broken

■ The next date and time when each do_deferred_repcat_admin job will run

■ The current interval setting for each do_deferred_repcat_admin job. The

interval setting specifies the amount of time between the start of a job and the

next start of the same job.

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_start HEADING 'Next Start'
COLUMN INTERVAL HEADING 'Interval' FORMAT A20

SELECT JOB,
 PRIV_USER,
10-18 Oracle9i Replication Management API Reference

Monitoring the Deferred Transactions Queue
 BROKEN,
 TO_CHAR(NEXT_DATE,'DD-MON-YYYY HH:MI:SS AM') next_start,
 INTERVAL
 FROM DBA_JOBS
 WHERE WHAT LIKE '%dbms_repcat.do_deferred_repcat_admin%'
 ORDER BY 1;

Your output looks similar to the following:

 Privilege
 Job ID Schema Broken? Next Start Interval
------- ---------- ------- ----------------------- --------------------
 3 REPADMIN N 02-FEB-2001 04:34:36 PM SYSDATE + (1/144)

The N in the Broken? column means that the job is not broken. Therefore, the job

will run at the next start time. A Y in this column means that the job is broken.

Checking the Definition of Each do_deferred_repcat_admin Job
You can query the DBA_JOBS data dictionary view to show the definition of each

do_deferred_repcat_admin job at a replication site. The following query shows

the definitions:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN WHAT HEADING 'Definitions of Admin Req Jobs' FORMAT A70

SELECT JOB, WHAT
 FROM DBA_JOBS
 WHERE WHAT LIKE '%dbms_repcat.do_deferred_repcat_admin%'
 ORDER BY 1;

Your output looks similar to the following:

 Job ID Definitions of Admin Req Jobs
------- --
 321 dbms_repcat.do_deferred_repcat_admin('"HR_RG"', FALSE);
 342 dbms_repcat.do_deferred_repcat_admin('"OE_RG"', FALSE);

Monitoring the Deferred Transactions Queue
This section contains queries that you can run to display information about the

deferred transactions queue at a replication site.
Monitoring a Replication Environment 10-19

Monitoring the Deferred Transactions Queue
Monitoring Transaction Propagation
This section contains queries that you can run to display information about

propagation of transactions in the deferred transactions queue.

Listing the Number of Deferred Transactions for Each Destination Master Site
You can find the number of unpropagated deferred transactions for each destination

master site by running the query in this section. This query shows each master site

to which the current master site is propagating deferred transactions and the

number of deferred transactions to be propagated to each destination site.

Run the following query to see the number of deferred and error transactions:

COLUMN DEST HEADING 'Destination' FORMAT A45
COLUMN TRANS HEADING 'Def Trans' FORMAT 9999

SELECT DBLINK DEST, COUNT(*) TRANS
 FROM DEFTRANDEST D
 GROUP BY DBLINK;

Your output looks similar to the following:

Destination Def Trans
--- ---------
NY.WORLD 27
mv4.world 44

Listing General Information About the Push Jobs at a Replication Site
Each scheduled link at a replication site is associated with a push job that

propagates deferred transactions in the deferred transaction queue to a destination

site. You can use the query in this section to list the following information about the

push jobs at a replication site:

■ The job identification number of each push job. Each job created by the DBMS_
JOBS package is assigned a unique identification number.

■ The privilege schema, which is the schema whose default privileges apply to

the job

■ The destination site where the deferred transactions are pushed

Note: This query can be expensive if you have a large number of

transactions waiting to be propagated.
10-20 Oracle9i Replication Management API Reference

Monitoring the Deferred Transactions Queue
■ The status of the push job, either normal or broken

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN DBLINK HEADING 'Destination' FORMAT A40
COLUMN BROKEN HEADING 'Broken?' FORMAT A7

SELECT J.JOB,
 J.PRIV_USER,
 S.DBLINK,
 J.BROKEN
 FROM DEFSCHEDULE S, DBA_JOBS J
 WHERE S.DBLINK != (SELECT GLOBAL_NAME FROM GLOBAL_NAME)
 AND S.JOB = J.JOB
 ORDER BY 1;

Your output looks similar to the following:

 Privilege
 Job ID Schema Destination Broken?
------- ---------- -- -------
 2 REPADMIN NY.WORLD N

The N in the Broken? column means that the job is not broken. Therefore, the job

will run at the next start time. A Y in this column means that the job is broken.

Determining the Next Start Time and Interval for the Push Jobs
Each scheduled link at a replication site is associated with a push job that

propagates deferred transactions in the deferred transaction queue to a destination

site. You can query the DEFSCHEDULE and DBA_JOBS data dictionary views to list

the following information about the push jobs at a replication site:

■ The job identification number of each push job. Each job created by the DBMS_
JOBS package is assigned a unique identification number.

■ The destination site where the deferred transactions are pushed

■ The next date and time when the push job will run

■ The current interval setting for the push job. The interval setting specifies the

amount of time between the start of a job and the next start of the same job.

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
Monitoring a Replication Environment 10-21

Monitoring the Deferred Transactions Queue
COLUMN DBLINK HEADING 'Destination' FORMAT A22
COLUMN next_start HEADING 'Next Start'
COLUMN INTERVAL HEADING 'Interval' FORMAT A25

SELECT JOB,
 DBLINK,
 TO_CHAR(NEXT_DATE, 'DD-MON-YYYY HH:MI:SS AM') next_start,
 INTERVAL
 FROM DEFSCHEDULE
 WHERE DBLINK != (SELECT GLOBAL_NAME FROM GLOBAL_NAME)
 AND JOB IS NOT NULL
 ORDER BY 1;

Your output looks similar to the following:

 Job ID Destination Next Start Interval
------- ---------------------- ----------------------- -------------------------
 2 NY.WORLD 02-FEB-2001 04:44:39 PM SYSDATE + 10 / (24 * 60)

Determining the Total Number of Transactions Queued for Propagation
Run the following query to display the total number of transactions in the deferred

transaction queue that are waiting to be propagated:

SELECT COUNT(DISTINCT DEFERRED_TRAN_ID) "Transactions Queued"
 FROM DEFTRANDEST;

Your output looks similar to the following:

Transactions Queued

 37

Monitoring Purges of Successfully Propagated Transactions
This section contains queries that you can run to display information about purges

of successfully propagated transactions from the deferred transactions queue.

Listing General Information About the Purge Job
During standard setup of a replication site, you configure a purge job to remove

successfully propagated transactions from the deferred transactions queue. You can

Note: This query can be expensive if you have a large number of

transactions waiting to be propagated.
10-22 Oracle9i Replication Management API Reference

Monitoring the Deferred Transactions Queue
query the DBA_JOBS data dictionary view to list the following information about

the purge job at a replication site:

■ The job identification number of the purge job. Each job created by the DBMS_
JOBS package is assigned a unique identification number.

■ The privilege schema, which is the schema whose default privileges apply to

the job

■ The status of the job, either normal or broken

■ The next date and time when the purge job will run

■ The current interval setting for the purge job. The interval setting specifies the

amount of time between the start of a job and the next start of the same job.

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_start HEADING 'Next Start'
COLUMN INTERVAL HEADING 'Interval' FORMAT A25

SELECT JOB,
 PRIV_USER,
 BROKEN,
 TO_CHAR(NEXT_DATE, 'DD-MON-YYYY HH:MI:SS AM') next_start,
 INTERVAL
 FROM DBA_JOBS
 WHERE WHAT LIKE '%dbms_defer_sys.purge%'
 ORDER BY 1;

Your output looks similar to the following:

 Privilege
 Job ID Schema Broken? Next Start Interval
------- ---------- ------- ----------------------- -------------------------
 1 REPADMIN N 02-FEB-2001 05:06:43 PM SYSDATE + 1/24

The N in the Broken? column means that the job is not broken. Therefore, the job

will run at the next start time. A Y in this column means that the job is broken.

Checking the Definition of the Purge Job
You can query the DBA_JOBS data dictionary view to show the definition of the

purge job at a replication site. The following query shows the definition:
Monitoring a Replication Environment 10-23

Monitoring the Error Queue
SELECT WHAT "Definition of the Purge Job"
 FROM DBA_JOBS
 WHERE WHAT LIKE '%dbms_defer_sys.purge%' ORDER BY 1;

Your output looks similar to the following:

Definition of the Purge Job
--
declare rc binary_integer; begin rc := sys.dbms_defer_sys.purge(delay_seconds=>
0); end;

Determining the Amount of Time Since the Last Purge
The following query shows the total amount of time, in minutes, since the

successfully propagated transactions were purged from the deferred transactions

queue:

SELECT ((SYSDATE - LAST_PURGE_TIME) / 60) "Minutes Since Last Purge"
 FROM V$REPLQUEUE;

Your output looks similar to the following:

Minutes Since Last Purge

 13.43333

Determining the Total Number of Purged Transactions
The following query shows the total number of successfully propagated

transactions that have been purged from the deferred transaction queue since the

instance was last started:

SELECT TXNS_PURGED "Transactions Purged"
 FROM V$REPLQUEUE;

Your output looks similar to the following:

Transactions Purged

 6541

Monitoring the Error Queue
This section contains queries that you can run to display information about the

error queue at a replication site. The error queue contains deferred transactions that
10-24 Oracle9i Replication Management API Reference

Monitoring the Error Queue
resulted in an error at the destination site. These error transactions are placed in the

error queue at the destination site.

Listing General Information About the Error Transactions at a Replication Site
The following query lists the general information about the error transactions at a

replication site:

COLUMN DEFERRED_TRAN_ID HEADING 'Deferred|Transaction|ID' FORMAT A11
COLUMN ORIGIN_TRAN_DB HEADING 'Origin|Database' FORMAT A15
COLUMN DESTINATION HEADING 'Destination|Database' FORMAT A15
COLUMN TIME_OF_ERROR HEADING 'Time of|Error' FORMAT A22
COLUMN ERROR_NUMBER HEADING 'Oracle|Error|Number' FORMAT 999999

SELECT DEFERRED_TRAN_ID,
 ORIGIN_TRAN_DB,
 DESTINATION,
 TO_CHAR(START_TIME, 'DD-Mon-YYYY hh24:mi:ss') TIME_OF_ERROR,
 ERROR_NUMBER
 FROM DEFERROR ORDER BY START_TIME;

Your output looks similar to the following:

Deferred Oracle
Transaction Origin Destination Time of Error
ID Database Database Error Number
----------- --------------- --------------- ---------------------- -------
1.8.2470 mv4.world NY.WORLD 25-Jan-2001 17:11:17 1403

You can use the deferred transaction ID and the destination database to either

attempt to rerun the transaction that caused the error or to delete the error.

For example, to attempt to rerun the transaction in the previous example, enter the

following:

EXECUTE DBMS_DEFER_SYS.EXECUTE_ERROR('1.8.2470', 'NY.WORLD');

To delete the error in the previous example, enter the following:

EXECUTE DBMS_DEFER_SYS.DELETE_ERROR('1.8.2470', 'NY.WORLD');

Typically, you should delete an error only if you have resolved it manually.
Monitoring a Replication Environment 10-25

Monitoring the Error Queue
Determining the Percentage of Error Transactions
When propagating transactions to a remote master site, some transactions are

propagated and applied successfully while other transactions may result in errors at

the remote master site. Transactions that result in errors are called error

transactions.

Run the following query to display the percentage of error transactions that resulted

from propagation to the remote master site mv4.world :

SELECT DECODE(TOTAL_TXN_COUNT, 0, 'No Transactions',
 (TOTAL_ERROR_COUNT/TOTAL_TXN_COUNT)*100) "ERROR PERCENTAGE"
 FROM DEFSCHEDULE
 WHERE DBLINK = 'mv4.world';

Your output looks similar to the following:

Error Percentage

 3.265

Listing the Number of Error Transactions from Each Origin Master Site
You can find the number of transaction errors resulting from pushes by each origin

master site by running the query in this section.

Run the following query to see the number of deferred and error transactions:

COLUMN SOURCE HEADING 'Origin' FORMAT A45
COLUMN ERRORS HEADING 'Def Trans Errors' FORMAT 9999

SELECT E.ORIGIN_TRAN_DB SOURCE, COUNT(*) ERRORS
 FROM DEFERROR E
 GROUP BY E.ORIGIN_TRAN_DB;

Your output looks similar to the following:

Origin Def Trans Errors
--- ----------------
NY.WORLD 1
mv4.world 3

Note: If this query returns 'No transactions' , then no

transactions have been propagated to the specified remote site since

the statistics were last cleared.
10-26 Oracle9i Replication Management API Reference

Monitoring the Error Queue
Listing the Error Messages for the Error Transactions at a Replication Site
The following query lists the error messages for the error transactions at a

replication site:

COLUMN DEFERRED_TRAN_ID HEADING 'Deferred|Transaction|ID' FORMAT A11
COLUMN ERROR_MSG HEADING 'Error Messages' FORMAT A68

SELECT DEFERRED_TRAN_ID, ERROR_MSG
 FROM DEFERROR;

Your output looks similar to the following:

Deferred
Transaction
ID Error Messages
----------- --
1.8.2470 ORA-01403: no data found

Determining the Error Operations at a Replication Site
The following query lists the type of operation that was attempted for each call that

caused an error at a replication site:

COLUMN CALLNO HEADING 'Call|Number' FORMAT 9999
COLUMN DEFERRED_TRAN_ID HEADING 'Deferred|Transaction|ID' FORMAT A11
COLUMN PACKAGENAME HEADING 'Package|Name' FORMAT A20
COLUMN PROCNAME HEADING 'Operation' FORMAT A15
COLUMN ORIGIN_TRAN_DB HEADING 'Origin|Database' FORMAT A15

SELECT /*+ ORDERED */
 C.CALLNO,
 C.DEFERRED_TRAN_ID,
 C.PACKAGENAME,
 C.PROCNAME, E.ORIGIN_TRAN_DB
 FROM DEFERROR E, DEFCALL C
 WHERE C.DEFERRED_TRAN_ID = E.DEFERRED_TRAN_ID
 AND C.CALLNO = E.CALLNO
 ORDER BY E.START_TIME;
Monitoring a Replication Environment 10-27

Monitoring Performance in a Replication Environment
Your output looks similar to the following:

 Deferred
 Call Transaction Package Origin
Number ID Name Operation Database
------ ----------- -------------------- --------------- ---------------
 0 1.8.2470 EMPLOYEES$RP REP_UPDATE mv4.world

Monitoring Performance in a Replication Environment
This section contains queries that you can run to monitor the performance of your

replication environment.

Tracking the Average Number of Row Changes in a Replication Transaction
The following query shows the average number of row changes in a replication

transaction since instance startup:

SELECT DECODE(TXNS_ENQUEUED, 0, 'No Transactions Enqueued',
 (CALLS_ENQUEUED / TXNS_ENQUEUED)) "Average Number of Row Changes"
 FROM V$REPLQUEUE;

Your output looks similar to the following:

Average Number of Row Changes

 56.16

Tracking the Rate of Transactions Entering the Deferred Transactions Queue
The following query shows the average number of transactions per second entering

at the deferred transactions queue at the current site since instance startup:

SELECT (R.TXNS_ENQUEUED / ((SYSDATE - I.STARTUP_TIME)*24*60*60)) "Average TPS"
 FROM V$REPLQUEUE R, V$INSTANCE I;

Your output looks similar to the following:

Average TPS

 150

Note: If this query returns 'No Transactions Enqueued' , then

no transactions have been enqueued since the start of the instance.
10-28 Oracle9i Replication Management API Reference

Monitoring Performance in a Replication Environment
Determining the Average Network Traffic Created To Propagate a Transaction
Propagation of deferred transactions creates a certain amount of traffic on your

network. Here, the network traffic created by a transaction is the number of bytes

being sent and received and the number of network round trips needed to

propagate the transaction.

A round trip is one or more consecutively sent messages followed by one or more

consecutively received messages. For example, both of the following scenarios

constitute only one round trip:

■ Site A sends one message to site B and then site B sends one message to site A.

■ Site A sends 20 messages to site B and then site B sends one message to site A.

These scenarios illustrate that the number of messages is irrelevant when evaluating

the number of round trips, because the number of round trips is the number of back

and forth communications between sites.

The following query shows the average network traffic created when propagating a

transaction to the mv4.world remote master site:

SELECT
 DECODE(TOTAL_TXN_COUNT, 0, 'No Transactions',
((TOTAL_BYTES_SENT + TOTAL_BYTES_RECEIVED) / TOTAL_TXN_COUNT)) "Average Bytes",

 DECODE(TOTAL_TXN_COUNT, 0, 'No Transactions',
 (TOTAL_ROUND_TRIPS / TOTAL_TXN_COUNT)) "Average Round Trips"
 FROM DEFSCHEDULE WHERE DBLINK = 'mv4.world';

Your output looks similar to the following:

Average Bytes Average Round Trips
------------- -------------------
 69621.5 5

Determining the Average Amount of Time to Apply Transactions at Remote Sites
Average latency is the average number of seconds between the first call of a

transaction on the current site and the confirmation that the transaction was applied

at the remote site. The first call begins when the user makes the first data

manipulation language (DML) change, not when the transaction is committed.

Note: If this query returns 'No transactions' in both columns,

then no transactions have been propagated to the specified remote

site since the statistics were last cleared.
Monitoring a Replication Environment 10-29

Monitoring Performance in a Replication Environment
The following query shows the average latency for applying transactions at the

remote master site mv4.world :

SELECT AVG_LATENCY "Average Latency"
 FROM DEFSCHEDULE
 WHERE DBLINK='mv4.world';

Your output looks similar to the following:

Average Latency

 25.5

Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping
When the parallel propagation coordinator is inactive, it is sleeping. You control the

amount of time that the propagation coordinator sleeps using the delay_seconds
parameter in the DBMS_DEFER_SYS.PUSH procedure.

The following query shows the percentage of time that the parallel propagation

coordinator spends sleeping when propagating transactions to the mv4.world
remote master site:

SELECT DECODE(AVG_THROUGHPUT, 0, NULL,
 ((TOTAL_SLEEP_TIME / (TOTAL_TXN_COUNT / AVG_THROUGHPUT)) * 100))
 "Percent Sleep Time"
 FROM DEFSCHEDULE WHERE DBLINK = 'mv4.world';

Your output looks similar to the following:

Percent Sleep Time

 2

Of course, in this case, the parallel propagation coordinator is active 98% of the

time.

Note: If this query returns a NULL, then no transactions have been

propagated to the specified remote site since the statistics were last

cleared or since the last database startup.
10-30 Oracle9i Replication Management API Reference

Monitoring Performance in a Replication Environment
Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View
To clear the propagation statistics in the DEFSCHEDULEview for a particular remote

master site, use the CLEAR_PROP_STATISTICS procedure in the DBMS_DEFER_
SYS package. For example, to clear the propagation statistics for the mv4.world
remote master site, run the following procedure:

BEGIN
DBMS_DEFER_SYS.CLEAR_PROP_STATISTICS (

 dblink => 'mv4.world');
END;
/

Monitoring Parallel Propagation of Deferred Transactions Using V$REPLPROP
The V$REPLPROP dynamic performance view provides information about current

parallel propagation sessions.

Determining the Databases to Which You Are Propagating Deferred Transactions
Run the following query to list the database link of each database to which you are

currently propagating deferred transactions using parallel propagation:

SELECT DBLINK "Database Link"
 FROM V$REPLPROP
 WHERE NAME LIKE '%Coordinator%';

Your output looks similar to the following:

Database Link

mv4.world
NY.WORLD
HK.WORLD

Determining the Transactions Currently Being Propagated to a Remote Master
You can list the following information about the transactions that are currently

being propagated to a specified remote master site using parallel propagation:

Note: The V$REPLPROP dynamic performance view is only

relevant if you are using parallel propagation of deferred

transactions. If you are using serial propagation, then this view is

empty.
Monitoring a Replication Environment 10-31

Monitoring Performance in a Replication Environment
■ The transaction identification number of each transaction

■ The number of calls in each transaction

■ The percentage of processed calls in each transaction. The number in this

column becomes larger as the calls in the transaction are processed. When the

number reaches 100, all of the calls are processed.

The following query displays this information:

SELECT /*+ ORDERED */ P.XID "Tran Being Propagated",
 (MAX(C.CALLNO) + 1) "Number of Calls in Tran",
 (P.SEQUENCE/MAX(C.CALLNO) + 1) * 100 "% Processed Calls"
 FROM V$REPLPROP P, DEFCALL C
 WHERE P.NAME LIKE '%SLAVE%'
 AND P.DBLINK = 'mv4.world'
 AND C.DEFERRED_TRAN_ID = P.XID
 GROUP BY P.XID, P.SEQUENCE;

Your output looks similar to the following:

Tran Being Propagated Number of Calls in Tran % Processed Calls
---------------------- ----------------------- -----------------
1.11.4264 43357 78
1.15.4256 23554 49

The transaction identification numbers should change as existing transactions are

pushed and new transactions are processed. This query can be particularly useful if

the any of the following conditions apply to your replication environment:

■ You push a large number of transactions on a regular basis.

■ You have some transactions that are very large.

■ You are simulating continuous push using asynchronous propagation.

If the first two bullets apply to your replication environment, then you can run this

query to check if the slave processes are pushing the transactions. In this type of

environment, the slave processes do not exist when they are not pushing

transactions.

In replication environments that are simulating continuous push, the slave

processes exist whenever there are transactions to push in the deferred transactions

queue. When there are no transactions to push, the slave processes may not exist.

So, when there are transactions to push, you can use this query to make sure the

slave processes exist and are processing the transactions.
10-32 Oracle9i Replication Management API Reference

Monitoring Performance in a Replication Environment
See Also: Oracle9i Replication for more information about

scheduling continuous push in your replication environment
Monitoring a Replication Environment 10-33

Monitoring Performance in a Replication Environment
10-34 Oracle9i Replication Management API Reference

Part III

Replication Management API Packages

Reference

Part III includes reference information about the replication management API,

including:

■ The procedures and functions in each package

■ The parameters for each packaged procedure or function

■ Exceptions that each procedure or function can raise

Note: Some of the PL/SQL procedures and functions described in

the chapters in this part are overloaded. That is, two or more

procedures or functions have the same name in a single package,

but their formal parameters differ in number, order, or datatype

family. When a procedure or function is overloaded, it is noted in

the description. See the PL/SQL User’s Guide and Reference for more

information about overloading and for more information about

PL/SQL in general.

PL/SQL Packages
Oracle’s replication management API includes the following PL/SQL packages:

■ DBMS_DEFER

■ DBMS_DEFER_QUERY

■ DBMS_DEFER_SYS

■ DBMS_MVIEW

■ DBMS_OFFLINE_OG

■ DBMS_OFFLINE_SNAPSHOT

■ DBMS_RECTIFIER_DIFF

■ DBMS_REFRESH

■ DBMS_REPCAT

■ DBMS_REPCAT_ADMIN

■ DBMS_REPCAT_INSTANTIATE

■ DBMS_REPCAT_RGT

■ DBMS_REPUTIL

Introduction to the Replication Management API
11

Introduction to the Replication Management

API Reference

All installations of Advanced Replication include the replication management

application programming interface (API). This replication management API is a

collection of PL/SQL packages that administrators use to configure and manage

replication features at each site. The Replication Management tool in Oracle

Enterprise Manager also uses the procedures and functions of each site’s replication

management API to perform work.

This chapter contains the following topics:

■ Examples of Using Oracle’s Replication Management API

■ Issues to Consider When Using the Replication Management API

■ The Replication Management Tool and the Replication Management API

■ Abbreviations for Datetime and Interval Datatypes

Note: Some of the PL/SQL procedures and functions described in

the chapters in this part are overloaded. That is, two or more

procedures or functions have the same name in a single package,

but their formal parameters differ in number, order, or datatype

family. When a procedure or function is overloaded, it is noted in

the description. See the PL/SQL User’s Guide and Reference for more

information about overloading and for more information about

PL/SQL in general.
Reference 11-1

Examples of Using Oracle’s Replication Management API
Examples of Using Oracle’s Replication Management API
To use Oracle’s replication management API, you issue procedure or function calls

using a query tool such as SQL*Plus or Enterprise Manager SQL Worksheet. For

example, the following call to the DBMS_REPCAT.CREATE_MASTER_REPOBJECT
procedure creates a new replicated table hr.employees in the hr_repg
replication group:

BEGIN
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'employees',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

To call a replication management API function, you must provide an environment

to receive the return value of the function. For example, the following anonymous

PL/SQL block calls the DBMS_DEFER_SYS.DISABLED function in an IF statement.

BEGIN
 IF DBMS_DEFER_SYS.DISABLED ('inst2') THEN
 DBMS_OUTPUT.PUT_LINE('Propagation to INST2 is disabled.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Propagation to INST2 is enabled.');
 END IF;
END;
/

11-2 Oracle9i Replication Management API Reference

The Replication Management Tool and the Replication Management API
Issues to Consider When Using the Replication Management API
For many procedures and functions in the replication management API, there are

important issues to consider. For example:

■ Some procedures or functions are appropriate to call only from the master

definition site in a multimaster configuration.

■ To perform some administrative operations for master groups, you must first

suspend replication activity for the group before calling replication

management API procedures and functions.

■ The order in which you call different procedures and functions in Oracle’s

replication management API is extremely important. See the next section for

more information about learning how to correctly issue replication

management calls.

The Replication Management Tool and the Replication Management API
The Replication Management tool uses the replication management API to perform

most of its functions. Using the Replication Management tool is much more

convenient than issuing replication management API calls individually because the

utility:

■ Provides a GUI interface to type in and adjust API call parameters

■ Automatically orders numerous, related API calls in the proper sequence

■ Displays output returned from API calls in message boxes and error files

An easy way to learn how to use Oracle’s replication management API is to use the

Replication Management tool’s scripting feature. When you start an administrative

session with the Replication Management tool, turn scripting on. When you are

finished, turn scripting off and then review the script file. The script file contains all

replication management API calls that were made during the session. See the

Replication Management tool’s help for more information about its scripting

feature.
Introduction to the Replication Management API Reference 11-3

Abbreviations for Datetime and Interval Datatypes
Abbreviations for Datetime and Interval Datatypes
Many of the datetime and interval datatypes have names that are too long to be

used with the procedures and functions in the replication management API.

Therefore, you must use abbreviations for these datatypes instead of the full names.

The following table lists each datatype and its abbreviation. No abbreviation is

necessary for the DATE and TIMESTAMP datatypes.

For example, if you want to use the DBMS_DEFER_QUERY.GET_datatype _ARG
function to determine the value of a TIMESTAMP LOCAL TIME ZONE argument in a

deferred call, then you substitute TSLTZ for datatype . Therefore, you run the

DBMS_DEFER_QUERY.GET_TSLTZ_ARG function.

Datatype Abbreviation

TIMESTAMP WITH TIME ZONE TSTZ

TIMESTAMP LOCAL TIME ZONE TSLTZ

INTERVAL YEAR TO MONTH IYM

INTERVAL DAY TO SECOND IDS
11-4 Oracle9i Replication Management API Reference

DBMS
12

DBMS_DEFER

DBMS_DEFER is the user interface to a replicated transactional deferred remote

procedure call facility. Replicated applications use the calls in this interface to queue

procedure calls for later transactional execution at remote nodes.

These procedures are typically called from either after row triggers or application

specified update procedures.

This chapter discusses the following topic:

■ Summary of DBMS_DEFER Subprograms
_DEFER 12-1

Summary of DBMS_DEFER Subprograms
Summary of DBMS_DEFER Subprograms

Table 12–1 DBMS_DEFER Package Subprograms

Subprogram Description

"CALL Procedure" on
page 12-3

Builds a deferred call to a remote procedure.

"COMMIT_WORK
Procedure" on page 12-4

Performs a transaction commit after checking for well-formed
deferred remote procedure calls.

"datatype_ARG
Procedure" on page 12-5

Provides the data that is to be passed to a deferred remote
procedure call.

"TRANSACTION
Procedure" on page 12-6

Indicates the start of a new deferred transaction.
12-2 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER Subprograms
CALL Procedure
This procedure builds a deferred call to a remote procedure.

Syntax
DBMS_DEFER.CALL (
 schema_name IN VARCHAR2,
 package_name IN VARCHAR2,
 proc_name IN VARCHAR2,
 arg_count IN NATURAL,
 { nodes IN node_list_t
 | group_name IN VARCHAR2 :=''});

Parameters

Note: This procedure is overloaded. The nodes and group_name
parameters are mutually exclusive.

Table 12–2 CALL Procedure Parameters

Parameter Description

schema_name Name of the schema in which the stored procedure is located.

package_name Name of the package containing the stored procedure. The stored
procedure must be part of a package. Deferred calls to standalone
procedures are not supported.

proc_name Name of the remote procedure to which you want to defer a call.

arg_count Number of parameters for the procedure. You must have one call to
DBMS_DEFER.datatype_ARG for each of these parameters.

Note: You must include all of the parameters for the procedure,
even if some of the parameters have defaults.

nodes A PL/SQL index-by table of fully qualified database names to
which you want to propagate the deferred call. The table is indexed
starting at position 1 and continuing until a NULL entry is found, or
the no_data_found exception is raised. The data in the table is
case insensitive. This parameter is optional.

group_name Reserved for internal use.
DBMS_DEFER 12-3

COMMIT_WORK Procedure
Exceptions

COMMIT_WORK Procedure
This procedure performs a transaction commit after checking for well-formed

deferred remote procedure calls.

Syntax
DBMS_DEFER.COMMIT_WORK (
 commit_work_comment IN VARCHAR2);

Parameters

Exceptions

Table 12–3 CALL Procedure Exceptions

Exception Description

ORA-23304
(malformedcall)

Previous call was not correctly formed.

ORA-23319 Parameter value is not appropriate.

ORA-23352 Destination list (specified by nodes or by a previous DBMS_
DEFER.TRANSACTION call) contains duplicates.

Table 12–4 COMMIT_WORK Procedure Parameters

Parameter Description

commit_work_comment Equivalent to the COMMIT COMMENT statement in SQL.

Table 12–5 COMMIT_WORK Procedure Exceptions

Exception Description

ORA-23304
(malformedcall)

Transaction was not correctly formed or terminated.
12-4 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER Subprograms
datatype _ARG Procedure
This procedure provides the data that is to be passed to a deferred remote

procedure call. Depending upon the type of the data that you need to pass to a

procedure, you must call one of the following procedures for each argument to the

procedure.

You must specify each parameter in your procedure using the datatype_ARG
procedure after you execute DBMS_DEFER.CALL. That is, you cannot use the

default parameters for the deferred remote procedure call. For example, suppose

you have the following procedure:

CREATE OR REPLACE PACKAGE my_pack AS
 PROCEDURE my_proc(a VARCHAR2, b VARCHAR2 DEFAULT 'SALES');
END;
/

When you run the DBMS_DEFER.CALL procedure, you must include a separate

procedure call for each parameter in the my_proc procedure:

CREATE OR REPLACE PROCEDURE load_def_tx IS
 node DBMS_DEFER.NODE_LIST_T;
BEGIN
 node(1) := 'MYCOMPUTER.WORLD';
 node(2) := NULL;
 DBMS_DEFER.TRANSACTION(node);
 DBMS_DEFER.CALL('PR', 'MY_PACK', 'MY_PROC', 2);
 DBMS_DEFER.VARCHAR2_ARG('TEST');
 DBMS_DEFER.VARCHAR2_ARG('SALES'); -- required, cannot omit to use default
END;

Note:

■ The AnyData_ARG procedure supports the following

user-defined types: object types, collections, and REFs. See

Oracle9i SQL Reference and Oracle9i Application Developer’s Guide
- Object-Relational Features for more information about the

AnyData datatype.

■ This procedure uses abbreviations for some datetime and

interval datatypes. For example, TSTZ is used for the

TIMESTAMP WITH TIME ZONE datatype. For information about

these abbreviations, see "Abbreviations for Datetime and

Interval Datatypes" on page 11-4.
DBMS_DEFER 12-5

TRANSACTION Procedure
Syntax
DBMS_DEFER.AnyData_ARG (arg IN SYS.AnyData);
DBMS_DEFER.NUMBER_ARG (arg IN NUMBER);
DBMS_DEFER.DATE_ARG (arg IN DATE);
DBMS_DEFER.VARCHAR2_ARG (arg IN VARCHAR2);
DBMS_DEFER.CHAR_ARG (arg IN CHAR);
DBMS_DEFER.ROWID_ARG (arg IN ROWID);
DBMS_DEFER.RAW_ARG (arg IN RAW);
DBMS_DEFER.BLOB_ARG (arg IN BLOB);
DBMS_DEFER.CLOB_ARG (arg IN CLOB);
DBMS_DEFER.NCLOB_ARG (arg IN NCLOB);
DBMS_DEFER.NCHAR_ARG (arg IN NCHAR);
DBMS_DEFER.NVARCHAR2_ARG (arg IN NVARCHAR2);
DBMS_DEFER.ANY_CLOB_ARG (arg IN CLOB);
DBMS_DEFER.ANY_VARCHAR2_ARG (arg IN VARCHAR2);
DBMS_DEFER.ANY_CHAR_ARG (arg IN CHAR);
DBMS_DEFER.IDS_ARG (arg IN DSINTERVAL_UNCONSTRAINED);
DBMS_DEFER.IYM_ARG (arg IN YMINTERVAL_UNCONSTRAINED);
DBMS_DEFER.TIMESTAMP_ARG (arg IN TIMESTAMP_UNCONSTRAINED);
DBMS_DEFER.TSLTZ_ARG (arg IN TIMESTAMP_LTZ_UNCONSTRAINED);
DBMS_DEFER.TSTZ_ARG (arg IN TIMESTAMP_TZ_UNCONSTRAINED);

Parameters

Exceptions

TRANSACTION Procedure
This procedure indicates the start of a new deferred transaction. If you omit this

call, then Oracle considers your first call to DBMS_DEFER.CALL to be the start of a

new transaction.

Table 12–6 datatype_ARG Procedure Parameters

Parameter Description

arg Value of the parameter that you want to pass to the remote
procedure to which you previously deferred a call.

Table 12–7 datatype_ARG Procedure Exceptions

Exception Description

ORA-23323 Argument value is too long.
12-6 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER Subprograms
Syntax
DBMS_DEFER.TRANSACTION (
 nodes IN node_list_t);

Parameters

Exceptions

Note: This procedure is overloaded. The behavior of the version

without an input parameter is similar to that of the version with an

input parameter, except that the former uses the nodes in the

DEFDEFAULTDEST view instead of using the nodes in the nodes

parameter.

Table 12–8 TRANSACTION Procedure Parameters

Parameter Description

nodes A PL/SQL index-by table of fully qualified database names to
which you want to propagate the deferred calls of the transaction.
The table is indexed starting at position 1 and continuing until a
NULL entry is found, or the no_data_found exception is raised.
The data in the table is case insensitive.

Table 12–9 TRANSACTION Procedure Exceptions

Exception Description

ORA-23304
(malformedcall)

Previous transaction was not correctly formed or terminated.

ORA-23319 Parameter value is not appropriate.

ORA-23352 Raised by DBMS_DEFER.CALL if the node list contains duplicates.
DBMS_DEFER 12-7

TRANSACTION Procedure
12-8 Oracle9i Replication Management API Reference

DBMS_DEFER_Q
13

DBMS_DEFER_QUERY

DBMS_DEFER_QUERY enables querying the deferred transactions queue data that is

not exposed through views.

This chapter discusses the following topics:

■ Summary of DBMS_DEFER_QUERY Subprograms
UERY 13-1

Summary of DBMS_DEFER_QUERY Subprograms
Summary of DBMS_DEFER_QUERY Subprograms

Table 13–1 DBMS_DEFER_QUERY Package Subprograms

Subprogram Description

"GET_ARG_FORM Function"
on page 13-3

Determines the form of an argument in a deferred call.

"GET_ARG_TYPE Function" on
page 13-4

Determines the type of an argument in a deferred call.

"GET_CALL_ARGS Procedure"
on page 13-6

Returns the text version of the various arguments for the
specified call.

"GET_datatype_ARG
Function" on page 13-7

Determines the value of an argument in a deferred call.

"GET_OBJECT_NULL_
VECTOR_ARG Function" on
page 13-10

Returns the type information for a column object.
13-2 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_QUERY Subprograms
GET_ARG_FORM Function
This function returns the character set form of a deferred call parameter.

Syntax
DBMS_DEFER_QUERY.GET_ARG_FORM (
 callno IN NUMBER,
 arg_no IN NUMBER,
 deferred_tran_id IN VARCHAR2)
 RETURN NUMBER;

Parameters

Exceptions

See Also: The Replication Management tool’s online help for

information about displaying deferred transactions and error

transactions in the Replication Management tool

Table 13–2 GET_ARG_FORM Function Parameters

Parameter Description

callno Call identifier from the DEFCALL view.

arg_no Position of desired parameter in calls argument list. Parameter
positions are 1...number of parameters in call.

deferred_tran_id Deferred transaction identification.

Table 13–3 GET_ARG_FORM Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.
DBMS_DEFER_QUERY 13-3

GET_ARG_TYPE Function
Returns

GET_ARG_TYPE Function
This function determines the type of an argument in a deferred call. The type of the

deferred remote procedure call (RPC) parameter is returned.

Syntax
DBMS_DEFER_QUERY.GET_ARG_TYPE (
 callno IN NUMBER,
 arg_no IN NUMBER,
 deferred_tran_id IN VARCHAR2)
 RETURN NUMBER;

Table 13–4 GET_ARG_FORM Function Returns

Constant Return Value Return Value Possible Datatype

DBMS_DEFER_QUERY.ARG_FORM_NONE 0 DATE
NUMBER
ROWID
RAW
BLOB
User-defined types

DBMS_DEFER_QUERY.ARG_FORM_IMPLICIT 1 CHAR
VARCHAR2
CLOB

DBMS_DEFER_QUERY.ARG_FORM_NCHAR 2 NCHAR
NVARCHAR2
NCLOB

See Also: The Replication Management tool’s online help for

information about displaying deferred transactions and error

transactions in the Replication Management tool
13-4 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_QUERY Subprograms
Parameters

Exceptions

Returns

Table 13–5 GET_ARG_TYPE Function Parameters

Parameter Description

callno Identification number from the DEFCALL view of the deferred
remote procedure call.

arg_no Numerical position of the argument to the call whose type you
want to determine. The first argument to a procedure is in
position 1.

deferred_tran_id Identifier of the deferred transaction.

Table 13–6 GET_ARG_TYPE Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

Table 13–7 GET_ARG_TYPE Function Returns

Constant Return Value
Return
Value

Corresponding
Datatype

DBMS_DEFER_QUERY.ARG_TYPE_VARCHAR2 1 VARCHAR2

DBMS_DEFER_QUERY.ARG_TYPE_NUM 2 NUMBER

DBMS_DEFER_QUERY.ARG_TYPE_ROWID 11 ROWID

DBMS_DEFER_QUERY.ARG_TYPE_DATE 12 DATE

DBMS_DEFER_QUERY.ARG_TYPE_RAW 23 RAW

DBMS_DEFER_QUERY.ARG_TYPE_CHAR 96 CHAR

DBMS_DEFER_QUERY.ARG_TYPE_AnyData 109 AnyData

DBMS_DEFER_QUERY.ARG_TYPE_CLOB 112 CLOB

DBMS_DEFER_QUERY.ARG_TYPE_BLOB 113 BLOB

DBMS_DEFER_QUERY.ARG_TYPE_BFIL 114 BFILE
DBMS_DEFER_QUERY 13-5

GET_CALL_ARGS Procedure

R

GET_CALL_ARGS Procedure
This procedure returns the text version of the various arguments for the specified

call. The text version is limited to the first 2000 bytes.

Syntax
DBMS_DEFER_QUERY.GET_CALL_ARGS (

DBMS_DEFER_QUERY.ARG_TYPE_OBJECT_NULL_VECTOR 121 OBJECT_NULL_VECTO

DBMS_DEFER_QUERY.ARG_TYPE_TIMESTAMP 180 TIMESTAMP

DBMS_DEFER_QUERY.ARG_TYPE_TSTZ 181 TSTZ

DBMS_DEFER_QUERY.ARG_TYPE_IYM 182 IYM

DBMS_DEFER_QUERY.ARG_TYPE_IDS 183 IDS

DBMS_DEFER_QUERY.ARG_TYPE_TSLTZ 231 TSLTZ

Note:

■ The AnyData datatype supports the following user-defined

types: object types, collections, and REFs. See Oracle9i SQL
Reference and Oracle9i Application Developer’s Guide -
Object-Relational Features for more information about the

AnyData datatype.

■ This function uses abbreviations for some datetime and interval

datatypes. For example, TSTZ is used for the TIMESTAMP WITH
TIME ZONE datatype. For information about these

abbreviations, see "Abbreviations for Datetime and Interval

Datatypes" on page 11-4.

See Also:

■ "GET_datatype_ARG Function" on page 13-7

■ Oracle9i SQL Reference and Oracle9i Application Developer’s Guide
- Object-Relational Features for more information about the

AnyData datatype

Table 13–7 GET_ARG_TYPE Function Returns

Constant Return Value
Return
Value

Corresponding
Datatype
13-6 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_QUERY Subprograms
 callno IN NUMBER,
 startarg IN NUMBER := 1,
 argcnt IN NUMBER,
 argsize IN NUMBER,
 tran_id IN VARCHAR2,
 date_fmt IN VARCHAR2,
 types OUT TYPE_ARY,
 forms OUT TYPE_ARY,
 vals OUT VAL_ARY);

Parameters

Exceptions

GET_datatype _ARG Function
This function determines the value of an argument in a deferred call.

Table 13–8 GET_CALL_ARGS Procedure Parameters

Parameter Description

callno Identification number from the DEFCALL view of the deferred
remote procedure call (RPC).

startarg Numerical position of the first argument you want described.

argcnt Number of arguments in the call.

argsize Maximum size of returned argument.

tran_id Identifier of the deferred transaction.

date_fmt Format in which the date is returned.

types Array containing the types of arguments.

forms Array containing the character set forms of arguments.

vals Array containing the values of the arguments in a textual form.

Table 13–9 GET_CALL_ARGS Procedure Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred call.
DBMS_DEFER_QUERY 13-7

GET_datatype_ARG Function
The AnyData type supports the following user-defined types: object types,

collections and REFs. Not all types supported by this function can be enqueued by

the AnyData_ARG procedure in the DBMS_DEFER package.

The returned text for type arguments includes the following values: type owner,

type name, type version, length, precision, scale, character set identifier, character

set form, and number of elements for collections or number of attributes for object

types. These values are separated by a colon (:).

Syntax
Depending upon the type of the argument value that you want to retrieve, the

syntax for the appropriate function is as follows. Each of these functions returns the

value of the specified argument.

DBMS_DEFER_QUERY.GET_datatype _ARG (
 callno IN NUMBER,
 arg_no IN NUMBER,
 deferred_tran_id IN VARCHAR2 DEFAULT NULL)
 RETURN datatype;

where datatype is:

{ AnyData
| NUMBER
| VARCHAR2
| CHAR
| DATE

See Also:

■ "datatype_ARG Procedure" on page 12-5

■ The Replication Management tool’s online help for information

about displaying deferred transactions and error transactions in

the Replication Management tool

■ Oracle9i SQL Reference and Oracle9i Application Developer’s Guide
- Object-Relational Features for more information about the

AnyData datatype

■ This function uses abbreviations for some datetime and interval

datatypes. For example, TSTZ is used for the TIMESTAMP WITH
TIME ZONE datatype. For information about these

abbreviations, see "Abbreviations for Datetime and Interval

Datatypes" on page 11-4.
13-8 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_QUERY Subprograms
| RAW
| ROWID
| BLOB
| CLOB
| NCLOB
| NCHAR
| NVARCHAR2
| IDS
| IYM
| TIMESTAMP
| TSLTZ
| TSTZ }

Parameters

Exceptions

Table 13–10 GET_datatype_ARG Function Parameters

Parameter Description

callno Identification number from the DEFCALL view of the deferred
remote procedure call.

arg_no Numerical position of the argument to the call whose value you
want to determine. The first argument to a procedure is in
position 1.

deferred_tran_id Identifier of the deferred transaction. Defaults to the last
transaction identifier passed to the GET_ARG_TYPE function. The
default is NULL.

Table 13–11 GET_datatype_ARG Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

ORA-26564 Argument in this position is not of the specified type or is not
one of the types supported by the AnyData type.
DBMS_DEFER_QUERY 13-9

GET_OBJECT_NULL_VECTOR_ARG Function
GET_OBJECT_NULL_VECTOR_ARG Function
This function returns the type information for a column object, including the type

owner, name, and hashcode.

Syntax
DBMS_DEFER_QUERY.GET_OBJECT-NULL_VECTOR_ARG (
 callno IN NUMBER,
 arg_no IN NUMBER,
 deferred_tran_id IN VARCHAR2)
 RETURN SYSTEM.REPCAT$_OBJECT_NULL_VECTOR;

Parameters

Exceptions

Table 13–12 GET_OBJECT_NULL_VECTOR_ARG Function Parameters

Parameter Description

callno Call identifier from the DEFCALL view.

arg_no Position of desired parameter in calls argument list. Parameter
positions are 1...number of parameters in call.

deferred_tran_id Deferred transaction identification.

Table 13–13 GET_OBJECT_NULL_VECTOR_ARG Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

ORA-26564 Parameter is not an object_null_vector type.
13-10 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_QUERY Subprograms
Returns

Table 13–14 GET_OBJECT_NULL_VECTOR_ARG Function Returns

Return Value Type Definition

SYSTEM.REPCAT$_OBJECT_NULL_VECTOR type CREATE TYPE
SYSTEM.REPCAT$_OBJECT_NULL_VECTOR
AS OBJECT (
 type_owner VARCHAR2(30),
 type_name VARCHAR2(30),
 type_hashcode RAW(17),
 null_vector RAW(2000));
DBMS_DEFER_QUERY 13-11

GET_OBJECT_NULL_VECTOR_ARG Function
13-12 Oracle9i Replication Management API Reference

DBMS_DEFE
14

DBMS_DEFER_SYS

DBMS_DEFER_SYS procedures manage default replication node lists. This package

is the system administrator interface to a replicated transactional deferred remote

procedure call facility. Administrators and replication daemons can execute

transactions queued for remote nodes using this facility, and administrators can

control the nodes to which remote calls are destined.

This chapter discusses the following topic:

■ Summary of DBMS_DEFER_SYS Subprograms
R_SYS 14-1

Summary of DBMS_DEFER_SYS Subprograms
Summary of DBMS_DEFER_SYS Subprograms

Table 14–1 DBMS_DEFER_SYS Package Subprograms

Subprogram Description

"ADD_DEFAULT_DEST
Procedure" on page 14-4

Adds a destination database to the DEFDEFAULTDEST view.

"CLEAR_PROP_
STATISTICS Procedure" on
page 14-4

Clears the propagation statistics in the DEFSCHEDULE data
dictionary view.

"DELETE_DEFAULT_
DEST Procedure" on
page 14-5

Removes a destination database from the DEFDEFAULTDEST
view.

"DELETE_DEF_
DESTINATION
Procedure" on page 14-5

Removes a destination database from the DEFSCHEDULE view.

"DELETE_ERROR
Procedure" on page 14-6

Deletes a transaction from the DEFERROR view.

"DELETE_TRAN
Procedure" on page 14-7

Deletes a transaction from the DEFTRANDEST view.

"DISABLED Function" on
page 14-7

Determines whether propagation of the deferred transaction
queue from the current site to a specified site is enabled.

EXCLUDE_PUSH
Function on page 14-8

Acquires an exclusive lock that prevents deferred transaction
PUSH.

"EXECUTE_ERROR
Procedure" on page 14-9

Reexecutes a deferred transaction that did not initially
complete successfully in the security context of the original
receiver of the transaction.

"EXECUTE_ERROR_AS_
USER Procedure" on
page 14-10

Reexecutes a deferred transaction that did not initially
complete successfully in the security context of the user who
executes this procedure.

"PURGE Function" on
page 14-11

Purges pushed transactions from the deferred transaction
queue at your current master site or materialized view site.

"PUSH Function" on
page 14-14

Forces a deferred remote procedure call queue at your current
master site or materialized view site to be pushed to a remote
site.

"REGISTER_
PROPAGATOR
Procedure" on page 14-16

Registers the specified user as the propagator for the local
database.
14-2 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
"SCHEDULE_PURGE
Procedure" on page 14-17

Schedules a job to purge pushed transactions from the deferred
transaction queue at your current master site or materialized
view site.

"SCHEDULE_PUSH
Procedure" on page 14-19

Schedules a job to push the deferred transaction queue to a
remote site.

"SET_DISABLED
Procedure" on page 14-21

Disables or enables propagation of the deferred transaction
queue from the current site to a specified destination site.

"UNREGISTER_
PROPAGATOR
Procedure" on page 14-23

Unregisters a user as the propagator from the local database.

"UNSCHEDULE_PURGE
Procedure" on page 14-24

Stops automatic purges of pushed transactions from the
deferred transaction queue at a master site or materialized
view site.

"UNSCHEDULE_PUSH
Procedure" on page 14-24

Stops automatic pushes of the deferred transaction queue from
a master site or materialized view site to a remote site.

Table 14–1 DBMS_DEFER_SYS Package Subprograms (Cont.)

Subprogram Description
DBMS_DEFER_SYS 14-3

ADD_DEFAULT_DEST Procedure
ADD_DEFAULT_DEST Procedure
This procedure adds a destination database to the DEFDEFAULTDEST data

dictionary view.

Syntax
DBMS_DEFER_SYS.ADD_DEFAULT_DEST (
 dblink IN VARCHAR2);

Parameters

Exceptions

CLEAR_PROP_STATISTICS Procedure
This procedure clears the propagation statistics in the DEFSCHEDULE data

dictionary view. When this procedure is executed successfully, all statistics in this

view are returned to zero and statistic gathering starts fresh.

Specifically, this procedure clears statistics from the following columns in the

DEFSCHEDULE data dictionary view:

■ TOTAL_TXN_COUNT

■ AVG_THROUGHPUT

■ AVG_LATENCY

■ TOTAL_BYTES_SENT

■ TOTAL_BYTES_RECEIVED

■ TOTAL_ROUND_TRIPS

Table 14–2 ADD_DEFAULT_DEST Procedure Parameters

Parameter Description

dblink The fully qualified database name of the node that you want to
add to the DEFDEFAULTDEST view.

Table 14–3 ADD_DEFAULT_DEST Procedure Exceptions

Exception Description

ORA-23352 The dblink that you specified is already in the default list.
14-4 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
■ TOTAL_ADMIN_COUNT

■ TOTAL_ERROR_COUNT

■ TOTAL_SLEEP_TIME

Syntax
DBMS_DEFER_SYS.CLEAR_PROP_STATISTICS (
 dblink IN VARCHAR2);

Parameters

DELETE_DEFAULT_DEST Procedure
This procedure removes a destination database from the DEFDEFAULTDEST view.

Syntax
DBMS_DEFER_SYS.DELETE_DEFAULT_DEST (
 dblink IN VARCHAR2);

Parameters

DELETE_DEF_DESTINATION Procedure
This procedure removes a destination database from the DEFSCHEDULE view.

Table 14–4 CLEAR_PROP_STATISTICS Procedure Parameters

Parameter Description

dblink The fully qualified database name of the node whose statistics you
want to clear. The statistics to be cleared are the statistics for
propagation of deferred transactions from the current node to the
node you specify for dblink .

Table 14–5 DELETE_DEFAULT_DEST Procedure Parameters

Parameter Description

dblink The fully qualified database name of the node that you want to
delete from the DEFDEFAULTDEST view. If Oracle does not find
this dblink in the view, then no action is taken.
DBMS_DEFER_SYS 14-5

DELETE_ERROR Procedure
Syntax
DBMS_DEFER_SYS.DELETE_DEF_DESTINATION (
 destination IN VARCHAR2,
 force IN BOOLEAN := false);

Parameters

DELETE_ERROR Procedure
This procedure deletes a transaction from the DEFERROR view.

Syntax
DBMS_DEFER_SYS.DELETE_ERROR(
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

Table 14–6 DELETE_DEF_DESTINATION Procedure Parameters

Parameter Description

destination The fully qualified database name of the destination that you want
to delete from the DEFSCHEDULE view. If Oracle does not find this
destination in the view, then no action is taken.

force When set to true , Oracle ignores all safety checks and deletes the
destination.

Table 14–7 DELETE_ERROR Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERROR view of the deferred
transaction that you want to remove from the DEFERROR view. If
this parameter is NULL, then all transactions meeting the
requirements of the other parameter are removed.

destination The fully qualified database name from the DEFERRORview of the
database to which the transaction was originally queued. If this
parameter is NULL, then all transactions meeting the requirements
of the other parameter are removed from the DEFERROR view.
14-6 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
DELETE_TRAN Procedure
This procedure deletes a transaction from the DEFTRANDEST view. If there are no

other DEFTRANDEST or DEFERROR entries for the transaction, then the transaction

is deleted from the DEFTRAN and DEFCALL views as well.

Syntax
DBMS_DEFER_SYS.DELETE_TRAN (
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

DISABLED Function
This function determines whether propagation of the deferred transaction queue

from the current site to a specified site is enabled. The DISABLED function returns

true if the deferred remote procedure call (RPC) queue is disabled for the specified

destination.

Syntax
DBMS_DEFER_SYS.DISABLED (
 destination IN VARCHAR2)
 RETURN BOOLEAN;

Table 14–8 DELETE_TRAN Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFTRAN view of the deferred
transaction that you want to delete. If this is NULL, then all
transactions meeting the requirements of the other parameter are
deleted.

destination The fully qualified database name from the DEFTRANDESTview of
the database to which the transaction was originally queued. If
this is NULL, then all transactions meeting the requirements of the
other parameter are deleted.
DBMS_DEFER_SYS 14-7

EXCLUDE_PUSH Function
Parameters

Returns

Exceptions

EXCLUDE_PUSH Function
This function acquires an exclusive lock that prevents deferred transaction PUSH
(either serial or parallel). This function performs a commit when acquiring the lock.

The lock is acquired with RELEASE_ON_COMMIT => true, so that pushing of the

deferred transaction queue can resume after the next commit.

Syntax
DBMS_DEFER_SYS.EXCLUDE_PUSH (
 timeout IN INTEGER)
 RETURN INTEGER;

Table 14–9 DISABLED Function Parameters

Parameter Description

destination The fully qualified database name of the node whose propagation
status you want to check.

Table 14–10 DISABLED Function Return Values

Value Description

true Propagation to this site from the current site is disabled.

false Propagation to this site from the current site is enabled.

Table 14–11 DISABLED Function Exceptions

Exception Description

NO_DATA_FOUND Specified destination does not appear in the DEFSCHEDULE
view.
14-8 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
Parameters

Returns

EXECUTE_ERROR Procedure
This procedure reexecutes a deferred transaction that did not initially complete

successfully in the security context of the original receiver of the transaction.

Syntax
DBMS_DEFER_SYS.EXECUTE_ERROR (
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

Table 14–12 EXCLUDE_PUSH Function Parameters

Parameter Description

timeout Timeout in seconds. If the lock cannot be acquired within this time
period (either because of an error or because a PUSH is currently
under way), then the call returns a value of 1. A timeout value of
DBMS_LOCK.MAXWAIT waits indefinitely.

Table 14–13 EXCLUDE_PUSH Function Return Values

Value Description

0 Success, lock acquired.

1 Timeout, no lock acquired.

2 Deadlock, no lock acquired.

4 Already own lock.

Table 14–14 EXECUTE_ERROR Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERROR view of the deferred
transaction that you want to reexecute. If this is NULL, then all
transactions queued for destination are reexecuted.
DBMS_DEFER_SYS 14-9

EXECUTE_ERROR_AS_USER Procedure
Exceptions

EXECUTE_ERROR_AS_USER Procedure
This procedure reexecutes a deferred transaction that did not initially complete

successfully. Each transaction is executed in the security context of the connected

user.

Syntax
DBMS_DEFER_SYS.EXECUTE_ERROR_AS_USER (
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

destination The fully qualified database name from the DEFERRORview of the
database to which the transaction was originally queued. This
must not be NULL. If the provided database name is not fully
qualified or is invalid, no error will be raised.

Table 14–15 EXECUTE_ERROR Procedure Exceptions

Exception Description

ORA-24275 error Illegal combinations of NULL and non-NULL parameters were
used.

badparam Parameter value missing or invalid (for example, if destination
is NULL).

missinguser Invalid user.

Table 14–16 EXECUTE_ERROR_AS_USER Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERROR view of the deferred
transaction that you want to reexecute. If this is NULL, then all
transactions queued for destination are reexecuted.

destination The fully qualified database name from the DEFERRORview of the
database to which the transaction was originally queued. This
must not be NULL.

Table 14–14 EXECUTE_ERROR Procedure Parameters (Cont.)

Parameter Description
14-10 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
Exceptions

PURGE Function
This function purges pushed transactions from the deferred transaction queue at

your current master site or materialized view site.

Syntax
DBMS_DEFER_SYS.PURGE (
 purge_method IN BINARY_INTEGER := purge_method_quick,
 rollback_segment IN VARCHAR2 := NULL,
 startup_seconds IN BINARY_INTEGER := 0,
 execution_seconds IN BINARY_INTEGER := seconds_infinity,
 delay_seconds IN BINARY_INTEGER := 0,
 transaction_count IN BINARY_INTEGER := transactions_infinity,
 write_trace IN BOOLEAN := NULL);
 RETURN BINARY_INTEGER;

Table 14–17 EXECUTE_ERROR_AS_USER Procedure Exceptions

Exception Description

ORA-24275 error Illegal combinations of NULL and non-NULL parameters
were used.

badparam Parameter value missing or invalid (for example, if destination
is NULL).

missinguser Invalid user.
DBMS_DEFER_SYS 14-11

PURGE Function
Parameters

Returns

Table 14–18 PURGE Function Parameters

Parameter Description

purge_method Controls how to purge the deferred transaction queue: purge_
method_quick costs less, while purge_method_precise offers
better precision.

Specify the following for this parameter to use purge_method_
quick :

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user purge_method_
precise :

dbms_defer_sys.purge_method_precise

If you use purge_method_quick , deferred transactions and
deferred procedure calls that have been successfully pushed may
remain in the DEFTRAN and DEFCALL data dictionary views for
longer than expected before they are purged. See "Usage Notes" on
page 14-13 for more information.

rollback_segment Name of rollback segment to use for the purge, or NULL for
default.

startup_seconds Maximum number of seconds to wait for a previous purge of the
same deferred transaction queue.

execution_seconds If > 0, then stop purge cleanly after the specified number of
seconds of real time.

delay_seconds Stop purge cleanly after the deferred transaction queue has no
transactions to purge for delay_seconds .

transaction_count If > 0, then shut down cleanly after purging transaction_
count number of transactions.

write_trace When set to true , Oracle records the result value returned by the
PURGE function in the server’s trace file. When set to false ,
Oracle does not record the result value.

Table 14–19 Purge Function Returns

Value Description

result_ok OK, terminated after delay_seconds expired.
14-12 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
Exceptions

Usage Notes
When you use the purge_method_quick for the purge_method parameter in

the DBMS_DEFER_SYS.PURGE function, deferred transactions and deferred

procedure calls may remain in the DEFCALL and DEFTRAN data dictionary views

after they have been successfully pushed. This behavior occurs in replication

environments that have more than one database link and the push is executed to

only one database link.

To purge the deferred transactions and deferred procedure calls, perform one of the

following actions:

■ Use purge_method_precise for the purge_method parameter instead of

the purge_method_quick . Using purge_method_precise is more

expensive, but it ensures that the deferred transactions and procedure calls are

purged after they have been successfully pushed.

result_startup_seconds Terminated by lock timeout while starting.

result_execution_seconds Terminated by exceeding execution_seconds .

result_transaction_count Terminated by exceeding transaction_count .

result_errors Terminated after errors.

result_split_del_order_limit Terminated after failing to acquire the enqueue in
exclusive mode. If you receive this return code, then
retry the purge. If the problem persists, then contact
Oracle Support Services.

result_purge_disabled Queue purging is disabled internally for synchronization
when adding new master sites without quiesce.

Table 14–20 PURGE Function Exceptions

Exception Description

argoutofrange Parameter value is out of a valid range.

executiondisabled Execution of purging is disabled.

defererror Internal error.

Table 14–19 Purge Function Returns (Cont.)

Value Description
DBMS_DEFER_SYS 14-13

PUSH Function
■ Using purge_method_quick for the purge_method parameter, push the

deferred transactions to all database links. The deferred transactions and

deferred procedure calls are purged efficiently when the push to the last

database link is successful.

PUSH Function
This function forces a deferred remote procedure call (RPC) queue at your current

master site or materialized view site to be pushed (propagated) to a remote site

using either serial or parallel propagation.

Syntax
DBMS_DEFER_SYS.PUSH (
 destination IN VARCHAR2,
 parallelism IN BINARY_INTEGER := 0,
 heap_size IN BINARY_INTEGER := 0,
 stop_on_error IN BOOLEAN := false,
 write_trace IN BOOLEAN := false,
 startup_seconds IN BINARY_INTEGER := 0,
 execution_seconds IN BINARY_INTEGER := seconds_infinity,
 delay_seconds IN BINARY_INTEGER := 0,
 transaction_count IN BINARY_INTEGER := transactions_infinity,
 delivery_order_limit IN NUMBER := delivery_order_infinity)
 RETURN BINARY_INTEGER;

Parameters

Table 14–21 PUSH Function Parameters

Parameter Description

destination The fully qualified database name of the master site or master
materialized view site to which you are forwarding changes.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle
Support Services.
14-14 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
Returns

stop_on_error The default, false , indicates that the executor should continue
even if errors, such as conflicts, are encountered. If true , then
stops propagation at the first indication that a transaction
encountered an error at the destination site.

write_trace When set to true , Oracle records the result value returned by the
function in the server’s trace file. When set to false , Oracle does
not record the result value.

startup_seconds Maximum number of seconds to wait for a previous push to the
same destination.

execution_seconds If > 0, then stop push cleanly after the specified number of seconds
of real time. If transaction_count and execution_seconds
are zero (the default), then transactions are executed until there are
no more in the queue.

The execution_seconds parameter only controls the duration
of time that operations can be started. It does not include the
amount of time that the transactions require at remote sites.
Therefore, the execution_seconds parameter is not intended to
be used as a precise control to stop the propagation of transactions
to a remote site. If a precise control is required, use the
transaction_count or delivery_order parameters.

delay_seconds Do not return before the specified number of seconds have
elapsed, even if the queue is empty. Useful for reducing execution
overhead if PUSH is called from a tight loop.

transaction_count If > 0, then the maximum number of transactions to be pushed
before stopping. If transaction_count and execution_
seconds are zero (the default), then transactions are executed
until there are no more in the queue that need to be pushed.

delivery_order_limit Stop execution cleanly before pushing a transaction where
delivery_order >= delivery_order_limit

Table 14–22 PUSH Function Returns

Value Description

result_ok OK, terminated after delay_seconds expired.

result_startup_seconds Terminated by lock timeout while starting.

Table 14–21 PUSH Function Parameters (Cont.)

Parameter Description
DBMS_DEFER_SYS 14-15

REGISTER_PROPAGATOR Procedure
Exceptions

REGISTER_PROPAGATOR Procedure
This procedure registers the specified user as the propagator for the local database.

It also grants the following privileges to the specified user (so that the user can

create wrappers):

result_execution_seconds Terminated by exceeding execution_seconds .

result_transaction_count Terminated by exceeding transaction_count .

result_delivery_order_limit Terminated by exceeding delivery_order_limit .

result_errors Terminated after errors.

result_push_disabled Push was disabled internally. Typically, this return value
means that propagation to the destination was set to
disabled internally by Oracle for propagation
synchronization when adding a new master site to a
master group without quiescing the master group.
Oracle will enable propagation automatically at a later
time

result_split_del_order_limit Terminated after failing to acquire the enqueue in
exclusive mode. If you receive this return code, then
retry the push. If the problem persists, then contact
Oracle Support Services.

Table 14–23 PUSH Function Exceptions

Exception Description

incompleteparallelpush Serial propagation requires that parallel propagation shuts
down cleanly.

executiondisabled Execution of deferred remote procedure calls (RPCs) is
disabled at the destination.

crt_err_err Error while creating entry in DEFERROR.

deferred_rpc_quiesce Replication activity for replication group is suspended.

commfailure Communication failure during deferred remote procedure call
(RPC).

missingpropagator A propagator does not exist.

Table 14–22 PUSH Function Returns (Cont.)

Value Description
14-16 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
■ CREATE SESSION

■ CREATE PROCEDURE

■ CREATE DATABASE LINK

■ EXECUTE ANY PROCEDURE

Syntax
DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
 username IN VARCHAR2);

Parameters

Exceptions

SCHEDULE_PURGE Procedure
This procedure schedules a job to purge pushed transactions from the deferred

transaction queue at your current master site or materialized view site. You should

schedule one purge job.

Syntax
DBMS_DEFER_SYS.SCHEDULE_PURGE (
 interval IN VARCHAR2,

Table 14–24 REGISTER_PROPAGATOR Procedure Parameters

Parameter Description

username Name of the user.

Table 14–25 REGISTER_PROPAGATOR Procedure Exceptions

Exception Description

missinguser Specified user does not exist.

alreadypropagator Specified user is already the propagator.

duplicatepropagator There is already a different propagator.

See Also: Oracle9i Replication for information about using this

procedure to schedule continuous or periodic purge of your

deferred transaction queue
DBMS_DEFER_SYS 14-17

SCHEDULE_PURGE Procedure
 next_date IN DATE,
 reset IN BOOLEAN := NULL,
 purge_method IN BINARY_INTEGER := NULL,
 rollback_segment IN VARCHAR2 := NULL,
 startup_seconds IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 delay_seconds IN BINARY_INTEGER := NULL,
 transaction_count IN BINARY_INTEGER := NULL,
 write_trace IN BOOLEAN := NULL);

Parameters

Table 14–26 SCHEDULE_PURGE Procedure Parameters

Parameter Description

interval Allows you to provide a function to calculate the next time to
purge. This value is stored in the interval field of the
DEFSCHEDULE view and calculates the next_date field of this
view. If you use the default value for this parameter, NULL, then
the value of this field remains unchanged. If the field had no
previous value, it is created with a value of NULL. If you do not
supply a value for this field, you must supply a value for next_
date .

next_date Allows you to specify a time to purge pushed transactions from
the site’s queue. This value is stored in the next_date field of the
DEFSCHEDULE view. If you use the default value for this
parameter, NULL, then the value of this field remains unchanged.
If this field had no previous value, it is created with a value of
NULL. If you do not supply a value for this field, then you must
supply a value for interval .

reset Set to true to reset LAST_TXN_COUNT, LAST_ERROR, and LAST_
MSG to NULL.
14-18 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
SCHEDULE_PUSH Procedure
This procedure schedules a job to push the deferred transaction queue to a remote

site. This procedure performs a COMMIT.

purge_method Controls how to purge the deferred transaction queue: purge_
method_quick costs less, while purge_method_precise offers
better precision.

Specify the following for this parameter to use purge_method_
quick :

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user purge_method_
precise :

dbms_defer_sys.purge_method_precise

If you use purge_method_quick , deferred transactions and
deferred procedure calls that have been successfully pushed may
remain in the DEFTRAN and DEFCALL data dictionary views for
longer than expected before they are purged. For more
information, see "Usage Notes" on page 14-13. These usage notes
are for the DBMS_DEFER_SYS.PURGE function, but they also
apply to the DBMS_DEFER_SYS.SCHEDULE_PURGE procedure.

rollback_segment Name of rollback segment to use for the purge, or NULL for
default.

startup_seconds Maximum number of seconds to wait for a previous purge of the
same deferred transaction queue.

execution_seconds If >0, then stop purge cleanly after the specified number of
seconds of real time.

delay_seconds Stop purge cleanly after the deferred transaction queue has no
transactions to purge for delay_seconds .

transaction_count If > 0, then shut down cleanly after purging transaction_
count number of transactions.

write_trace When set to true , Oracle records the result value returned by the
PURGE function in the server’s trace file.

See Also: Oracle9i Replication for information about using this

procedure to schedule continuous or periodic push of your

deferred transaction queue

Table 14–26 SCHEDULE_PURGE Procedure Parameters (Cont.)

Parameter Description
DBMS_DEFER_SYS 14-19

SCHEDULE_PUSH Procedure
Syntax
DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination IN VARCHAR2,
 interval IN VARCHAR2,
 next_date IN DATE,
 reset IN BOOLEAN := false,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL,
 stop_on_error IN BOOLEAN := NULL,
 write_trace IN BOOLEAN := NULL,
 startup_seconds IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 delay_seconds IN BINARY_INTEGER := NULL,
 transaction_count IN BINARY_INTEGER := NULL);

Parameters

Table 14–27 SCHEDULE_PUSH Procedure Parameters

Parameter Description

destination The fully qualified database name of the master site or master
materialized view site to which you are forwarding changes.

interval Allows you to provide a function to calculate the next time to
push. This value is stored in the interval field of the
DEFSCHEDULE view and calculates the next_date field of this
view. If you use the default value for this parameter, NULL, then
the value of this field remains unchanged. If the field had no
previous value, it is created with a value of NULL. If you do not
supply a value for this field, then you must supply a value for
next_date .

next_date Allows you to specify a time to push deferred transactions to the
remote site. This value is stored in the next_date field of the
DEFSCHEDULE view. If you use the default value for this
parameter, NULL, then the value of this field remains unchanged.
If this field had no previous value, then it is created with a value
of NULL. If you do not supply a value for this field, then you must
supply a value for interval .

reset Set to true to reset LAST_TXN_COUNT, LST_ERROR, and LAST_
MSG to NULL.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.
14-20 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
SET_DISABLED Procedure
To disable or enable propagation of the deferred transaction queue from the current

site to a specified destination site. If the disabled parameter is true , then the

procedure disables propagation to the specified destination and future invocations

of PUSH do not push the deferred remote procedure call (RPC) queue. SET_
DISABLED eventually affects a session already pushing the queue to the specified

destination, but does not affect sessions appending to the queue with DBMS_DEFER.

If the disabled parameter is false , then the procedure enables propagation to the

specified destination and, although this does not push the queue, it permits future

invocations of PUSH to push the queue to the specified destination. Whether the

disabled parameter is true or false , a COMMIT is required for the setting to take

effect in other sessions.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle
Support Services.

stop_on_error The default, false , indicates that the executor should continue
even if errors, such as conflicts, are encountered. If true , then
stops propagation at the first indication that a transaction
encountered an error at the destination site.

write_trace When set to true , Oracle records the result value returned by the
function in the server’s trace file.

startup_seconds Maximum number of seconds to wait for a previous push to the
same destination.

execution_seconds If >0, then stop execution cleanly after the specified number of
seconds of real time. If transaction_count and execution_
seconds are zero (the default), then transactions are executed
until there are no more in the queue.

delay_seconds Do not return before the specified number of seconds have
elapsed, even if the queue is empty. Useful for reducing execution
overhead if PUSH is called from a tight loop.

transaction_count If > 0, then the maximum number of transactions to be pushed
before stopping. If transaction_count and execution_
seconds are zero (the default), then transactions are executed
until there are no more in the queue that need to be pushed.

Table 14–27 SCHEDULE_PUSH Procedure Parameters (Cont.)

Parameter Description
DBMS_DEFER_SYS 14-21

SET_DISABLED Procedure
Syntax
DBMS_DEFER_SYS.SET_DISABLED (
 destination IN VARCHAR2,
 disabled IN BOOLEAN := true,
 catchup IN RAW := '00',
 override IN BOOLEAN := false);

Parameters

Exceptions

Table 14–28 SET_DISABLED Procedure Parameters

Parameter Description

destination The fully qualified database name of the node whose propagation
status you want to change.

disabled By default, this parameter disables propagation of the deferred
transaction queue from your current site to the specified

destination. Set this to false to enable propagation.

catchup The extension identifier for adding new master sites to a master
group without quiescing the master group. The new master site is
the destination. Query the DEFSCHEDULEdata dictionary view for
the existing extension identifiers.

override A false setting, the default, specifies that Oracle raises the
cantsetdisabled exception if the disabled parameter is set to
false and propagation was disabled internally by Oracle.

A true setting specifies that Oracle ignores whether the disabled
state was set internally for synchronization and always tries to set
the state as specified by the disabled parameter.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 14–29 SET_DISABLED Procedure Exceptions

Exception Description

NO_DATA_FOUND No entry was found in the DEFSCHEDULE view for the

specified destination .
14-22 Oracle9i Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms
UNREGISTER_PROPAGATOR Procedure
To unregister a user as the propagator from the local database. This procedure:

■ Deletes the specified propagator from DEFPROPAGATOR.

■ Revokes privileges granted by REGISTER_PROPAGATOR from the specified

user (including identical privileges granted independently).

■ Drops any generated wrappers in the schema of the specified propagator, and

marks them as dropped in the replication catalog.

Syntax
DBMS_DEFER_SYS.UNREGISTER_PROPAGATOR (
 username IN VARCHAR2
 timeout IN INTEGER DEFAULT DBMS_LOCK.MAXWAIT);

Parameters

Exceptions

cantsetdisabled The disabled status for this site is set internally by Oracle for
synchronization during adding a new master site to a master
group without quiescing the master group. Ensure that adding a
new master site without quiescing finished before invoking this
procedure.

Table 14–30 UNREGISTER_PROPAGATOR Procedure Parameters

Parameter Description

username Name of the propagator user.

timeout Timeout in seconds. If the propagator is in use, then the procedure

waits until timeout. The default is DBMS_LOCK.MAXWAIT.

Table 14–31 UNREGISTER_PROPAGATOR Procedure Exceptions

Parameter Description

missingpropagator Specified user is not a propagator.

propagator_inuse Propagator is in use, and thus cannot be unregistered. Try later.

Table 14–29 SET_DISABLED Procedure Exceptions (Cont.)

Exception Description
DBMS_DEFER_SYS 14-23

UNSCHEDULE_PURGE Procedure
UNSCHEDULE_PURGE Procedure
This procedure stops automatic purges of pushed transactions from the deferred

transaction queue at a master site or materialized view site.

Syntax
DBMS_DEFER_SYS.UNSCHEDULE_PURGE();

Parameters
None

UNSCHEDULE_PUSH Procedure
This procedure stops automatic pushes of the deferred transaction queue from a

master site or materialized view site to a remote site.

Syntax
DBMS_DEFER_SYS.UNSCHEDULE_PUSH (
 dblink IN VARCHAR2);

Parameters

Table 14–32 UNSCHEDULE_PUSH Procedure Parameters

Parameter Description

dblink Fully qualified path name for the database at which you want to
unschedule periodic execution of deferred remote procedure calls.

Table 14–33 UNSCHEDULE_PUSH Procedure Exceptions

Exception Description

NO_DATA_FOUND No entry was found in the DEFSCHEDULE view for the specified
dblink .
14-24 Oracle9i Replication Management API Reference

DBMS_M
15

DBMS_MVIEW

DBMS_MVIEW enables you to understand capabilities for materialized views and

potential materialized views, including their rewrite availability. It also enables you

to refresh materialized views that are not part of the same refresh group and purge

logs.

This chapter discusses the following topics:

■ Summary of DBMS_MVIEW Subprograms

Note: DBMS_SNAPSHOT is a synonym for DBMS_MVIEW.

See Also:

■ Oracle9i Replication for more information about using

materialized views in a replication environment

■ Oracle9i Data Warehousing Guide for more information about

using materialized views in a data warehousing environment
VIEW 15-1

Summary of DBMS_MVIEW Subprograms
Summary of DBMS_MVIEW Subprograms

Table 15–1 DBMS_MVIEW Package Subprograms

Subprogram Description

"BEGIN_TABLE_
REORGANIZATION
Procedure" on page 15-3

Performs a process to preserve materialized view data
needed for refresh.

"END_TABLE_
REORGANIZATION
Procedure" on page 15-3

Ensures that the materialized view data for the master
table is valid and that the master table is in the proper
state.

"EXPLAIN_MVIEW
Procedure" on page 15-4

Explains what is possible with a materialized view or
potential materialized view.

"EXPLAIN_REWRITE
Procedure" on page 15-5

Explains why a query failed to rewrite.

"I_AM_A_REFRESH Function"
on page 15-6

Returns the value of the I_AM_REFRESH package state.

"PMARKER Function" on
page 15-6

Returns a partition marker from a rowid. This function is
used for Partition Change Tracking (PCT).

"PURGE_DIRECT_LOAD_
LOG Procedure" on page 15-7

Purges rows from the direct loader log after they are no
longer needed by any materialized views (used with data
warehousing).

"PURGE_LOG Procedure" on
page 15-7

Purges rows from the materialized view log.

"PURGE_MVIEW_FROM_
LOG Procedure" on page 15-8

Purges rows from the materialized view log.

"REFRESH Procedure" on
page 15-9

Consistently refreshes one or more materialized views that
are not members of the same refresh group.

"REFRESH_ALL_MVIEWS
Procedure" on page 15-12

Refreshes all materialized views that do not reflect
changes to their master table or master materialized view.

"REFRESH_DEPENDENT
Procedure" on page 15-13

Refreshes all table-based materialized views that depend
on a specified master table or master materialized view, or
list of master tables or master materialized views.

"REGISTER_MVIEW
Procedure" on page 15-15

Enables the administration of individual materialized
views.

"UNREGISTER_MVIEW
Procedure" on page 15-18

Enables the administration of individual materialized
views. Invoked at a master site or master materialized
view site to unregister a materialized view.
15-2 Oracle9i Replication Management API Reference

Summary of DBMS_MVIEW Subprograms
BEGIN_TABLE_REORGANIZATION Procedure
This procedure performs a process to preserve materialized view data needed for

refresh. It must be called before a master table is reorganized.

Syntax
DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION (
 tabowner IN VARCHAR2,
 tabname IN VARCHAR2);

Parameters

END_TABLE_REORGANIZATION Procedure
This procedure ensures that the materialized view data for the master table is valid

and that the master table is in the proper state. It must be called after a master table

is reorganized.

Syntax
DBMS_MVIEW.END_TABLE_REORGANIZATION (
 tabowner IN VARCHAR2,
 tabname IN VARCHAR2);

See Also: "Reorganizing Master Tables that Have Materialized

View Logs" on page 8-20

Table 15–2 BEGIN_TABLE_REORGANIZATION Procedure Parameters

Parameter Description

tabowner Owner of the table being reorganized.

tabname Name of the table being reorganized.

See Also: "Reorganizing Master Tables that Have Materialized

View Logs" on page 8-20
DBMS_MVIEW 15-3

EXPLAIN_MVIEW Procedure
Parameters

EXPLAIN_MVIEW Procedure
This procedure enables you to learn what is possible with a materialized view or

potential materialized view. For example, you can determine if a materialized view

is fast refreshable and what types of query rewrite you can perform with a

particular materialized view.

Using this procedure is straightforward. You simply call DBMS_MVIEW.EXPLAIN_
MVIEW, passing in as parameters the schema and materialized view name for an

existing materialized view. Alternatively, you can specify the SELECT string for a

potential materialized view. The materialized view or potential materialized view is

then analyzed and the results are written into either a table called MV_
CAPABILITIES_TABLE , which is the default, or to an array called MSG_ARRAY.

Note that you must run the utlxmv.sql script prior to calling EXPLAIN_MVIEW
except when you direct output to a VARRAY. The script is found in the admin

directory. In addition, you must create MV_CAPABILITIES_TABLE in the current

schema.

Syntax
The following PL/SQL declarations that are made for you in the DBMS_MVIEW
package show the order and datatypes of these parameters for explaining an

existing materialized view and a potential materialized view with output to a table

and to a VARRAY.

To explain an existing or potential materialized view with output to MV_
CAPABILITIES_TABLE:

DBMS_MVIEW.EXPLAIN_MVIEW (
 mv IN VARCHAR2,
 statement_id IN VARCHAR2:= NULL);

To explain an existing or potential materialized view with output to a VARRAY:

DBMS_MVIEW.EXPLAIN_MVIEW (

Table 15–3 END_TABLE_REORGANIZATION Procedure Parameters

Parameter Description

tabowner Owner of the table being reorganized.

tabname Name of the table being reorganized.
15-4 Oracle9i Replication Management API Reference

Summary of DBMS_MVIEW Subprograms
 mv IN VARCHAR2,
 msg_array OUT SYS.ExplainMVArrayType);

Parameters

EXPLAIN_REWRITE Procedure
This procedure enables you to learn why a query failed to rewrite, or, if it rewrites,

which materialized views will be used. Using the results from the procedure, you

can take the appropriate action needed to make a query rewrite if at all possible.

The query specified in the EXPLAIN_REWRITE statement is never actually executed.

To obtain the output into a table, you must run the admin/utlxrw.sq l script

before calling EXPLAIN_REWRITE. This script creates a table named REWRITE_
TABLE in the current schema.

Syntax
You can obtain the output from EXPLAIN_REWRITE in two ways. The first is to use

a table, while the second is to create a VARRAY. The following shows the basic

syntax for using an output table:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query IN VARCHAR2,
 mv IN VARCHAR2,
 statement_id IN VARCHAR2;

If you want to direct the output of EXPLAIN_REWRITE to a varray, instead of a

table, then the procedure should be called as follows:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query IN VARCHAR2(2000),

Table 15–4 EXPLAIN_MVIEW Procedure Parameters

Parameter Description

mv The name of an existing materialized view (optionally qualified
with the owner name separated by a ".") or a SELECT statement
for a potential materialized view.

statement_id A client-supplied unique identifier to associate output rows with
specific invocations of EXPLAIN_MVIEW.

msg_array The PL/SQL varray that receives the output. Use this parameter to
direct EXPLAIN_MVIEW’s output to a PL/SQL VARRAY rather
than MV_CAPABILITIES_TABLE .
DBMS_MVIEW 15-5

I_AM_A_REFRESH Function
 mv IN VARCHAR2(30),
 msg_array IN OUT SYS.RewriteArrayType);

Parameters

I_AM_A_REFRESH Function
This function returns the value of the I_AM_REFRESHpackage state. A return value

of TRUE indicates that all local replication triggers for materialized views are

effectively disabled in this session because each replication trigger first checks this

state. A return value of FALSE indicates that these triggers are enabled.

Syntax
DBMS_MVIEW.I_AM_A_REFRESH()
 RETURN BOOLEAN;

Parameters
None.

PMARKER Function
This function returns a partition marker from a rowid. It is used for Partition

Change Tracking (PCT).

Syntax
DBMS_MVIEW.PMARKER(rid IN ROWID)
 RETURN NUMBER;

Table 15–5 EXPLAIN_REWRITE Procedure Parameters

Parameter Description

query SQL select statement to be explained.

mv The fully qualified name of an existing materialized view in the form
of SCHEMA.MV

statement_id A client-supplied unique identifier to distinguish output messages

msg_array The PL/SQL varray that receives the output. Use this parameter to
direct EXPLAIN_REWRITE’s output to a PL/SQL VARRAY
15-6 Oracle9i Replication Management API Reference

Summary of DBMS_MVIEW Subprograms
Parameters

PURGE_DIRECT_LOAD_LOG Procedure
This procedure removes entries from the direct loader log after they are no longer

needed for any known materialized view. This procedure usually is used in

environments using Oracle’s data warehousing technology.

Syntax
DBMS_MVIEW.PURGE_DIRECT_LOAD_LOG();

Parameters
None.

PURGE_LOG Procedure
This procedure purges rows from the materialized view log.

Syntax
DBMS_MVIEW.PURGE_LOG (
 master IN VARCHAR2,
 num IN BINARY_INTEGER := 1,
 flag IN VARCHAR2 := 'NOP');

Table 15–6 PMARKER Procedure Parameters

Parameter Description

rid The rowid of a row entry in a master table.

See Also: Oracle9i Data Warehousing Guide for more information
DBMS_MVIEW 15-7

PURGE_MVIEW_FROM_LOG Procedure
Parameters

PURGE_MVIEW_FROM_LOG Procedure
This procedure is called on the master site or master materialized view site to delete

the rows in materialized view refresh related data dictionary tables maintained at

the master for the specified materialized view identified by its mview_id or the

combination of the mviewowner , mviewname, and the mviewsite . If the

materialized view specified is the oldest materialized view to have refreshed from

any of the master tables or master materialized views, then the materialized view

log is also purged. This procedure does not unregister the materialized view.

If there is an error while purging one of the materialized view logs, the successful

purge operations of the previous materialized view logs are not rolled back. This is

to minimize the size of the materialized view logs. In case of an error, this procedure

can be invoked again until all the materialized view logs are purged.

Table 15–7 PURGE_LOG Procedure Parameters

Parameter Description

master Name of the master table or master materialized view.

num Number of least recently refreshed materialized views whose rows
you want to remove from materialized view log. For example, the
following statement deletes rows needed to refresh the two least
recently refreshed materialized views:

DBMS_MVIEW.PURGE_LOG('master_table', 2);

To delete all rows in the materialized view log, indicate a high
number of materialized views to disregard, as in this example:

DBMS_MVIEW.PURGE_LOG('master_table',9999);

This statement completely purges the materialized view log that
corresponds to master_table if fewer than 9999 materialized
views are based on master_table . A simple materialized view
whose rows have been purged from the materialized view log
must be completely refreshed the next time it is refreshed.

flag Specify delete to guarantee that rows are deleted from the
materialized view log for at least one materialized view. This
parameter can override the setting for the parameter num. For
example, the following statement deletes rows from the
materialized view log that has dependency rows in the least
recently refreshed materialized view:

DBMS_MVIEW.PURGE_LOG('master_table',1,'delete');
15-8 Oracle9i Replication Management API Reference

Summary of DBMS_MVIEW Subprograms
Syntax
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mview_id IN BINARY_INTEGER |
 mviewowner IN VARCHAR2,
 mviewname IN VARCHAR2,
 mviewsite IN VARCHAR2);

Parameters

REFRESH Procedure
This procedure refreshes a list of materialized views.

Note: This procedure is overloaded. The mview_id parameter is

mutually exclusive with the three remaining parameters:

mviewowner , mviewname, and mviewsite .

Table 15–8 PURGE_MVIEW_FROM_LOG Procedure Parameters

Parameter Description

mview_id If you want to execute this procedure based on the identification of
the target materialized view, specify the materialized view
identification using the mview_id parameter. Query the DBA_
BASE_TABLE_MVIEWS view at the materialized view log site for a
listing of materialized view IDs.

Executing this procedure based on the materialized view
identification is useful if the target materialized view is not listed in
the list of registered materialized views (DBA_REGISTERED_
MVIEWS).

mviewowner If you do not specify a mview_id , enter the owner of the target
materialized view using the mviewowner parameter. Query the
DBA_REGISTERED_MVIEWS view at the materialized view log site
to view the materialized view owners.

mviewname If you do not specify a mview_id , enter the name of the target
materialized view using the mviewname parameter. Query the
DBA_REGISTERED_MVIEWS view at the materialized view log site
to view the materialized view names.

mviewsite If you do not specify a mview_id , enter the site of the target
materialized view using the mviewsite parameter. Query the
DBA_REGISTERED_MVIEWS view at the materialized view log site
to view the materialized view sites.
DBMS_MVIEW 15-9

REFRESH Procedure
Syntax
DBMS_MVIEW.REFRESH (
 { list IN VARCHAR2,
 | tab IN OUT DBMS_UTILITY.UNCL_ARRAY,}
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := true,
 refresh_after_errors IN BOOLEAN := false,
 purge_option IN BINARY_INTEGER := 1,
 parallelism IN BINARY_INTEGER := 0,
 heap_size IN BINARY_INTEGER := 0,
 atomic_refresh IN BOOLEAN := true);

Parameters

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 15–9 REFRESH Procedure Parameters

Parameter Description

list | tab Comma-separated list of materialized views that you want to
refresh. (Synonyms are not supported.) These materialized views
can be located in different schemas and have different master
tables or master materialized views. However, all of the listed
materialized views must be in your local database.

Alternatively, you may pass in a PL/SQL index-by table of type
DBMS_UTILITY.UNCL_ARRAY, where each element is the name of
a materialized view.
15-10 Oracle9i Replication Management API Reference

Summary of DBMS_MVIEW Subprograms
method A string of refresh methods indicating how to refresh the listed
materialized views. An f indicates fast refresh, ? indicates force
refresh, C or c indicates complete refresh, and A or a indicates
always refresh. A and C are equivalent.

If a materialized view does not have a corresponding refresh
method (that is, if more materialized views are specified than
refresh methods), then that materialized view is refreshed
according to its default refresh method. For example, consider the
following EXECUTE statement within SQL*Plus:

DBMS_MVIEW.REFRESH
 ('countries_mv,regions_mv,hr.employees_mv','cf');

This statement performs a complete refresh of the countries_mv
materialized view, a fast refresh of the regions_mv materialized
view, and a default refresh of the hr.employees materialized
view.

rollback_seg Name of the materialized view site rollback segment to use while
refreshing materialized views.

push_deferred_rpc Used by updatable materialized views only. Set this parameter to
true if you want to push changes from the materialized view to
its associated master tables or master materialized views before
refreshing the materialized view. Otherwise, these changes may
appear to be temporarily lost.

refresh_after_errors If this parameter is true , an updatable materialized view
continues to refresh even if there are outstanding conflicts logged
in the DEFERROR view for the materialized view's master table or
master materialized view. If this parameter is true and atomic_
refresh is false , this procedure continues to refresh other
materialized views if it fails while refreshing a materialized view.

purge_option If you are using the parallel propagation mechanism (in other
words, parallelism is set to 1 or greater), 0 means do not purge, 1
means lazy purge, and 2 means aggressive purge. In most cases,
lazy purge is the optimal setting. Set purge to aggressive to trim
the queue if multiple master replication groups are pushed to
different target sites, and updates to one or more replication
groups are infrequent and infrequently pushed. If all replication
groups are infrequently updated and pushed, then set this
parameter to 0 and occasionally execute PUSHwith this parameter
set to 2 to reduce the queue.

Table 15–9 REFRESH Procedure Parameters (Cont.)

Parameter Description
DBMS_MVIEW 15-11

REFRESH_ALL_MVIEWS Procedure
REFRESH_ALL_MVIEWS Procedure
This procedure refreshes all materialized views that have the following properties:

■ The materialized view has not been refreshed since the most recent change to a

master table or master materialized view on which it depends.

■ The materialized view and all of the master tables or master materialized views

on which it depends are local.

■ The materialized view is in the view DBA_MVIEWS.

This procedure is intended for use with data warehouses.

Syntax
DBMS_MVIEW.REFRESH_ALL_MVIEWS (
 number_of_failures OUT BINARY_INTEGER,
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 refresh_after_errors IN BOOLEAN := false,
 atomic_refresh IN BOOLEAN := true);

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

atomic_refresh If this parameter is set to true , then the list of materialized views
is refreshed in a single transaction. All of the refreshed
materialized views are updated to a single point in time. If the
refresh fails for any of the materialized views, none of the
materialized views are updated.

If this parameter is set to false , then each of the materialized
views is refreshed in a separate transaction. The number of job
queue processes must be set to 1 or greater if this parameter is
false .

Table 15–9 REFRESH Procedure Parameters (Cont.)

Parameter Description
15-12 Oracle9i Replication Management API Reference

Summary of DBMS_MVIEW Subprograms
Parameters

REFRESH_DEPENDENT Procedure
This procedure refreshes all materialized views that have the following properties:

■ The materialized view depends on a master table or master materialized view

in the list of specified masters.

■ The materialized view has not been refreshed since the most recent change to a

master table or master materialized view on which it depends.

■ The materialized view and all of the master tables or master materialized views

on which it depends are local.

■ The materialized view is in the view DBA_MVIEWS.

Table 15–10 REFRESH_ALL_MVIEWS Procedure Parameters

Parameter Description

number_of_failures Returns the number of failures that occurred during processing.

method A single refresh method indicating the type of refresh to perform
for each materialized view that is refreshed. F or f indicates fast
refresh, ? indicates force refresh, C or c indicates complete refresh,
and A or a indicates always refresh. A and C are equivalent. If no
method is specified, a materialized view is refreshed according to
its default refresh method.

rollback_seg Name of the materialized view site rollback segment to use while
refreshing materialized views.

refresh_after_errors If this parameter is true , an updatable materialized view
continues to refresh even if there are outstanding conflicts logged
in the DEFERROR view for the materialized view's master table or
master materialized view. If this parameter is true and atomic_
refresh is false , this procedure continues to refresh other
materialized views if it fails while refreshing a materialized view.

atomic_refresh If this parameter is set to true , then the refreshed materialized
views are refreshed in a single transaction. All of the refreshed
materialized views are updated to a single point in time. If the
refresh fails for any of the materialized views, none of the
materialized views are updated.

If this parameter is set to false , then each of the refreshed
materialized views is refreshed in a separate transaction. The
number of job queue processes must be set to 1 or greater if this
parameter is false .
DBMS_MVIEW 15-13

REFRESH_DEPENDENT Procedure
This procedure is intended for use with data warehouses.

Syntax
DBMS_MVIEW.REFRESH_DEPENDENT (
 number_of_failures OUT BINARY_INTEGER,
 { list IN VARCHAR2,
 | tab IN OUT DBMS_UTILITY.UNCL_ARRAY,}
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 refresh_after_errors IN BOOLEAN := false,
 atomic_refresh IN BOOLEAN := true);

Parameters

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 15–11 REFRESH_DEPENDENT Procedure Parameters

Parameter Description

number_of_failures Returns the number of failures that occurred during processing.

list | tab Comma-separated list of master tables or master materialized
views on which materialized views can depend. (Synonyms are
not supported.) These tables and the materialized views that
depend on them can be located in different schemas. However, all
of the tables and materialized views must be in your local
database.

Alternatively, you may pass in a PL/SQL index-by table of type
DBMS_UTILITY.UNCL_ARRAY, where each element is the name of
a table.
15-14 Oracle9i Replication Management API Reference

Summary of DBMS_MVIEW Subprograms
REGISTER_MVIEW Procedure
This procedure enables the administration of individual materialized views. It is

invoked at a master site or master materialized view site to register a materialized

view.

method A string of refresh methods indicating how to refresh the
dependent materialized views. All of the materialized views that
depend on a particular table are refreshed according to the refresh
method associated with that table. F or f indicates fast refresh, ?
indicates force refresh, C or c indicates complete refresh, and A or
a indicates always refresh. A and C are equivalent.

If a table does not have a corresponding refresh method (that is, if
more tables are specified than refresh methods), then any
materialized view that depends on that table is refreshed
according to its default refresh method. For example, the
following EXECUTE statement within SQL*Plus:

DBMS_MVIEW.REFRESH_DEPENDENT
 ('employees,deptartments,hr.regions','cf');

performs a complete refresh of the materialized views that depend
on the employees table, a fast refresh of the materialized views
that depend on the departments table, and a default refresh of
the materialized views that depend on the hr.regions table.

rollback_seg Name of the materialized view site rollback segment to use while
refreshing materialized views.

refresh_after_errors If this parameter is true , an updatable materialized view
continues to refresh even if there are outstanding conflicts logged
in the DEFERROR view for the materialized view's master table or
master materialized view. If this parameter is true and atomic_
refresh is false , this procedure continues to refresh other
materialized views if it fails while refreshing a materialized view.

atomic_refresh If this parameter is set to true , then the refreshed materialized
views are refreshed in a single transaction. All of the refreshed
materialized views are updated to a single point in time. If the
refresh fails for any of the materialized views, none of the
materialized views are updated.

If this parameter is set to false , then each of the refreshed
materialized views is refreshed in a separate transaction. The
number of job queue processes must be set to 1 or greater if this
parameter is false .

Table 15–11 REFRESH_DEPENDENT Procedure Parameters (Cont.)

Parameter Description
DBMS_MVIEW 15-15

REGISTER_MVIEW Procedure
Syntax
DBMS_MVIEW.REGISTER_MVIEW (
 mviewowner IN VARCHAR2,
 mviewname IN VARCHAR2,
 mviewsite IN VARCHAR2,
 mview_id IN DATE | BINARY_INTEGER,
 flag IN BINARY_INTEGER,
 qry_txt IN VARCHAR2,
 rep_type IN BINARY_INTEGER := DBMS_MVIEW.REG_UNKNOWN);

Parameters

Note: Typically, a materialized view is registered automatically

during materialized view creation. You should only run this

procedure to manually register a materialized view if the automatic

registration failed or if the registration information was deleted.

Table 15–12 REGISTER_MVIEW Procedure Parameters

Parameter Description

mviewowner Owner of the materialized view.

mviewname Name of the materialized view.

mviewsite Name of the materialized view site for a materialized view registering at an
Oracle8 and higher master site or master materialized view site. This name
should not contain any double quotes.

mview_id The identification number of the materialized view. Specify an Oracle8 and
higher materialized view as a BINARY_INTEGER. Specify an Oracle7
materialized view registering at an Oracle8 and higher master sites or master
materialized view sites as a DATE.
15-16 Oracle9i Replication Management API Reference

Summary of DBMS_MVIEW Subprograms
Usage Notes
This procedure is invoked at the master site or master materialized view site by a

remote materialized view site using a remote procedure call. If REGISTER_MVIEWis

called multiple times with the same mviewowner , mviewname, and mviewsite ,

then the most recent values for mview_id , flag , and qry_txt are stored. If a

query exceeds the maximum VARCHAR2size, then qry_txt contains the first 32000

characters of the query and the remainder is truncated. When invoked manually,

flag A constant that describes the properties of the materialized view being
registered. Valid constants that can be assigned include the following:

■ dbms_mview.reg_rowid_mview for a rowid materialized view

■ dbms_mview.reg_primary_key_mview for a primary key
materialized view

■ dbms_mview.reg_object_id_mview for an object id materialized
view

■ dbms_mview.reg_fast_refreshable_mview for a materialized
view that can be fast refreshed

■ dbms_mview.reg_updatable_mview for a materialized view that is
updatable

A materialized view can have more than one of these properties. In this case,
use the plus sign (+) to specify more than one property. For example, if a
primary key materialized view can be fast refreshed, you can enter the
following for this parameter:

dbms_mview.reg_primary_key_mview + dbms_mview.reg_fast_refreshable_mview

You can determine the properties of a materialized view by querying the
ALL_MVIEWS data dictionary view.

qry_txt The first 32,000 bytes of the materialized view definition query.

rep_type Version of the materialized view. Valid constants that can be assigned include
the following:

■ dbms_mview.reg_v7_snapshot if the materialized view is at an
Oracle7 site

■ dbms_mview.reg_v8_snapshot if the materialized view is at an
Oracle8 or higher site

■ dbms_mview.reg_unknown (the default) if you do not know whether
the materialized view is at an Oracle7 site or an Oracle8 (or higher) site

Table 15–12 REGISTER_MVIEW Procedure Parameters (Cont.)

Parameter Description
DBMS_MVIEW 15-17

UNREGISTER_MVIEW Procedure
the value of mview_id must be looked up in the materialized view data dictionary

views by the person who calls the procedure.

UNREGISTER_MVIEW Procedure
This procedure enables the administration of individual materialized views. It is

invoked at a master site or master materialized view site to unregister a

materialized view.

Syntax
DBMS_MVIEW.UNREGISTER_MVIEW (
 mviewowner IN VARCHAR2,
 mviewname IN VARCHAR2,
 mviewsite IN VARCHAR2);

Parameters

Table 15–13 UNREGISTER_MVIEW Procedure Parameters

Parameters Description

mviewowner Owner of the materialized view.

mviewname Name of the materialized view.

mviewsite Name of the materialized view site.
15-18 Oracle9i Replication Management API Reference

DBMS_OFFLIN
16

DBMS_OFFLINE_OG

The DBMS_OFFLINE_OG package contains public APIs for offline instantiation of

master groups.

This chapter discusses the following topics:

■ Summary of DBMS_OFFLINE_OG Subprograms

Note: These procedures are used in performing an offline

instantiation of a master table in a multimaster replication

environment.

These procedure should not be confused with the procedures in the

DBMS_OFFLINE_SNAPSHOT package (used for performing an

offline instantiation of a materialized view) or with the procedures

in the DBMS_REPCAT_INSTANTIATE package (used for

instantiating a deployment template). See these respective packages

for more information on their usage.
E_OG 16-1

Summary of DBMS_OFFLINE_OG Subprograms
Summary of DBMS_OFFLINE_OG Subprograms

Table 16–1 DBMS_OFFLINE_OG Package Subprograms

Subprogram Description

"BEGIN_INSTANTIATION
Procedure" on page 16-3

Starts offline instantiation of a master group.

"BEGIN_LOAD Procedure"
on page 16-4

Disables triggers while data is imported to new master site
as part of offline instantiation.

"END_INSTANTIATION
Procedure" on page 16-5

Completes offline instantiation of a master group.

"END_LOAD Procedure" on
page 16-6

Re-enables triggers after importing data to new master site
as part of offline instantiation.

"RESUME_SUBSET_OF_
MASTERS Procedure" on
page 16-8

Resumes replication activity at all existing sites except the
new site during offline instantiation of a master group.
16-2 Oracle9i Replication Management API Reference

Summary of DBMS_OFFLINE_OG Subprograms
BEGIN_INSTANTIATION Procedure
This procedure starts offline instantiation of a master group. You must call this

procedure from the master definition site.

Syntax
DBMS_OFFLINE_OG.BEGIN_INSTANTIATION (
 gname IN VARCHAR2,
 new_site IN VARCHAR2
 fname IN VARCHAR2);

Parameters

Note: This procedure is used to perform an offline instantiation of

a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the

DBMS_OFFLINE_SNAPSHOT package (used for performing an

offline instantiation of a materialized view) or with the procedures

in the DBMS_REPCAT_INSTANTIATE package (used for

instantiating a deployment template). See these respective packages

for more information on their usage.

See Also: "Adding New Master Sites with Offline Instantiation

Using Export/Import" on page 7-35 for information about adding a

new master site to a master group by performing an offline

instantiation of a master site

Table 16–2 BEGIN_INSTANTIATION Procedure Parameters

Parameter Description

gname Name of the replication group that you want to replicate to the
new site.

new_site The fully qualified database name of the new site to which you
want to replicate the replication group.

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.
DBMS_OFFLINE_OG 16-3

BEGIN_LOAD Procedure
Exceptions

BEGIN_LOAD Procedure
This procedure disables triggers while data is imported to the new master site as

part of offline instantiation. You must call this procedure from the new master site.

Syntax
DBMS_OFFLINE_OG.BEGIN_LOAD (
 gname IN VARCHAR2,

Table 16–3 BEGIN_INSTANTIATION Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

dbms_repcat.nonmasterdef This procedure must be called from the master definition
site.

sitealreadyexists Specified site is already a master site for this replication
group.

wrongstate Status of master definition site must be quiesced.

dbms_repcat.missingrepgroup gname does not exist as a master group.

dbms_repcat.missing_flavor If you receive this exception, contact Oracle Support
Services.

Note: This procedure is used to perform an offline instantiation of

a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the

DBMS_OFFLINE_SNAPSHOT package (used for performing an

offline instantiation of a materialized view) or with the procedures

in the DBMS_REPCAT_INSTANTIATE package (used for

instantiating a deployment template). See these respective packages

for more information on their usage.

See Also: "Adding New Master Sites with Offline Instantiation

Using Export/Import" on page 7-35 for information about adding a

new master site to a master group by performing an offline

instantiation of a master site
16-4 Oracle9i Replication Management API Reference

Summary of DBMS_OFFLINE_OG Subprograms
 new_site IN VARCHAR2);

Parameters

Exceptions

END_INSTANTIATION Procedure
This procedure completes offline instantiation of a master group. You must call this

procedure from the master definition site.

Table 16–4 BEGIN_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group whose members you are importing.

new_site The fully qualified database name of the new site at which you
will be importing the replication group members.

Table 16–5 BEGIN_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

wrongsite This procedure must be called from the new master site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of the new master site must be quiesced.

dbms_repcat.missingrepgroup gname does not exist as a master group.

Note: This procedure is used to perform an offline instantiation of

a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the

DBMS_OFFLINE_SNAPSHOT package (used for performing an

offline instantiation of a materialized view) or with the procedures

in the DBMS_REPCAT_INSTANTIATE package (used for

instantiating a deployment template). See these respective packages

for more information on their usage.
DBMS_OFFLINE_OG 16-5

END_LOAD Procedure
Syntax
DBMS_OFFLINE_OG.END_INSTANTIATION (
 gname IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters

Exceptions

END_LOAD Procedure
This procedure re-enables triggers after importing data to new master site as part of

offline instantiation. You must call this procedure from the new master site.

See Also: "Adding New Master Sites with Offline Instantiation

Using Export/Import" on page 7-35 for information about adding a

new master site to a master group by performing an offline

instantiation of a master site

Table 16–6 END_INSTANTIATION Procedure Parameters

Parameter Description

gname Name of the replication group that you are replicating to the new
site.

new_site The fully qualified database name of the new site to which you are
replicating the replication group.

Table 16–7 END_INSTANTIATION Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new master
site name.

dbms_repcat.nonmasterdef This procedure must be called from the master definition
site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of master definition site must be quiesced.

dbms_repcat.missingrepgroup gname does not exist as a master group.
16-6 Oracle9i Replication Management API Reference

Summary of DBMS_OFFLINE_OG Subprograms
Syntax
DBMS_OFFLINE_OG.END_LOAD (
 gname IN VARCHAR2,
 new_site IN VARCHAR2
 fname IN VARCHAR2);

Parameters

Note: This procedure is used to perform an offline instantiation of

a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the

DBMS_OFFLINE_SNAPSHOT package (used for performing an

offline instantiation of a materialized view) or with the procedures

in the DBMS_REPCAT_INSTANTIATE package (used for

instantiating a deployment template). See these respective packages

for more information on their usage.

See Also: "Adding New Master Sites with Offline Instantiation

Using Export/Import" on page 7-35 for information about adding a

new master site to a master group by performing an offline

instantiation of a master site

Table 16–8 END_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group whose members you have finished
importing.

new_site The fully qualified database name of the new site at which you
have imported the replication group members.

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.
DBMS_OFFLINE_OG 16-7

RESUME_SUBSET_OF_MASTERS Procedure
Exceptions

RESUME_SUBSET_OF_MASTERS Procedure
When you add a new master site to a master group by performing an offline

instantiation of a master site, it may take some time to complete the offline

instantiation process. This procedure resumes replication activity at all existing

sites, except the new site, during offline instantiation of a master group. You

typically execute this procedure after executing the DBMS_OFFLINE_OG.BEGIN_
INSTANTIATION procedure. You must call this procedure from the master

definition site.

Table 16–9 END_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

wrongsite This procedure must be called from the new master site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of the new master site must be quiesced.

dbms_repcat.missingrepgroup gname does not exist as a master group.

dbms_repcat.flavor_noobject If you receive this exception, contact Oracle Support
Services.

dbms_repcat.flavor_contains If you receive this exception, contact Oracle Support
Services.

Note: This procedure is used to perform an offline instantiation of

a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the

DBMS_OFFLINE_SNAPSHOT package (used for performing an

offline instantiation of a materialized view) or with the procedures

in the DBMS_REPCAT_INSTANTIATE package (used for

instantiating a deployment template). See these respective packages

for more information on their usage.
16-8 Oracle9i Replication Management API Reference

Summary of DBMS_OFFLINE_OG Subprograms
Syntax
DBMS_OFFLINE_OG.RESUME_SUBSET_OF_MASTERS (
 gname IN VARCHAR2,
 new_site IN VARCHAR2
 override IN BOOLEAN := false);

Parameters

See Also: "Adding New Master Sites with Offline Instantiation

Using Export/Import" on page 7-35 for information about adding a

new master site to a master group by performing an offline

instantiation of a master site

Table 16–10 RESUME_SUBSET_OF_MASTERS Procedure Parameters

Parameter Description

gname Name of the replication group that you are replicating to the new
site.

new_site The fully qualified database name of the new site to which you are
replicating the replication group.

override If this is true , then any pending RepCat administrative requests
are ignored and normal replication activity is restored at each
master as quickly as possible. The override parameter should be
set to true only in emergency situations.

If this is false , then normal replication activity is restored at each
master only when there is no pending RepCat administrative
request for gname at that master.
DBMS_OFFLINE_OG 16-9

RESUME_SUBSET_OF_MASTERS Procedure
Exceptions

Table 16–11 RESUME_SUBSET_OF_MASTERS Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

dbms_repcat.nonmasterdef This procedure must be called from the master definition
site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of master definition site must be quiesced.

dbms_repcat.missingrepgroup gname does not exist as a master group.
16-10 Oracle9i Replication Management API Reference

DBMS_OFFLINE_SNA
17

DBMS_OFFLINE_SNAPSHOT

The DBMS_OFFLINE_SNAPSHOT package contains public APIs for offline

instantiation of materialized views.

This chapter discusses the following topics:

■ Summary of DBMS_OFFLINE_SNAPSHOT Subprograms

Note: These procedure are used in performing an offline

instantiation of a materialized view.

These procedures should not be confused with the procedures in

the DBMS_OFFLINE_OG package (used for performing an offline

instantiation of a master table) or with the procedures in the DBMS_
REPCAT_INSTANTIATE package (used for instantiating a

deployment template). See these respective packages for more

information on their usage.
PSHOT 17-1

Summary of DBMS_OFFLINE_SNAPSHOT Subprograms
Summary of DBMS_OFFLINE_SNAPSHOT Subprograms

Table 17–1 DBMS_OFFLINE_SNAPSHOT Package Subprograms

Subprogram Description

"BEGIN_LOAD
Procedure" on
page 17-3

Prepares a materialized view site for import of a new materialized
view as part of offline instantiation.

"END_LOAD
Procedure" on
page 17-4

Completes offline instantiation of a materialized view.
17-2 Oracle9i Replication Management API Reference

Summary of DBMS_OFFLINE_SNAPSHOT Subprograms
BEGIN_LOAD Procedure
This procedure prepares a materialized view site for import of a new materialized

view as part of offline instantiation. You must call this procedure from the

materialized view site for the new materialized view.

Syntax
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (
 gname IN VARCHAR2,
 sname IN VARCHAR2,
 master_site IN VARCHAR2,
 snapshot_oname IN VARCHAR2,
 storage_c IN VARCHAR2 := '',
 comment IN VARCHAR2 := '',
 min_communication IN BOOLEAN := true);

Note: This procedure is used to perform an offline instantiation of

a materialized view.

These procedures should not be confused with the procedures in

the DBMS_OFFLINE_OG package (used for performing an offline

instantiation of a master table) or with the procedures in the DBMS_
REPCAT_INSTANTIATE package (used for instantiating a

deployment template). See these respective packages for more

information on their usage.

See Also: "Performing an Offline Instantiation of a Materialized

View Site Using Export/Import" on page 8-25 for information

about adding a new materialized view site by performing an offline

instantiation using Export/Import
DBMS_OFFLINE_SNAPSHOT 17-3

END_LOAD Procedure
Parameters

Exceptions

END_LOAD Procedure
This procedure completes offline instantiation of a materialized view. You must call

this procedure from the materialized view site for the new materialized view.

Table 17–2 BEGIN_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group for the materialized view that you
are creating using offline instantiation.

sname Name of the schema for the new materialized view.

master_site Fully qualified database name of the materialized view’s master
site.

snapshot_oname Name of the temporary materialized view created at the master
site.

storage_c Storage options to use when creating the new materialized view at
the materialized view site.

comment User comment.

min_communication If true , then the update trigger sends the new value of a column
only if the update statement modifies the column. Also, if true ,
the update trigger sends the old value of the column only if it is a
key column or a column in a modified column group.

Table 17–3 BEGIN_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group, schema,
master site, or materialized view name.

dbms_repcat.missingrepgroup gname does not exist as a replication group.

missingremotemview Could not locate specified materialized view at specified
master site.

dbms_repcat.missingschema Specified schema does not exist.

mviewtabmismatch Base table name of the materialized view at the master
and materialized view do not match.
17-4 Oracle9i Replication Management API Reference

Summary of DBMS_OFFLINE_SNAPSHOT Subprograms
Syntax
DBMS_OFFLINE_SNAPSHOT.END_LOAD (
 gname IN VARCHAR2,
 sname IN VARCHAR2,
 snapshot_oname IN VARCHAR2);

Parameters

Note: This procedure is used to perform an offline instantiation of

a materialized view.

These procedures should not be confused with the procedures in

the DBMS_OFFLINE_OG package (used for performing an offline

instantiation of a master table) or with the procedures in the DBMS_
REPCAT_INSTANTIATE package (used for instantiating a

deployment template). See these respective packages for more

information on their usage.

See Also: "Performing an Offline Instantiation of a Materialized

View Site Using Export/Import" on page 8-25 for information

about adding a new materialized view site by performing an offline

instantiation using Export/Import

Table 17–4 END_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group for the materialized view that you
are creating using offline instantiation.

sname Name of the schema for the new materialized view.

snapshot_oname Name of the materialized view.
DBMS_OFFLINE_SNAPSHOT 17-5

END_LOAD Procedure
Exceptions

Table 17–5 END_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group, schema, or
materialized view name.

dbms_repcat.missingrepgroup gname does not exist as a replication group.

dbms_repcat.nonmview This procedure must be called from the materialized
view site.
17-6 Oracle9i Replication Management API Reference

DBMS_RECTIFIER
18

DBMS_RECTIFIER_DIFF

The DBMS_RECTIFIER_DIFF package contains APIs used to detect and resolve

data inconsistencies between two replicated sites.

This chapter discusses the following topics:

■ Summary of DBMS_RECTIFIER_DIFF Subprograms
_DIFF 18-1

Summary of DBMS_RECTIFIER_DIFF Subprograms
Summary of DBMS_RECTIFIER_DIFF Subprograms

Table 18–1 DBMS_RECTIFIER_DIFF Package Subprograms

Subprogram Description

"DIFFERENCES
Procedure" on
page 18-3

Determines the differences between two tables.

"RECTIFY Procedure"
on page 18-5

Resolves the differences between two tables.
18-2 Oracle9i Replication Management API Reference

Summary of DBMS_RECTIFIER_DIFF Subprograms
DIFFERENCES Procedure
This procedure determines the differences between two tables. It accepts the storage

table of a nested table.

Syntax
DBMS_RECTIFIER_DIFF.DIFFERENCES (
 sname1 IN VARCHAR2,
 oname1 IN VARCHAR2,
 reference_site IN VARCHAR2 := '',
 sname2 IN VARCHAR2,
 oname2 IN VARCHAR2,
 comparison_site IN VARCHAR2 := '',
 where_clause IN VARCHAR2 := '',
 { column_list IN VARCHAR2 := '',
 | array_columns IN dbms_utility.name_array, }
 missing_rows_sname IN VARCHAR2,
 missing_rows_oname1 IN VARCHAR2,
 missing_rows_oname2 IN VARCHAR2,
 missing_rows_site IN VARCHAR2 := '',
 max_missing IN INTEGER,
 commit_rows IN INTEGER := 500);

Parameters

Note: This procedure cannot be used on LOB columns, nor on

columns based on user-defined types.

Note: This procedure is overloaded. The column_list and

array_columns parameters are mutually exclusive.

Table 18–2 DIFFERENCES Procedure Parameters

Parameter Description

sname1 Name of the schema at reference_site .

oname1 Name of the table at reference_site .

reference_site Name of the reference database site. The default, NULL, indicates
the current site.
DBMS_RECTIFIER_DIFF 18-3

DIFFERENCES Procedure
sname2 Name of the schema at comparison_site .

oname2 Name of the table at comparison_site .

comparison_site Name of the comparison database site. The default, NULL,
indicates the current site.

where_clause Only rows satisfying this clause are selected for comparison. The
default, NULL, indicates all rows are compared.

column_list A comma-separated list of one or more column names being
compared for the two tables. You must not have any spaces before
or after a comma. The default, NULL, indicates that all columns
will be compared.

array_columns A PL/SQL index-by table of column names being compared for
the two tables. Indexing begins at 1, and the final element of the
array must be NULL. If position 1 is NULL, then all columns are
used.

missing_rows_sname Name of the schema containing the tables with the missing rows.

missing_rows_oname1 Name of an existing table at missing_rows_site that stores
information about the rows in the table at reference_site that
are missing from the table at comparison_site , and
information about the rows at comparison_site site that are
missing from the table at reference_site .

missing_rows_oname2 Name of an existing table at missing_rows_site that stores
information about the missing rows. This table has three columns:
the R_ID column shows the rowid of the row in the missing_
rows_oname1 table, the PRESENT column shows the name of the
site where the row is present, and the ABSENT column shows
name of the site from which the row is absent.

missing_rows_site Name of the site where the missing_rows_oname1 and
missing_rows_oname2 tables are located. The default, NULL,
indicates that the tables are located at the current site.

max_missing Integer that specifies the maximum number of rows that should be
inserted into the missing_rows_oname table. If more than max_
missing rows are missing, then that many rows are inserted into
missing_rows_oname , and the routine then returns normally
without determining whether more rows are missing. This
parameter is useful if the fragments are so different that the
missing rows table has too many entries and there is no point in
continuing. Raises exception badnumber if max_missing is less
than 1 or NULL.

Table 18–2 DIFFERENCES Procedure Parameters (Cont.)

Parameter Description
18-4 Oracle9i Replication Management API Reference

Summary of DBMS_RECTIFIER_DIFF Subprograms
Exceptions

Restrictions
The error ORA-00001 (unique constraint violated) is issued when there are any

unique or primary key constraints on the missing rows table.

RECTIFY Procedure
This procedure resolves the differences between two tables. It accepts the storage

table of a nested table.

commit_rows Maximum number of rows to insert to or delete from the reference
or comparison table before a COMMIToccurs. By default, a COMMIT
occurs after 500 inserts or 500 deletes. An empty string (' ') or
NULL indicates that a COMMIT should be issued only after all rows
for a single table have been inserted or deleted.

Table 18–3 DIFFERENCES Procedure Exceptions

Exception Description

nosuchsite Database site could not be found.

badnumber The commit_rows parameter is less than 1.

missingprimarykey Column list must include primary key (or SET_COLUMNS
equivalent).

badname NULL or empty string for table or schema name.

cannotbenull Parameter cannot be NULL.

notshapeequivalent Tables being compared are not shape equivalent. Shape
refers to the number of columns, their column names, and
the column datatypes.

unknowncolumn Column does not exist.

unsupportedtype Type not supported.

dbms_repcat.commfailure Remote site is inaccessible.

dbms_repcat.missingobject Table does not exist.

Table 18–2 DIFFERENCES Procedure Parameters (Cont.)

Parameter Description
DBMS_RECTIFIER_DIFF 18-5

RECTIFY Procedure
Syntax
DBMS_RECTIFIER_DIFF.RECTIFY (
 sname1 IN VARCHAR2,
 oname1 IN VARCHAR2,
 reference_site IN VARCHAR2 := '',
 sname2 IN VARCHAR2,
 oname2 IN VARCHAR2,
 comparison_site IN VARCHAR2 := '',
 { column_list IN VARCHAR2 := '',
 | array_columns IN dbms_utility.name_array, }
 missing_rows_sname IN VARCHAR2,
 missing_rows_oname1 IN VARCHAR2,
 missing_rows_oname2 IN VARCHAR2,
 missing_rows_site IN VARCHAR2 := '',
 commit_rows IN INTEGER := 500);

Parameters

Note: This procedure cannot be used on LOB columns, nor on

columns based on user-defined types.

Note: This procedure is overloaded. The column_list and

array_columns parameters are mutually exclusive.

Table 18–4 RECTIFY Procedure Parameters

Parameter Description

sname1 Name of the schema at reference_site .

oname1 Name of the table at reference_site .

reference_site Name of the reference database site. The default, NULL, indicates
the current site.

sname2 Name of the schema at comparison_site .

oname2 Name of the table at comparison_site .

comparison_site Name of the comparison database site. The default, NULL,
indicates the current site.
18-6 Oracle9i Replication Management API Reference

Summary of DBMS_RECTIFIER_DIFF Subprograms
column_list A comma-separated list of one or more column names being
compared for the two tables. You must not have any spaces before
or after a comma. The default, NULL, indicates that all columns
will be compared.

array_columns A PL/SQL index-by table of column names being compared for
the two tables. Indexing begins at 1, and the final element of the
array must be NULL. If position 1 is NULL, then all columns are
used.

missing_rows_sname Name of the schema containing the tables with the missing rows.

missing_rows_oname1 Name of the table at missing_rows_site that stores
information about the rows in the table at reference_site that
are missing from the table at comparison_site , and
information about the rows at comparison_site that are
missing from the table at reference_site .

missing_rows_oname2 Name of the table at missing_rows_site that stores
information about the missing rows. This table has three columns:
the rowid of the row in the missing_rows_oname1 table, the
name of the site at which the row is present, and the name of the
site from which the row is absent.

missing_rows_site Name of the site where the missing_rows_oname1 and
missing_rows_oname2 tables are located. The default, NULL,
indicates that the tables are located at the current site.

commit_rows Maximum number of rows to insert to or delete from the reference
or comparison table before a COMMIT occurs. By default, a
COMMIT occurs after 500 inserts or 500 deletes. An empty string ('
') or NULL indicates that a COMMIT should be issued only after all
rows for a single table have been inserted or deleted.

Table 18–4 RECTIFY Procedure Parameters (Cont.)

Parameter Description
DBMS_RECTIFIER_DIFF 18-7

RECTIFY Procedure
Exceptions

Table 18–5 RECTIFY Procedure Exceptions

Exception Description

nosuchsite Database site could not be found.

badnumber The commit_rows parameter is less than 1.

badname NULL or empty string for table or schema name.

dbms_repcat.commfailure Remote site is inaccessible.

dbms_repcat.missingobject Table does not exist.
18-8 Oracle9i Replication Management API Reference

DBMS_REF
19

DBMS_REFRESH

DBMS_REFRESH enables you to create groups of materialized views that can be

refreshed together to a transactionally consistent point in time.

This chapter discusses the following topics:

■ Summary of DBMS_REFRESH Subprograms
RESH 19-1

Summary of DBMS_REFRESH Subprograms
Summary of DBMS_REFRESH Subprograms

Table 19–1 DBMS_REFRESH Package Subprograms

Subprogram Description

"ADD Procedure" on
page 19-3

Adds materialized views to a refresh group.

"CHANGE Procedure"
on page 19-3

Changes the refresh interval for a refresh group.

"DESTROY Procedure"
on page 19-5

Removes all of the materialized views from a refresh group and
deletes the refresh group.

"MAKE Procedure" on
page 19-6

Specifies the members of a refresh group and the time interval
used to determine when the members of this group should be
refreshed.

"REFRESH Procedure"
on page 19-8

Manually refreshes a refresh group.

"SUBTRACT
Procedure" on
page 19-9

Removes materialized views from a refresh group.
19-2 Oracle9i Replication Management API Reference

Summary of DBMS_REFRESH Subprograms
ADD Procedure
This procedure adds materialized views to a refresh group.

Syntax
DBMS_REFRESH.ADD (
 name IN VARCHAR2,
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY, }
 lax IN BOOLEAN := false);

Parameters

CHANGE Procedure
This procedure changes the refresh interval for a refresh group.

See Also: Step 6, "Add objects to refresh group," on page 5-10 and

Oracle9i Replication for more information

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 19–2 ADD Procedures Parameters

Parameter Description

name Name of the refresh group to which you want to add members.

list Comma-separated list of materialized views that you want to add
to the refresh group. (Synonyms are not supported.)

tab Instead of a comma-separated list, you can supply a PL/SQL
index-by table of type DBMS_UTILITY.UNCL_ARRAY, where each
element is the name of a materialized view. The first materialized
view should be in position 1. The last position must be NULL.

lax A materialized view can belong to only one refresh group at a
time. If you are moving a materialized view from one group to
another, then you must set the lax flag to true to succeed. Oracle
then automatically removes the materialized view from the other
refresh group and updates its refresh interval to be that of its new
group. Otherwise, the call to ADD generates an error message.
DBMS_REFRESH 19-3

CHANGE Procedure
Syntax
DBMS_REFRESH.CHANGE (
 name IN VARCHAR2,
 next_date IN DATE := NULL,
 interval IN VARCHAR2 := NULL,
 implicit_destroy IN BOOLEAN := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := NULL,
 refresh_after_errors IN BOOLEAN := NULL,
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

Parameters

See Also: Oracle9i Replication for more information about refresh

groups

Table 19–3 CHANGE Procedures Parameters

Parameter Description

name Name of the refresh group for which you want to alter the refresh
interval.

next_date Next date that you want a refresh to occur. By default, this date
remains unchanged.

interval Function used to calculate the next time to refresh the materialized
views in the refresh group. This interval is evaluated immediately
before the refresh. Thus, you should select an interval that is
greater than the time it takes to perform a refresh. By default, the
interval remains unchanged.

implicit_destroy Allows you to reset the value of the implicit_destroy flag. If
this flag is set, then Oracle automatically deletes the group if it no
longer contains any members. By default, this flag remains
unchanged.

rollback_seg Allows you to change the rollback segment used. By default, the
rollback segment remains unchanged. To reset this parameter to
use the default rollback segment, specify NULL, including the
quotes. Specifying NULL without quotes indicates that you do not
want to change the rollback segment currently being used.
19-4 Oracle9i Replication Management API Reference

Summary of DBMS_REFRESH Subprograms
DESTROY Procedure
This procedure removes all of the materialized views from a refresh group and

delete the refresh group.

push_deferred_rpc Used by updatable materialized views only. Set this parameter to
true if you want to push changes from the materialized view to
its associated master table or master materialized view before
refreshing the materialized view. Otherwise, these changes may
appear to be temporarily lost. By default, this flag remains
unchanged.

refresh_after_errors Used by updatable materialized views only. Set this parameter to
true if you want the refresh to proceed even if there are
outstanding conflicts logged in the DEFERROR view for the
materialized view’s master table or master materialized view. By
default, this flag remains unchanged.

purge_option If you are using the parallel propagation mechanism (that is,
parallelism is set to 1 or greater), then:

■ 0 = do not purge

■ 1 = lazy (default)

■ 2 = aggressive

In most cases, lazy purge is the optimal setting. Set purge to
aggressive to trim back the queue if multiple master replication
groups are pushed to different target sites, and updates to one or
more replication groups are infrequent and infrequently pushed. If
all replication groups are infrequently updated and pushed, then
set purge to do not purge and occasionally execute PUSH with
purge set to aggressive to reduce the queue.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

See Also: Oracle9i Replication for more information refresh groups

Table 19–3 CHANGE Procedures Parameters (Cont.)

Parameter Description
DBMS_REFRESH 19-5

MAKE Procedure
Syntax
DBMS_REFRESH.DESTROY (
 name IN VARCHAR2);

Parameters

MAKE Procedure
This procedure specifies the members of a refresh group and the time interval used

to determine when the members of this group should be refreshed.

Syntax
DBMS_REFRESH.MAKE (
 name IN VARCHAR2
 { list IN VARCHAR2,

| tab IN DBMS_UTILITY.UNCL_ARRAY,}
 next_date IN DATE,
 interval IN VARCHAR2,
 implicit_destroy IN BOOLEAN := false,
 lax IN BOOLEAN := false,
 job IN BINARY INTEGER := 0,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := true,
 refresh_after_errors IN BOOLEAN := false
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

Table 19–4 DESTROY Procedure Parameters

Parameter Description

name Name of the refresh group that you want to destroy.

See Also: Step 4, "Create the refresh group," on page 5-7 and

Oracle9i Replication for more information

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.
19-6 Oracle9i Replication Management API Reference

Summary of DBMS_REFRESH Subprograms
Parameters

Table 19–5 MAKE Procedure Parameters

Parameter Description

name Unique name used to identify the refresh group. Refresh groups
must follow the same naming conventions as tables.

list Comma-separated list of materialized views that you want to
refresh. (Synonyms are not supported.) These materialized views
can be located in different schemas and have different master
tables or master materialized views. However, all of the listed
materialized views must be in your current database.

tab Instead of a comma separated list, you can supply a PL/SQL
index-by table of names of materialized views that you want to
refresh using the datatype DBMS_UTILITY.UNCL_ARRAY. If the
table contains the names of n materialized views, then the first
materialized view should be in position 1 and the n + 1 position
should be set to NULL.

next_date Next date that you want a refresh to occur.

interval Function used to calculate the next time to refresh the materialized
views in the group. This field is used with the next_date value.

For example, if you specify NEXT_DAY(SYSDATE+1, "MONDAY")
as your interval, and if your next_date evaluates to Monday,
then Oracle refreshes the materialized views every Monday. This
interval is evaluated immediately before the refresh. Thus, you
should select an interval that is greater than the time it takes to
perform a refresh.

implicit_destroy Set this to true if you want to delete the refresh group
automatically when it no longer contains any members. Oracle
checks this flag only when you call the SUBTRACTprocedure. That
is, setting this flag still enables you to create an empty refresh
group.

lax A materialized view can belong to only one refresh group at a
time. If you are moving a materialized view from an existing
group to a new refresh group, then you must set this to true to
succeed. Oracle then automatically removes the materialized view
from the other refresh group and updates its refresh interval to be
that of its new group. Otherwise, the call to MAKE generates an
error message.

job Needed by the Import utility. Use the default value, 0.

rollback_seg Name of the rollback segment to use while refreshing materialized
views. The default, NULL, uses the default rollback segment.
DBMS_REFRESH 19-7

REFRESH Procedure
REFRESH Procedure
This procedure manually refreshes a refresh group.

Syntax
DBMS_REFRESH.REFRESH (
 name IN VARCHAR2);

push_deferred_rpc Used by updatable materialized views only. Use the default value,
true , if you want to push changes from the materialized view to
its associated master table or master materialized view before
refreshing the materialized view. Otherwise, these changes may
appear to be temporarily lost.

refresh_after_errors Used by updatable materialized views only. Set this to 0 if you
want the refresh to proceed even if there are outstanding conflicts
logged in the DEFERROR view for the materialized view’s master
table or master materialized view.

purge_option If you are using the parallel propagation mechanism (in other
words, parallelism is set to 1 or greater), then 0 = do not purge; 1 =
lazy (default); 2 = aggressive. In most cases, lazy purge is the
optimal setting.

Set purge to aggressive to trim back the queue if multiple master
replication groups are pushed to different target sites, and updates
to one or more replication groups are infrequent and infrequently
pushed. If all replication groups are infrequently updated and
pushed, then set purge to do not purge and occasionally execute
PUSH with purge set to aggressive to reduce the queue.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

See Also: Oracle9i Replication for more information about refresh

groups

Table 19–5 MAKE Procedure Parameters (Cont.)

Parameter Description
19-8 Oracle9i Replication Management API Reference

Summary of DBMS_REFRESH Subprograms
Parameters

SUBTRACT Procedure
This procedure removes materialized views from a refresh group.

Syntax
DBMS_REFRESH.SUBTRACT (
 name IN VARCHAR2,
 { list IN VARCHAR2,

| tab IN DBMS_UTILITY.UNCL_ARRAY, }
lax IN BOOLEAN := false);

Parameters

Table 19–6 REFRESH Procedure Parameters

Parameter Description

name Name of the refresh group that you want to refresh manually.

See Also: Oracle9i Replication for more information about refresh

groups

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 19–7 SUBTRACT Procedure Parameters

Parameter Description

name Name of the refresh group from which you want to remove
members.

list Comma-separated list of materialized views that you want to
remove from the refresh group. (Synonyms are not supported.)
These materialized views can be located in different schemas and
have different master tables or master materialized views.
However, all of the listed materialized views must be in your
current database.
DBMS_REFRESH 19-9

SUBTRACT Procedure
tab Instead of a comma-separated list, you can supply a PL/SQL
index-by table of names of materialized views that you want to
refresh using the datatype DBMS_UTILITY.UNCL_ARRAY. If the
table contains the names of n materialized views, then the first
materialized view should be in position 1 and the n + 1 position
should be set to NULL.

lax Set this to false if you want Oracle to generate an error message
if the materialized view you are attempting to remove is not a
member of the refresh group.

Table 19–7 SUBTRACT Procedure Parameters (Cont.)

Parameter Description
19-10 Oracle9i Replication Management API Reference

DBMS_R
20

DBMS_REPCAT

DBMS_REPCAT provides routines to administer and update the replication catalog

and environment.

This chapter discusses the following topics:

■ Summary of DBMS_REPCAT Subprograms
EPCAT 20-1

Summary of DBMS_REPCAT Subprograms
Summary of DBMS_REPCAT Subprograms

Table 20–1 DBMS_REPCAT Package Subprograms

Subprogram Description

"ADD_GROUPED_COLUMN
Procedure" on page 20-7

Adds members to an existing column group.

"ADD_MASTER_DATABASE
Procedure" on page 20-8

Adds another master site to your replication
environment.

"ADD_NEW_MASTERS Procedure" on
page 20-9

Adds the master sites in the DBA_REPSITES_
NEW data dictionary view to the replication
catalog at all available master sites.

"ADD_PRIORITY_datatype Procedure"
on page 20-14

Adds a member to a priority group.

"ADD_SITE_PRIORITY_SITE
Procedure" on page 20-16

Adds a new site to a site priority group.

"ADD_conflicttype_RESOLUTION
Procedure" on page 20-17

Designates a method for resolving an update,
delete, or uniqueness conflict.

"ALTER_CATCHUP_PARAMETERS
Procedure" on page 20-22

Alters the values for parameters stored in the
DBA_REPEXTENSIONS data dictionary view.

"ALTER_MASTER_PROPAGATION
Procedure" on page 20-24

Alters the propagation method for a specified
replication group at a specified master site.

"ALTER_MASTER_REPOBJECT
Procedure" on page 20-25

Alters an object in your replication environment.

"ALTER_MVIEW_PROPAGATION
Procedure" on page 20-29

Alters the propagation method for a specified
replication group at the current materialized
view site.

"ALTER_PRIORITY Procedure" on
page 20-30

Alters the priority level associated with a
specified priority group member.

"ALTER_PRIORITY_datatype
Procedure" on page 20-31

Alters the value of a member in a priority group.

"ALTER_SITE_PRIORITY Procedure" on
page 20-33

Alters the priority level associated with a
specified site.

"ALTER_SITE_PRIORITY_SITE
Procedure" on page 20-34

Alters the site associated with a specified priority
level.

"CANCEL_STATISTICS Procedure" on
page 20-35

Stops collecting statistics about the successful
resolution of update, uniqueness, and delete
conflicts for a table.
20-2 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
"COMMENT_ON_COLUMN_GROUP
Procedure" on page 20-36

Updates the comment field in the ALL_
REPCOLUMN_GROUP view for a column group.

"COMMENT_ON_conflicttype_
RESOLUTION Procedure" on
page 20-43

Updates the SCHEMA_COMMENT field in the ALL_
REPGROUP view for a materialized view site.

"COMMENT_ON_PRIORITY_
GROUP/COMMENT_ON_SITE_
PRIORITY Procedures" on page 20-38

Updates the comment field in the ALL_
REPPRIORITY_GROUP view for a (site) priority
group.

"COMMENT_ON_REPGROUP
Procedure" on page 20-39

Updates the comment field in the ALL_
REPGROUP view for a master group.

"COMMENT_ON_REPOBJECT
Procedure" on page 20-40

Updates the comment field in the ALL_
REPOBJECT view for a replicated object.

"COMMENT_ON_REPSITES
Procedure" on page 20-41

Updates the comment field in the ALL_REPSITE
view for a replicated site.

"COMMENT_ON_conflicttype_
RESOLUTION Procedure" on
page 20-43

Updates the comment field in the ALL_
REPRESOLUTION view for a conflict resolution
routine.

"COMPARE_OLD_VALUES Procedure"
on page 20-44

Specifies whether to compare old column values
at each master site for each nonkey column of a
replicated table for updates and deletes.

"CREATE_MASTER_REPGROUP
Procedure" on page 20-47

Creates a new, empty, quiesced master group.

"CREATE_MASTER_REPOBJECT
Procedure" on page 20-48

Specifies that an object is a replicated object.

"CREATE_MVIEW_REPGROUP
Procedure" on page 20-52

Creates a new, empty materialized view group in
your local database.

"CREATE_MVIEW_REPOBJECT
Procedure" on page 20-53

Adds a replicated object to a materialized view
group.

"DEFINE_COLUMN_GROUP
Procedure" on page 20-56

Creates an empty column group.

"DEFINE_PRIORITY_GROUP
Procedure" on page 20-57

Creates a new priority group for a master group.

"DEFINE_SITE_PRIORITY Procedure"
on page 20-58

Creates a new site priority group for a master
group.

Table 20–1 DBMS_REPCAT Package Subprograms (Cont.)

Subprogram Description
DBMS_REPCAT 20-3

Summary of DBMS_REPCAT Subprograms
"DO_DEFERRED_REPCAT_ADMIN
Procedure" on page 20-59

Executes the local outstanding deferred
administrative procedures for the specified
master group at the current master site, or for all
master sites.

"DROP_COLUMN_GROUP Procedure"
on page 20-60

Drops a column group.

"DROP_GROUPED_COLUMN
Procedure" on page 20-61

Removes members from a column group.

"DROP_MASTER_REPGROUP
Procedure" on page 20-62

Drops a master group from your current site.

"DROP_MASTER_REPOBJECT
Procedure" on page 20-64

Drops a replicated object from a master group.

"DROP_PRIORITY Procedure" on
page 20-67

Drops a replicated object from a master group.

"DROP_MVIEW_REPGROUP
Procedure" on page 20-65

Drops a materialized view site from your
replication environment.

"DROP_MVIEW_REPOBJECT
Procedure" on page 20-66

Drops a replicated object from a materialized
view site.

"DROP_PRIORITY Procedure" on
page 20-67

Drops a member of a priority group by priority
level.

"DROP_PRIORITY_GROUP Procedure"
on page 20-68

Drops a priority group for a specified master
group.

"DROP_PRIORITY_datatype Procedure"
on page 20-69

Drops a member of a priority group by value.

"DROP_SITE_PRIORITY Procedure" on
page 20-70

Drops a site priority group for a specified master
group.

"DROP_SITE_PRIORITY_SITE
Procedure" on page 20-71

Drops a specified site, by name, from a site
priority group.

"DROP_conflicttype_RESOLUTION
Procedure" on page 20-72

Drops an update, delete, or uniqueness conflict
resolution method.

"EXECUTE_DDL Procedure" on
page 20-74

Supplies DDL that you want to have executed at
each master site.

"GENERATE_MVIEW_SUPPORT
Procedure" on page 20-75

Activates triggers and generate packages needed
to support the replication of updatable
materialized views or procedural replication.

Table 20–1 DBMS_REPCAT Package Subprograms (Cont.)

Subprogram Description
20-4 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
"GENERATE_REPLICATION_
SUPPORT Procedure" on page 20-77

Generates the triggers, packages, and procedures
needed to support replication for a specified
object.

"MAKE_COLUMN_GROUP Procedure"
on page 20-79

Creates a new column group with one or more
members.

"PREPARE_INSTANTIATED_MASTER
Procedure" on page 20-81

Changes the global name of the database you are
adding to a master group.

"PURGE_MASTER_LOG Procedure" on
page 20-82

Removes local messages in the DBA_REPCATLOG
associated with a specified identification number,
source, or master group.

"PURGE_STATISTICS Procedure" on
page 83

Removes information from the ALL_
REPRESOLUTION_STATISTICS view.

"REFRESH_MVIEW_REPGROUP
Procedure" on page 20-84

Refreshes a materialized view group with the
most recent data from its associated master site or
master materialized view site.

REGISTER_MVIEW_REPGROUP
Procedure on page 20-86

Facilitates the administration of materialized
views at their respective master sites or master
materialized view sites by inserting, modifying,
or deleting from DBA_REGISTERED_MVIEW_
GROUPS.

"REGISTER_STATISTICS Procedure" on
page 20-87

Collects information about the successful
resolution of update, delete, and uniqueness
conflicts for a table.

"RELOCATE_MASTERDEF Procedure"
on page 88

Changes your master definition site to another
master site in your replication environment.

"REMOVE_MASTER_DATABASES
Procedure" on page 20-90

Removes one or more master databases from a
replication environment.

"RENAME_SHADOW_COLUMN_
GROUP Procedure" on page 20-91

Renames the shadow column group of a
replicated table to make it a named column
group.

"REPCAT_IMPORT_CHECK Procedure"
on page 20-92

Ensures that the objects in the master group have
the appropriate object identifiers and status
values after you perform an export/import of a
replicated object or an object used by the
advanced replication facility.

"RESUME_MASTER_ACTIVITY
Procedure" on page 20-93

Resumes normal replication activity after
quiescing a replication environment.

Table 20–1 DBMS_REPCAT Package Subprograms (Cont.)

Subprogram Description
DBMS_REPCAT 20-5

Summary of DBMS_REPCAT Subprograms
"RESUME_PROPAGATION_TO_MDEF
Procedure" on page 20-94

Indicates that export is effectively finished and
propagation for both extended and unaffected
replication groups existing at master sites can be
enabled.

"SEND_OLD_VALUES Procedure" on
page 20-95

Specifies whether to send old column values for
each nonkey column of a replicated table for
updates and deletes.

"SET_COLUMNS Procedure" on
page 20-97

Specifies use of an alternate column or group of
columns, instead of the primary key, to determine
which columns of a table to compare when using
row-level replication.

"SPECIFY_NEW_MASTERS Procedure"
on page 20-99

Specifies the master sites you intend to add to an
existing replication group without quiescing the
group.

"SUSPEND_MASTER_ACTIVITY
Procedure" on page 20-102

Suspends replication activity for a master group.

"SWITCH_MVIEW_MASTER
Procedure" on page 20-102

Changes the master site of a materialized view
group to another master site.

"UNDO_ADD_NEW_MASTERS_
REQUEST Procedure" on page 20-104

Undoes all of the changes made by the
SPECIFY_NEW_MASTERS and ADD_NEW_
MASTERS procedures for a specified
extension_id .

"UNREGISTER_MVIEW_REPGROUP
Procedure" on page 20-105

Facilitates the administration of materialized
views at their respective master sites and master
materialized view sites by inserting, modifying,
or deleting from DBA_REGISTERED_MVIEW_
GROUPS.

"VALIDATE Function" on page 20-106 Validates the correctness of key conditions of a
multimaster replication environment.

"WAIT_MASTER_LOG Procedure" on
page 20-108

Determines whether changes that were
asynchronously propagated to a master site have
been applied.

Table 20–1 DBMS_REPCAT Package Subprograms (Cont.)

Subprogram Description
20-6 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
ADD_GROUPED_COLUMN Procedure
This procedure adds members to an existing column group. You must call this

procedure from the master definition site.

Syntax
DBMS_REPCAT.ADD_GROUPED_COLUMN (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s);

Parameters

Table 20–2 ADD_GROUPED_COLUMN Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table with which the column group is
associated. The table can be the storage table of a nested table.

column_group Name of the column group to which you are adding members.

list_of_column_names Names of the columns that you are adding to the designated
column group. This can either be a comma-delimited list or a
PL/SQL index-by table of column names. The PL/SQL index-by
table must be of type DBMS_REPCAT.VARCHAR2. Use the single
value ' *' to create a column group that contains all of the columns
in your table.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object, then you can specify SYS_NC_OID$to add
the object identifier column to the column group. This column
tracks the object identifier of each row object.

If the table is a storage table of a nested table, then you can specify
NESTED_TABLE_ID to add the column that tracks the identifier
for each row of the nested table.
DBMS_REPCAT 20-7

ADD_MASTER_DATABASE Procedure
ADD_MASTER_DATABASE Procedure
This procedure adds another master site to your replication environment. This

procedure regenerates all the triggers and their associated packages at existing

master sites. You must call this procedure from the master definition site.

Syntax
DBMS_REPCAT.ADD_MASTER_DATABASE (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 use_existing_objects IN BOOLEAN := true,
 copy_rows IN BOOLEAN := true,
 comment IN VARCHAR2 := '',
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS',
 fname IN VARCHAR2 := NULL);

Parameters

Table 20–3 ADD_GROUPED_COLUMN Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

missinggroup Specified column group does not exist.

missingcolumn Specified column does not exist in the specified table.

duplicatecolumn Specified column is already a member of another column group.

missingschema Specified schema does not exist.

notquiesced Replication group to which the specified table belongs is not
quiesced.

Table 20–4 ADD_MASTER_DATABASE Procedure Parameters

Parameter Description

gname Name of the replication group being replicated. This replication
group must already exist at the master definition site.

master Fully qualified database name of the new master database.

use_existing_objects Indicate true if you want to reuse any objects of the same type
and shape that already exist in the schema at the new master site.
20-8 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

ADD_NEW_MASTERS Procedure
This procedure adds the master sites in the DBA_REPSITES_NEW data dictionary

view to the master groups specified when the SPECIFY_NEW_MASTERS procedure

was run. Information about these new master sites are added to the replication

catalog at all available master sites.

All master sites instantiated with object-level export/import must be accessible at

this time. Their new replication groups are added in the quiesced state. Master sites

copy_rows Indicate true if you want the initial contents of a table at the new
master site to match the contents of the table at the master
definition site.

comment This comment is added to the MASTER_COMMENT field of the DBA_
REPSITES view.

propagation_mode Method of forwarding changes to and receiving changes from new
master database. Accepted values are synchronous and
asynchronous .

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 20–5 ADD_MASTER_DATABASE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Replication has not been suspended for the master group.

missingrepgroup Replication group does not exist at the specified database site.

commfailure New master is not accessible.

typefailure An incorrect propagation mode was specified.

notcompat Compatibility mode must be 7.3.0.0 or greater.

duplrepgrp Master site already exists.

Table 20–4 ADD_MASTER_DATABASE Procedure Parameters (Cont.)

Parameter Description
DBMS_REPCAT 20-9

ADD_NEW_MASTERS Procedure
instantiated through full database export/import or through changed-based

recovery do not need to be accessible.

Run this procedure after you run the SPECIFY_NEW_MASTERS procedure.

Syntax
DBMS_REPCAT.ADD_NEW_MASTERS (
 export_required IN BOOLEAN,
 { available_master_list IN VARCHAR2,

| available_master_table IN DBMS_UTILITY.DBLINK_ARRAY,}
 masterdef_flashback_scn OUT NUMBER,
 extension_id OUT RAW,
 break_trans_to_masterdef IN BOOLEAN := false,
 break_trans_to_new_masters IN BOOLEAN := false,
 percentage_for_catchup_mdef IN BINARY_INTEGER := 100,
 cycle_seconds_mdef IN BINARY_INTEGER := 60,
 percentage_for_catchup_new IN BINARY_INTEGER := 100,
 cycle_seconds_new IN BINARY_INTEGER := 60);

Caution: After running this procedure, do not disable or enable

propagation of the deferred transactions queue until after the new

master sites are added. The DBA_REPEXTENSIONS data dictionary

view must be clear before you disable or enable propagation. You

can use the Replication Management tool or the SET_DISABLED
procedure in the DBMS_DEFER_SYS package to disable or enable

propagation.

See Also:

■ "SPECIFY_NEW_MASTERS Procedure" on page 20-99

■ "Adding New Master Sites" on page 7-4 for more information

about adding master sites to a master group

Note: This procedure is overloaded. The available_master_
list and available_master_table parameters are mutually

exclusive.
20-10 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Table 20–6 ADD_NEW_MASTERS Procedure Parameters

Parameter Description

export_required Set to true if either object-level or full database export is
required for at least one of the new master sites. Set to
false if you are using change-based recovery for all of
the new master sites.

available_master_list A comma-delimited list of the new master sites to be
instantiated using object-level export/import. The sites
listed must match the sites specified in the SPECIFY_
NEW_MASTERSprocedure. List only the new master sites,
not the existing master sites. Do not put any spaces
between site names.

Specify NULL if all masters will be instantiated using full
database export/import or change-based recovery.

available_master_table A table that lists the new master sites to be instantiated
using object-level export/import. The sites in the table
must match the sites specified in the SPECIFY_NEW_
MASTERS procedure. Do not specify masters that will be
instantiated using full database export/import or
change-based recovery.

In the table that lists the master sites to be instantiated
using object-level export/import, list only the new
master sites for the master groups being extended. Do
not list the existing master sites in the master groups
being extended. The first master site should be at
position 1, the second at position 2, and so on.

masterdef_flashback_scn This OUT parameter returns a system change number
(SCN) that must be used during export or change-based
recovery. Use the value returned by this parameter for
the FLASHBACK_SCN export parameter when you
perform the export. You can find the flashback_scn
value by querying the DBA_REPEXTENSIONS data
dictionary view.

extension_id This OUT parameter returns an identifier for the current
pending request to add master databases without
quiesce. You can find the extension_id by querying
the DBA_REPSITES_NEW and DBA_REPEXTENSIONS
data dictionary views.
DBMS_REPCAT 20-11

ADD_NEW_MASTERS Procedure
break_trans_to_masterdef This parameter is meaningful only if export_
required is set to true .

If break_trans_to_masterdef is set to true , then
existing masters may continue to propagate their
deferred transactions to the master definition site for
replication groups that are not adding master sites.
Deferred transactions for replication groups that are
adding master sites cannot be propagated until the
export completes.

Each deferred transaction is composed of one or more
remote procedure calls (RPCs). If set to false and a
transaction occurs that references objects in both
unaffected master groups and master groups that are
being extended, then the transaction may be split into
two parts and sent to a destination in two separate
transactions at different times. Such transactions are
called split-transactions. If split-transactions are possible,
then you must disable integrity constraints that may be
violated by this behavior until the new master sites are
added.

If break_trans_to_masterdef is set to false , then
existing masters cannot propagate their deferred
transactions to the master definition site.

break_trans_to_new_masters If break_trans_to_new_masters is set to true , then
existing master sites may continue to propagate deferred
transactions to the new master sites for replication
groups that are not adding master sites.

Each deferred transaction is composed of one or more
remote procedure calls (RPCs). If set to true and a
transaction occurs that references objects in both
unaffected master groups and master groups that are
being extended, then the transaction may be split into
two parts and sent to a destination in two separate
transactions at different times. Such transactions are
called split-transactions. If split-transactions are possible,
then you must disable integrity constraints that may be
violated by this behavior until the new master sites are
added.

If break_trans_to_new_masters is set to false ,
then propagation of deferred transaction queues to the
new masters is disabled.

Table 20–6 ADD_NEW_MASTERS Procedure Parameters (Cont.)

Parameter Description
20-12 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

percentage_for_catchup_mdef This parameter is meaningful only if export_
required and break_trans_to_masterdef are both
set to true .

The percentage of propagation resources that should be
used for catching up propagation to the master definition
site. Must be a multiple of 10 and must be between 0 and
100.

cycle_seconds_mdef This parameter is meaningful when percentage_for_
catchup_mdef is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to
the masterdef alternates between replication groups that
are not being extended and replication groups that are
being extended, with one push to each during each cycle.
This parameter indicates the length of the cycle in
seconds.

percentage_for_catchup_new This parameter is meaningful only if break_trans_
to_new_masters is set to true .

The percentage of propagation resources that should be
used for catching up propagation to new master sites.
Must be a multiple of 10 and must be between 0 and 100.

cycle_seconds_new This parameter is meaningful when percentage_for_
catchup_new is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to
a new master alternates between replication groups that
are not being extended and replication groups that are
being extended, with one push to each during each cycle.
This parameter indicates the length of the cycle in
seconds.

Table 20–7 ADD_NEW_MASTERS Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

typefailure The parameter value specified for one of the parameters is not
appropriate.

novalidextreq No valid extension request. The extension_id is not valid.

Table 20–6 ADD_NEW_MASTERS Procedure Parameters (Cont.)

Parameter Description
DBMS_REPCAT 20-13

ADD_PRIORITY_datatype Procedure
Usage Notes
For a new master site to be instantiated using change-based recovery or full

database export/import, the following conditions apply:

■ The new master sites cannot have any existing replication groups.

■ The master definition site cannot have any materialized view groups.

■ The master definition site must be the same for all of the master groups. If one

or more of these master groups have a different master definition site, then do

not use change-based recovery or full database export/import. Use object-level

export/import instead.

■ The new master site must include all of the replication groups in the master

definition site when the extension process is complete. That is, you cannot add a

subset of the master groups at the master definition site to the new master site;

all of the groups must be added.

For object-level export/import, before importing ensure that all the requests in the

DBA_REPCATLOG data dictionary view for the extended groups have been

processed without any error.

ADD_PRIORITY_datatype Procedure
This procedure adds a member to a priority group. You must call this procedure

from the master definition site. The procedure that you must call is determined by

nonewsites No new master sites to be added for the specified extension
request.

notanewsite Not a new site for extension request. A site was specified that was
not specified when you ran the SPECIFY_NEW_MASTERS
procedure.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

Note: To use change-based recovery, the existing master site and

the new master site must be running under the same operating

system, although the release of the operating system can differ.

Table 20–7 ADD_NEW_MASTERS Procedure Exceptions (Cont.)

Exception Description
20-14 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
the datatype of your priority column. You must call this procedure once for each

of the possible values of the priority column.

Syntax
DBMS_REPCAT.ADD_PRIORITY_datatype (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 value IN datatype ,
 priority IN NUMBER);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

Parameters

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Table 20–8 ADD_PRIORITY_ datatype Procedure Parameters

Parameter Description

gname Master group for which you are creating a priority group.

pgroup Name of the priority group.

value Value of the priority group member. This is one of the possible
values of the associated priority column of a table using this
priority group.

priority Priority of this value. The higher the number, the higher the
priority.
DBMS_REPCAT 20-15

ADD_SITE_PRIORITY_SITE Procedure
Exceptions

ADD_SITE_PRIORITY_SITE Procedure
This procedure adds a new site to a site priority group. You must call this procedure

from the master definition site.

Syntax
DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
 gname IN VARCHAR2,
 name IN VARCHAR2
 site IN VARCHAR2,
 priority IN NUMBER);

Table 20–9 ADD_PRIORITY_ datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatevalue Specified value already exists in the priority group.

duplicatepriority Specified priority already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

typefailure Specified value has the incorrect datatype for the priority group.

notquiesced Specified master group is not quiesced.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
20-16 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

ADD_conflicttype _RESOLUTION Procedure
These procedures designate a method for resolving an update, delete, or uniqueness

conflict. You must call these procedures from the master definition site. The

procedure that you need to call is determined by the type of conflict that the routine

resolves.

Table 20–10 ADD_SITE_PRIORITY_SITE Procedure Parameters

Parameter Description

gname Master group for which you are adding a site to a group.

name Name of the site priority group to which you are adding a
member.

site Global database name of the site that you are adding.

priority Priority level of the site that you are adding. A higher number
indicates a higher priority level.

Table 20–11 ADD_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Specified site priority group does not exist.

duplicatepriority Specified priority level already exists for another site in the group.

duplicatevalue Specified site already exists in the site priority group.

notquiesced Master group is not quiesced.

Table 20–12 ADD_conflicttype_RESOLUTION Procedures

Conflict Type Procedure Name

update ADD_UPDATE_RESOLUTION

uniqueness ADD_UNIQUE_RESOLUTION

delete ADD_DELETE_RESOLUTION
DBMS_REPCAT 20-17

ADD_conflicttype_RESOLUTION Procedure
Syntax
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER,
 method IN VARCHAR2,
 parameter_column_name IN VARCHAR2
 | DBMS_REPCAT.VARCHAR2s
 | DBMS_UTILITY.LNAME_ARRAY,
 priority_group IN VARCHAR2 := NULL,
 function_name IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := NULL);

DBMS_REPCAT.ADD_DELETE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER,
 parameter_column_name IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s,
 function_name IN VARCHAR2,
 comment IN VARCHAR2 := NULL
 method IN VARCHAR2 := 'USER FUNCTION');

DBMS_REPCAT.ADD_UNIQUE_RESOLUTION(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER,
 method IN VARCHAR2,
 parameter_column_name IN VARCHAR2
 | DBMS_REPCAT.VARCHAR2s
 | DBMS_UTILITY.LNAME_ARRAY,
 function_name IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := NULL);

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about designating methods to

resolve update conflicts, selecting uniqueness conflict resolution

methods, and assigning delete conflict resolution methods
20-18 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Table 20–13 ADD_conflicttype_RESOLUTION Procedure Parameters

Parameter Description

sname Name of the schema containing the table to be replicated.

oname Name of the table to which you are adding a conflict resolution
routine. The table can be the storage table of a nested table.

column_group Name of the column group to which you are adding a conflict
resolution routine. Column groups are required for update
conflict resolution routines only.

constraint_name Name of the unique constraint or unique index for which you
are adding a conflict resolution routine. Use the name of the
unique index if it differs from the name of the associated unique
constraint. Constraint names are required for uniqueness conflict
resolution routines only.

sequence_no Order in which the designated conflict resolution methods
should be applied.

method Type of conflict resolution routine that you want to create. This
can be the name of one of the standard routines provided with
advanced replication, or, if you have written your own routine,
you should choose user function , and provide the name of
your method as the function_name parameter.

The standard methods supported in this release for update
conflicts are:

■ minimum

■ maximum

■ latest timestamp

■ earliest timestamp

■ additive , average

■ priority group

■ site priority

■ overwrite

■ discard

The standard methods supported in this release for uniqueness
conflicts are: append site name , append sequence , and
discard . There are no built-in (Oracle supplied) methods for
delete conflicts.
DBMS_REPCAT 20-19

ADD_conflicttype_RESOLUTION Procedure
parameter_column_name Name of the columns used to resolve the conflict. The standard
methods operate on a single column. For example, if you are
using the latest timestamp method for a column group,
then you should pass the name of the column containing the
timestamp value as this parameter. If your are using a user
function , then you can resolve the conflict using any number
of columns.

For update or unique conflicts, this parameter accepts either a
comma-delimited list of column names, or a PL/SQL index-by
table of type DBMS_REPCAT.VARCHAR2 or DBMS_
UTILITY .LNAME_ARRAY. Use DBMS_UTILITY.LNAME_ARRAY if
any column name is greater than or equal to 30 bytes, which
may occur when you specify the attributes of column objects.

For delete conflicts, this parameter accepts either a
comma-delimited list of column names or a PL/SQL index-by
table of type DBMS_REPCAT.VARCHAR2.

The single value ' *' indicates that you want to use all of the
columns in the table (or column group, for update conflicts) to
resolve the conflict. If you specify ' *' , then the columns are
passed to your function in alphabetical order.

LOB columns cannot be specified for this parameter.

See Also: "Usage Notes" on page 20-22 if you are using column
objects

priority_group If you are using the priority group or site priority
update conflict resolution method, then you must supply the
name of the priority group that you have created.

See Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information. If you are using a different
method, you can use the default value for this parameter, NULL.
This parameter is applicable to update conflicts only.

function_name If you selected the user function method, or if you are
adding a delete conflict resolution routine, then you must
supply the name of the conflict resolution routine that you have
written. If you are using one of the standard methods, then you
can use the default value for this parameter, NULL.

comment This user comment is added to the DBA_REPRESOLUTION view.

Table 20–13 ADD_conflicttype_RESOLUTION Procedure Parameters (Cont.)

Parameter Description
20-20 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

Table 20–14 ADD_conflicttype_RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
using row-level replication.

missingschema Specified schema does not exist.

missingcolumn Column that you specified as part of the parameter_column_
name parameter does not exist.

missinggroup Specified column group does not exist.

missingprioritygroup The priority group that you specified does not exist for the table.

invalidmethod Resolution method that you specified is not recognized.

invalidparameter Number of columns that you specified for the parameter_
column_name parameter is invalid. (The standard routines take
only one column name.)

missingfunction User function that you specified does not exist.

missingconstraint Constraint that you specified for a uniqueness conflict does not
exist.

notquiesced Replication group to which the specified table belongs is not
quiesced.

duplicateresolution Specified conflict resolution method is already registered.

duplicatesequence The specified sequence number already exists for the specified
object.

invalidprioritygroup The specified priority group does not exist.

paramtype Type is different from the type assigned to the priority group.
DBMS_REPCAT 20-21

ALTER_CATCHUP_PARAMETERS Procedure
Usage Notes
If you are using column objects, then whether you can specify the attributes of the

column objects for the parameter_column_name parameter depends on whether

the conflict resolution method is built-in (Oracle supplied) or user-created:

■ If you are using a built-in conflict resolution method, then you can specify

attributes of objects for this parameter. For example, if a column object named

cust_address has street_address as an attribute, then you can specify

cust_address.street_address for this parameter.

■ If you are using a built-in conflict resolution method, the following types of

columns cannot be specified for this parameter: LOB attribute of a column

object, collection or collection attribute of a column object, REF, or an entire

column object.

■ If you are using a user-created conflict resolution method, then you must

specify an entire column object. You cannot specify the attributes of a column

object. For example, if a column object named cust_address has street_
address as an attribute (among other attributes), then you can specify only

cust_address for this parameter.

ALTER_CATCHUP_PARAMETERS Procedure
This procedure alters the values for the following parameters stored in the DBA_
REPEXTENSIONS data dictionary view:

■ percentage_for_catchup_mdef

■ cycle_seconds_mdef

■ percentage_for_catchup_new

■ cycle_seconds_new

These parameters were originally set by the ADD_NEW_MASTERS procedure. The

new values you specify for these parameters are used during the remaining steps in

the process of adding new master sites to a master group. These changes are only to

the site at which it is executed. Therefore, it must be executed at each master site,

including the master definition site, if you want to alter parameters at all sites.
20-22 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.ALTER_CATCHUP_PARAMETERS (
 extension_id IN RAW,
 percentage_for_catchup_mdef IN BINARY_INTEGER := NULL,
 cycle_seconds_mdef IN BINARY_INTEGER := NULL,
 percentage_for_catchup_new IN BINARY_INTEGER := NULL,
 cycle_seconds_new IN BINARY_INTEGER := NULL);

Parameters

See Also:

■ "ADD_NEW_MASTERS Procedure" on page 20-9

■ "Adding New Master Sites" on page 7-4 for more information

about adding master sites to a master group

Table 20–15 ALTER_CATCHUP_PARAMETERS Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add
master database without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW
and DBA_REPEXTENSIONS data dictionary views.

percentage_for_catchup_mdef The percentage of propagation resources that should be
used for catching up propagation to the master definition
site. Must be a multiple of 10 and must be between 0 and
100.

cycle_seconds_mdef This parameter is meaningful when percentage_for_
catchup_mdef is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to
the masterdef alternates between replication groups that
are not being extended and replication groups that are
being extended, with one push to each during each cycle.
This parameter indicates the length of the cycle in seconds.

percentage_for_catchup_new The percentage of propagation resources that should be
used for catching up propagation to new master sites.
Must be a multiple of 10 and must be between 0 and 100.
DBMS_REPCAT 20-23

ALTER_MASTER_PROPAGATION Procedure
Exceptions

ALTER_MASTER_PROPAGATION Procedure
This procedure alters the propagation method for a specified replication group at a

specified master site. This replication group must be quiesced. You must call this

procedure from the master definition site. If the master appears in the dblink_
list or dblink_table , then ALTER_MASTER_PROPAGATION ignores that

database link. You cannot change the propagation mode from a master to itself.

Syntax
DBMS_REPCAT.ALTER_MASTER_PROPAGATION (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 { dblink_list IN VARCHAR2,
 | dblink_table IN DBMS_UTILITY.DBLINK_ARRAY,}
 propagation_mode IN VARCHAR2 : ='ASYNCHRONOUS',
 comment IN VARCHAR2 := '');

cycle_seconds_new This parameter is meaningful when percentage_for_
catchup_new is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to a
new master alternates between replication groups that are
not being extended and replication groups that are being
extended, with one push to each during each cycle. This
parameter indicates the length of the cycle in seconds.

Table 20–16 ALTER_CATCHUP_PARAMETERS Procedure Exceptions

Exception Description

typefailure The parameter value specified for one of the parameters is not
appropriate.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

Note: This procedure is overloaded. The dblink_list and

dblink_table parameters are mutually exclusive.

Table 20–15 ALTER_CATCHUP_PARAMETERS Procedure Parameters (Cont.)

Parameter Description
20-24 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

ALTER_MASTER_REPOBJECT Procedure
This procedure alters an object in your replication environment. You must call this

procedure from the master definition site.

This procedure requires that you quiesce the master group of the object if either of

the following conditions is true:

■ You are altering a table in a multimaster replication environment.

Table 20–17 ALTER_MASTER_PROPAGATION Procedure Parameters

Parameter Description

gname Name of the replication group to which to alter the propagation
mode.

master Name of the master site at which to alter the propagation mode.

dblink_list A comma-delimited list of database links for which to alter the
propagation method. If NULL, then all masters except the master
site being altered are used by default.

dblink_table A PL/SQL index-by table, indexed from position 1, of database
links for which to alter propagation.

propagation_mode Determines the manner in which changes from the specified
master site are propagated to the sites identified by the list of
database links. Appropriate values are synchronous and
asynchronous .

comment This comment is added to the DBA_REPPROP view.

Table 20–18 ALTER_MASTER_PROPAGATION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Invocation site is not quiesced.

typefailure Propagation mode specified was not recognized.

nonmaster List of database links includes a site that is not a master site.
DBMS_REPCAT 20-25

ALTER_MASTER_REPOBJECT Procedure
■ You are altering a table with the safe_table_change parameter set to false
in a single master replication environment.

You can use this procedure to alter nontable objects without quiescing the master

group.

Syntax
DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 ddl_text IN VARCHAR2,
 comment IN VARCHAR2 := '',
 retry IN BOOLEAN := false
 safe_table_change IN BOOLEAN := false);
20-26 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Table 20–19 ALTER_MASTER_REPOBJECT Procedure Parameters

Parameter Description

sname Schema containing the object that you want to alter.

oname Name of the object that you want to alter. The object cannot be a
storage table for a nested table.

type Type of the object that you are altering. The following types are
supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

ddl_text The DDL text that you want used to alter the object. Oracle does
not parse this DDL before applying it. Therefore, you must ensure
that your DDL text provides the appropriate schema and object
name for the object being altered.

If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator’s schema. Be sure
to specify the schema if it is other than the replication
administrator’s schema.

comment If not NULL, then this comment is added to the COMMENT field of
the DBA_REPOBJECT view.

retry If retry is true , then ALTER_MASTER_REPOBJECT alters the
object only at masters whose object status is not VALID .
DBMS_REPCAT 20-27

ALTER_MASTER_REPOBJECT Procedure
safe_table_change Specify true if the change to a table is safe. Specify false if the
change to a table is unsafe.

You can make safe changes to a master table in a single master
replication environment without quiescing the master group that
contains the table. To make unsafe changes, you must quiesce the
master group.

Only specify this parameter for tables in single master replication
environments. This parameter is ignored in multimaster
replication environments and when the object specified is not a
table. In multimaster replication environments, you must quiesce
the master group to run the ALTER_MASTER_REPOBJECT
procedure on a table.

The following are safe changes:

■ Changing storage and extent information

■ Making existing columns larger. For example, changing a
VARCHAR2(20) column to a VARCHAR2(50) column.

■ Adding non primary key constraints

■ Altering non primary key constraints

■ Enabling and disabling non primary key constraints

The following are unsafe changes:

■ Changing the primary key by adding or deleting columns in
the key

■ Adding or deleting columns

■ Making existing columns smaller. For example, changing a
VARCHAR2(50) column to a VARCHAR2(20) column.

■ Disabling a primary key constraint

■ Changing the datatype of an existing column

■ Dropping an existing column

If you are unsure whether a change is safe or unsafe, then quiesce
the master group before you run the ALTER_MASTER_REPOBJECT
procedure.

Table 20–19 ALTER_MASTER_REPOBJECT Procedure Parameters (Cont.)

Parameter Description
20-28 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

ALTER_MVIEW_PROPAGATION Procedure
This procedure alters the propagation method for a specified replication group at

the current materialized view site. This procedure pushes the deferred transaction

queue at the materialized view site, locks the materialized view base tables, and

regenerates any triggers and their associated packages. You must call this procedure

from the materialized view site.

Syntax
DBMS_REPCAT.ALTER_MVIEW_PROPAGATION (
 gname IN VARCHAR2,
 propagation_mode IN VARCHAR2,
 comment IN VARCHAR2 := '',
 gowner IN VARCHAR2 := 'PUBLIC');

Table 20–20 ALTER_MASTER_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Associated replication group has not been suspended.

missingobject Object identified by sname and oname does not exist.

typefailure Specified type parameter is not supported.

ddlfailure DDL at the master definition site did not succeed.

commfailure At least one master site is not accessible.
DBMS_REPCAT 20-29

ALTER_PRIORITY Procedure
Parameters

Exceptions

ALTER_PRIORITY Procedure
This procedure alters the priority level associated with a specified priority group

member. You must call this procedure from the master definition site.

Table 20–21 ALTER_MVIEW_PROPAGATION Procedure Parameters

Parameter Description

gname Name of the replication group for which to alter the propagation
method.

propagation_mode Manner in which changes from the current materialized view site
are propagated to its associated master site or master materialized
view site. Appropriate values are synchronous and
asynchronous .

comment This comment is added to the DBA_REPPROP view.

gowner Owner of the materialized view group.

Table 20–22 ALTER_MVIEW_PROPAGATION Procedure Exceptions

Exception Description

missingrepgroup Specified replication group does not exist.

typefailure Propagation mode was specified incorrectly.

nonmview Current site is not a materialized view site for the specified
replication group.

commfailure Cannot contact master site or master materialized view site.

notcompat Compatibility mode must be 7.3.0.0 or greater.

failaltermviewrop Materialized view group propagation can be altered only when
there are no other materialized view groups with the same master
site or master materialized view site sharing the materialized view
site.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
20-30 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.ALTER_PRIORITY (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 old_priority IN NUMBER,
 new_priority IN NUMBER);

Parameters

Exceptions

ALTER_PRIORITY_datatype Procedure
This procedure alters the value of a member in a priority group. You must call this

procedure from the master definition site. The procedure that you must call is

determined by the datatype of your priority column.

Table 20–23 ALTER_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the priority that you want
to alter.

old_priority Current priority level of the priority group member.

new_priority New priority level that you want assigned to the priority group
member.

Table 20–24 ALTER_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatepriority New priority level already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingvalue Value was not registered by a call to DBMS_REPCAT.ADD_
PRIORITY_datatype .

missingprioritygroup Specified priority group does not exist.

notquiesced Specified master group is not quiesced.
DBMS_REPCAT 20-31

ALTER_PRIORITY_datatype Procedure
Syntax
DBMS_REPCAT.ALTER_PRIORITY_datatype (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 old_value IN datatype ,
 new_value IN datatype);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

Parameters

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods

Table 20–25 ALTER_PRIORITY_datatype Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the value that you want to
alter.

old_value Current value of the priority group member.

new_value New value that you want assigned to the priority group member.
20-32 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

ALTER_SITE_PRIORITY Procedure
This procedure alters the priority level associated with a specified site. You must

call this procedure from the master definition site.

Syntax
DBMS_REPCAT.ALTER_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 old_priority IN NUMBER,
 new_priority IN NUMBER);

Table 20–26 ALTER_PRIORITY_datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatevalue New value already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

missingvalue Old value does not exist.

paramtype New value has the incorrect datatype for the priority group.

typefailure Specified value has the incorrect datatype for the priority group.

notquiesced Specified master group is not quiesced.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
DBMS_REPCAT 20-33

ALTER_SITE_PRIORITY_SITE Procedure
Parameters

Exceptions

ALTER_SITE_PRIORITY_SITE Procedure
This procedure alters the site associated with a specified priority level. You must

call this procedure from the master definition site.

Syntax
DBMS_REPCAT.ALTER_SITE_PRIORITY_SITE (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 old_site IN VARCHAR2,

Table 20–27 ALTER_SITE_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group whose member you are altering.

old_priority Current priority level of the site whose priority level you want to
change.

new_priority New priority level for the site. A higher number indicates a higher
priority level.

Table 20–28 ALTER_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Old priority level is not associated with any group members.

duplicatepriority New priority level already exists for another site in the group.

missingvalue Old value does not already exist.

paramtype New value has the incorrect datatype for the priority group.

notquiesced Master group is not quiesced.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
20-34 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
 new_site IN VARCHAR2);

Parameters

Exceptions

CANCEL_STATISTICS Procedure
This procedure stops the collection of statistics about the successful resolution of

update, uniqueness, and delete conflicts for a table.

Syntax
DBMS_REPCAT.CANCEL_STATISTICS (
 sname IN VARCHAR2,
 oname IN VARCHAR2);

Table 20–29 ALTER_SITE_PRIORITY_SITE Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group whose member you are altering.

old_site Current global database name of the site to disassociate from the priority
level.

new_site New global database name that you want to associate with the current
priority level.

Table 20–30 ALTER_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Specified site priority group does not exist.

missingvalue Old site is not a group member.

notquiesced Master group is not quiesced
DBMS_REPCAT 20-35

COMMENT_ON_COLUMN_GROUP Procedure
Parameters

Exceptions

COMMENT_ON_COLUMN_GROUP Procedure
This procedure updates the comment field in the DBA_REPCOLUMN_GROUPview for

a column group. This comment is not added at all master sites until the next call to

DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT.

Syntax
DBMS_REPCAT.COMMENT_ON_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 comment IN VARCHAR2);

Table 20–31 CANCEL_STATISTICS Procedure Parameters

Parameter Description

sname Name of the schema in which the table is located.

oname Name of the table for which you do not want to gather conflict
resolution statistics.

Table 20–32 CANCEL_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.

missingobject Specified table does not exist.

statnotreg Specified table is not currently registered to collect statistics.
20-36 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

COMMENT_ON_MVIEW_REPSITES Procedure
This procedure updates the SCHEMA_COMMENT field in the DBA_REPGROUP data

dictionary view for the specified materialized view group. The group name must be

registered locally as a replicated materialized view group. This procedure must be

executed at the materialized view site.

Syntax
DBMS_REPCAT.COMMENT_ON_MVIEW_REPSITES (
 gowner IN VARCHAR2,
 gname IN VARCHAR2,
 comment IN VARCHAR2);

Table 20–33 COMMENT_ON_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the replicated table with which the column group is
associated.

column_group Name of the column group.

comment Text of the updated comment that you want included in the
GROUP_COMMENT field of the DBA_REPCOLUMN_GROUP view.

Table 20–34 COMMENT_ON_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missinggroup Specified column group does not exist.

missingobj Object is missing.
DBMS_REPCAT 20-37

COMMENT_ON_PRIORITY_GROUP/COMMENT_ON_SITE_PRIORITY Procedures
Parameters

Exceptions

COMMENT_ON_PRIORITY_GROUP/COMMENT_ON_SITE_PRIORITY Procedures
COMMENT_ON_PRIORITY_GROUP updates the comment field in the DBA_
REPPRIORITY_GROUP view for a priority group. This comment is not added at all

master sites until the next call to GENERATE_REPLICATION_SUPPORT.

COMMENT_ON_SITE_PRIORITY updates the comment field in the DBA_
REPPRIORITY_GROUP view for a site priority group. This procedure is a wrapper

for the COMMENT_ON_COLUMN_GROUP procedure and is provided as a convenience

only. This procedure must be issued at the master definition site.

Syntax
DBMS_REPCAT.COMMENT_ON_PRIORITY_GROUP (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 comment IN VARCHAR2);

DBMS_REPCAT.COMMENT_ON_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 comment IN VARCHAR2);

Table 20–35 COMMENT_ON_MVIEW_REPSITES Procedure Parameters

Parameter Description

gowner Owner of the materialized view group.

gname Name of the materialized view group.

comment Updated comment to include in the SCHEMA_COMMENTfield of the

DBA_REPGROUP view.

Table 20–36 COMMENT_ON_MVIEW_REPSITES Procedure Exceptions

Parameter Description

missingrepgroup The materialized view group does not exist.

nonmview The connected site is not a materialized view site.
20-38 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

COMMENT_ON_REPGROUP Procedure
This procedure updates the comment field in the DBA_REPGROUP view for a master

group. This procedure must be issued at the master definition site.

Syntax
DBMS_REPCAT.COMMENT_ON_REPGROUP (
 gname IN VARCHAR2,
 comment IN VARCHAR2);

Table 20–37 COMMENT_ON_PRIORITY_GROUP and COMMENT_ON_SITE_PRIORITY
Parameters

Parameter Description

gname Name of the master group.

pgroup/name Name of the priority or site priority group.

comment Text of the updated comment that you want included in the

PRIORITY_COMMENT field of the DBA_REPPRIORITY_GROUP
view.

Table 20–38 COMMENT_ON_PRIORITY_GROUP and COMMENT_ON_SITE_PRIORITY
Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.
DBMS_REPCAT 20-39

COMMENT_ON_REPOBJECT Procedure
Parameters

Exceptions

COMMENT_ON_REPOBJECT Procedure
This procedure updates the comment field in the DBA_REPOBJECT view for a

replicated object in a master group. This procedure must be issued at the master

definition site.

Syntax
DBMS_REPCAT.COMMENT_ON_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 comment IN VARCHAR2);

Table 20–39 COMMENT_ON_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group that you want to comment on.

comment Updated comment to include in the SCHEMA_COMMENTfield of the

DBA_REPGROUP view.

Table 20–40 COMMENT_ON_REPGROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

commfailure At least one master site is not accessible.
20-40 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

COMMENT_ON_REPSITES Procedure
If the replication group is a master group, then this procedure updates the MASTER_
COMMENTfield in the DBA_REPSITESview for a master site. If the replication group

is a materialized view group, this procedure updates the SCHEMA_COMMENT field in

the DBA_REPGROUP view for a materialized view site.

This procedure can be executed at either a master site or a materialized view site. If

you execute this procedure on a a materialized view site, then the materialized view

group owner must be PUBLIC.

Table 20–41 COMMENT_ON_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the object that you want to comment on. The object
cannot be a storage table for a nested table.

type Type of the object. The following types are supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

comment Text of the updated comment that you want to include in the

OBJECT_COMMENT field of the DBA_REPOBJECT view.

Table 20–42 COMMENT_ON_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.

commfailure At least one master site is not accessible.
DBMS_REPCAT 20-41

COMMENT_ON_REPSITES Procedure
Syntax
DBMS_REPCAT.COMMENT_ON_REPSITES (
 gname IN VARCHAR2,
 [master IN VARCHAR,]
 comment IN VARCHAR2);

Parameters

Exceptions

See Also: "COMMENT_ON_conflicttype_RESOLUTION

Procedure" on page 20-43 for instructions on placing a comment in

the SCHEMA_COMMENT field of the DBA_REPGROUP view for a

materialized view site if the materialized view group owner is not

PUBLIC

Table 20–43 COMMENT_ON_REPSITES Procedure Parameters

Parameter Description

gname Name of the replication group. This avoids confusion if a database
is a master site in more than one replication environment.

master The fully qualified database name of the master site on which you
want to comment. If you are executing the procedure on a master
site, then this parameter is required. To update comments at a
materialized view site, omit this parameter. This parameter is
optional.

comment Text of the updated comment that you want to include in the
comment field of the appropriate dictionary view. If the site is a
master site, then this procedure updates the MASTER_COMMENT
field of the DBA_REPSITES view. If the site is a materialized view
site, then this procedure updates the SCHEMA_COMMENT field of
the DBA_REPGROUP view.

Table 20–44 COMMENT_ON_REPSITES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

nonmaster Invocation site is not a master site.

commfailure At least one master site is not accessible.

missingrepgroup Replication group does not exist.
20-42 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
COMMENT_ON_conflicttype _RESOLUTION Procedure
This procedure updates the RESOLUTION_COMMENT field in the DBA_
REPRESOLUTION view for a conflict resolution routine. The procedure that you

need to call is determined by the type of conflict that the routine resolves. These

procedures must be issued at the master definition site.

The comment is not added at all master sites until the next call to GENERATE_
REPLICATION_SUPPORT.

Syntax
DBMS_REPCAT.COMMENT_ON_UPDATE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2);

DBMS_REPCAT.COMMENT_ON_UNIQUE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2);

DBMS_REPCAT.COMMENT_ON_DELETE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,

commfailure One or more master sites are not accessible.

corrupt There is an inconsistency in the replication catalog views.

Table 20–45 COMMENT_ON_conflicttype_RESOLUTION Procedures

Conflict Type Procedure Name

update COMMENT_ON_UPDATE_RESOLUTION

uniqueness COMMENT_ON_UNIQUE_RESOLUTION

delete COMMENT_ON_DELETE_RESOLUTION

Table 20–44 COMMENT_ON_REPSITES Procedure Exceptions (Cont.)

Exception Description
DBMS_REPCAT 20-43

COMPARE_OLD_VALUES Procedure
 sequence_no IN NUMBER,
 comment IN VARCHAR2);

Parameters

Exceptions

COMPARE_OLD_VALUES Procedure
This procedure specifies whether to compare old column values during propagation

of deferred transactions at each master site for each nonkey column of a replicated

table for updates and deletes. The default is to compare old values for all columns.

You can change this behavior at all master sites and materialized view sites by

invoking DBMS_REPCAT.COMPARE_OLD_VALUES at the master definition site.

When you use user-defined types, you can specify leaf attributes of a column object,

or you can specify an entire column object. For example, if a column object named

cust_address has street_address as an attribute, then you can specify cust_

Table 20–46 COMMENT_ON_conflicttype_RESOLUTION Procedure Parameters

Parameter Description

sname Name of the schema.

oname Name of the replicated table with which the conflict resolution
routine is associated.

column_group Name of the column group with which the update conflict
resolution routine is associated.

constraint_name Name of the unique constraint with which the uniqueness conflict
resolution routine is associated.

sequence_no Sequence number of the conflict resolution procedure.

comment The text of the updated comment that you want included in the
RESOLUTION_COMMENT field of the DBA_REPRESOLUTION view.

Table 20–47 COMMENT_ON_conflicttype_RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist.

missingresolution Specified conflict resolution routine is not registered.
20-44 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
address.street_address for the column_list parameter or as part of the

column_table parameter, or you can specify only cust_address .

When performing equality comparisons for conflict detection, Oracle treats objects

as equal only if one of the following conditions is true:

■ Both objects are atomically NULL (the entire object is NULL)

■ All of the corresponding attributes are equal in the objects

Given these conditions, if one object is atomically NULL while the other is not, then

Oracle does not consider the objects to be equal. Oracle does not consider MAP and

ORDER methods when performing equality comparisons.

Syntax
DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2,
 | column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
 operation IN VARCHAR2 := 'UPDATE',
 compare IN BOOLEAN := true);

Note: This procedure is overloaded. The column_list and

column_table parameters are mutually exclusive.
DBMS_REPCAT 20-45

COMPARE_OLD_VALUES Procedure
Parameters

Table 20–48 COMPARE_OLD_VALUES Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the replicated table. The table can be the storage table of
a nested table.

column_list A comma-delimited list of the columns in the table. There must be
no spaces between entries.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_REPCAT.VARCHAR2 or DBMS_UTILITY.LNAME_ARRAY to
contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater
than or equal to 30 bytes, which may occur when you specify the
attributes of column objects.

operation Possible values are: update , delete , or the asterisk wildcard ' *' ,
which means update and delete.

compare If compare is true , the old values of the specified columns are
compared when sent. If compare is false , the old values of the
specified columns are not compared when sent. Unspecified
columns and unspecified operations are not affected. The specified
change takes effect at the master definition site as soon as min_
communication is true for the table. The change takes effect at
a master site or at a materialized view site the next time
replication support is generated at that site with min_
communication true .

Note: The operation parameter enables you to decide whether

or not to compare old values for nonkey columns when rows are

deleted or updated. If you do not compare the old value, then

Oracle assumes the old value is equal to the current value of the

column at the target side when the update or delete is applied.

See Oracle9i Replication for more information about reduced data

propagation using the COMPARE_OLD_VALUES procedure before

changing the default behavior of Oracle.
20-46 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

CREATE_MASTER_REPGROUP Procedure
This procedure creates a new, empty, quiesced master group.

Syntax
DBMS_REPCAT.CREATE_MASTER_REPGROUP (
 gname IN VARCHAR2,
 group_comment IN VARCHAR2 := '',
 master_comment IN VARCHAR2 := ''),
 qualifier IN VARCHAR2 := '');

Table 20–49 COMPARE_OLD_VALUES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Master group has not been quiesced.

typefailure An illegal operation is specified.

keysendcomp A specified column is a key column in a table.

dbnotcompatible Feature is incompatible with database version. Typically, this
exception arises when you are trying to compare the attributes of
column objects. In this case, all databases must be at 9.0.1 or
higher compatibility level.
DBMS_REPCAT 20-47

CREATE_MASTER_REPOBJECT Procedure
Parameters

Exceptions

CREATE_MASTER_REPOBJECT Procedure
This procedure makes an object a replicated object by adding the object to a master

group. This procedure preserves the object identifier for user-defined types and

object tables at all replication sites.

Replication of clustered tables is supported, but the use_existing_object
parameter cannot be set to false for clustered tables. In other words, you must

create the clustered table at all master sites participating in the master group before

you execute the CREATE_MASTER_REPOBJECT procedure. However, these tables

do not need to contain the table data. So, the copy_rows parameter can be set to

true for clustered tables.

Table 20–50 CREATE_MASTER_REPGROUP Procedure Parameters

Parameter Description

gname Name of the master group that you want to create.

group_comment This comment is added to the DBA_REPGROUP view.

master_comment This comment is added to the DBA_REPSITES view.

qualifier Connection qualifier for master group. Be sure to use the @ sign.

See Oracle9i Replication and Oracle9i Database Administrator’s
Guide for more information about connection qualifiers.

Table 20–51 CREATE_MASTER_REPGROUP Procedure Exceptions

Exception Description

duplicaterepgroup Master group already exists.

norepopt Advanced replication option is not installed.

missingrepgroup Master group name was not specified.

qualifiertoolong Connection qualifier is too long.
20-48 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 use_existing_object IN BOOLEAN := true,
 ddl_text IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := '',
 retry IN BOOLEAN := false,
 copy_rows IN BOOLEAN := true,
 gname IN VARCHAR2 := '');

Parameters
The following table describes the parameters for this procedure.

Table 20–52 CREATE_MASTER_REPOBJECT Procedure Parameters

Parameters Description

sname Name of the schema in which the object that you want to
replicate is located.

oname Name of the object you are replicating. If ddl_text is NULL,
then this object must already exist in the specified schema. To
ensure uniqueness, table names should be a maximum of 27 bytes
long, and package names should be no more than 24 bytes. The
object cannot be a storage table for a nested table.

type Type of the object that you are replicating. The following types
are supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE
DBMS_REPCAT 20-49

CREATE_MASTER_REPOBJECT Procedure
use_existing_object Indicate true if you want to reuse any objects of the same type
and shape at the current master sites. See Table 20–54 for more
information.

Note: This parameter must be set to true for clustered tables.

ddl_text If the object does not already exist at the master definition site,
then you must supply the DDL text necessary to create this
object. PL/SQL packages, package bodies, procedures, and
functions must have a trailing semicolon. SQL statements do not
end with trailing semicolon. Oracle does not parse this DDL
before applying it; therefore, you must ensure that your DDL text
provides the appropriate schema and object name for the object
being created.

If the DDL is supplied without specifying a schema (sname
parameter), then the default schema is the replication
administrator’s schema. Be sure to specify the schema if it is
other than the replication administrator’s schema.

Note: Do not use the ddl_text parameter to add user-defined
types or object tables. Instead, create the object first and then add
the object.

comment This comment is added to the OBJECT_COMMENT field of the
DBA_REPOBJECT view.

retry Indicate true if you want Oracle to reattempt to create an object
that it was previously unable to create. Use this if the error was
transient or has since been rectified, or if you previously had
insufficient resources. If this is true , then Oracle creates the
object only at master sites whose object status is not VALID .

copy_rows Indicate true if you want the initial contents of a newly
replicated object to match the contents of the object at the master
definition site. See Table 20–54 for more information.

gname Name of the replication group in which you want to create the
replicated object. The schema name is used as the default
replication group name if none is specified, and a replication
group with the same name as the schema must exist for the
procedure to complete successfully in that case.

Table 20–52 CREATE_MASTER_REPOBJECT Procedure Parameters (Cont.)

Parameters Description
20-50 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

Object Creations

Table 20–53 CREATE_MASTER_REPOBJECT Procedure Exceptions

Exceptions Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Master group is not quiesced.

duplicateobject Specified object already exists in the master group and retry is
false , or if a name conflict occurs.

missingobject Object identified by sname and oname does not exist and
appropriate DDL has not been provided.

typefailure Objects of the specified type cannot be replicated.

ddlfailure DDL at the master definition site did not succeed.

commfailure At least one master site is not accessible.

notcompat Not all remote masters in at least 7.3 compatibility mode.

Table 20–54 Object Creation at Master Sites

Object

Already

Exists? COPY_ROWS
USE_EXISTING_
OBJECTS Result

yes true true duplicatedobject message if objects do
not match. For tables, use data from master
definition site.

yes false true duplicatedobject message if objects do
not match. For tables, DBA must ensure
contents are identical.

yes true/false false duplicatedobject message.

no true true/false Object is created. Tables populated using
data from master definition site.

no false true/false Object is created. DBA must populate
tables and ensure consistency of tables at
all sites.
DBMS_REPCAT 20-51

CREATE_MVIEW_REPGROUP Procedure
CREATE_MVIEW_REPGROUP Procedure
This procedure creates a new, empty materialized view group in your local

database. CREATE_MVIEW_REPGROUPautomatically calls REGISTER_MIEW_
REPGROUP, but ignores any errors that may have happened during registration.

Syntax
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 comment IN VARCHAR2 := '',
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS',
 fname IN VARCHAR2 := NULL

gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 20–55 CREATE_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group. This group must exist at the
specified master site or master materialized view site.

master Fully qualified database name of the database in the replication
environment to use as the master site or master materialized view
site. You can include a connection qualifier if necessary. See
Oracle9i Replication and Oracle9i Database Administrator’s Guide for
information about using connection qualifiers.

comment This comment is added to the DBA_REPGROUP view.

propagation_mode Method of propagation for all updatable materialized views in the
replication group. Acceptable values are synchronous and
asynchronous .

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

gowner Owner of the materialized view group.
20-52 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

CREATE_MVIEW_REPOBJECT Procedure
This procedure adds a replicated object to a materialized view group.

Syntax
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 ddl_text IN VARCHAR2 := '',
 comment IN VARCHAR2 := '',
 gname IN VARCHAR2 := '',
 gen_objs_owner IN VARCHAR2 := '',
 min_communication IN BOOLEAN := true,
 generate_80_compatible IN BOOLEAN := true,

gowner IN VARCHAR2 := 'PUBLIC');

Table 20–56 CREATE_MVIEW_REPGROUP Procedure Exceptions

Exception Description

duplicaterepgroup Replication group already exists at the invocation site.

nonmaster Specified database is not a master site or master materialized view
site.

commfailure Specified database is not accessible.

norepopt Advanced replication option is not installed.

typefailure Propagation mode was specified incorrectly.

missingrepgroup Replication group does not exist at master site.

invalidqualifier Connection qualifier specified for the master site or master
materialized view site is not valid for the replication group.

alreadymastered At the local site, there is another materialized view group with the
same group name, but different master site or master materialized
view site.
DBMS_REPCAT 20-53

CREATE_MVIEW_REPOBJECT Procedure
Parameters

Table 20–57 CREATE_MVIEW_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located. The schema
must be same as the schema that owns the master table or
master materialized view on which this materialized view is
based.

oname Name of the object that you want to add to the replicated
materialized view group.

type Type of the object that you are replicating. The following types
are supported:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

ddl_text For objects of type SNAPSHOT, the DDL needed to create the
object. For other types, use the default:

'' (an empty string)

If a materialized view with the same name already exists, then
Oracle ignores the DDL and registers the existing materialized
view as a replicated object. If the master table or master
materialized view for a materialized view does not exist in the
replication group of the master designated for this schema,
then Oracle raises a missingobject error.

If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator’s schema. Be
sure to specify the schema if it is other than the replication
administrator’s schema.

If the object is not of type SNAPSHOT, then the materialized
view site connects to the master site or master materialized
view site and pulls down the DDL text to create the object. If
the object type is TYPE or TYPE BODY, then the object identifier
(OID) for the object at the materialized view site is the same as
the OID at the master site or master materialized view site.

comment This comment is added to the OBJECT_COMMENT field of the
DBA_REPOBJECT view.
20-54 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
gname Name of the replicated materialized view group to which you
are adding an object. The schema name is used as the default
group name if none is specified, and a materialized view group
with the same name as the schema must exist for the procedure
to complete successfully.

gen_objs_owner Name of the user you want to assign as owner of the
transaction.

min_communication Set to false if the materialized view’s master site is running
Oracle7 release 7.3. Set to true to minimize new and old
values of propagation. The default is true . For more
information about conflict resolution methods, see Chapter 6,
"Configure Conflict Resolution" and Oracle9i Replication.

generate_80_compatible Set to true if the materialized view’s master site is running a
version of Oracle server prior to Oracle8i release 8.1.5. Set to
false if the materialized view’s master site or master
materialized view site is running Oracle8i release 8.1.5 or
greater.

gowner Owner of the materialized view group.

Table 20–57 CREATE_MVIEW_REPOBJECT Procedure Parameters (Cont.)

Parameter Description
DBMS_REPCAT 20-55

DEFINE_COLUMN_GROUP Procedure
Exceptions

DEFINE_COLUMN_GROUP Procedure
This procedure creates an empty column group. You must call this procedure from

the master definition site.

Syntax
DBMS_REPCAT.DEFINE_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 comment IN VARCHAR2 := NULL);

Table 20–58 CREATE_MVIEW_REPOBJECT Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Master is no longer a master site or master materialized view site.

missingobject Specified object does not exist in the master’s replication group.

duplicateobject Specified object already exists with a different shape.

typefailure Type is not an allowable type.

ddlfailure DDL did not succeed.

commfailure Master site or master materialized view site is not accessible.

missingschema Schema does not exist as a database schema.

badmviewddl DDL was executed but materialized view does not exist.

onlyonemview Only one materialized view for master table or master
materialized view can be created.

badmviewname Materialized view base table differs from master table or master
materialized view.

missingrepgroup Replication group at the master does not exist.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
20-56 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

DEFINE_PRIORITY_GROUP Procedure
This procedure creates a new priority group for a master group. You must call this

procedure from the master definition site.

Syntax
DBMS_REPCAT.DEFINE_PRIORITY_GROUP (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 datatype IN VARCHAR2,
 fixed_length IN INTEGER := NULL,
 comment IN VARCHAR2 := NULL);

Table 20–59 DEFINE_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table for which you are creating a column
group.

column_group Name of the column group that you want to create.

comment This user text is displayed in the DBA_REPCOLUMN_GROUP view.

Table 20–60 DEFINE_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

duplicategroup Specified column group already exists for the table.

notquiesced Replication group to which the specified table belongs is not
quiesced.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
DBMS_REPCAT 20-57

DEFINE_SITE_PRIORITY Procedure
Parameters

Exceptions

DEFINE_SITE_PRIORITY Procedure
This procedure creates a new site priority group for a master group. You must call

this procedure from the master definition site.

Syntax
DBMS_REPCAT.DEFINE_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2,

Table 20–61 DEFINE_PRIORITY_GROUP Procedure Parameters

Parameter Description

gname Master group for which you are creating a priority group.

pgroup Name of the priority group that you are creating.

datatype Datatype of the priority group members. The datatypes supported
are: CHAR, VARCHAR2, NUMBER, DATE, RAW, NCHAR, and
NVARCHAR2.

fixed_length You must provide a column length for the CHAR datatype. All
other types can use the default, NULL.

comment This user comment is added to the DBA_REPPRIORITY view.

Table 20–62 DEFINE_PRIORITY_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

duplicatepriority
group

Specified priority group already exists in the master group.

typefailure Specified datatype is not supported.

notquiesced Master group is not quiesced.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
20-58 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
 comment IN VARCHAR2 := NULL);

Parameters

Exceptions

DO_DEFERRED_REPCAT_ADMIN Procedure
This procedure executes the local outstanding deferred administrative procedures

for the specified master group at the current master site, or (with assistance from job

queues) for all master sites.

DO_DEFERRED_REPCAT_ADMIN executes only those administrative requests

submitted by the connected user who called DO_DEFERRED_REPCAT_ADMIN.

Requests submitted by other users are ignored.

Syntax
DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN (
 gname IN VARCHAR2,
 all_sites IN BOOLEAN := false);

Table 20–63 DEFINE_SITE_PRIORITY Procedure Parameters

Parameter Description

gname The master group for which you are creating a site priority group.

name Name of the site priority group that you are creating.

comment This user comment is added to the DBA_REPPRIORITY view.

Table 20–64 DEFINE_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

duplicate
prioritygroup

Specified site priority group already exists in the master group.

notquiesced Master group is not quiesced.
DBMS_REPCAT 20-59

DROP_COLUMN_GROUP Procedure
Parameters

Exceptions

DROP_COLUMN_GROUP Procedure
This procedure drops a column group. You must call this procedure from the master

definition site.

Syntax
DBMS_REPCAT.DROP_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2);

Table 20–65 DO_DEFERRED_REPCAT_ADMIN Procedure Parameters

Parameter Description

gname Name of the master group.

all_sites If this is true , then use a job to execute the local administrative
procedures at each master site.

Table 20–66 DO_DEFERRED_REPCAT_ADMIN Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.

commfailure At least one master site is not accessible and all_sites is true .

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
20-60 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

DROP_GROUPED_COLUMN Procedure
This procedure removes members from a column group. You must call this

procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_GROUPED_COLUMN (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s);

Table 20–67 DROP_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table whose column group you are
dropping.

column_group Name of the column group that you want to drop.

Table 20–68 DROP_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

referenced Specified column group is being used in conflict detection and
resolution.

missingobject Specified table does not exist.

missinggroup Specified column group does not exist.

notquiesced Master group to which the table belongs is not quiesced.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
DBMS_REPCAT 20-61

DROP_MASTER_REPGROUP Procedure
Parameters

Exceptions

DROP_MASTER_REPGROUP Procedure
This procedure drops a master group from your current site. To drop the master

group from all master sites, including the master definition site, you can call this

procedure at the master definition site, and set all_sites to true .

Table 20–69 DROP_GROUPED_COLUMN Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table in which the column group is located.
The table can be the storage table of a nested table.

column_group Name of the column group from which you are removing
members.

list_of_column_names Names of the columns that you are removing from the designated
column group. This can either be a comma-delimited list or a
PL/SQL index-by table of column names. The PL/SQL index-by
table must be of type DBMS_REPCAT.VARCHAR2.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object, then you can specify SYS_NC_OID$to add
the object identifier column to the column group. This column
tracks the object identifier of each row object.

If the table is a storage table of a nested table, then you can specify
NESTED_TABLE_ID to add the column that tracks the identifier
for each row of the nested table.

Table 20–70 DROP_GROUPED_COLUMN Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

notquiesced Master group that the table belongs to is not quiesced.
20-62 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.DROP_MASTER_REPGROUP (
 gname IN VARCHAR2,
 drop_contents IN BOOLEAN := false,
 all_sites IN BOOLEAN := false);

Parameters

Exceptions

Table 20–71 DROP_MASTER_REPGROUP Procedure Parameters

Parameter Description

gname Name of the master group that you want to drop from the current
master site.

drop_contents By default, when you drop the replication group at a master site,
all of the objects remain in the database. They simply are no longer
replicated. That is, the replicated objects in the replication group
no longer send changes to, or receive changes from, other master
sites. If you set this to true , then any replicated objects in the
master group are dropped from their associated schemas.

all_sites If this is true and if the invocation site is the master definition
site, then the procedure synchronously multicasts the request to all
masters. In this case, execution is immediate at the master
definition site and may be deferred at all other master sites.

Table 20–72 DROP_MASTER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.

nonmasterdef Invocation site is not the master definition site and all_sites is
true .

commfailure At least one master site is not accessible and all_sites is true .

fullqueue Deferred remote procedure call (RPC) queue has entries for the
master group.

masternotremoved Master does not recognize the master definition site and all_
sites is true .
DBMS_REPCAT 20-63

DROP_MASTER_REPOBJECT Procedure
DROP_MASTER_REPOBJECT Procedure
This procedure drops a replicated object from a master group. You must call this

procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_MASTER_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 drop_objects IN BOOLEAN := false);

Parameters

Table 20–73 DROP_MASTER_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the object that you want to remove from the master
group. The object cannot be a storage table for a nested table.

type Type of object that you want to drop. The following types are
supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

drop_objects By default, the object remains in the schema, but is dropped from
the master group. That is, any changes to the object are no longer
replicated to other master and materialized view sites. To
completely remove the object from the replication environment,
set this parameter to true . If the parameter is set to true , the
object is dropped from the database at each master site.
20-64 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

DROP_MVIEW_REPGROUP Procedure
This procedure drops a materialized view site from your replication environment.

DROP_MVIEW_REPGROUP automatically calls UNREGISTER_MVIEW_REPGROUP at

the master site or master materialized view site to unregister the materialized view,

but ignores any errors that may have occurred during unregistration. If DROP_
MVIEW_REPGROUP is unsuccessful, then connect to the master site or master

materialized view site and run UNREGISTER_MVIEW_REPGROUP.

Syntax
DBMS_REPCAT.DROP_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 drop_contents IN BOOLEAN := false,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 20–74 DROP_MASTER_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.

commfailure At least one master site is not accessible.

Table 20–75 DROP_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group that you want to drop from the
current materialized view site. All objects generated to support
replication, such as triggers and packages, are dropped.

drop_contents By default, when you drop the replication group at a materialized
view site, all of the objects remain in their associated schemas.
They simply are no longer replicated. If you set this to true , then
any replicated objects in the replication group are dropped from
their schemas.

gowner Owner of the materialized view group.
DBMS_REPCAT 20-65

DROP_MVIEW_REPOBJECT Procedure
Exceptions

DROP_MVIEW_REPOBJECT Procedure
This procedure drops a replicated object from a materialized view site.

Syntax
DBMS_REPCAT.DROP_MVIEW_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 drop_objects IN BOOLEAN := false);

Table 20–76 DROP_MVIEW_REPGROUP Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

missingrepgroup Specified replication group does not exist.
20-66 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

DROP_PRIORITY Procedure
This procedure drops a member of a priority group by priority level. You must call

this procedure from the master definition site.

Table 20–77 DROP_MVIEW_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the object that you want to drop from the replication
group.

type Type of the object that you want to drop. The following types are
supported:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

drop_objects By default, the object remains in its associated schema, but is
dropped from its associated replication group. To completely
remove the object from its schema at the current materialized view
site, set this parameter to true . If the parameter is set to true , the
object is dropped from the database at the materialized view site.

Table 20–78 DROP_MVIEW_REPOBJECT Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
DBMS_REPCAT 20-67

DROP_PRIORITY_GROUP Procedure
Syntax
DBMS_REPCAT.DROP_PRIORITY(
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 priority_num IN NUMBER);

Parameters

Exceptions

DROP_PRIORITY_GROUP Procedure
This procedure drops a priority group for a specified master group. You must call

this procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_PRIORITY_GROUP (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2);

Table 20–79 DROP_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the member that you want
to drop.

priority_num Priority level of the priority group member that you want to
remove from the group.

Table 20–80 DROP_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

notquiesced Master group is not quiesced.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
20-68 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

DROP_PRIORITY_datatype Procedure
This procedure drops a member of a priority group by value. You must call this

procedure from the master definition site. The procedure that you must call is

determined by the datatype of your priority column.

Syntax
DBMS_REPCAT.DROP_PRIORITY_datatype (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 value IN datatype);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW

Table 20–81 DROP_PRIORITY_GROUP Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group that you want to drop.

Table 20–82 DROP_PRIORITY_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

referenced Specified priority group is being used in conflict resolution.

notquiesced Specified master group is not quiesced.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
DBMS_REPCAT 20-69

DROP_SITE_PRIORITY Procedure
| NCHAR
| NVARCHAR2 }

Parameters

Exceptions

DROP_SITE_PRIORITY Procedure
This procedure drops a site priority group for a specified master group. You must

call this procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2);

Table 20–83 DROP_PRIORITY_datatype Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the member that you want
to drop.

value Value of the priority group member that you want to remove from
the group.

Table 20–84 DROP_PRIORITY_datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

paramtype,
typefailure

Value has the incorrect datatype for the priority group.

notquiesced Specified master group is not quiesced

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
20-70 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

DROP_SITE_PRIORITY_SITE Procedure
This procedure drops a specified site, by name, from a site priority group. You must

call this procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_SITE_PRIORITY_SITE (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 site IN VARCHAR2);

Table 20–85 DROP_SITE_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group that you want to drop.

Table 20–86 DROP_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

referenced Specified site priority group is being used in conflict resolution.

notquiesced Specified master group is not quiesced

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
DBMS_REPCAT 20-71

DROP_conflicttype_RESOLUTION Procedure
Parameters

Exceptions

DROP_conflicttype _RESOLUTION Procedure
This procedure drops an update, delete, or uniqueness conflict resolution routine.

You must call these procedures from the master definition site. The procedure that

you must call is determined by the type of conflict that the routine resolves.

Conflict Resolution Routines
The following table shows the procedure name for each conflict resolution routine.

Table 20–87 DROP_SITE_PRIORITY_SITE Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group whose member you are dropping.

site Global database name of the site you are removing from the
group.

Table 20–88 DROP_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Specified site priority group does not exist.

notquiesced Specified master group is not quiesced.

Table 20–89 Conflict Resolution Routines

Routine Procedure Name

update DROP_UPDATE_RESOLUTION

uniqueness DROP_UNIQUE_RESOLUTION

delete DROP_DELETE_RESOLUTION
20-72 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.DROP_UPDATE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER);

DBMS_REPCAT.DROP_DELETE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER);

DBMS_REPCAT.DROP_UNIQUE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER);

Parameters

Table 20–90 DROP_conflicttype_RESOLUTION Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the table for which you want to drop a conflict resolution
routine.

column_group Name of the column group for which you want to drop an update
conflict resolution routine.

constraint_name Name of the unique constraint for which you want to drop a
unique conflict resolution routine.

sequence_no Sequence number assigned to the conflict resolution method that
you want to drop. This number uniquely identifies the routine.
DBMS_REPCAT 20-73

EXECUTE_DDL Procedure
Exceptions

EXECUTE_DDL Procedure
This procedure supplies DDL that you want to have executed at some or all master

sites. You can call this procedure only from the master definition site.

Syntax
DBMS_REPCAT.EXECUTE_DDL (
 gname IN VARCHAR2,
 { master_list IN VARCHAR2 := NULL,

| master_table IN DBMS_UTILITY.DBLINK_ARRAY,}
 DDL_TEXT IN VARCHAR2);

Table 20–91 DROP_conflicttype_RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema, or
a conflict resolution routine with the specified sequence number is
not registered.

notquiesced Master group is not quiesced.

Note: This procedure is overloaded. The master_list and

master_table parameters are mutually exclusive.
20-74 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

GENERATE_MVIEW_SUPPORT Procedure
This procedure activates triggers and generate packages needed to support the

replication of updatable materialized views or procedural replication.You must call

this procedure from the materialized view site.

Table 20–92 EXECUTE_DDL Procedure Parameters

Parameter Description

gname Name of the master group.

master_list A comma-delimited list of master sites at which you want to
execute the supplied DDL. Do not put any spaces between site
names. The default value, NULL, indicates that the DDL should be
executed at all sites, including the master definition site.

master_table A table that lists the master sites where you want to execute the
supplied DDL. The first master should be at position 1, the second
at position 2, and so on.

ddl_text The DDL that you want to execute at each of the specified master
sites. If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator’s schema. Be sure
to specify the schema if it is other than the replication
administrator’s schema.

Table 20–93 EXECUTE_DDL Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

nonmaster At least one site is not a master site.

ddlfailure DDL at the master definition site did not succeed.

commfailure At least one master site is not accessible.

Note: CREATE_MVIEW_REPOBJECT automatically generates

materialized view support for updatable materialized views.
DBMS_REPCAT 20-75

GENERATE_MVIEW_SUPPORT Procedure
Syntax
DBMS_REPCAT.GENERATE_MVIEW_SUPPORT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 gen_objs_owner IN VARCHAR2 := '',
 min_communication IN BOOLEAN := true,
 generate_80_compatible IN BOOLEAN := true);

Parameters

Exceptions

Table 20–94 GENERATE_MVIEW_SUPPORT Procedure Parameters

Parameter Description

sname Schema in which the object is located.

oname The name of the object for which you are generating support.

type Type of the object. The types supported are SNAPSHOT,
PACKAGE, and PACKAGE BODY.

gen_objs_owner For objects of type PACKAGE or PACKAGE BODY, the schema in
which the generated object should be created. If NULL, the
objects are created in SNAME.

min_communication If true , then the update trigger sends the new value of a
column only if the update statement modifies the column. The
update trigger sends the old value of the column only if it is a
key column or a column in a modified column group.

generate_80_compatible Set to true if the materialized view’s master site is running a
version of Oracle server prior to Oracle8i release 8.1.5. Set to
false if the materialized view’s master site or master
materialized view site is running Oracle8i release 8.1.5 or
higher.

Table 20–95 GENERATE_MVIEW_SUPPORT Procedure Exceptions

Exceptions Descriptions

nonmview Invocation site is not a materialized view site.
20-76 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
GENERATE_REPLICATION_SUPPORT Procedure
This procedure generates the triggers and packages needed to support replication

for a specified object. You must call this procedure from the master definition site.

Syntax
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 package_prefix IN VARCHAR2 := NULL,
 procedure_prefix IN VARCHAR2 := NULL,
 distributed IN BOOLEAN := true,
 gen_objs_owner IN VARCHAR2 := NULL,
 min_communication IN BOOLEAN := true,
 generate_80_compatible IN BOOLEAN := true);

missingobject Specified object does not exist as a materialized view in the
replicated schema waiting for row/column-level replication
information or as a package (body) waiting for wrapper
generation.

typefailure Specified type parameter is not supported.

missingschema Specified owner of generated objects does not exist.

missingremoteobject Object at master site or master materialized view site has not yet
generated replication support.

commfailure Master site or master materialized view site is not accessible.

Table 20–95 GENERATE_MVIEW_SUPPORT Procedure Exceptions (Cont.)

Exceptions Descriptions
DBMS_REPCAT 20-77

GENERATE_REPLICATION_SUPPORT Procedure
Parameters

Table 20–96 GENERATE_REPLICATION_SUPPORT Procedure Parameters

Parameter Description

sname Schema in which the object is located.

oname Name of the object for which you are generating replication
support.

type Type of the object. The types supported are: TABLE, PACKAGE,
and PACKAGE BODY.

package_prefix For objects of type PACKAGE or PACKAGE BODY this value is
prepended to the generated wrapper package name. The
default is DEFER_.

procedure_prefix For objects of type PACKAGE or PACKAGE BODY, this value is
prepended to the generated wrapper procedure names. By
default, no prefix is assigned.

distributed This must be set to true .

gen_objs_owner For objects of type PACKAGE or PACKAGE BODY, the schema in
which the generated object should be created. If NULL, the
objects are created in sname.

min_communication Set to false if any master site is running Oracle7 release 7.3.
Set to true when you want propagation of new and old values
to be minimized. The default is true . For more information,

see Oracle9i Replication.

generate_80_compatible Set to true if any master site is running a version of Oracle
server prior to Oracle8i release 8.1.5. Set to false if all master
sites are running Oracle8i release 8.1.5 or higher.
20-78 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

MAKE_COLUMN_GROUP Procedure
This procedure creates a new column group with one or more members. You must

call this procedure from the master definition site.

Syntax
DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s);

Table 20–97 GENERATE_REPLICATION_SUPPORT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information or as a package
(body) waiting for wrapper generation.

typefailure Specified type parameter is not supported.

notquiesced Replication group has not been quiesced.

commfailure At least one master site is not accessible.

missingschema Schema does not exist.

dbnotcompatible One of the master sites is not 7.3.0.0 compatible.

notcompat One of the master sites is not 7.3.0.0 compatible. (Equivalent to
dbnotcompatible .)

duplicateobject Object already exists.

See Also: Chapter 6, "Configure Conflict Resolution" and Oracle9i
Replication for more information about conflict resolution methods
DBMS_REPCAT 20-79

MAKE_COLUMN_GROUP Procedure
Parameters

Exceptions

Table 20–98 MAKE_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table for which you are creating a new
column group. The table can be the storage table of a nested table.

column_group Name that you want assigned to the column group that you are
creating.

list_of_column_names Names of the columns that you are grouping. This can either be a
comma-delimited list or a PL/SQL index-by table of column
names. The PL/SQL index-by table must be of type DBMS_
REPCAT.VARCHAR2. Use the single value ' *' to create a column
group that contains all of the columns in your table.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object table, then you can specify SYS_NC_OID$
to add the object identifier column to the column group. This
column tracks the object identifier of each row object.

If the table is the storage table of a nested table, then you can
specify NESTED_TABLE_ID to add the column that tracks the
identifier for each row of the nested table.

Table 20–99 MAKE_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the masterdef site.

duplicategroup Specified column group already exists for the table.

missingobject Specified table does not exist.

missingcolumn Specified column does not exist in the designated table.

duplicatecolumn Specified column is already a member of another column group.

notquiesced Master group is not quiesced.
20-80 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
PREPARE_INSTANTIATED_MASTER Procedure
This procedure enables the propagation of deferred transactions from other

prepared new master sites and existing master sites to the invocation master site.

This procedure also enables the propagation of deferred transactions from the

invocation master site to the other prepared new master sites and existing master

sites.

If you performed a full database export/import or a change-based recovery, then

the new master site includes all of the deferred transactions that were in the

deferred transactions queue at the master definition site. Because these deferred

transactions should not exist at the new master site, this procedure deletes all

transactions in the deferred transactions queue and error queue if full database

export/import or change-based recovery was used.

For object-level export/import, ensure that all the requests in the DBA_REPCATLOG
data dictionary view for the extended groups have been processed without error

before running this procedure.

Caution:

■ Do not invoke this procedure until instantiation (export/import

or change-based recovery) for the new master site is complete.

■ Do not allow any data manipulation language (DML)

statements directly on the objects in the extended master group

in the new master site until execution of this procedure returns

successfully. These DML statements may not be replicated.

■ Do not use the DBMS_DEFER package to create deferred

transactions until execution of this procedure returns

successfully. These deferred transactions may not be replicated.

Note: To use change-based recovery, the existing master site and

the new master site must be running under the same operating

system, although the release of the operating system can differ.
DBMS_REPCAT 20-81

PURGE_MASTER_LOG Procedure
Syntax
DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (
 extension_id IN RAW);

Parameters

Exceptions

PURGE_MASTER_LOG Procedure
This procedure removes local messages in the DBA_REPCATLOG view associated

with a specified identification number, source, or master group.

To purge all of the administrative requests from a particular source, specify NULL
for the id parameter. To purge all administrative requests from all sources, specify

NULL for both the id parameter and the source parameter.

Syntax
DBMS_REPCAT.PURGE_MASTER_LOG (
 id IN BINARY_INTEGER,
 source IN VARCHAR2,
 gname IN VARCHAR2);

Table 20–100 PREPARE_INSTANTIATED_MASTER Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW and DBA_
REPEXTENSIONS data dictionary views.

Table 20–101 PREPARE_INSTANTIATED_MASTER Procedure Exceptions

Exception Description

typefailure The parameter value specified for one of the parameters is not
appropriate.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.
20-82 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

PURGE_STATISTICS Procedure
This procedure removes information from the DBA_REPRESOLUTION_
STATISTICS view.

Syntax
DBMS_REPCAT.PURGE_STATISTICS (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 start_date IN DATE,
 end_date IN DATE);

Table 20–102 PURGE_MASTER_LOG Procedure Parameters

Parameter Description

id Identification number of the request, as it appears in the DBA_
REPCATLOG view.

source Master site from which the request originated.

gname Name of the master group for which the request was made.

Table 20–103 PURGE_MASTER_LOG Procedure Exceptions

Exception Description

nonmaster gname is not NULL, and the invocation site is not a master site.
DBMS_REPCAT 20-83

REFRESH_MVIEW_REPGROUP Procedure
Parameters

Exceptions

REFRESH_MVIEW_REPGROUP Procedure
This procedure refreshes a materialized view group with the most recent data from

its associated master site or master materialized view site.

Syntax
DBMS_REPCAT.REFRESH_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 drop_missing_contents IN BOOLEAN := false,
 refresh_mviews IN BOOLEAN := false,
 refresh_other_objects IN BOOLEAN := false,
 gowner IN VARCHAR2 := 'PUBLIC');

Table 20–104 PURGE_STATISTICS Procedure Parameters

Parameter Description

sname Name of the schema in which the replicated table is located.

oname Name of the table whose conflict resolution statistics you want to
purge.

start_date/end_date Range of dates for which you want to purge statistics. If start_
date is NULL, then purge all statistics up to the end_date . If
end_date is NULL, then purge all statistics after the start_
date .

Table 20–105 PURGE_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.

missingobject Specified table does not exist.

statnotreg Table not registered to collect statistics.
20-84 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Table 20–106 REFRESH_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group.

drop_missing_contents If an object was dropped from the replication group at the
master site or master materialized view site, then it is not
automatically dropped from the schema at the materialized view
site. It is simply no longer replicated. That is, changes to this
object are no longer sent to its associated master site or master
materialized view site. Materialized views can continue to be
refreshed from their associated master tables or master
materialized views. However, any changes to an updatable
materialized view are lost. When an object is dropped from the
replication group, you can choose to have it dropped from the
schema entirely by setting this parameter to true .

refresh_mviews Set to true to refresh the contents of the materialized views in
the replication group.

refresh_other_objects Set this to true to refresh the contents of the nonmaterialized
view objects in the replication group. Nonmaterialized view
objects may include the following:

■ Tables

■ Views

■ Indexes

■ PL/SQL packages and package bodies

■ PL/SQL procedures and functions

■ Triggers

■ Synonyms

gowner Owner of the materialized view group.
DBMS_REPCAT 20-85

REGISTER_MVIEW_REPGROUP Procedure
Exceptions

REGISTER_MVIEW_REPGROUP Procedure
This procedure facilitates the administration of materialized views at their

respective master sites or master materialized view sites by inserting or modifying a

materialized view group in DBA_REGISTERED_MVIEW_GROUPS.

Syntax
DBMS_REPCAT.REGISTER_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 mviewsite IN VARCHAR2,
 comment IN VARCHAR2 := NULL,
 rep_type IN NUMBER := reg_unknown,
 fname IN VARCHAR2 := NULL,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 20–107 REFRESH_MVIEW_REPGROUP Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Master is no longer a master site or master materialized view site.

commfailure Master site or master materialized view site is not accessible.

missingrepgroup Replication group name not specified.

Table 20–108 REGISTER_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the materialized view group to be registered.

mviewsite Global name of the materialized view site.

comment Comment for the materialized view site or update for an existing
comment.
20-86 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

REGISTER_STATISTICS Procedure
This procedure collects information about the successful resolution of update,

delete, and uniqueness conflicts for a table.

Syntax
DBMS_REPCAT.REGISTER_STATISTICS (
 sname IN VARCHAR2,
 oname IN VARCHAR2);

rep_type Version of the materialized view group. Valid constants that can be
assigned include the following:

■ dbms_repcat.reg_unknown (the default)

■ dbms_repcat.reg_v7_group

■ dbms_repcat.reg_v8_group

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

gowner Owner of the materialized view group.

Table 20–109 REGISTER_MVIEW_REPGROUP Procedure Exceptions

Exception Description

failregmviewrepgroup Registration of materialized view group failed.

missingrepgroup Replication group name not specified.

nullsitename A materialized view site was not specified.

nonmaster Procedure must be executed at the materialized view’s master site
or master materialized view site.

duplicaterepgroup Replication group already exists.

Table 20–108 REGISTER_MVIEW_REPGROUP Procedure Parameters (Cont.)

Parameter Description
DBMS_REPCAT 20-87

RELOCATE_MASTERDEF Procedure
Parameters

Exceptions

RELOCATE_MASTERDEF Procedure
This procedure changes your master definition site to another master site in your

replication environment.

It is not necessary for either the old or new master definition site to be available

when you call RELOCATE_MASTERDEF. In a planned reconfiguration, you should

invoke RELOCATE_MASTERDEF with notify_masters set to true and

include_old_masterdef set to true .

Syntax
DBMS_REPCAT.RELOCATE_MASTERDEF (
 gname IN VARCHAR2,
 old_masterdef IN VARCHAR2,
 new_masterdef IN VARCHAR2,
 notify_masters IN BOOLEAN := true,
 include_old_masterdef IN BOOLEAN := true,
 require_flavor_change IN BOOLEAN := false);

Table 20–110 REGISTER_STATISTICS Procedure Parameters

Parameter Description

sname Name of the schema in which the table is located.

oname Name of the table for which you want to gather conflict resolution
statistics.

Table 20–111 REGISTER_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.

missingobject Specified table does not exist.
20-88 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

Table 20–112 RELOCATE_MASTERDEF Procedure Parameters

Parameter Description

gname Name of the replication group whose master definition you
want to relocate.

old_masterdef Fully qualified database name of the current master definition
site.

new_masterdef Fully qualified database name of the existing master site that
you want to make the new master definition site.

notify_masters If this is true , then the procedure synchronously multicasts
the change to all masters (including old_masterdef only if
include_old_masterdef is true). If any master does not
make the change, then roll back the changes at all masters.

If just the master definition site fails, then you should invoke
RELOCATE_MASTERDEF with notify_masters set to true
and include_old_masterdef set to false . If several
master sites and the master definition site fail, then the
administrator should invoke RELOCATE_MASTERDEF at each
operational master with notify_masters set to false .

include_old_masterdef If notify_masters is true and if include_old_
masterdef is also true , then the old master definition site is
also notified of the change.

require_flavor_change This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.

Table 20–113 RELOCATE_MASTERDEF Procedure Exceptions

Exception Description

nonmaster new_masterdef is not a master site or the invocation site is not a
master site.

nonmasterdef old_masterdef is not the master definition site.

commfailure At least one master site is not accessible and notify_masters is
true .
DBMS_REPCAT 20-89

REMOVE_MASTER_DATABASES Procedure
REMOVE_MASTER_DATABASES Procedure
This procedure removes one or more master databases from a replication

environment. This procedure regenerates the triggers and their associated packages

at the remaining master sites. You must call this procedure from the master

definition site.

Syntax
DBMS_REPCAT.REMOVE_MASTER_DATABASES (
 gname IN VARCHAR2,
 master_list IN VARCHAR2 |
 master_table IN DBMS_UTILITY.DBLINK_ARRAY);

Parameters

Note: This procedure is overloaded. The master_list and

master_table parameters are mutually exclusive.

Table 20–114 REMOVE_MASTER_DATABASES Procedure Parameters

Parameter Description

gname Name of the replication group associated with the replication
environment. This prevents confusion if a master database is
involved in more than one replication environment.

master_list A comma-delimited list of fully qualified master database names
that you want to remove from the replication environment. There
must be no spaces between names in the list.

master_table In place of a list, you can specify the database names in a PL/SQL
index-by table of type DBMS_UTILITY.DBLINK_ARRAY.
20-90 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

RENAME_SHADOW_COLUMN_GROUP Procedure
This procedure renames the shadow column group of a replicated table to make it a

named column group. The replicated table’s master group does not need to be

quiesced to run this procedure.

Syntax
DBMS_REPCAT.RENAME_SHADOW_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 new_col_group_name IN VARCHAR2)

Parameters

Table 20–115 REMOVE_MASTER_DATABASES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

nonmaster At least one of the specified databases is not a master site.

reconfigerror One of the specified databases is the master definition site.

commfailure At least one remaining master site is not accessible.

Table 20–116 RENAME_SHADOW_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table.

new_col_group_name Name of the new column group. The columns currently in the
shadow group are placed in a column group with the name you
specify.
DBMS_REPCAT 20-91

REPCAT_IMPORT_CHECK Procedure
Exceptions

REPCAT_IMPORT_CHECK Procedure
This procedure ensures that the objects in the master group have the appropriate

object identifiers and status values after you perform an export/import of a

replicated object or an object used by Advanced Replication.

Syntax
DBMS_REPCAT.REPCAT_IMPORT_CHECK (
 gname IN VARCHAR2,
 master IN BOOLEAN,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 20–117 RENAME_SHADOW_COLUMN_GROUP Procedure Exceptions

Exception Description

missmview The specified schema does not exist.

nonmasterdef Invocation site is not the master definition site.

missingobject The specified object does not exist.

duplicategroup The column group that was specified for creation already exists.

Table 20–118 REPCAT_IMPORT_CHECK Procedure Parameters

Parameter Description

gname Name of the master group. If you omit both parameters, then the
procedure checks all master groups at your current site.

master Set this to true if you are checking a master site and false if you
are checking a materialized view site.

gowner Owner of the master group.
20-92 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

RESUME_MASTER_ACTIVITY Procedure
This procedure resumes normal replication activity after quiescing a replication

environment.

Syntax
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname IN VARCHAR2,
 override IN BOOLEAN := false);

Parameters

Table 20–119 REPCAT_IMPORT_CHECK Procedure Exceptions

Exception Description

nonmaster master is true and either the database is not a master site for the
replication group or the database is not the expected database.

nonmview master is false and the database is not a materialized view site
for the replication group.

missingobject A valid replicated object in the replication group does not exist.

missingrepgroup The specified replicated replication group does not exist.

missingschema The specified replicated replication group does not exist.

Table 20–120 RESUME_MASTER_ACTIVITY Procedure Parameters

Parameter Description

gname Name of the master group.

override If this is true , then it ignores any pending RepCat administrative
requests and restores normal replication activity at each master as
quickly as possible. This should be considered only in emergency
situations.

If this is false , then it restores normal replication activity at each
master only when there is no pending RepCat administrative
request for gname at that master.
DBMS_REPCAT 20-93

RESUME_PROPAGATION_TO_MDEF Procedure
Exceptions

RESUME_PROPAGATION_TO_MDEF Procedure
During the process of adding new master sites to a master group without quiesce,

this procedure indicates that export is effectively finished and propagation to the

master definition site for both extended and unaffected replication groups existing

at master sites can be enabled. Run this procedure after the export required to add

new master sites to a master group is complete.

Syntax
DBMS_REPCAT.RESUME_PROPAGATION_TO_MDEF (
 extension_id IN RAW);

Parameters

Table 20–121 RESUME_MASTER_ACTIVITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Master group is not quiescing or quiesced.

commfailure At least one master site is not accessible.

notallgenerated Generate replication support before resuming replication activity.

See Also: "Adding New Master Sites" on page 7-4 for more

information about adding master sites to a master group

Table 20–122 RESUME_PROPAGATION_TO_MDEF Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW and DBA_
REPEXTENSIONS data dictionary views.
20-94 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

SEND_OLD_VALUES Procedure
You have the option of sending old column values during propagation of deferred

transactions for each nonkey column of a replicated table when rows are updated or

deleted in the table. When min_communication is set to true , the default is the

following:

■ For a deleted row, to send old values for all columns

■ For an updated row, to send old values for key columns and the modified

columns in a column group

You can change this behavior at all master sites and materialized view sites by

invoking DBMS_REPCAT.SEND_OLD_VALUES at the master definition site. Then,

generate replication support at all master sites and at each materialized view site.

When you use user-defined types, you can specify the leaf attributes of a column

object, or an entire column object. For example, if a column object named cust_
address has street_address as an attribute, then you can specify cust_
address.street_address for the column_list parameter or as part of the

column_table parameter, or you can specify only cust_address .

Syntax
DBMS_REPCAT.SEND_OLD_VALUES(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2,
 | column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
 operation IN VARCHAR2 := 'UPDATE',
 send IN BOOLEAN := true);

Table 20–123 RESUME_PROPAGATION_TO_MDEF Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

extstinapp Extension status is inappropriate. The extension status should be
EXPORTING when you run this procedure. To check the extension
status, query the DBA_REPEXTENSIONS data dictionary view.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.
DBMS_REPCAT 20-95

SEND_OLD_VALUES Procedure
Parameters

Note: This procedure is overloaded. The column_list and

column_table parameters are mutually exclusive.

Table 20–124 SEND_OLD_VALUES Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the replicated table. The table can be the storage table of
a nested table.

column_list A comma-delimited list of the columns in the table. There must be
no spaces between entries.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_REPCAT.VARCHAR2 or DBMS_UTILITY.LNAME_ARRAY to
contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater
than or equal to 30 bytes, which may occur when you specify the
attributes of column objects.

operation Possible values are: update , delete , or the asterisk wildcard ' *' ,
which means update and delete.

send If true , then the old values of the specified columns are sent. If
false , then the old values of the specified columns are not sent.
Unspecified columns and unspecified operations are not affected.

The specified change takes effect at the master definition site as
soon as min_communication is true for the table. The change
takes effect at a master site or at a materialized view site the next
time replication support is generated at that site with min_
communication true .
20-96 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

SET_COLUMNS Procedure
This procedure enables you to use an alternate column or group of columns, instead

of the primary key, to determine which columns of a table to compare when using

row-level replication. You must call this procedure from the master definition site.

When you use column objects, if an attribute of a column object can be used as a

primary key or part of a primary key, then the attribute can be part of an alternate

key column. For example, if a column object named cust_address has street_
address as a VARCHAR2 attribute, then you can specify cust_address.street_

Note: The operation parameter enables you to specify whether

or not to transmit old values for nonkey columns when rows are

deleted or updated. If you do not send the old value, then Oracle

sends a NULL in place of the old value and assumes the old value is

equal to the current value of the column at the target side when the

update or delete is applied.

See Oracle9i Replication for information about reduced data

propagation using the SEND_OLD_VALUES procedure before

changing the default behavior of Oracle.

Table 20–125 SEND_OLD_VALUES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Master group has not been quiesced.

typefailure An illegal operation is specified.

keysendcomp A specified column is a key column in a table.

dbnotcompatible Feature is incompatible with database version. Typically, this
exception arises when you are trying to send the attributes of
column objects. In this case, all databases must be at 9.0.1 or
higher compatibility level.
DBMS_REPCAT 20-97

SET_COLUMNS Procedure
address for the column_list parameter or as part of the column_table
parameter. However, the entire column object, cust_address , cannot be specified.

For the storage table of a nested table column, this procedure accepts the NESTED_
TABLE_ID as an alternate key column.

When you use object tables, you cannot specify alternate key columns. If the object

identifier (OID) is system-generated for an object table, then Oracle uses the OID

column in the object table as the key for the object table. If the OID is user-defined

for an object table, then Oracle uses the primary key in the object table as the key.

The following types of columns cannot be alternate key columns:

■ LOB or LOB attribute of a column object

■ Collection or collection attribute of a column object

■ REF

■ An entire column object

Syntax
DBMS_REPCAT.SET_COLUMNS (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2
 | column_table IN DBMS_UTILITY.NAME_ARRAY | DBMS_UTILITY.LNAME_ARRAY });

See Also: The constraint_clause in Oracle9i SQL Reference for more

information about restrictions on primary key columns

Note: This procedure is overloaded. The column_list and

column_table parameters are mutually exclusive.
20-98 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

SPECIFY_NEW_MASTERS Procedure
This procedure specifies the master sites you intend to add to an existing replication

group without quiescing the group. This procedure must be run at the master

definition site of the specified master group.

If necessary, this procedure creates an extension_id that tracks the process of

adding new master sites to a master group. You use this extension_id in the

other procedures that you run at various stages in the process. You can view

information about the extension_id in the DBA_REPSITES_NEW and DBA_
REPEXTENSIONS data dictionary views.

Table 20–126 SET_COLUMNS Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the table.

column_list A comma-delimited list of the columns in the table that you want
to use as a primary key. There must be no spaces between entries.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_UTILITY.NAME_ARRAY or DBMS_UTILITY.LNAME_ARRAY
to contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater
than or equal to 30 bytes, which may occur when you specify the
attributes of column objects.

Table 20–127 SET_COLUMNS Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Replication group is not quiescing or quiesced.
DBMS_REPCAT 20-99

SPECIFY_NEW_MASTERS Procedure
This procedure adds the new master sites to the DBA_REPSITES_NEW data

dictionary view for the specified replication group. This procedure can be run any

number of times for a given replication group. If it is run more than once, then it

replaces any masters in the local DBA_REPSITES_NEW data dictionary view for the

specified replication group with the masters specified in the master_
list /master_table parameters.

You must run this procedure before you run the ADD_NEW_MASTERSprocedure. No

new master sites are added to the master group until you run the ADD_NEW_
MASTERS procedure.

Syntax
DBMS_REPCAT.SPECIFY_NEW_MASTERS (
 gname IN VARCHAR2,
 { master_list IN VARCHAR2

| master_table IN DBMS_UTILITY.DBLINK_ARRAY});

See Also:

■ "ADD_NEW_MASTERS Procedure" on page 20-9

■ "Adding New Master Sites" on page 7-4 for more information

about adding master sites to a master group

Note: This procedure is overloaded. The master_list and

master_table parameters are mutually exclusive.
20-100 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

Table 20–128 SPECIFY_NEW_MASTERS Procedure Parameters

Parameter Description

gname Master group to which you are adding new master sites.

master_list A comma-delimited list of new master sites that you want to add to the
master group. List only the new master sites, not the existing master sites.
Do not put any spaces between site names.

If master_list is NULL, all master sites for the given replication group
are removed from the DBA_REPSITES_NEWdata dictionary view. Specify
NULL to indicate that the master group is not being extended.

master_table A table that lists the new master sites that you want to add to the master
group. In the table, list only the new master sites, not the existing master
sites. The first master site should be at position 1, the second at position 2,
and so on.

If the table is empty, then all master sites for the specified replication
group are removed from the DBA_REPSITES_NEW data dictionary view.
Use an empty table to indicate that the master group is not being
extended.

Table 20–129 SPECIFY_NEW_MASTERS Procedure Exceptions

Exception Description

duplicaterepgroup A master site that you are attempting to add is already part of the
master group.

nonmasterdef Invocation site is not the master definition site.

propmodenotallowed Synchronous propagation mode not allowed for this operation.
Only asynchronous propagation mode is allowed.

extstinapp Extension request with status not allowed. There must either be no
extension_id for the master group or the extension_id
status must be READY. You can view the status for each
extension_id at a master site in the DBA_REPEXTENSIONSdata
dictionary view.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

notsamecq Master groups do not have the same connection qualifier.
DBMS_REPCAT 20-101

SUSPEND_MASTER_ACTIVITY Procedure
SUSPEND_MASTER_ACTIVITY Procedure
This procedure suspends replication activity for a master group. You use this

procedure to quiesce the master group. You must call this procedure from the

master definition site.

Syntax
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname IN VARCHAR2);

Parameters

Exceptions

SWITCH_MVIEW_MASTER Procedure
This procedure changes the master site of a materialized view group to another

master site. This procedure does a full refresh of the affected materialized views and

regenerates the triggers and their associated packages as needed. This procedure

does not push the queue to the old master site before changing master sites.

If min_communication is true for the materialized view and the new master site

is an Oracle7 master site, then regenerate replication support for the materialized

view with min_communication set to false .

If generate_80_compatible is false for the materialized view and the new

master site is a release lower than Oracle8i (Oracle7 or Oracle8), then regenerate

replication support for the materialized view with generate_80_compatible set

to true .

Table 20–130 SUSPEND_MASTER_ACTIVITY Procedure Parameters

Parameter Description

gname Name of the master group for which you want to suspend activity.

Table 20–131 SUSPEND_MASTER_ACTIVITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notnormal Master group is not in normal operation.

commfailure At least one master site is not accessible.
20-102 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
You can set both parameters for a materialized view in one call to DBMS_
REPCAT.GENERATE_MVIEW_SUPPORT.

Syntax
DBMS_REPCAT.SWITCH_MVIEW_MASTER (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Exceptions

Note: You cannot switch the master of materialized views that are

based on other materialized views (level 2 and greater materialized

views). Such a materialized view must be dropped and re-created if

you want to base it on a different master.

See Also: "GENERATE_MVIEW_SUPPORT Procedure" on

page 20-75

Table 20–132 SWITCH_MVIEW_MASTER Procedure Parameters

Parameter Description

gname Name of the materialized view group for which you want to
change the master site.

master Fully qualified database name of the new master site to use for the
materialized view group.

gowner Owner of the materialized view group.

Table 20–133 SWITCH_MVIEW_MASTER Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Specified database is not a master site.

commfailure Specified database is not accessible.

missingrepgroup Materialized view group does not exist.
DBMS_REPCAT 20-103

UNDO_ADD_NEW_MASTERS_REQUEST Procedure
UNDO_ADD_NEW_MASTERS_REQUEST Procedure
This procedure undoes all of the changes made by the SPECIFY_NEW_MASTERS
and ADD_NEW_MASTERS procedures for a specified extension_id .

This procedure is executed at one master site, which may be the master definition

site, and it only affects that master site. If you run this procedure at one master site

affected by the request, you must run it at all new and existing master sites affected

by the request. You can query the DBA_REPSITES_NEW data dictionary view to see

the new master sites affected by the extension_id . This data dictionary view also

lists the replication group name, and you must run this procedure at all existing

master sites in the replication group.

qrytoolong Materialized view definition query is greater 32 KB.

alreadymastered At the local site, there is another materialized view group with the
same group name mastered at the old master site.

Caution: This procedure is not normally called. Use this

procedure only if the adding new masters without quiesce

operation cannot proceed at one or more master sites. Run this

procedure after you have already run the SPECIFY_NEW_MASTERS
and ADD_NEW_MASTERS procedures, but before you have run the

RESUME_PROPAGATION_TO_MDEF and PREPARE_
INSTANTIATED_MASTER procedures.

Do not run this procedure after you have run either RESUME_
PROPAGATION_TO_MDEF or PREPARE_INSTANTIATED_MASTER
for a particular extension_id .

See Also:

■ "SPECIFY_NEW_MASTERS Procedure" on page 20-99

■ "ADD_NEW_MASTERS Procedure" on page 20-9

■ "RESUME_PROPAGATION_TO_MDEF Procedure" on

page 20-94

■ "PREPARE_INSTANTIATED_MASTER Procedure" on

page 20-81

Table 20–133 SWITCH_MVIEW_MASTER Procedure Exceptions (Cont.)

Exception Description
20-104 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.UNDO_ADD_NEW_MASTERS_REQUEST (
 extension_id IN RAW,
 drop_contents IN BOOLEAN := TRUE);

Parameters

Exceptions

UNREGISTER_MVIEW_REPGROUP Procedure
This procedure facilitates the administration of materialized views at their

respective master sites or master materialized view sites by deleting a materialized

view group from DBA_REGISTERED_MVIEW_GROUPS. Run this procedure at the

master site or master materialized view site.

Syntax
DBMS_REPCAT.UNREGISTER_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 mviewsite IN VARCHAR2,
 gowner IN VARCHAR2 := 'PUBLIC');

Table 20–134 UNDO_ADD_NEW_MASTERS_REQUEST Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW and DBA_
REPEXTENSIONS data dictionary views.

drop_contents Specify true , the default, to drop the contents of objects in new
replication groups being extended at the local site. Specify false
to retain the contents.

Table 20–135 UNDO_ADD_NEW_MASTERS_REQUEST Procedure Exceptions

Exception Description

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

typefail A parameter value that you specified is not appropriate.
DBMS_REPCAT 20-105

VALIDATE Function
Parameters

VALIDATE Function
This function validates the correctness of key conditions of a multimaster

replication environment.

Syntax
DBMS_REPCAT.VALIDATE (
 gname IN VARCHAR2,
 check_genflags IN BOOLEAN := false,
 check_valid_objs IN BOOLEAN := false,
 check_links_sched IN BOOLEAN := false,
 check_links IN BOOLEAN := false,
 error_table OUT DBMS_REPCAT.VALIDATE_ERR_TABLE)
 RETURN BINARY_INTEGER;

DBMS_REPCAT.VALIDATE (
 gname IN VARCHAR2,
 check_genflags IN BOOLEAN := false,
 check_valid_objs IN BOOLEAN := false,
 check_links_sched IN BOOLEAN := false,
 check_links IN BOOLEAN := false,
 error_msg_table OUT DBMS_UTILITY.UNCL_ARRAY,
 error_num_table OUT DBMS_UTILITY.NUMBER_ARRAY)
 RETURN BINARY_INTEGER;

Table 20–136 UNREGISTER_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the materialized view group to be unregistered.

mviewsite Global name of the materialized view site.

gowner Owner of the materialized view group.
20-106 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Note: This function is overloaded. The return value of VALIDATE
is the number of errors found. The function’s OUT parameter

returns any errors that are found. In the first interface function

shown under "Syntax" on page 20-106, the error_table consists

of an array of records. Each record has a VARCHAR2 and a NUMBER
in it. The string field contains the error message, and the number

field contains the Oracle error number.

The second interface function shown under "Syntax" on

page 20-106 is similar except that there are two OUT arrays: a

VARCHAR2 array with the error messages and a NUMBER array with

the error numbers.

Table 20–137 VALIDATE Function Parameters

Parameter Description

gname Name of the master group to validate.

check_genflags Check whether all the objects in the group are generated. This
must be done at the master definition site only.

check_valid_objs Check that the underlying objects for objects in the group valid.
This must be done at the master definition site only. The master
definition site goes to all other sites and checks that the underlying
objects are valid. The validity of the objects is checked within the
schema of the connected user.

check_links_sched Check whether the links are scheduled for execution. This should
be invoked at each master site.

check_links Check whether the connected user (repadmin), as well as the
propagator, have correct links for replication to work properly.
Checks that the links exist in the database and are accessible. This
should be invoked at each master site.

error_table Returns the messages and numbers of all errors that are found.

error_msg_table Returns the messages of all errors that are found.

error_num_table Returns the numbers of all errors that are found.
DBMS_REPCAT 20-107

WAIT_MASTER_LOG Procedure
Exceptions

Usage Notes
The return value of VALIDATE is the number of errors found. The function’s OUT
parameter returns any errors that are found. In the first interface function, the

error_table consists of an array of records. Each record has a VARCHAR2 and a

NUMBER in it. The string field contains the error message and the number field

contains the Oracle error number.

The second interface is similar except that there are two OUT arrays. A VARCHAR2
array with the error messages and a NUMBER array with the error numbers.

WAIT_MASTER_LOG Procedure
This procedure determines whether changes that were asynchronously propagated

to a master site have been applied.

Table 20–138 VALIDATE Function Exceptions

Exception Description

missingdblink Database link does not exist in the schema of the replication
propagator or has not been scheduled. Ensure that the database
link exists in the database, is accessible, and is scheduled for
execution.

dblinkmismatch Database link name at the local node does not match the global
name of the database that the link accesses. Ensure that the
GLOBAL_NAMES initialization parameter is set to true and the
link name matches the global name.

dblinkuidmismatch User name of the replication administration user at the local node
and the user name at the node corresponding to the database link
are not the same. Advanced Replication expects the two users to
be the same. Ensure that the user identification of the replication
administration user at the local node and the user identification at
the node corresponding to the database link are the same.

objectnotgenerated Object has not been generated at other master sites or is still being
generated. Ensure that the object is generated by calling
GENERATE_REPLICATION_SUPPORT and DO_DEFERRED_
REPCAT_ADMIN for the object at the master definition site.

opnotsupported Operation is not supported if the replication group is replicated at
a pre-Oracle8 node. Ensure that all nodes of the master group are
running Oracle8 and higher.
20-108 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.WAIT_MASTER_LOG (
 gname IN VARCHAR2,
 record_count IN NATURAL,
 timeout IN NATURAL,
 true_count OUT NATURAL);

Parameters

Exceptions

Table 20–139 WAIT_MASTER_LOG Procedure Parameters

Parameter Description

gname Name of the master group.

record_count Procedure returns whenever the number of incomplete activities is
at or below this threshold.

timeout Maximum number of seconds to wait before the procedure
returns.

true_count
(out parameter)

Returns the number of incomplete activities.

Table 20–140 WAIT_MASTER_LOG Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.
DBMS_REPCAT 20-109

WAIT_MASTER_LOG Procedure
20-110 Oracle9i Replication Management API Reference

DBMS_REPCAT_
21

DBMS_REPCAT_ADMIN

DBMS_REPCAT_ADMIN enables you to create users with the privileges needed by

the symmetric replication facility.

This chapter discusses the following topics:

■ Summary of DBMS_REPCAT_ADMIN Subprograms
ADMIN 21-1

Summary of DBMS_REPCAT_ADMIN Subprograms
Summary of DBMS_REPCAT_ADMIN Subprograms

Table 21–1 DBMS_REPCAT_ADMIN Package Subprograms

Subprogram Description

"GRANT_ADMIN_ANY_
SCHEMA Procedure" on
page 21-3

Grants the necessary privileges to the replication
administrator to administer any replication group at the
current site.

"GRANT_ADMIN_SCHEMA
Procedure" on page 21-3

Grants the necessary privileges to the replication
administrator to administer a schema at the current site.

"REGISTER_USER_
REPGROUP Procedure" on
page 4

Assigns proxy materialized view administrator or receiver
privileges at the master site or master materialized view site
for use with remote sites.

"REVOKE_ADMIN_ANY_
SCHEMA Procedure" on
page 21-6

Revokes the privileges and roles from the replication
administrator that were granted by GRANT_ADMIN_ANY_
SCHEMA.

"REVOKE_ADMIN_
SCHEMA Procedure" on
page 21-6

Revokes the privileges and roles from the replication
administrator that were granted by GRANT_ADMIN_
SCHEMA.

"UNREGISTER_USER_
REPGROUP Procedure" on
page 21-7

Revokes the privileges and roles from the proxy
materialized view administrator or receiver that were
granted by the REGISTER_USER_REPGROUP procedure.
21-2 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_ADMIN Subprograms
GRANT_ADMIN_ANY_SCHEMA Procedure
This procedure grants the necessary privileges to the replication administrator to

administer any replication groups at the current site.

Syntax
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
 username IN VARCHAR2);

Parameters

Exceptions

GRANT_ADMIN_SCHEMA Procedure
This procedure grants the necessary privileges to the replication administrator to

administer a schema at the current site. This procedure is most useful if your

replication group does not span schemas.

Syntax
DBMS_REPCAT_ADMIN.GRANT_ADMIN_SCHEMA (
 username IN VARCHAR2);

Table 21–2 GRANT_ADMIN_ANY_SCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator to whom you want to grant
the necessary privileges and roles to administer any replication
groups at the current site.

Table 21–3 GRANT_ADMIN_ANY_REPGROUP Procedure Exceptions

Exception Description

ORA-01917 User does not exist.
DBMS_REPCAT_ADMIN 21-3

REGISTER_USER_REPGROUP Procedure
Parameters

Exceptions

REGISTER_USER_REPGROUP Procedure
This procedure assigns proxy materialized view administrator or receiver privileges

at the master site or master materialized view site for use with remote sites. This

procedure grants only the necessary privileges to the proxy materialized view

administrator or receiver. It does not grant the powerful privileges granted by the

GRANT_ADMIN_SCHEMA or GRANT_ADMIN_ANY_SCHEMA procedures.

Syntax
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
 username IN VARCHAR2,
 privilege_type IN VARCHAR2,
 {list_of_gnames IN VARCHAR2 |
 table_of_gnames IN DBMS_UTILITY.NAME_ARRAY)};

Table 21–4 GRANT_ADMIN_REPSCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator. This user is then granted
the necessary privileges and roles to administer the schema of the
same name within a replication group at the current site.

Table 21–5 GRANT_ADMIN_REPSCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

See Also: Appendix A, "Security Options" for more information

about trusted versus untrusted security models

Note: This procedure is overloaded. The list_of_gnames and

table_of_gnames parameters are mutually exclusive.
21-4 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_ADMIN Subprograms
Parameters

Exceptions

Table 21–6 REGISTER_USER_REPGROUP Procedure Parameters

Parameter Description

username Name of the user to whom you are giving either proxy
materialized view administrator or receiver privileges.

privilege_type Specifies the privilege type you are assigning. Use the following
values for to define your privilege_type :

■ receiver for receiver privileges

■ proxy_snapadmin for proxy materialized view
administration privileges

list_of_gnames Comma-separated list of replication groups you want a user
registered for receiver privileges. There must be no spaces
between entries in the list. If you set list_of_gnames to NULL,
then the user is registered for all replication groups, even
replication groups that are not yet known when this procedure is
called. You must use named notation in order to set list_of_
gnames to NULL. An invalid replication group in the list causes
registration to fail for the entire list.

table_of_gnames PL/SQL index-by table of replication groups you want a user
registered for receiver privileges. The PL/SQL index-by table
must be of type DBMS_UTILITY.NAME_ARRAY. This table is
1-based (the positions start at 1 and increment by 1). Use the single
value NULL to register the user for all replication groups. An
invalid replication group in the table causes registration to fail for
the entire table.

Table 21–7 REGISTER_USER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Specified replication group does not exist or the invocation
database is not a master site or master materialized view site.

ORA-01917 User does not exist.

typefailure Incorrect privilege type was specified.
DBMS_REPCAT_ADMIN 21-5

REVOKE_ADMIN_ANY_SCHEMA Procedure
REVOKE_ADMIN_ANY_SCHEMA Procedure
This procedure revokes the privileges and roles from the replication administrator

that were granted by GRANT_ADMIN_ANY_SCHEMA.

Syntax
DBMS_REPCAT_ADMIN.REVOKE_ADMIN_ANY_SCHEMA (
 username IN VARCHAR2);

Parameters

Exceptions

REVOKE_ADMIN_SCHEMA Procedure
This procedure revokes the privileges and roles from the replication administrator

that were granted by GRANT_ADMIN_SCHEMA.

Syntax
DBMS_REPCAT_ADMIN.REVOKE_ADMIN_SCHEMA (
 username IN VARCHAR2);

Note: Identical privileges and roles that were granted

independently of GRANT_ADMIN_ANY_SCHEMA are also revoked.

Table 21–8 REVOKE_ADMIN_ANY_SCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator whose privileges you want
to revoke.

Table 21–9 REVOKE_ADMIN_ANY_SCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

Note: Identical privileges and roles that were granted

independently of GRANT_ADMIN_SCHEMA are also revoked.
21-6 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_ADMIN Subprograms
Parameters

Exceptions

UNREGISTER_USER_REPGROUP Procedure
This procedure revokes the privileges and roles from the proxy materialized view

administrator or receiver that were granted by the REGISTER_USER_REPGROUP
procedure.

Syntax
DBMS_REPCAT_ADMIN.UNREGISTER_USER_REPGROUP (
 username IN VARCHAR2,
 privilege_type IN VARCHAR2,
 {list_of_gnames IN VARCHAR2 |
 table_of_gnames IN DBMS_UTILITY.NAME_ARRAY)};

Parameters

Table 21–10 REVOKE_ADMIN_SCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator whose privileges you want
to revoke.

Table 21–11 REVOKE_ADMIN_SCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

Note: This procedure is overloaded. The list_of_gnames and

table_of_gnames parameters are mutually exclusive.

Table 21–12 UNREGISTER_USER_REPGROUP Procedure Parameters

Parameter Description

username Name of the user you are unregistering.
DBMS_REPCAT_ADMIN 21-7

UNREGISTER_USER_REPGROUP Procedure
Exceptions

privilege_type Specifies the privilege type you are revoking. Use the following
values for to define your privilege_type :

■ receiver for receiver privileges

■ proxy_snapadmin for proxy materialized view
administration privileges

list_of_gnames Comma-separated list of replication groups you want a user
unregistered for receiver privileges. There must be no spaces
between entries in the list. If you set list_of_gnames to NULL,
then the user is unregistered for all replication groups registered.
You must use named notation in order to set list_of_gnames to
NULL. An invalid replication group in the list causes
unregistration to fail for the entire list.

table_of_gnames PL/SQL index-by table of replication groups you want a user
unregistered for receiver privileges. The PL/SQL index-by table
must be of type DBMS_UTILITY.NAME_ARRAY. This table is
1-based (the positions start at 1 and increment by 1). Use the single
value NULL to unregister the user for all replication groups
registered. An invalid replication group in the table causes
unregistration to fail for the entire table.

Table 21–13 UNREGISTER_USER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Specified replication group does not exist or the invocation
database is not a master site or master materialized view site.

ORA-01917 User does not exist.

typefailure Incorrect privilege type was specified.

Table 21–12 UNREGISTER_USER_REPGROUP Procedure Parameters (Cont.)

Parameter Description
21-8 Oracle9i Replication Management API Reference

DBMS_REPCAT_INSTAN
22

DBMS_REPCAT_INSTANTIATE

DBMS_REPCAT_INSTANTIATE package instantiates deployment templates.

This chapter discusses the following topics:

■ Summary of DBMS_REPCAT_INSTANTIATE Subprograms
TIATE 22-1

Summary of DBMS_REPCAT_INSTANTIATE Subprograms
Summary of DBMS_REPCAT_INSTANTIATE Subprograms

Table 22–1 DBMS_REPCAT_INSTANTIATE Package Subprograms

Subprogram Description

DROP_SITE_INSTANTIATION
Procedure on page 22-3

Public procedure that removes the target site from the DBA_
REPCAT_TEMPLATE_SITES view.

INSTANTIATE_OFFLINE
Function on page 22-3

Public function that generates a script at the master site that
is used to create the materialized view environment at the
remote materialized view site while offline.

INSTANTIATE_ONLINE
Function on page 22-6

Public function that generates a script at the master site that
is used to create the materialized view environment at the
remote materialized view site while online.
22-2 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_INSTANTIATE Subprograms
DROP_SITE_INSTANTIATION Procedure
This procedure drops a template instantiation at a target site. This procedure

removes all related metadata at the master site and disables the specified site from

refreshing its materialized views. You must execute this procedure as the user who

originally instantiated the template. To see who instantiated the template, query the

ALL_REPCAT_TEMPLATE_SITES view.

Syntax
DBMS_REPCAT_INSTANTIATE.DROP_SITE_INSTANTIATION(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2);

INSTANTIATE_OFFLINE Function
This function generates a file at the master site that is used to create the materialized

view environment at the remote materialized view site while offline. This generated

file is an offline instantiation file and should be used at remote materialized view

sites that are not able to remain connected to the master site for an extended

amount of time.

This is an ideal solution when the remote materialized view site is a laptop. Use the

packaging interface in the Replication Management tool to package the generated

file and data into a single file that can be posted on an FTP site or loaded to a

CD-ROM, floppy disk, and so on.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including the Replication

Management tool, during the distribution of deployment templates. The number

returned by this function is used to retrieve the appropriate information from the

USER_REPCAT_TEMP_OUTPUT view.

The user who executes this public function becomes the "registered" user of the

instantiated template at the specified site.

Table 22–2 DROP_SITE_INSTANTIATION Procedure Parameters

Parameter Description

refresh_template_name The name of the deployment template to be dropped.

site_name Identifies the master site where you want to drop the specified
template instantiation.
DBMS_REPCAT_INSTANTIATE 22-3

INSTANTIATE_OFFLINE Function
Syntax
DBMS_REPCAT_INSTANTIATE.INSTANTIATE_OFFLINE(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2,
 runtime_parm_id IN NUMBER := -1e-130,
 next_date IN DATE := SYSDATE,
 interval IN VARCHAR2 := 'SYSDATE + 1',
 use_default_gowner IN BOOLEAN := true)
 return NUMBER;

Note: This function is used in performing an offline instantiation

of a deployment template.

This function should not be confused with the procedures in the

DBMS_OFFLINE_OG package (used for performing an offline

instantiation of a master table) or with the procedures in the DBMS_
OFFLINE_SNAPSHOT package (used for performing an offline

instantiation of a materialized view). See these respective packages

for more information on their usage.

See Also:

■ "Packaging a Deployment Template for Instantiation" on

page 4-12

■ Oracle9i Replication

■ The Replication Management tool’s online help
22-4 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_INSTANTIATE Subprograms
Exceptions

Returns

Table 22–3 INSTANTIATE_OFFLINE Function Parameters

Parameter Description

refresh_template_name The name of the deployment template to be instantiated.

site_name The name of the remote site that is instantiating the deployment
template.

runtime_parm_id If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMS procedure, specify the identification
used when creating the runtime parameters (the identification
was retrieved by using the GET_RUNTIME_PARM_ID function).

next_date The next refresh date value to be used when creating the refresh
group.

interval The refresh interval to be used when creating the refresh group.

use_default_gowner If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.

Table 22–4 INSTANTIATE_OFFLINE Function Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

dupl_template_site The deployment template has already been instantiated at the
materialized view site. A deployment template can be
instantiated only once at a particular materialized view site.

not_authorized The user attempting to instantiate the deployment template is
not authorized to do so.

Table 22–5 INSTANTIATE_OFFLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the generated system number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUT view to
retrieve the generated instantiation script.
DBMS_REPCAT_INSTANTIATE 22-5

INSTANTIATE_ONLINE Function
INSTANTIATE_ONLINE Function
This function generates a script at the master site that is used to create the

materialized view environment at the remote materialized view site while online.

This generated script should be used at remote materialized view sites that are able

to remain connected to the master site for an extended amount of time, as the

instantiation process at the remote materialized view site may be lengthy

(depending on the amount of data that is populated to the new materialized views).

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including the Replication

Management tool, during the distribution of deployment templates. The number

returned by this function is used to retrieve the appropriate information from the

USER_REPCAT_TEMP_OUTPUT view.

The user who executes this public function becomes the "registered" user of the

instantiated template at the specified site.

Syntax
DBMS_REPCAT_INSTANTIATE.INSTANTIATE_ONLINE(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2,
 runtime_parm_id IN NUMBER := -1e-130,
 next_date IN DATE := SYSDATE,
 interval IN VARCHAR2 := 'SYSDATE + 1',
 use_default_gowner IN BOOLEAN := true)
 return NUMBER;

See Also:

■ "Packaging a Deployment Template for Instantiation" on

page 4-12

■ Oracle9i Replication

■ The Replication Management tool’s online help
22-6 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_INSTANTIATE Subprograms
Exceptions

Table 22–6 INSTANTIATE_ONLINE Function Parameters

Parameter Description

refresh_template_name The name of the deployment template to be instantiated.

site_name The name of the remote site that is instantiating the deployment
template.

runtime_parm_id If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMS procedure, specify the identification
used when creating the runtime parameters (the identification
was retrieved by using the GET_RUNTIME_PARM_ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.

Table 22–7 INSTANTIATE_ONLINE Function Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

dupl_template_site The deployment template has already been instantiated at the
materialized view site. A deployment template can be
instantiated only once at a particular materialized view site.

not_authorized The user attempting to instantiate the deployment template is
not authorized to do so.
DBMS_REPCAT_INSTANTIATE 22-7

INSTANTIATE_ONLINE Function
Returns

Table 22–8 INSTANTIATE_ONLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the generated system number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUT view to
retrieve the generated instantiation script.
22-8 Oracle9i Replication Management API Reference

DBMS_REPCA
23

DBMS_REPCAT_RGT

DBMS_REPCAT_RGT controls the maintenance and definition of refresh group

templates.

This chapter discusses the following topics:

■ Summary of DBMS_REPCAT_RGT Subprograms
T_RGT 23-1

Summary of DBMS_REPCAT_RGT Subprograms
Summary of DBMS_REPCAT_RGT Subprograms

Table 23–1 DBMS_REPCAT_RGT Package Subprograms

Subprogram Description

"ALTER_REFRESH_TEMPLATE
Procedure" on page 23-5

Allows the DBA to alter existing deployment templates.

"ALTER_TEMPLATE_OBJECT
Procedure" on page 23-7

Alters objects that have been added to a specified
deployment template.

"ALTER_TEMPLATE_PARM
Procedure" on page 23-10

Allows the DBA to alter the parameters for a specific
deployment template.

"ALTER_USER_
AUTHORIZATION Procedure"
on page 23-11

Alters the contents of the DBA_REPCAT_USER_
AUTHORIZATIONS view.

"ALTER_USER_PARM_VALUE
Procedure" on page 23-13

Changes existing parameter values that have been
defined for a specific user.

"COMPARE_TEMPLATES
Function" on page 23-15

Allows the DBA to compare the contents of two
deployment templates.

"COPY_TEMPLATE Function"
on page 23-16

Allows the DBA to copy a deployment template.

"CREATE_OBJECT_FROM_
EXISTING Function" on
page 23-19

Creates a template object definition from existing
database objects and adds it to a target deployment
template.

"CREATE_REFRESH_
TEMPLATE Function" on
page 23-21

Creates the deployment template, which allows the DBA
to define the template name, private/public status, and
target refresh group.

"CREATE_TEMPLATE_OBJECT
Function" on page 23-23

Adds object definitions to a target deployment template
container.

"CREATE_TEMPLATE_PARM
Function" on page 23-26

Creates parameters for a specific deployment template to
allow custom data sets to be created at the remote
materialized view site.

"CREATE_USER_
AUTHORIZATION Function" on
page 23-28

Authorizes specific users to instantiate private
deployment templates.

"CREATE_USER_PARM_VALUE
Function" on page 23-29

Predefines deployment template parameter values for
specific users.

"DELETE_RUNTIME_PARMS
Procedure" on page 23-31

Deletes a runtime parameter value that you defined
using the INSERT_RUNTIME_PARMS procedure.
23-2 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
"DROP_ALL_OBJECTS
Procedure" on page 23-32

Allows the DBA to drop all objects or specific object
types from a deployment template.

"DROP_ALL_TEMPLATE_
PARMS Procedure" on
page 23-33

Allows the DBA to drop template parameters for a
specified deployment template.

"DROP_ALL_TEMPLATE_SITES
Procedure" on page 23-34

Removes all entries from the DBA_REPCAT_TEMPLATE_
SITES view.

"DROP_ALL_TEMPLATES
Procedure" on page 23-35

Removes all deployment templates at the site where the
procedure is called.

"DROP_ALL_USER_
AUTHORIZATIONS Procedure"
on page 23-35

Allows the DBA to drop all user authorizations for a
specified deployment template.

"DROP_ALL_USER_PARM_
VALUES Procedure" on
page 23-36

Drops user parameter values for a specific deployment
template.

"DROP_REFRESH_TEMPLATE
Procedure" on page 23-37

Drops a deployment template.

"DROP_SITE_INSTANTIATION
Procedure" on page 23-38

Removes the target site from the DBA_REPCAT_
TEMPLATE_SITES view.

"DROP_TEMPLATE_OBJECT
Procedure" on page 23-39

Removes a template object from a specific deployment
template.

"DROP_TEMPLATE_PARM
Procedure" on page 23-40

Removes an existing template parameter from the DBA_
REPCAT_TEMPLATE_PARMS view.

DROP_USER_
AUTHORIZATION Procedure
on page 23-41

Removes a user authorization entry from the DBA_
REPCAT_USER_AUTHORIZATIONS view.

"DROP_USER_PARM_VALUE
Procedure" on page 23-42

Removes a predefined user parameter value for a specific
deployment template.

"GET_RUNTIME_PARM_ID
Function" on page 23-43

Retrieves an identification to be used when defining a
runtime parameter value.

"INSERT_RUNTIME_PARMS
Procedure" on page 23-43

Defines runtime parameter values prior to instantiating a
template.

"INSTANTIATE_OFFLINE
Function" on page 23-45

Generates a script at the master site that is used to create
the materialized view environment at the remote
materialized view site while offline.

Table 23–1 DBMS_REPCAT_RGT Package Subprograms (Cont.)

Subprogram Description
DBMS_REPCAT_RGT 23-3

Summary of DBMS_REPCAT_RGT Subprograms
"INSTANTIATE_ONLINE
Function" on page 23-48

Generates a script at the master site that is used to create
the materialized view environment at the remote
materialized view site while online.

"LOCK_TEMPLATE_
EXCLUSIVE Procedure" on
page 50

Prevents users from reading or instantiating the template
when a deployment template is being updated or
modified.

"LOCK_TEMPLATE_SHARED
Procedure" on page 23-51

Makes a specified deployment template read-only.

Table 23–1 DBMS_REPCAT_RGT Package Subprograms (Cont.)

Subprogram Description
23-4 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
ALTER_REFRESH_TEMPLATE Procedure
This procedure allows the DBA to alter existing deployment templates. Alterations

may include defining a new deployment template name, a new refresh group, or a

new owner and changing the public/private status.

Syntax
DBMS_REPCAT_RGT.ALTER_REFRESH_TEMPLATE (
 refresh_template_name IN VARCHAR2,
 new_owner IN VARCHAR2 := '-',
 new_refresh_group_name IN VARCHAR2 := '-',
 new_refresh_template_name IN VARCHAR2 := '-',
 new_template_comment IN VARCHAR2 := '-',
 new_public_template IN VARCHAR2 := '-',
 new_last_modified IN DATE := to_date('1', 'J'),
 new_modified_by IN NUMBER := -1e-130);
DBMS_REPCAT_RGT 23-5

ALTER_REFRESH_TEMPLATE Procedure
Parameters

Exceptions

Table 23–2 ALTER_REFRESH_TEMPLATE Procedure Parameters

Parameter Description

refresh_template_name The name of the deployment template that you want to
alter.

new_owner The name of the new deployment template owner. Do not
specify a value to keep the current owner.

new_refresh_group_name If necessary, use this parameter to specify a new refresh
group name to which the template objects will be added. Do
not specify a value to keep the current refresh group.

new_refresh_template_name Use this parameter to specify a new deployment template
name. Do not specify a value to keep the current
deployment template name.

new_template_comment New deployment template comments. Do not specify a
value to keep the current template comment.

new_public_template Determines whether the deployment template is public or
private. Only acceptable values are 'Y' and 'N' ('Y' =
public and 'N' = private). Do not specify a value to keep
the current value.

new_last_modified Contains the date of the last modification made to this
deployment template. If a value is not specified, then the
current date is automatically used.

new_modified_by Contains the name of the user who last modified this
deployment template. If a value is not specified, then the
current user is automatically used.

Table 23–3 ALTER_REFRESH_TEMPLATE Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

bad_public_template The public_template parameter is specified incorrectly. The
public_template parameter must be specified as a 'Y' for a
public template or an 'N' for a private template.

dupl_refresh_template A template with the specified name already exists. See the ALL_
REPCAT_REFRESH_TEMPLATES view.
23-6 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
ALTER_TEMPLATE_OBJECT Procedure
This procedure alters objects that have been added to a specified deployment

template. The most common changes are altering the object DDL and assigning the

object to a different deployment template.

Changes made to the template are reflected only at new sites instantiating the

deployment template. Remote sites that have already instantiated the template

must re-instantiate the deployment template to apply the changes.

Syntax
DBMS_REPCAT_RGT.ALTER_TEMPLATE_OBJECT (
 refresh_template_name IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 new_refresh_template_name IN VARCHAR2 := '-',
 new_object_name IN VARCHAR2 := '-',
 new_object_type IN VARCHAR2 := '-',
 new_ddl_text IN CLOB := '-',
 new_master_rollback_seg IN VARCHAR2 := '-',
 new_flavor_id IN NUMBER := -1e-130);
DBMS_REPCAT_RGT 23-7

ALTER_TEMPLATE_OBJECT Procedure
Parameters

Table 23–4 ALTER_TEMPLATE_OBJECT Procedure Parameters

Parameter Description

refresh_template_name Deployment template name that contains the object that you
want to alter.

object_name Name of the template object that you want to alter.

object_type Type of object that you want to alter.

new_refresh_template_name Name of the new deployment template to which you want
to reassign this object. Do not specify a value to keep the
object assigned to the current deployment template.

new_object_name New name of the template object. Do not specify a value to
keep the current object name.

new_object_type If specified, then the new object type. Objects of the
following type may be specified:

SNAPSHOT PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

new_ddl_text New object DDL for specified object. Do not specify any
new DDL text to keep the current object DDL.

new_master_rollback_seg New master rollback segment for specified object. Do not
specify a value to keep the current rollback segment.

new_flavor_id This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.
23-8 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Exceptions

Usage Notes
Because the ALTER_TEMPLATE_OBJECT procedure utilizes a CLOB, you must use

the DBMS_LOBpackage when using the ALTER_TEMPLATE_OBJECTprocedure. The

following example illustrates how to use the DBMS_LOB package with the ALTER_
TEMPLATE_OBJECT procedure:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'CREATE MATERIALIZED VIEW mview_sales AS SELECT *
 FROM sales WHERE salesperson = :salesid and region_id = :region';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 DBMS_REPCAT_RGT.ALTER_TEMPLATE_OBJECT(
 refresh_template_name => 'rgt_personnel',
 object_name => 'MVIEW_SALES',
 object_type => 'SNAPSHOT',
 new_ddl_text => templob);
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

Table 23–5 ALTER_TEMPLATE_OBJECT Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

miss_flavor_id If you receive this exception, contact Oracle Support Services.

bad_object_type Object type is specified incorrectly. See Table 23–4 for a list of
valid object types.

miss_template_object Template object name specified is invalid or does not exist.

dupl_template_object New template name specified in the new_refresh_
template_name parameter already exists.
DBMS_REPCAT_RGT 23-9

ALTER_TEMPLATE_PARM Procedure
ALTER_TEMPLATE_PARM Procedure
This procedure allows the DBA to alter the parameters for a specific deployment

template. Alterations include renaming the parameter and redefining the default

value and prompt string.

Syntax
DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM (
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 new_refresh_template_name IN VARCHAR2 := '-',
 new_parameter_name IN VARCHAR2 := '-',
 new_default_parm_value IN CLOB := NULL,
 new_prompt_string IN VARCHAR2 := '-',
 new_user_override IN VARCHAR2 := '-');

Parameters

Table 23–6 ALTER_TEMPLATE_PARM Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the
parameter that you want to alter.

parameter_name Name of the parameter that you want to alter.

new_refresh_template_name Name of the deployment template that the specified
parameter should be reassigned to (useful when you want
to move a parameter from one template to another). Do not
specify a value to keep the parameter assigned to the
current template.

new_parameter_name New name of the template parameter. Do not specify a
value to keep the current parameter name.

new_default_parm_value New default value for the specified parameter. Do not
specify a value to keep the current default value.

new_prompt_string New prompt text for the specified parameter. Do not specify
a value to keep the current prompt string.

new_user_override Determines whether the user can override the default value
if prompted during the instantiation process. The user is
prompted if no user parameter value has been defined for
this parameter. Set this parameter to 'Y' to allow a user to
override the default value or set this parameter to 'N' to
prevent an override.
23-10 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Exceptions

Usage Notes
Because the ALTER_TEMPLATE_PARM procedure utilizes a CLOB, you must use the

DBMS_LOB package when using the ALTER_TEMPLATE_PARM procedure. The

following example illustrates how to use the DBMS_LOB package with the ALTER_
TEMPLATE_PARM procedure:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'REGION 20';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM(
 refresh_template_name => 'rgt_personnel',
 parameter_name => 'region',
 new_default_parm_value => templob);
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

ALTER_USER_AUTHORIZATION Procedure
This procedure alters the contents of the DBA_REPCAT_USER_AUTHORIZATIONS
view. Specifically, you can change user/deployment template authorization

assignments. This procedure is helpful, for example, if an employee is reassigned

and requires the materialized view environment of another deployment template.

The DBA simply assigns the employee the new deployment template and the user

is authorized to instantiate the target template.

Table 23–7 ALTER_TEMPLATE_PARM Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

miss_template_parm Template parameter specified is invalid or does not exist.

dupl_template_parm Combination of new_refresh_template_name and new_
parameter_name already exists.
DBMS_REPCAT_RGT 23-11

ALTER_USER_AUTHORIZATION Procedure
Syntax
DBMS_REPCAT_RGT.ALTER_USER_AUTHORIZATION (
 user_name IN VARCHAR2,
 refresh_template_name IN VARCHAR2,
 new_user_name IN VARCHAR2 := '-',
 new_refresh_template_name IN VARCHAR2 := '-');

Parameters

Exceptions

Table 23–8 ALTER_USER_AUTHORIZATION Procedure Parameters

Parameter Description

user_name Name of the user whose authorization you want to alter.

refresh_template_name Name of the deployment template that is currently assigned
to the specified user that you want to alter.

new_user_name Use this parameter to define a new user for this template
authorization. Do not specify a value to keep the current
user.

new_refresh_template_name The deployment template that the specified user (either the
existing or, if specified, the new user) is authorized to
instantiate. Do not specify a value to keep the current
deployment template.

Table 23–9 ALTER_USER_AUTHORIZATION Procedure Exceptions

Exception Description

miss_user_authorization The combination of user_name and refresh_template_
name values specified does not exist in the DBA_REPCAT_
USER_AUTHORIZATIONS view.

miss_user The user name specified for the new_user_name or user_
name parameter is invalid or does not exist.

miss_refresh_template The deployment template specified for the new_refresh_
template parameter is invalid or does not exist.

dupl_user_authorization A row already exists for the specified user name and
deployment template name. See the ALL_REPCAT_USER_
AUTHORIZATIONS view.
23-12 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
ALTER_USER_PARM_VALUE Procedure
This procedure changes existing parameter values that have been defined for a

specific user. This procedure is especially helpful if your materialized view

environment uses assignment tables. Change a user parameter value to quickly and

securely change the data set of a remote materialized view site.

Syntax
DBMS_REPCAT_RGT.ALTER_USER_PARM_VALUE(
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 user_name IN VARCHAR2,
 new_refresh_template_name IN VARCHAR2 := '-',
 new_parameter_name IN VARCHAR2 := '-',
 new_user_name IN VARCHAR2 := '-',
 new_parm_value IN CLOB := NULL);

See Also: Oracle9i Replication for more information on using

assignment tables
DBMS_REPCAT_RGT 23-13

ALTER_USER_PARM_VALUE Procedure
Parameters

Exceptions

Table 23–10 ALTER_USER_PARM_VALUE Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the user
parameter value that you want to alter.

parameter_name Name of the parameter that you want to alter.

user_name Name of the user whose parameter value you want to alter.

new_refresh_template_name Name of the deployment template that the specified user
parameter value should be reassigned to (useful when you
are authorizing a user for a different template). Do not
specify a value to keep the parameter assigned to the
current template.

new_parameter_name The new template parameter name. Do not specify a value
to keep the user value defined for the existing parameter.

new_user_name The new user name that this parameter value is for. Do not
specify a value to keep the parameter value assigned to the
current user.

new_parm_value The new parameter value for the specified user parameter.
Do not specify a value to keep the current parameter value.

Table 23–11 ALTER_USER_PARM_VALUE Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not
exist.

miss_template_parm Template parameter specified is invalid or does not exist.

miss_user User name specified for the user_name or new_user_
name parameters is invalid or does not exist.

miss_user_parm_values User parameter value specified does not exist.

dupl_user_parm_values New user parameter specified already exists.
23-14 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Usage Notes
Because the ALTER_USER_PARM_VALUE procedure utilizes a CLOB, you must use

the DBMS_LOBpackage when using the ALTER_USER_PARM_VALUEprocedure. The

following example illustrates how to use the DBMS_LOB package with the ALTER_
USER_PARM_VALUE procedure:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'REGION 20';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 DBMS_REPCAT_RGT.ALTER_USER_PARM_VALUE(
 refresh_template_name => 'rgt_personnel',
 parameter_name => 'region',
 user_name => 'BOB',
 new_parm_value => templob);
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

COMPARE_TEMPLATES Function
This function allows a DBA to compare the contents of two deployment templates.

Any discrepancies between the two deployment templates is stored in the USER_
REPCAT_TEMP_OUTPUT temporary view.

The COMPARE_TEMPLATES function returns a number that you specify in the

WHERE clause when querying the USER_REPCAT_TEMP_OUTPUT temporary view.

For example, if the COMPARE_TEMPLATES procedure returns the number 10, you

would execute the following SELECT statement to view all discrepancies between

two specified templates (your SELECT statement returns no rows if the templates

are identical):

SELECT TEXT FROM USER_REPCAT_TEMP_OUTPUT
 WHERE OUTPUT_ID = 10 ORDER BY LINE;

The contents of the USER_REPCAT_TEMP_OUTPUT temporary view are lost after

you disconnect or a rollback has been performed.
DBMS_REPCAT_RGT 23-15

COPY_TEMPLATE Function
Syntax
DBMS_REPCAT_RGT.COMPARE_TEMPLATES (
 source_template_name IN VARCHAR2,
 compare_template_name IN VARCHAR2)
 return NUMBER;

Parameters

Exceptions

Returns

COPY_TEMPLATE Function
This function enables you to copy a deployment template and is helpful when a

new deployment template uses many of the objects contained in an existing

deployment template. This function copies the deployment template, template

objects, template parameters, and user parameter values. The DBA can optionally

have the function copy the user authorizations for this template. The number

returned by this function is used internally by Oracle to manage deployment

templates.

Table 23–12 COMPARE_TEMPLATES Function Parameters

Parameter Description

source_template_name Name of the first deployment template to be compared.

compare_template_name Name of the second deployment template to be compared.

Table 23–13 COMPARE_TEMPLATES Function Exceptions

Exception Description

miss_refresh_template The deployment template name to be compared is invalid or
does not exist.

Table 23–14 COMPARE_TEMPLATES Function Returns

Return Value Description

<system-generated
number>

Specifies the number returned for the output_id value when you

select from the USER_REPCAT_TEMP_OUTPUTtemporary view
to view the discrepancies between the compared templates.
23-16 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
This function also allows the DBA to copy a deployment template to another master

site, which is helpful for deployment template distribution and to split network

loads between multiple sites.

Syntax
DBMS_REPCAT_RGT.COPY_TEMPLATE (
 old_refresh_template_name IN VARCHAR2,
 new_refresh_template_name IN VARCHAR2,
 copy_user_authorizations IN VARCHAR2,
 dblink IN VARCHAR2 := NULL)
 return NUMBER;

Parameters

Exceptions

Note: The values in the DBA_REPCAT_TEMPLATE_SITES view

are not copied.

Table 23–15 COPY_TEMPLATE Function Parameters

Parameter Description

old_refresh_template_name Name of the deployment template to be copied.

new_refresh_template_name Name of the new deployment template.

copy_user_authorizations Specifies whether the template authorizations for the
original template should be copied for the new deployment
template. Valid values for this parameter are Y, N, and NULL.

Note: All users must exist at the target database.

dblink Optionally defines where the deployment template should
be copied from (this is helpful to distribute deployment
templates to other master sites). If none is specified, then the
deployment template is copied from the local master site.

Table 23–16 COPY_TEMPLATE Function Exceptions

Exception Description

miss_refresh_template Deployment template name to be copied is invalid or does not
exist.
DBMS_REPCAT_RGT 23-17

COPY_TEMPLATE Function
Returns

dupl_refresh_template Name of the new refresh template specified already exists.

bad_copy_auth Value specified for the copy_user_authorization
parameter is invalid. Valid values are Y, N, and NULL.

Table 23–17 COPY_TEMPLATES Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.

Table 23–16 COPY_TEMPLATE Function Exceptions (Cont.)

Exception Description
23-18 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
CREATE_OBJECT_FROM_EXISTING Function
This function creates a template object definition from existing database objects and

adds it to a target deployment template. The object DDL that created the original

database object is executed when the target deployment template is instantiated at

the remote materialized view site. This is ideal for adding existing triggers and

procedures to your template. The number returned by this function is used

internally by Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_OBJECT_FROM_EXISTING(
 refresh_template_name IN VARCHAR2,
 object_name IN VARCHAR2,
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 otype IN VARCHAR2)
 return NUMBER;
DBMS_REPCAT_RGT 23-19

CREATE_OBJECT_FROM_EXISTING Function
Parameters

Exceptions

Table 23–18 CREATE_OBJECT_FROM_EXISTING Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to which you want to add
this object.

object_name Optionally, the new name of the existing object that you are
adding to your deployment template (enables you to define a
new name for an existing object).

sname The schema that contains the object that you are creating your
template object from.

oname Name of the object that you are creating your template object
from.

otype The type of database object that you are adding to the template
(that is, PROCEDURE, TRIGGER, and so on). Objects of the
following type may be specified (DATABASE LINK,
MATERIALIZED VIEW, and SNAPSHOT are not valid object types
for this function):

SEQUENCE PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER

Table 23–19 CREATE_OBJECT_FROM_EXISTING Function Exceptions

Exception Description

miss_refresh_template The specified refresh template name is invalid or missing. Query
the DBA_REPCAT_REFRESH_TEMPLATES view for a list of
existing deployment templates.

bad_object_type The object type is specified incorrectly.

dupl_template_object An object of the same name and type has already been added to
the specified deployment template.

objectmissing The object specified does not exist.
23-20 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Returns

CREATE_REFRESH_TEMPLATE Function
This function creates the deployment template, which enables you to define the

template name, private/public status, and target refresh group. Each time that you

create a template object, user authorization, or template parameter, you reference

the deployment template created with this function. This function adds a row to the

DBA_REPCAT_REFRESH_TEMPLATES view. The number returned by this function

is used internally by Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_REFRESH_TEMPLATE (
 owner IN VARCHAR2,
 refresh_group_name IN VARCHAR2,
 refresh_template_name IN VARCHAR2,
 template_comment IN VARCHAR2 := NULL,
 public_template IN VARCHAR2 := NULL,
 last_modified IN DATE := SYSDATE,
 modified_by IN VARCHAR2 := USER,
 creation_date IN DATE := SYSDATE,
 created_by IN VARCHAR2 := USER)
 return NUMBER;

Table 23–20 CREATE_OBJECT_FROM_EXISTING Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.
DBMS_REPCAT_RGT 23-21

CREATE_REFRESH_TEMPLATE Function
Parameters

Exceptions

Table 23–21 CREATE_REFRESH_TEMPLATE Function Parameters

Parameter Description

owner User name of the deployment template owner is specified with
this parameter. If an owner is not specified, then the name of the
user creating the template is automatically used.

refresh_group_name Name of the refresh group that is created when this template is
instantiated. All objects created by this template are assigned to
the specified refresh group.

refresh_template_name Name of the deployment template that you are creating. This
name is referenced in all activities that involve this deployment
template.

template_comment User comments defined with this parameter are listed in the
DBA_REPCAT_REFRESH_TEMPLATES view.

public_template Specifies whether the deployment template is public or private.
Only acceptable values are 'Y' and 'N' ('Y' = public and 'N' =
private).

last_modified The date of the last modification made to this deployment
template. If a value is not specified, then the current date is
automatically used.

modified_by Name of the user who last modified this deployment template.
If a value is not specified, then the current user is automatically
used.

creation_date The date that this deployment template was created. If a value is
not specified, then the current date is automatically used.

created_by Name of the user who created this deployment template. If a
value is not specified, then the current user is automatically
used.

Table 23–22 CREATE_REFRESH_TEMPLATE Function Exceptions

Exception Description

dupl_refresh_template A template with the specified name already exists. See the ALL_
REPCAT_REFRESH_TEMPLATES view to see a list of existing
templates.
23-22 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Returns

CREATE_TEMPLATE_OBJECT Function
This function adds object definitions to a target deployment template container. The

specified object DDL is executed when the target deployment template is

instantiated at the remote materialized view site. In addition to adding materialized

views, this function can add tables, procedures, and other objects to your template.

The number returned by this function is used internally by Oracle to manage

deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 ddl_text IN CLOB,
 master_rollback_seg IN VARCHAR2 := NULL,
 flavor_id IN NUMBER := -1e-130)
 return NUMBER;

bad_public_template The public_template parameter is specified incorrectly. The
public_template parameter must be specified as a 'Y' for a
public template or an 'N' for a private template.

Table 23–23 CREATE_REFRESH_TEMPLATE Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.

Table 23–22 CREATE_REFRESH_TEMPLATE Function Exceptions (Cont.)

Exception Description
DBMS_REPCAT_RGT 23-23

CREATE_TEMPLATE_OBJECT Function
Parameters

Exceptions

Table 23–24 CREATE_TEMPLATE_OBJECT Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to which you want to add
this object.

object_name Name of the template object that you are creating.

object_type The type of database object that you are adding to the template
(that is, SNAPSHOT, TRIGGER, PROCEDURE, and so on). Objects
of the following type may be specified:

SNAPSHOT PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

ddl_text Contains the DDL that creates the object that you are adding to
the template. Be sure to end your DDL with a semi-colon. You
can use a colon (:) to create a template parameter for your
template object. See Chapter 4, "Create a Deployment Template"
for more information.

When you add a materialized view (snapshot) with a CREATE
MATERIALIZED VIEW statement, make sure you specify the
schema name of the owner of the master table in the
materialized view query.

master_rollback_seg Specifies the name of the rollback segment to use when
executing the defined object DDL at the remote materialized
view site.

flavor_id This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.

Table 23–25 CREATE_TEMPLATE_OBJECT Function Exceptions

Exception Description

miss_refresh_template Specified refresh template name is invalid or missing. Query the
DBA_REPCAT_REFRESH_TEMPLATES view for a list of existing
deployment templates.
23-24 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Returns

Usage Notes
Because CREATE_TEMPLATE_OBJECTutilizes a CLOB, you must use the DBMS_LOB
package when using the CREATE_TEMPLATE_OBJECT function. The following

example illustrates how to use the DBMS_LOB package with the CREATE_
TEMPLATE_OBJECT function:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
 a NUMBER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'CREATE MATERIALIZED VIEW mview_sales AS SELECT *
 FROM sales WHERE salesperson = :salesid';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT(
 refresh_template_name => 'rgt_personnel',
 object_name => 'mview_sales',
 object_type => 'SNAPSHOT',
 ddl_text => templob,
 master_rollback_seg => 'RBS');
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

bad_object_type Object type is specified incorrectly. See Table 23–24 for a list of
valid object types.

dupl_template_object An object of the same name and type has already been added to
the specified deployment template.

Table 23–26 CREATE_TEMPLATE_OBJECT Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.

Table 23–25 CREATE_TEMPLATE_OBJECT Function Exceptions (Cont.)

Exception Description
DBMS_REPCAT_RGT 23-25

CREATE_TEMPLATE_PARM Function
CREATE_TEMPLATE_PARM Function
This function creates parameters for a specific deployment template to allow

custom data sets to be created at the remote materialized view site. This function is

only required when the DBA wants to define a set of template variables before

adding any template objects. When objects are added to the template using the

CREATE_TEMPLATE_OBJECT function, any variables in the object DDL are

automatically added to the DBA_REPCAT_TEMPLATE_PARMS view.

The DBA typically uses the ALTER_TEMPLATE_PARM function to modify the

default parameter values and/or prompt strings (see "ALTER_TEMPLATE_PARM

Procedure" on page 23-10 for more information). The number returned by this

function is used internally by Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_TEMPLATE_PARM (
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 default_parm_value IN CLOB := NULL,
 prompt_string IN VARCHAR2 := NULL,
 user_override IN VARCHAR2 := NULL)
 return NUMBER;
23-26 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

Returns

Table 23–27 CREATE_TEMPLATE_PARM Function Parameters

Parameter Description

refresh_template_name Name of the deployment template for which you want to create
the parameter.

parameter_name Name of the parameter you are creating.

default_parm_value Default values for this parameter are defined using this
parameter. If a user parameter value or runtime parameter value
is not present, then this default value is used during the
instantiation process.

prompt_string The descriptive prompt text that is displayed for this template
parameter during the instantiation process.

user_override Determines whether the user can override the default value if
prompted during the instantiation process. The user is
prompted if no user parameter value has been defined for this
parameter. Set this parameter to 'Y' to allow a user to override
the default value or set this parameter to 'N' to not allow an
override.

Table 23–28 CREATE_TEMPLATE_PARM Function Exceptions

Exception Description

miss_refresh_template The specified refresh template name is invalid or missing.

dupl_template_parm A parameter of the same name has already been defined for the
specified deployment template.

Table 23–29 CREATE_TEMPLATE_PARM Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.
DBMS_REPCAT_RGT 23-27

CREATE_USER_AUTHORIZATION Function
Usage Notes
Because the CREATE_TEMPLATE_PARM function utilizes a CLOB, you must use the

DBMS_LOB package when using the CREATE_TEMPLATE_PARM function. The

following example illustrates how to use the DBMS_LOB package with the CREATE_
TEMPLATE_PARM function:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
 a NUMBER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'REGION 20';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_PARM(
 refresh_template_name => 'rgt_personnel',
 parameter_name => 'region',
 default_parm_value => templob,
 prompt_string => 'Enter your region ID:',
 user_override => 'Y');
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

CREATE_USER_AUTHORIZATION Function
This function authorizes specific users to instantiate private deployment templates.

Users not authorized for a private deployment template are not able to instantiate

the private template. This function adds a row to the DBA_REPCAT_USER_
AUTHORIZATIONS view.

Before you authorize a user, verify that the user exists at the master site where the

user will instantiate the deployment template. The number returned by this

function is used internally by Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_USER_AUTHORIZATION (
 user_name IN VARCHAR2,
 refresh_template_name IN VARCHAR2)
 return NUMBER;
23-28 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

Returns

CREATE_USER_PARM_VALUE Function
This function predefines deployment template parameter values for specific users.

For example, if you want to predefine the region parameter as west for user 33456 ,

then you would use the this function.

Any values specified with this function take precedence over default values

specified for the template parameter. The number returned by this function is used

internally by Oracle to manage deployment templates.

Table 23–30 CREATE_USER_AUTHORIZATION Function Parameters

Parameter Description

user_name Name of the user that you want to authorize to instantiate the
specified template. Specify multiple users by separating user
names with a comma (for example, 'john, mike, bob')

refresh_template_name Name of the template that you want to authorize the specified
user to instantiate.

Table 23–31 CREATE_USER_AUTHORIZATION Function Exceptions

Exception Description

miss_user User name supplied is invalid or does not exist.

miss_refresh_template Refresh template name supplied is invalid or does not exist.

dupl_user_authorization An authorization has already been created for the specified
user and deployment template. See the ALL_REPCAT_USER_
AUTHORIZATIONS view for a listing of template
authorizations.

Table 23–32 CREATE_USER_AUTHORIZATION Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.
DBMS_REPCAT_RGT 23-29

CREATE_USER_PARM_VALUE Function
Syntax
DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE (
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 user_name IN VARCHAR2,
 parm_value IN CLOB := NULL)
 return NUMBER;

Parameters

Exceptions

Table 23–33 CREATE_USER_PARM_VALUE Function Parameters

Parameter Description

refresh_template_name Specifies the name of the deployment template that contains the
parameter you are creating a user parameter value for.

parameter_name Name of the template parameter that you are defining a user
parameter value for.

user_name Specifies the name of the user that you are predefining a user
parameter value for.

parm_value The predefined parameter value that will be used during the
instantiation process initiated by the specified user.

Table 23–34 CREATE_USER_PARM_VALUE Function Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or missing.

dupl_user_parm_values A parameter value for the specified user, parameter, and
deployment template has already been defined. Query the DBA_
REPCAT_USER_PARM_VALUESview for a listing of existing user
parameter values.

miss_template_parm Specified deployment template parameter name is invalid or
missing.

miss_user Specified user name is invalid or missing.
23-30 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Returns

Usage Notes
Because the CREATE_USER_PARM_VALUE function utilizes a CLOB, you must use

the DBMS_LOB package when using the this function. The following example

illustrates how to use the DBMS_LOB package with the CREATE_USER_PARM_
VALUE function:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
 a NUMBER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'REGION 20';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 a := DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE(
 refresh_template_name => 'rgt_personnel',
 parameter_name => 'region',
 user_name => 'BOB',
 user_parm_value => templob);
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

DELETE_RUNTIME_PARMS Procedure
Use this procedure before instantiating a deployment template to delete a runtime

parameter value that you defined using the INSERT_RUNTIME_PARMS procedure.

Syntax
DBMS_REPCAT_RGT.DELETE_RUNTIME_PARMS(
 runtime_parm_id IN NUMBER,
 parameter_name IN VARCHAR2);

Table 23–35 CREATE_USER_PARM_VALUE Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.
DBMS_REPCAT_RGT 23-31

DROP_ALL_OBJECTS Procedure
Parameters

Exceptions

DROP_ALL_OBJECTS Procedure
This procedure allows the DBA to drop all objects or specific object types from a

deployment template.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_OBJECTS (
 refresh_template_name IN VARCHAR2,
 object_type IN VARCHAR2 := NULL);

Table 23–36 DELETE_RUNTIME_PARMS Procedure Parameters

Parameter Description

runtime_parm_id Specifies the identification that you previously assigned the
runtime parameter value to (this value was retrieved using the
GET_RUNTIME_PARM_ID function).

parameter_name Specifies the name of the parameter value that you want to drop
(query the DBA_REPCAT_TEMPLATE_PARMS view for a list of
deployment template parameters).

Table 23–37 DELETE_RUNTIME_PARMS Procedure Exceptions

Exception Description

miss_template_parm The specified deployment template parameter name is invalid or
missing.

Caution: This is a dangerous procedure that cannot be undone.
23-32 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

DROP_ALL_TEMPLATE_PARMS Procedure
This procedure lets you drop template parameters for a specified deployment

template. You can use this procedure to drop all parameters that are not referenced

by a template object or to drop from the template all objects that reference any

parameter, along with all of the parameters themselves.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_TEMPLATE_PARMS (
 refresh_template_name IN VARCHAR2,
 drop_objects IN VARCHAR2 := n);

Table 23–38 DROP_ALL_OBJECTS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the objects that
you want to drop.

object_type If NULL, then all objects in the template are dropped. If an object
type is specified, then only objects of that type are dropped.
Objects of the following type may be specified:

SNAPSHOT PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

Table 23–39 DROP_ALL_OBJECTS Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

bad_object_type Object type is specified incorrectly. See Table 23–38 for a list of
valid object types.

Caution: This is a dangerous procedure that cannot be undone.
DBMS_REPCAT_RGT 23-33

DROP_ALL_TEMPLATE_SITES Procedure
Parameters

Exceptions

DROP_ALL_TEMPLATE_SITES Procedure
This procedure removes all entries from the DBA_REPCAT_TEMPLATE_SITESview,

which keeps a record of sites that have instantiated a particular deployment

template.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_TEMPLATE_SITES (
 refresh_template_name IN VARCHAR2);

Parameters

Table 23–40 DROP_ALL_TEMPLATE_PARMS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the parameters
and objects that you want to drop.

drop_objects If no value is specified, then this parameter defaults to N, which
drops all parameters not referenced by a template object.

If Y is specified, then all objects that reference any template
parameter and the template parameters themselves are dropped.
The objects are dropped from the template, not from the
database.

Table 23–41 DROP_ALL_TEMPLATE_PARMS Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

Caution: This is a dangerous procedure that cannot be undone.

Table 23–42 DROP_ALL_TEMPLATE_SITES Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the sites that
you want to drop.
23-34 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Exceptions

DROP_ALL_TEMPLATES Procedure
This procedure removes all deployment templates at the site where the procedure is

called.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_TEMPLATES;

Parameters
None

DROP_ALL_USER_AUTHORIZATIONS Procedure
This procedure enables the DBA to drop all user authorizations for a specified

deployment template. Executing this procedure removes rows from the DBA_
REPCAT_USER_AUTHORIZATIONS view.

This procedure might be implemented after converting a private template to a

public template and the user authorizations are no longer required.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_USER_AUTHORIZATIONS (
 refresh_template_name IN VARCHAR2);

Table 23–43 DROP_ALL_TEMPLATE_SITES Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

Caution: This is a dangerous procedure that cannot be undone.
DBMS_REPCAT_RGT 23-35

DROP_ALL_USER_PARM_VALUES Procedure
Parameters

Exceptions

DROP_ALL_USER_PARM_VALUES Procedure
This procedure drops user parameter values for a specific deployment template.

This procedure is very flexible and enables you to define a set of user parameter

values to be deleted.

For example, defining the parameters shown in the following table has the

described results.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_USER_PARMS (
 refresh_template_name IN VARCHAR2,
 user_name IN VARCHAR2,

Table 23–44 DROP_ALL_USER_AUTHORIZATIONS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the user
authorizations that you want to drop.

Table 23–45 DROP_ALL_USER_AUTHORIZATIONS Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

Parameter Result of Defining the Parameter

refresh_template_
name

Drops all user parameters for the specified deployment template

refresh_template_
name and user_name

Drops all of the specified user parameters for the specified
deployment template

refresh_template_
name and parameter_
name

Drops all user parameter values for the specified deployment
template parameter

refresh_template_
name, parameter_
name, and user_name

Drops the specified user’s value for the specified deployment
template parameter (equivalent to drop_user_parm)
23-36 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
 parameter_name IN VARCHAR2);

Parameters

Exceptions

DROP_REFRESH_TEMPLATE Procedure
This procedure drops a deployment template. Dropping a deployment template has

a cascading effect, removing all related template parameters, user authorizations,

template objects, and user parameters (this procedure does not drop template sites).

Syntax
DBMS_REPCAT_RGT.DROP_REFRESH_TEMPLATE (
 refresh_template_name IN VARCHAR2);

Table 23–46 DROP_ALL_USER_PARMS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the parameter
values that you want to drop.

user_name Name of the user whose parameter values you want to drop.

parameter_name Template parameter that contains the values that you want to
drop.

Table 23–47 DROP_ALL_USER_PARMS Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

miss_user User name specified is invalid or does not exist.

miss_user_parm_values Deployment template, user, and parameter combination does
not exist in the DBA_REPCAT_USER_PARM_VALUES view.
DBMS_REPCAT_RGT 23-37

DROP_SITE_INSTANTIATION Procedure
Parameters

Exceptions

DROP_SITE_INSTANTIATION Procedure
This procedure drops a template instantiation at any target site. This procedure

removes all related metadata at the master site and disables the specified site from

refreshing its materialized views.

Syntax
DBMS_REPCAT_RGT.DROP_SITE_INSTANTIATION (
 refresh_template_name IN VARCHAR2,
 user_name IN VARCHAR2,
 site_name IN VARCHAR2);

Table 23–48 DROP_REFRESH_TEMPLATE Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template to be dropped.

Table 23–49 DROP_REFRESH_TEMPLATE Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist. Query the DBA_REPCAT_REFRESH_TEMPLATES view for
a list of deployment templates.

Table 23–50 DROP_SITE_INSTANTIATION Procedure Parameters

Parameter Description

refresh_template_name The name of the template that contains the site to be dropped.

user_name The name of the user who originally instantiated the template
at the remote materialized view site. Query the ALL_REPCAT_
TEMPLATE_SITES view to see the users that instantiated
templates. See the ALL_REPCAT_TEMPLATE_SITES view on
page 25-10 for more information.

site_name Identifies the template site to be dropped.
23-38 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Exceptions

DROP_TEMPLATE_OBJECT Procedure
This procedure removes a template object from a specific deployment template. For

example, a DBA would use this procedure to remove an outdated materialized view

from a deployment template. Changes made to the template are reflected at new

sites instantiating the deployment template. Remote sites that have already

instantiated the template must re-instantiate the deployment template to apply the

changes.

Syntax
DBMS_REPCAT_RGT.DROP_TEMPLATE_OBJECT (
 refresh_template_name IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2);

Parameters

Table 23–51 DROP_SITE_INSTANTIATION Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

miss_user The username specified does not exist.

miss_template_site The deployment template has not been instantiated for user and
site.

Table 23–52 DROP_TEMPLATE_OBJECT Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template from which you are dropping
the object.

object_name Name of the template object to be dropped.
DBMS_REPCAT_RGT 23-39

DROP_TEMPLATE_PARM Procedure
Exceptions

DROP_TEMPLATE_PARM Procedure
This procedure removes an existing template parameter from the DBA_REPCAT_
TEMPLATE_PARMS view. This procedure is useful when you have dropped a

template object and a particular parameter is no longer needed.

Syntax
DBMS_REPCAT_RGT.DROP_TEMPLATE_PARM (
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2);

Parameters

object_type The type of object that is to be dropped. Objects of the following
type may be specified:

SNAPSHOT PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

Table 23–53 DROP_TEMPLATE_OBJECT Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

miss_template_object The template object specified is invalid or does not exist. Query
the DBA_REPCAT_TEMPLATE_OBJECTS view to see a list of
deployment template objects.

Table 23–54 DROP_TEMPLATE_PARM Procedure Parameters

Parameter Description

refresh_template_name The deployment template name that has the parameter that you
want to drop

Table 23–52 DROP_TEMPLATE_OBJECT Procedure Parameters (Cont.)

Parameter Description
23-40 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Exceptions

DROP_USER_AUTHORIZATION Procedure
This procedure removes a user authorization entry from the DBA_REPCAT_USER_
AUTHORIZATIONS view. This procedure is used when removing a user’s template

authorization. If a user’s authorization is removed, then the user is no longer able to

instantiate the target deployment template.

Syntax
DBMS_REPCAT_RGT.DROP_USER_AUTHORIZATION (
 refresh_template_name IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

parameter_name Name of the parameter that you want to drop.

Table 23–55 DROP_TEMPLATE_PARM Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

miss_template_parm The parameter name specified is invalid or does not exist. Query
the DBA_REPCAT_TEMPLATE_PARMS view to see a list of
template parameters.

See Also: "DROP_ALL_USER_AUTHORIZATIONS Procedure"

on page 23-35

Table 23–56 DROP_USER_AUTHORIZATION Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template from which the user’s
authorization is being removed.

user_name Name of the user whose authorization is being removed.

Table 23–54 DROP_TEMPLATE_PARM Procedure Parameters (Cont.)

Parameter Description
DBMS_REPCAT_RGT 23-41

DROP_USER_PARM_VALUE Procedure
Exceptions

DROP_USER_PARM_VALUE Procedure
This procedure removes a predefined user parameter value for a specific

deployment template. This procedure is often executed after a user’s template

authorization has been removed.

Syntax
DBMS_REPCAT_RGT.DROP_USER_PARM_VALUE (
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

Table 23–57 DROP_USER_AUTHORIZATION Procedure Exceptions

Exception Description

miss_user Specified user name is invalid or does not exist.

miss_user_authorization Specified user and deployment template combination does
not exist. Query the DBA_REPCAT_USER_
AUTHORIZATIONS view to see a list of user/deployment
template authorizations.

miss_refresh_template Specified deployment template name is invalid or does not
exist.

Table 23–58 DROP_USER_PARM_VALUE Procedure Parameters

Parameter Description

refresh_template_name Deployment template name that contains the parameter value
that you want to drop.

parameter_name Parameter name that contains the predefined value that you
want to drop.

user_name Name of the user whose parameter value you want to drop.
23-42 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Exceptions

GET_RUNTIME_PARM_ID Function
This function retrieves an identification to be used when defining a runtime

parameter value. All runtime parameter values are assigned to this identification

and are also used during the instantiation process.

Syntax
DBMS_REPCAT_RGT.GET_RUNTIME_PARM_ID
 RETURN NUMBER;

Parameters
None

Returns

INSERT_RUNTIME_PARMS Procedure
This procedure defines runtime parameter values prior to instantiating a template.

This procedure should be used to define parameter values when no user parameter

values have been defined and you do not want to accept the default parameter

values.

Table 23–59 DROP_USER_PARM_VALUE Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not
exist.

miss_user User name specified is invalid or does not exist.

miss_user_parm_values Deployment template, user, and parameter combination
does not exist in the DBA_REPCAT_USER_PARM_VALUES
view.

Table 23–60 GET_RUNTIME_PARM_ID Function Returns

Return Value Corresponding Datatype

<system-generated
number>

Runtime parameter values are assigned to the system-generated
number and are also used during the instantiation process.
DBMS_REPCAT_RGT 23-43

INSERT_RUNTIME_PARMS Procedure
Before using the this procedure, be sure to execute the GET_RUNTIME_PARM_ID
function to retrieve a parameter identification to use when inserting a runtime

parameter. This identification is used for defining runtime parameter values and

instantiating deployment templates.

Syntax
DBMS_REPCAT_RGT.INSERT_RUNTIME_PARMS (
 runtime_parm_id IN NUMBER,
 parameter_name IN VARCHAR2,
 parameter_value IN CLOB);

Parameters

Exceptions

Table 23–61 INSERT_RUNTIME_PARMS Procedure Parameters

Parameter Description

runtime_parm_id The identification retrieved by the GET_RUNTIME_PARM_ID
function. This identification is also used when instantiating the
deployment template. Be sure to use the same identification for all
parameter values for a deployment template.

parameter_name Name of the template parameter for which you are defining a
runtime parameter value. Query the DBA_REPCAT_TEMPLATE_
PARMS view for a list of template parameters.

parameter_value The runtime parameter value that you want to use during the
deployment template instantiation process.

Table 23–62 INSERT_RUNTIME_PARMS Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does
not exist.

miss_user The user name specified is invalid or does not exist.

miss_user_parm_values The deployment template, user, and parameter combination
does not exist in the DBA_REPCAT_USER_PARM_VALUES
view.
23-44 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Usage Notes
Because the this procedure utilizes a CLOB, you must use the DBMS_LOB package

when using the INSERT_RUNTIME_PARMS procedure. The following example

illustrates how to use the DBMS_LOB package with the INSERT_RUNTIME_PARMS
procedure:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'REGION 20';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 DBMS_REPCAT_RGT.INSERT_RUNTIME_PARMS(
 runtime_parm_id => 20,
 parameter_name => 'region',
 parameter_value => templob);
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

INSTANTIATE_OFFLINE Function
This function generates a script at the master site that is used to create the

materialized view environment at the remote materialized view site while the

materialized view site disconnected from the master (that is, while the materialized

view site is offline). This generated script should be used at remote materialized

view sites that are not able to remain connected to the master site for an extended

amount of time, as the instantiation process at the remote materialized view site

may be lengthy (depending on the amount of data that is populated to the new

materialized views). This function must be executed separately for each user

instantiation.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including Replication Manager,

during the distribution of deployment templates. The number returned by this

function is used to retrieve the appropriate information from the USER_REPCAT_
TEMP_OUTPUT temporary view.
DBMS_REPCAT_RGT 23-45

INSTANTIATE_OFFLINE Function
Syntax
DBMS_REPCAT_RGT.INSTANTIATE_OFFLINE(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2,
 user_name IN VARCHAR2 := NULL,
 runtime_parm_id IN NUMBER := -1e-130,
 next_date IN DATE := SYSDATE,
 interval IN VARCHAR2 := 'SYSDATE + 1',
 use_default_gowner IN BOOLEAN := true)
 return NUMBER;

Note: This function is used to perform an offline instantiation of a

deployment template. Additionally, this function is for replication

administrators who are instantiating for another user. Users

wanting to perform their own instantiation should use the public

version of the INSTANTIATE_OFFLINE function. See the

"INSTANTIATE_OFFLINE Function" on page 23-45 for more

information.

This function should not be confused with the procedures in the

DBMS_OFFLINE_OG package (used for performing an offline

instantiation of a master table) or with the procedures in the DBMS_
OFFLINE_SNAPSHOT package (used for performing an offline

instantiation of a materialized view). See these respective packages

for more information on their usage.
23-46 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

Table 23–63 INSTANTIATE_OFFLINE Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to be instantiated.

site_name Name of the remote site that is instantiating the deployment
template.

user_name Name of the authorized user who is instantiating the
deployment template.

runtime_parm_id If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMS procedure, then specify the
identification used when creating the runtime parameters (the
identification was retrieved by using the GET_RUNTIME_PARM_
ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.

Table 23–64 INSTANTIATE_OFFLINE Function Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

miss_user Name of the authorized user is invalid or does not exist. Verify
that the specified user is listed in the DBA_REPCAT_USER_
AUTHORIZATIONS view. If user is not listed, then the specified
user is not authorized to instantiate the target deployment
template.
DBMS_REPCAT_RGT 23-47

INSTANTIATE_ONLINE Function
Returns

INSTANTIATE_ONLINE Function
This function generates a script at the master site that is used to create the

materialized view environment at the remote materialized view site while the

materialized view site is connected to the master (that is, while the materialized

view site is online). This generated script should be used at remote materialized

view sites that are able to remain connected to the master site for an extended

amount of time, as the instantiation process at the remote materialized view site

may be lengthy (depending on the amount of data that is populated to the new

materialized views). This function must be executed separately for each user

instantiation.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including Replication Manager,

during the distribution of deployment templates. The number returned by this

function is used to retrieve the appropriate information from the USER_REPCAT_
TEMP_OUTPUT temporary view.

Syntax
DBMS_REPCAT_RGT.INSTANTIATE_ONLINE(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2 := NULL,
 user_name IN VARCHAR2 := NULL,
 runtime_parm_id IN NUMBER := -1e-130,
 next_date IN DATE := SYSDATE,
 interval IN VARCHAR2 := 'SYSDATE + 1',

Table 23–65 INSTANTIATE_OFFLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the generated system number for the output_id when

you select from the USER_REPCAT_TEMP_OUTPUTtemporary
view to retrieve the generated instantiation script.

Note: This function is for replication administrators who are

instantiating for another user. Users wanting to perform their own

instantiation should use the public version of the INSTANTIATE_
OFFLINE function, described in "INSTANTIATE_OFFLINE

Function" on page 23-45 section.
23-48 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
 use_default_gowner IN BOOLEAN := true)
 return NUMBER;

Parameters

Table 23–66 INSTANTIATE_ONLINE Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to be instantiated.

site_name Name of the remote site that is instantiating the deployment
template.

user_name Name of the authorized user who is instantiating the
deployment template.

runtime_parm_id If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMS procedure, then specify the
identification used when creating the runtime parameters (the
identification was retrieved by using the GET_RUNTIME_PARM_
ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.
DBMS_REPCAT_RGT 23-49

LOCK_TEMPLATE_EXCLUSIVE Procedure
Exceptions

Returns

LOCK_TEMPLATE_EXCLUSIVE Procedure
When a deployment template is being updated or modified, you should use the

LOCK_TEMPLATE_EXCLUSIVE procedure to prevent users from reading or

instantiating the template.

The lock is released when a ROLLBACK or COMMIT is performed.

Syntax
DBMS_REPCAT_RGT.LOCK_TEMPLATE_EXCLUSIVE();

Table 23–67 INSTANTIATE_ONLINE Function Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

miss_user Name of the authorized user is invalid or does not exist. Verify
that the specified user is listed in the DBA_REPCAT_USER_
AUTHORIZATIONS view. If user is not listed, then the specified
user is not authorized to instantiate the target deployment
template.

bad_parms Not all of the template parameters were populated by the
defined user parameter values and/or template default values.
The number of predefined values may not have matched the
number of template parameters or a predefined value was
invalid for the target parameter (that is, type mismatch).

Table 23–68 INSTANTIATE_ONLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the system-generated number for the output_id when

you select from the USER_REPCAT_TEMP_OUTPUTtemporary
view to retrieve the generated instantiation script.

Note: This procedure should be executed before you make any

modifications to your deployment template.
23-50 Oracle9i Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters
None

LOCK_TEMPLATE_SHARED Procedure
The LOCK_TEMPLATE_SHARED procedure is used to make a specified deployment

template "read-only." This procedure should be called before instantiating a

template, as this ensures that nobody can change the deployment template while it

is being instantiated.

The lock is released when a ROLLBACK or COMMIT is performed.

Syntax
DBMS_REPCAT_RGT.LOCK_TEMPLATE_SHARED();

Parameters
None
DBMS_REPCAT_RGT 23-51

LOCK_TEMPLATE_SHARED Procedure
23-52 Oracle9i Replication Management API Reference

DBMS_RE
24

DBMS_REPUTIL

DBMS_REPUTIL contains subprograms to generate shadow tables, triggers, and

packages for table replication, as well as subprograms to generate wrappers for

replication of standalone procedure invocations and packaged procedure

invocations. This package is referenced only by the generated code.

This chapter discusses the following topics:

■ Summary of DBMS_REPUTIL Subprograms
PUTIL 24-1

Summary of DBMS_REPUTIL Subprograms
Summary of DBMS_REPUTIL Subprograms

Table 24–1 DBMS_REPUTIL Package Subprograms

Subprogram Description

"REPLICATION_OFF
Procedure" on
page 24-3

Modifies tables without replicating the modifications to any other
sites in the replication environment, or disables row-level
replication when using procedural replication.

"REPLICATION_ON
Procedure" on
page 24-3

Re-enables replication of changes after replication has been
temporarily suspended.

"REPLICATION_IS_ON
Function" on page 24-3

Determines whether or not replication is running.

FROM_REMOTE
Function on page 24-4

Returns TRUE at the beginning of procedures in the internal
replication packages, and returns FALSE at the end of these
procedures.

"GLOBAL_NAME
Function" on page 24-4

Determines the global database name of the local database (the
global name is the returned value).

"MAKE_INTERNAL_
PKG Procedure" on
page 24-4

Synchronizes internal packages and tables in the replication
catalog.

Note: Do not execute this procedure unless directed to do so by
Oracle Support Services.

"SYNC_UP_REP
Procedure" on
page 24-5

Synchronizes internal triggers and tables/materialized views in
the replication catalog.

Note: Do not execute this procedure unless directed to do so by
Oracle Support Services.
24-2 Oracle9i Replication Management API Reference

Summary of DBMS_REPUTIL Subprograms
REPLICATION_OFF Procedure
This procedure enables you to modify tables without replicating the modifications

to any other sites in the replication environment. It also disables row-level

replication when using procedural replication. In general, you should suspend

replication activity for all master groups in your replication environment before

setting this flag.

Syntax
DBMS_REPUTIL.REPLICATION_OFF();

Parameters
None

REPLICATION_ON Procedure
This procedure re-enables replication of changes after replication has been

temporarily suspended.

Syntax
DBMS_REPUTIL.REPLICATION_ON();

Parameters
None

REPLICATION_IS_ON Function
This function determines whether or not replication is running. A returned value of

TRUEindicates that the generated replication triggers are enabled. A return value of

FALSE indicates that replication is disabled at the current site for the replication

group.

The returning value of this function is set by calling the REPLICATION_ON or

REPLICATION_OFF procedures in the DBMS_REPUTIL package.

Syntax
DBMS_REPUTIL.REPLICATION_IS_ON()
 return BOOLEAN;
DBMS_REPUTIL 24-3

FROM_REMOTE Function
Parameters
None

FROM_REMOTE Function
This function returns TRUEat the beginning of procedures in the internal replication

packages, and returns FALSEat the end of these procedures. You may need to check

this function if you have any triggers that could be fired as the result of an update

by an internal package.

Syntax
DBMS_REPUTIL.FROM_REMOTE()
 return BOOLEAN;

Parameters
None

GLOBAL_NAME Function
This function determines the global database name of the local database (the global

name is the returned value).

Syntax
DBMS_REPUTIL.GLOBAL_NAME()
 return VARCHAR2;

Parameters
None

MAKE_INTERNAL_PKG Procedure
This procedure synchronizes the existence of an internal package with a table or

materialized view in the replication catalog. If the table has replication support,

then execute this procedure to create the internal package. If replication support

does not exist, then this procedure destroys any related internal package. This

procedure does not accept the storage table of a nested table.
24-4 Oracle9i Replication Management API Reference

Summary of DBMS_REPUTIL Subprograms
Syntax
DBMS_REPUTIL.MAKE_INTERNAL_PKG (
 canon_sname IN VARCHAR2,
 canon_oname IN VARCHAR2);

Parameters

SYNC_UP_REP Procedure
This procedure synchronizes the existence of an internal trigger with a table or

materialized view in the replication catalog. If the table or materialized view has

replication support, then execute this procedure to create the internal replication

trigger. If replication support does not exist, then this procedure destroys any

related internal trigger. This procedure does not accept the storage table of a nested

table.

Syntax
DBMS_REPUTIL.SYNC_UP_REP (
 canon_sname IN VARCHAR2,
 canon_oname IN VARCHAR2);

Caution: Do not execute this procedure unless directed to do so

by Oracle Support Services.

Table 24–2 MAKE_INTERNAL_PKG Procedure Parameters

Parameter Description

canon_sname Schema containing the table to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

canon_oname Name of the table to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

Caution: Do not execute this procedure unless directed to do so

by Oracle Support Services.
DBMS_REPUTIL 24-5

SYNC_UP_REP Procedure
Parameters

Table 24–3 SYNC_UP_REP Procedure Parameters

Parameter Description

canon_sname Schema containing the table or materialized view to be
synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

canon_oname Name of the table or materialized view to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).
24-6 Oracle9i Replication Management API Reference

PartIV

Replication Data Dictionary Reference

Part IV describes data dictionary views that provide information about your

replication environment.

Part IV includes the following chapters:

■ Chapter 25, "Replication Catalog Views"

■ Chapter 26, "Replication Dynamic Performance Views"

■ Chapter 27, "Deferred Transaction Views"

■ Chapter 28, "Materialized View and Refresh Group Views"

Replication Catalog
25

Replication Catalog Views

When you install replication capabilities at a site, Oracle installs the replication

catalog, which consists of tables and views, at that site. This chapter contains these

topics:

■ Summary of Replication Catalog Views

Caution: Do not modify the replication catalog tables directly.

Instead, use the procedures provided in the DBMS_REPCAT
package.

See Also: Chapter 10, "Monitoring a Replication Environment"
 Views 25-1

Summary of Replication Catalog Views
Summary of Replication Catalog Views
Many data dictionary tables have three corresponding views:

■ An ALL_ view displays all the information accessible to the current user,

including information from the current user’s schema as well as information

from objects in other schemas, if the current user has access to those objects by

way of grants of privileges or roles.

■ A DBA_ view displays all relevant information in the entire database. DBA_
views are intended only for administrators. They can be accessed only by users

with the SELECT ANY TABLE privilege. This privilege is assigned to the DBA

role when Oracle is initially installed.

■ A USER_ view displays all the information from the schema of the current user.

No special privileges are required to query these views.

The columns of the ALL_, DBA_, and USER_ views corresponding to a single data

dictionary table are usually nearly identical. Therefore, these views are described in

full only once in this chapter (for the ALL_ view). The views are listed without the

full description for DBA_ and USER_ views, but differences are noted.

As shown in Figure 25–1 on page 25-3, the replication catalog views are used by

master sites and materialized view sites to determine such information as what

objects are being replicated, where they are being replicated, and if any errors have

occurred during replication. Table 25–1 on page 25-4 lists all of the replication

catalog views.
25-2 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
Figure 25–1 Replication Catalog Views and Replicated Objects

employee_id department_idlast_name
100
101
103
104

King
Kochhar
Hunold
Ernst

90
90
60
60

salary
8340
6650
9725
5890

employees

DBA_REPSITES

DBA_REPGROUP

DBA_REPOBJECT

Master 1 (m1)

GNAME STATUSMASTER SCHEMA_COMMENT

GNAME MASTERDEFDBLINK SNAPMASTER MASTER_
COMMENT

GNAME TYPEONAME STATUS OBJECT_
COMMENT

RS Y NORMAL

RS
RS

M1
M2

Y
N

NULL
NULL

RS
RS
RS

EMPLOYEES
EMPLOYEES$RP
EMPLOYEES$RP

TABLE
PACKAGE
PACKAGE BODY

VALID
VALID
VALID

employee_id department_idlast_name
100
101

King
Kochhar

90
90

salary
8340
6650

employees

SELECT employee_id, last_name, department_id,
salary FROM employees@m1 WHERE department_id = 90;

DBA_REPSITES

DBA_REPGROUP

DBA_REPOBJECT

Materialized View 1 (department 90)

GNAME STATUSMASTER SCHEMA_COMMENT

GNAME MASTERDEFDBLINK SNAPMASTER MASTER_
COMMENT

GNAME TYPEONAME STATUS OBJECT_
COMMENT

RS N NULL

RS
RS

M1
M2

Y
N

Y
N

RS EMPLOYEES SNAPSHOT VALID

employee_id department_idlast_name
103
104

Hunold
Ernst

60
60

salary
9725
5890

employees

DBA_REPSITES

DBA_REPGROUP

DBA_REPOBJECT

Materialized View 2 (department 60)

GNAME STATUSMASTER SCHEMA_COMMENT

GNAME MASTERDEFDBLINK SNAPMASTER MASTER_
COMMENT

GNAME TYPEONAME STATUS OBJECT_
COMMENT

RS N NULL

RS
RS

M1
M2

Y
N

N
Y

RS EMPLOYEES SNAPSHOT VALID

employee_id department_idlast_name
100
101
103
104

King
Kochhar
Hunold
Ernst

90
90
60
60

salary
8340
6650
9725
5890

employees

DBA_REPSITES

DBA_REPGROUP

DBA_REPOBJECT

Master 2 (m2)

GNAME STATUSMASTER SCHEMA_COMMENT

GNAME MASTERDEFDBLINK SNAPMASTER MASTER_
COMMENT

GNAME TYPEONAME STATUS OBJECT_
COMMENT

RS Y NORMAL

RS
RS

M1
M2

Y
N

NULL
NULL

RS
RS
RS

EMPLOYEES
EMPLOYEES$RP
EMPLOYEES$RP

TABLE
PACKAGE
PACKAGE BODY

VALID
VALID
VALID

SELECT employee_id, last_name, department_id,
salary FROM employees@m2 WHERE department_id = 60;
Replication Catalog Views 25-3

Summary of Replication Catalog Views

TES

S

ION

ES

L

Table 25–1 Replication Catalog Views

ALL_ Views DBA_ Views USER_ Views

- DBA_REGISTERED_MVIEW_GROUPS -

ALL_REPCAT_REFRESH_TEMPLATES DBA_REPCAT_REFRESH_TEMPLATES USER_REPCAT_REFRESH_TEMPLA

ALL_REPCAT_TEMPLATE_OBJECTS DBA_REPCAT_TEMPLATE_OBJECTS USER_REPCAT_TEMPLATE_OBJECT

ALL_REPCAT_TEMPLATE_PARMS DBA_REPCAT_TEMPLATE_PARMS USER_REPCAT_TEMPLATE_PARMS

ALL_REPCAT_TEMPLATE_SITES DBA_REPCAT_TEMPLATE_SITES USER_REPCAT_TEMPLATE_SITES

ALL_REPCAT_USER_AUTHORIZATIONS DBA_REPCAT_USER_AUTHORIZATIONS USER_REPCAT_USER_AUTHORIZAT

ALL_REPCAT_USER_PARM_VALUES DBA_REPCAT_USER_PARM_VALUES USER_REPCAT_USER_PARM_VALU

ALL_REPCATLOG DBA_REPCATLOG USER_REPCATLOG

ALL_REPCOLUMN DBA_REPCOLUMN USER_REPCOLUMN

ALL_REPCOLUMN_GROUP DBA_REPCOLUMN_GROUP USER_REPCOLUMN_GROUP

ALL_REPCONFLICT DBA_REPCONFLICT USER_REPCONFLICT

ALL_REPDDL DBA_REPDDL USER_REPDDL

- DBA_REPEXTENSIONS -

ALL_REPGENOBJECTS DBA_REPGENOBJECTS USER_REPGENOBJECTS

ALL_REPGROUP DBA_REPGROUP USER_REPGROUP

ALL_REPGROUP_PRIVILEGES DBA_REPGROUP_PRIVILEGES USER_REPGROUP_PRIVILEGES

ALL_REPGROUPED_COLUMN DBA_REPGROUPED_COLUMN USER_REPGROUPED_COLUMN

ALL_REPKEY_COLUMNS DBA_REPKEY_COLUMNS USER_REPKEY_COLUMNS

ALL_REPOBJECT DBA_REPOBJECT USER_REPOBJECT

ALL_REPPARAMETER_COLUMN DBA_REPPARAMETER_COLUMN USER_REPPARAMETER_COLUMN

ALL_REPPRIORITY DBA_REPPRIORITY USER_REPPRIORITY

ALL_REPPRIORITY_GROUP DBA_REPPRIORITY_GROUP USER_REPPRIORITY_GROUP

ALL_REPPROP DBA_REPPROP USER_REPPROP

ALL_REPRESOL_STATS_CONTROL DBA_REPRESOL_STATS_CONTROL USER_REPRESOL_STATS_CONTRO

ALL_REPRESOLUTION DBA_REPRESOLUTION USER_REPRESOLUTION

ALL_REPRESOLUTION_METHOD DBA_REPRESOLUTION_METHOD USER_REPRESOLUTION_METHOD

ALL_REPRESOLUTION_STATISTICS DBA_REPRESOLUTION_STATISTICS USER_REPRESOLUTION_STATISTICS

ALL_REPSITES DBA_REPSITES USER_REPSITES

- DBA_REPSITES_NEW -
25-4 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
DBA_REGISTERED_MVIEW_GROUPS
DBA_REGISTERED_MVIEW_GROUPS lists all the registered materialized view

groups at the master site or master materialized view site.

ALL_REPCAT_REFRESH_TEMPLATES
Contains global information about each deployment template accessible to the

current user, such as the template name, template owner, what refresh group the

template objects belong to, and the type of template (private or public).

When the DBA adds materialized view definitions to the template container, the

DBA references the appropriate REFRESH_TEMPLATE_NAME. Any materialized

views added to a specific template are added to the refresh group specified in

REFRESH_GROUP_NAME.

Furthermore, deployment templates created as public are available to all users who

can connect to the master site. Deployment templates created as private are limited

to those users listed in the ALL_REPCAT_USER_AUTHORIZATIONS view.

Related Views:
■ DBA_REPCAT_REFRESH_TEMPLATES describes all deployment templates in

the database.

■ USER_REPCAT_REFRESH_TEMPLATES describes all deployment templates

owned by the current user.

Column Datatype NULL Description

NAME VARCHAR2(30) - Name of the materialized view replication group

MVIEW_SITE VARCHAR2(128) - Site of the materialized view replication group

GROUP_COMMENT VARCHAR2(80) - Description of the materialized view replication group

VERSION VARCHAR2(8) - Oracle version of the materialized view replication
group

Note: Oracle9i materialized view groups show Oracle8.

FNAME VARCHAR2(30) - Name of the flavor of the materialized view group

OWNER VARCHAR2(30) - Owner of the materialized view replication group
Replication Catalog Views 25-5

ALL_REPCAT_TEMPLATE_OBJECTS
ALL_REPCAT_TEMPLATE_OBJECTS
Contains the individual object definitions that are contained in each deployment

template accessible to the current user. Individual objects are added to a template

by specifying the target template in REFRESH_TEMPLATE_NAME.

DDL_TEXT can contain variables to create parameterized templates. Variables are

created by placing a colon (:) at the beginning of the variable name (for example,

:region). Templates that use parameters allow for greater flexibility during the

template instantiation process (that is, in defining data sets specific for a

materialized view site).

When the object is added to the template, the specified DDL is examined and if any

parameters have been defined, Oracle automatically adds the parameter to the

ALL_REPCAT_TEMPLATE_PARMS view.

Related Views:
■ DBA_REPCAT_TEMPLATE_OBJECTS describes the object definitions for all

deployment templates in the database.

■ USER_REPCAT_TEMPLATE_OBJECTS describes the object definitions for each

deployment template owned by the current user.

Column Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) - Name of the deployment template.

OWNER VARCHAR2(30) - Owner of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) - Name of the refresh group to which the template
objects are added during the instantiation process.

TEMPLATE_COMMENT VARCHAR2(2000) - User supplied comment.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.

If N then the deployment template is private.
25-6 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
Because the DDL_TEXT column is defined as a CLOB, you receive an error if you

simply try to perform a SELECTon the ALL_REPCAT_TEMPLATE_OBJECTSview. If

you do not need to see the object DDL, then use the following select statement (be

sure to exclude the DDL_TEXT parameter):

SELECT REFRESH_TEMPLATE_NAME, OBJECT_NAME, OBJECT_TYPE, MASTER_ROLLBACK_SEG,
FLAVOR_ID FROM DBA_REPCAT_TEMPLATE_OBJECTS;

The following script uses cursors and the DBMS_LOB package to view the entire

contents of the ALL_REPCAT_TEMPLATE_OBJECTS view. Use this script to view

the entire contents of the ALL_REPCAT_TEMPLATE_OBJECTS view, including the

DDL_TEXT column:

Column Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT NULLThe name of the deployment template.

OBJECT_NAME VARCHAR2(30) NOT NULL The name of the deployment template object.

OBJECT_TYPE VARCHAR2(17) - The object type of the deployment template object:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TABLE
OPERATOR TRIGGER
PACKAGE TYPE
PACKAGE BODY TYPE BODY
PROCEDURE VIEW

DDL_NUM NUMBER NOT NULLIndicates the order in which to execute the DDL
statements stored in the DDL_TEXT column when
multiple DDL statements are used to create the
object.

DDL_TEXT CLOB(4000) - The DDL that is executed to create the deployment
template object.

MASTER_ROLLBACK_SEGMENT VARCHAR2(30) - The name of the rollback segment that is used
during the instantiation of the deployment template
object.

DERIVED_FROM_SNAME VARCHAR2(30) - If applicable, displays the schema that contains the
object from which the template object was created.

DERIVED_FROM_ONAME VARCHAR2(30) - If applicable, displays the name of the object from
which the template object was created.

FLAVOR_ID NUMBER - The flavor ID of the deployment template object.
Replication Catalog Views 25-7

ALL_REPCAT_TEMPLATE_PARMS
SET SERVEROUTPUT ON

DECLARE
 CURSOR mycursor IS
 SELECT REFRESH_TEMPLATE_NAME, OBJECT_NAME, OBJECT_TYPE, DDL_TEXT,
 MASTER_ROLLBACK_SEG, FLAVOR_ID
 FROM DBA_REPCAT_TEMPLATE_OBJECTS;
 tempstring VARCHAR2(1000);
 len NUMBER;
BEGIN
 FOR myrec IN mycursor LOOP
 len := DBMS_LOB.GETLENGTH(myrec.ddl_text);
 DBMS_LOB.READ(myrec.ddl_text, len, 1, tempstring);
 DBMS_OUTPUT.PUT_LINE(myrec.refresh_template_name||' '||
 myrec.object_name||' '||myrec.object_type||' '||tempstring||' '||
 myrec.master_rollback_seg||' '||myrec.flavor_id);
 END LOOP;
END;
/

ALL_REPCAT_TEMPLATE_PARMS
Contains parameters defined in the object DDL for all templates accessible to the

current user. When an object is added to a template, the DDL is examined for

variables. Any found parameters are automatically added to this view.

You can also define default parameter values and a prompt string in this view.

These can make the templates easier to use during the instantiation process.

Related Views:
■ DBA_REPCAT_TEMPLATE_PARMS describes the template parameters for all

deployment templates in the database.

■ USER_REPCAT_TEMPLATE_PARMS describes the template parameters for all

deployment templates owned by the current user.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information on using cursors. Also, see Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for more information on

using the DBMS_LOB package and LOBs in general.

See Also: ALL_REPCAT_TEMPLATE_OBJECTS on page 25-6
25-8 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
Because the DEFAULT_PARM_VALUE column is defined as a CLOB, you receive an

error if you simply try to perform a SELECT on the ALL_REPCAT_TEMPLATE_
PARMS view. If you do not need to see the default parameter value, then use the

following select statement (be sure to exclude DEFAULT_PARM_VALUE):

SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME, TEMPLATE_COMMENT,
 PUBLIC_TEMPLATE, PARAMETER_NAME, PROMPT_STRING, USER_OVERRIDE
 FROM DBA_REPCAT_TEMPLATE_PARMS;

The following script uses cursors and the DBMS_LOB package to view the entire

contents of the ALL_REPCAT_TEMPLATE_PARMS view. Use this script to view the

entire contents of the ALL_REPCAT_TEMPLATE_PARMS view, including the

DEFAULT_PARM_VALUE column:

SET SERVEROUTPUT ON

Column Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT NULLThe name of the deployment template.

OWNER VARCHAR2(30) NOT NULL The owner of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) NOT NULLName of the refresh group to which the template
objects are added to during the instantiation
process.

TEMPLATE_COMMENTS VARCHAR2(2000) - User specified comments.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.

If N then the deployment template is private.

PARAMETER_NAME VARCHAR2(30) NOT NULLThe name of the parameter.

DEFAULT_PARM_VALUE CLOB(4000) - The default parameter value.

PROMPT_STRING VARCHAR2(2000) - The prompt string for the parameter.

USER_OVERRIDE VARCHAR2(1) - If Y then the user can override the default parameter
value.

If N then the user cannot override the default
parameter value.
Replication Catalog Views 25-9

ALL_REPCAT_TEMPLATE_SITES
DECLARE
 CURSOR mycursor IS
 SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME,
 TEMPLATE_COMMENT, PUBLIC_TEMPLATE, PARAMETER_NAME, DEFAULT_PARM_VALUE,
 PROMPT_STRING, USER_OVERRIDE
 FROM DBA_REPCAT_TEMPLATE_PARMS;
 tempstring VARCHAR2(1000);
 len NUMBER;
BEGIN
 FOR myrec IN mycursor LOOP
 len := DBMS_LOB.GETLENGTH(myrec.default_parm_value);
 DBMS_LOB.READ(myrec.default_parm_value, len, 1, tempstring);
 DBMS_OUTPUT.PUT_LINE(myrec.refresh_template_name||' '||
 myrec.owner||' '||myrec.refresh_group_name||' '||
 myrec.template_comment||' '||myrec.public_template||' '||
 myrec.parameter_name||' '||tempstring||' '||myrec.prompt_string||' '||
 myrec.user_override);
 END LOOP;
END;
/

ALL_REPCAT_TEMPLATE_SITES
Contains information about the current status of template instantiation among the

sites of an enterprise network. This view contains information about instantiation

sites for deployment templates that are accessible to the current user. Specifically,

the DBA can monitor the installation and deletion of templates at specific sites.

Related Views:
■ DBA_REPCAT_TEMPLATE_SITES describes all remote instantiation sites for all

templates in the database.

■ USER_REPCAT_TEMPLATE_SITES describes remote instantiation sites for all

templates owned by the current user.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information on using cursors. Also, see Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for more information on

using the DBMS_LOB package and LOBs in general.
25-10 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
ALL_REPCAT_USER_AUTHORIZATIONS
Lists the authorized users for private deployment templates accessible to the

current user. Users listed in this view have the ability to instantiate the specified

template. Users not listed in this view cannot instantiate the deployment template.

Related Views:
■ DBA_REPCAT_USER_AUTHORIZATIONS lists the authorized users for all the

private deployment templates in the database.

■ USER_REPCAT_USER_AUTHORIZATION lists the authorized users for private

deployment templates owned by the current user.

Column Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT NULLName of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) - Name of the refresh group to which template objects
are added during the instantiation process.

TEMPLATE_OWNER VARCHAR2(30) - Name of the user who is considered the owner of
the deployment template.

USER_NAME VARCHAR2(30) NOT NULL The name of the user who instantiated the
deployment template.

SITE_NAME VARCHAR2(128) - Target materialized view site of the deployment
template.

REPAPI_SITE_NAME VARCHAR2(128) - This column is intended for use in a future release of
Oracle.

STATUS VARCHAR2(10) - Displays the status of the deployment template at
the target materialized view site:

 0 = Not Installed

 1 = Installed

-1 = Installed with errors

INSTANTIATION_DATE DATE - Displays when the template was instantiated. Is
NULL if the template has not yet been instantiated.
Replication Catalog Views 25-11

ALL_REPCAT_USER_PARM_VALUES
ALL_REPCAT_USER_PARM_VALUES
This view describes the template parameters for all deployment templates

accessible to the current user. The DBA has the option of building a table of user

parameters prior to distributing the template for instantiation. When a template is

instantiated by a specified user, the values stored in the ALL_REPCAT_USER_
PARM_VALUES view for the specified user are used automatically.

Related Views:
■ DBA_REPCAT_USER_PARM_VALUES describes the template parameters for all

deployment templates in the database.

■ USER_REPCAT_USER_PARM_VALUES describes the template parameters for all

deployment templates owned by the current user.

Column Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT NULLName of the deployment template that a user has
been authorized to instantiate.

OWNER VARCHAR2(30) NOT NULL Name of the owner of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) NOT NULLName of the refresh group to which template objects
are added during the instantiation process.

TEMPLATE_COMMENT VARCHAR2(2000) - User specified comment.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.

If N then the deployment template is private.

USER_NAME VARCHAR2(30) NOT NULL Name of the user who has been authorized to
instantiate the deployment template.
25-12 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
Column Datatype NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT NULLThe name of the deployment template for which a
user parameter value has been defined.

OWNER VARCHAR2(30) NOT NULL The name of the owner of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) NOT NULLName of the refresh group to which the template
objects are added to during the instantiation
process.

TEMPATE_COMMENT VARCHAR2(2000) - User specified comment.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.

If N then the deployment template is private.

PARAMETER_NAME VARCHAR2(30) NOT NULLThe name of the parameter for which a user
parameter value has been defined.

DEFAULT_PARM_VALUE CLOB(4000) - The default value for the parameter.

PROMPT_STRING VARCHAR2(2000) - The prompt string for the parameter.

PARM_VALUE CLOB(4000) - The parameter value that has been defined for the
specified user.

USER_NAME VARCHAR2(30) NOT NULL The username of the user for whom the specified
parameter value has been defined.
Replication Catalog Views 25-13

ALL_REPCAT_USER_PARM_VALUES
Because DEFAULT_PARM_VALUE and PARM_VALUE columns are defined as CLOBs,
you receive an error if you simply try to perform a SELECT on the ALL_REPCAT_
USER_PARM_VALUES view. If you do not need to see the default or user parameter

values, then use the following select statement (be sure to exclude DEFAULT_PARM_
VALUE and PARM_VALUE):

SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME, TEMPLATE_COMMENT,
 PUBLIC_TEMPLATE, PARAMETER_NAME, PROMPT_STRING, USER_NAME
 FROM DBA_REPCAT_USER_PARM_VALUES;

The following script uses cursors and the DBMS_LOB package to view the entire

contents of the ALL_REPCAT_USER_PARM_VALUES view. Use this script to view

the entire contents of the ALL_REPCAT_TEMPLATE_PARMS view, including the

DEFAULT_PARM_VALUE and PARM_VALUE columns:

SET SERVEROUTPUT ON

DECLARE
 CURSOR mycursor IS
 SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME,
 TEMPLATE_COMMENT, PUBLIC_TEMPLATE, PARAMETER_NAME, DEFAULT_PARM_VALUE,
 PROMPT_STRING, PARM_VALUE, USER_NAME
 FROM DBA_REPCAT_USER_PARM_VALUES;
 tempstring VARCHAR2(1000);
 tempstring2 varchar2(1000);
 len NUMBER;
BEGIN
 FOR myrec IN mycursor LOOP
 len := DBMS_LOB.GETLENGTH(myrec.default_parm_value);
 DBMS_LOB.READ(myrec.default_parm_value, len, 1, tempstring);
 DBMS_OUTPUT.PUT_LINE(myrec.refresh_template_name||' '||
 myrec.owner||' '||myrec.refresh_group_name||' '||
 myrec.template_comment||' '||myrec.public_template||' '||
 myrec.parameter_name||' '||tempstring||' '||myrec.prompt_string||' '||
 tempstring2||' '||myrec.user_name);
 END LOOP;
END;
/

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information on using cursors. Also, see Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for more information on

using the DBMS_LOB package and LOBs in general.
25-14 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
ALL_REPCATLOG
Contains the interim status of any asynchronous administrative requests and any

error messages generated at each master site. All messages encountered while

executing a request are eventually transferred to the ALL_REPCATLOG view at the

master site that originated the request. If an administrative request completes

without error, then ultimately all traces of this request are removed from the ALL_
REPCATLOG view. This view contains administrative requests and error messages

that are accessible to the current user.

Related Views:
■ DBA_REPCATLOG describes the status for all asynchronous administrative

requests and all error messages in the database.

■ USER_REPCATLOG describes the status for all asynchronous administrative

requests and all error messages owned by the current user.
Replication Catalog Views 25-15

ALL_REPCOLUMN
ALL_REPCOLUMN
Lists the replicated columns for the tables accessible to the current user.

If the table contains a column object, then this view displays a placeholder for the

type and one row for each type attribute. If the table contains a nested table, then

then this view displays the storage table for the nested table as an independent

Column Datatype NULL Description

ID NUMBER - A sequence number. Together, the ID and SOURCE
columns identify all log records at all master sites
that pertain to a single administrative request.

SOURCE VARCHAR2(128) - Location where the request originated.

USERID VARCHAR2(30) - Name of the user making the request.

TIMESTAMP DATE - When the request was made.

ROLE VARCHAR2(9) - Indicates if site is the master definition site
(masterdef) or a master site (master).

MASTER VARCHAR2(128) - If the role is 'masterdef' and the task is remote, then
indicates which master site is performing the task.

SNAME VARCHAR2(30) - The name of the schema for the replicated object, if
applicable.

REQUEST VARCHAR2(29) - The name of the DBMS_REPCAT administrative
procedure that was run.

ONAME VARCHAR2(30) - The name of the replicated object, if applicable.

TYPE VARCHAR2(12) - The type of replicated object:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TABLE
OPERATOR TRIGGER
PACKAGE TYPE
PACKAGE BODY TYPE BODY
PROCEDURE VIEW

STATUS VARCHAR2(14) - The status of the administrative request: READY, DO_
CALLBACK, AWAIT_CALLBACK, or ERROR.

MESSAGE VARCHAR2(200) - Any error message that has been returned.

ERRNUM NUMBER - The Oracle error number for the message.

GNAME VARCHAR2(30) - The name of the replication group.
25-16 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
table. If a table is an object table, then this view displays the hidden object identifier

column.

Related Views:
■ DBA_REPCOLUMN describes the replicated columns for all the tables in the

database.

■ USER_REPCOLUMN describes the replicated columns for all the tables owned by

the current user.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the object owner.

ONAME VARCHAR2(30) NOT NULL The name of the object.

TYPE VARCHAR2(8) - The type of the object, either SNAPSHOT or TABLE.

CNAME VARCHAR2(4000) - The name of the replicated column.

ID NUMBER - The ID number of the replicated column.

POS NUMBER - The ordering of the replicated column.

COMPARE_OLD_ON_DELETE VARCHAR2(1) - Indicates whether Oracle compares the old value of
the column in replicated deletes.

COMPARE_OLD_ON_UPDATE VARCHAR2(1) - Indicates whether Oracle compares the old value of
the column in replicated updates.

SEND_OLD_ON_DELETE VARCHAR2(1) - Indicates whether Oracle sends the old value of the
column in replicated deletes.

SEND_OLD_ON_UPDATE VARCHAR2(1) - Indicates whether Oracle sends the old value of the
column in replicated updates.

CTYPE VARCHAR2(30) - Displays the column type. For user-defined types,
displays the user-defined type name.

CTYPE_TOID RAW(16) - If user-defined type, displays the object identifier
(OID) of the type. Otherwise, this field is NULL.

CTYPE_OWNER VARCHAR2(30) - If user-defined type, displays the owner of a
user-defined type. Otherwise, this field is NULL.

CTYPE_HASHCODE VARCHAR2(34) - If user-defined type, displays the type’s hashcode.
Otherwise, this field is NULL.

CTYPE_MOD VARCHAR2(3) - Displays REF for REF columns. Otherwise, this field
is NULL.

DATA_LENGTH VARCHAR2(40) - Displays the length of the column in bytes.
Replication Catalog Views 25-17

ALL_REPCOLUMN_GROUP
ALL_REPCOLUMN_GROUP
Describes the column groups for each replicated table accessible to the current user.

Related Views:
■ DBA_REPCOLUMN_GROUP describes the column groups for all the tables in the

database.

■ USER_REPCOLUMN_GROUP describes the column groups for all the tables

owned by the current user.

DATA_PRECISION VARCHAR2(40) - Displays the column precision in terms of decimal
digits for NUMBER columns or binary digits for
FLOAT columns.

DATA_SCALE VARCHAR2(40) - Displays the digits to right of decimal point in a
number.

NULLABLE VARCHAR2(1) - Indicates if the column allow NULL values.

CHARACTER_SET_NAME VARCHAR2(44) - If applicable, displays the name of character set for
the column.

TOP VARCHAR2(30) - Displays the top column for an attribute in a column
object. For example, in the oe.customers table,
cust_address is a column object and street_
address is one of its attributes. For the street_
address attribute, cust_address is the TOP
column.

For built-in datatypes, this field is NULL

CHAR_LENGTH NUMBER - Displays the length of the column in characters. This
value only applies to the following datatypes:

■ CHAR

■ VARCHAR2

■ NCHAR

■ NVARCHAR2

CHAR_USED VARCHAR2(1) - B indicates that the column uses BYTE length
semantics. C indicates that the column uses CHAR
length semantics. NULL indicates that the datatype
is not any of the following:

■ CHAR

■ VARCHAR2

■ NCHAR

■ NVARCHAR2

Column Datatype NULL Description
25-18 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
ALL_REPCONFLICT
Contains the name of each table accessible to the current user for which a conflict

resolution method has been defined and the type of conflict that the method is used

to resolve.

Related Views:
■ DBA_REPCONFLICTdescribes the conflict resolution method for all the tables in

the database on which a conflict resolution method has been defined.

■ USER_REPCONFLICT describes the conflict resolution method for all the tables

owned by the current user on which a conflict resolution method has been

defined.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the schema containing the replicated
table.

ONAME VARCHAR2(30) NOT NULL The name of the replicated table.

GROUP_NAME VARCHAR2(30) NOT NULLThe column group name.

GROUP_COMMENT VARCHAR2(80) - Any user-supplied comments.

Note: The SNAME column is not present in the USER_
REPCOLUMN_GROUP view.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the schema containing the replicated
table.

ONAME VARCHAR2(30) NOT NULL The name of the table for which a conflict resolution
method has been defined.

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the conflict resolution
method is used to resolve: delete, uniqueness, or
update.

REFERENCE_NAME VARCHAR2(30) NOT NULLThe object to which the method applies. For delete
conflicts, this is the table name. For uniqueness
conflicts, this is the constraint name. For update
conflicts, this is the column group name.
Replication Catalog Views 25-19

ALL_REPDDL
ALL_REPDDL
Contains the DDL for each replication object accessible to the current user.

Related Views:
■ DBA_REPDDL contains the DDL for each replicated object in the database.

■ USER_REPDDL contains the DDL for each replicated object owned by the

current user.

ALL_REPGENOBJECTS
Describes each object accessible to the current user that was generated to support

replication.

Related Views:
■ DBA_REPGENOBJECTSdescribes each object in the database that was generated

to support replication.

■ USER_REPGENOBJECTS describes each object owned by the current user that

was generated to support replication.

Note: The SNAME column is not present in the USER_
REPCONFLICT view.

Column Datatype NULL Description

LOG_ID NUMBER - Identifying number of the ALL_REPCATLOG record.

SOURCE VARCHAR2(128) - Name of the database at which the request
originated.

ROLE VARCHAR2(1) - If Y then this database is the master definition site
(masterdef) for the request.

If N then this database is a master site.

MASTER VARCHAR2(128) - Name of the database that processes this request.

LINE NUMBER(38) - Ordering of records within a single request.

TEXT VARCHAR2(2000) - Portion of an argument or DDL text.

DDL_NUM NUMBER(38) - Indicates the order in which to execute the DDL
statements stored in the TEXT column when
multiple DDL statements are used.
25-20 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
ALL_REPGROUP
Describes all of the replication groups that are accessible to the current user. The

members of each replication group are listed in a different view: ALL_REPOBJECT.

Related Views:
■ DBA_REPGROUP describes all of the replication groups in the database that are

being replicated.

■ USER_REPGROUP describes all of the replication groups owned by the current

user that are being replicated.

Column Datatype NULL Description

SNAME VARCHAR2(30) - The name of the replicated schema.

ONAME VARCHAR2(30) - The name of the generated object.

TYPE VARCHAR2(12) - The type of the generated object, either PACKAGE,
PACKAGE BODY, TRIGGER, or INTERNAL PACKAGE.

BASE_SNAME VARCHAR2(30) - The base object’s owner.

BASE_ONAME VARCHAR2(30) - The object for which this object was generated.

BASE_TYPE VARCHAR2(12) - The type of the base object.

PACKAGE_PREFIX VARCHAR2(30) - The prefix for the package wrapper.

PROCEDURE_PREFIX VARCHAR2(30) - The procedure prefix for the package wrapper.

DISTRIBUTED VARCHAR2(1) - This column is obsolete.

REASON VARCHAR2(30) - The reason the object was generated.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the replicated schema. Obsolete with
release 7.3 or later.

MASTER VARCHAR2(1) - Y indicates that the current site is a master site.

N indicates the current site is a materialized view
site.

STATUS VARCHAR2(9) - Used at master sites only. Status can be: normal,
quiescing, or quiesced.

SCHEMA_COMMENT VARCHAR2(80) - Any user-supplied comments.

GNAME VARCHAR2(30) NOT NULL The name of the replication group.
Replication Catalog Views 25-21

ALL_REPGROUP_PRIVILEGES
ALL_REPGROUP_PRIVILEGES
Contains information about the users who are registered for privileges in replication

groups. Shows only those replication groups accessible to the current user.

Related Views:
■ DBA_REPGROUP_PRIVILEGES contains information about the users who are

registered for privileges in all the replication groups in the database.

■ USER_REPGROUP_PRIVILEGES contains information about the users who are

registered for privileges in the replication groups owned by the current user.

ALL_REPGROUPED_COLUMN
Describes all of the columns that make up the column groups for each table

accessible to the current user.

Related Views:
■ DBA_REPGROUPED_COLUMN describes all of the columns that make up the

column groups for each table in the database.

FNAME VARCHAR2(30) - Flavor name.

RPC_PROCESSING_DISABLED VARCHAR2(1) - N indicates that this site can receive and apply
deferred remote procedure calls (RPCs).

Y indicates that this site cannot receive and apply
deferred remote procedure calls (RPCs).

OWNER VARCHAR2(30) NOT NULL Owner of the replication group.

Column Datatype NULL Description

USERNAME VARCHAR2(30) NOT NULL Displays the name of the user.

GNAME VARCHAR2(30) - Displays the name of the replication group.

CREATED DATE NOT NULL Displays the date that the replication group was
registered.

RECEIVER VARCHAR2(1) - Indicates whether the user has receiver privileges.

PROXY_SNAPADMIN VARCHAR2(1) - Indicates whether the user has proxy_snapadmin
privileges.

OWNER VARCHAR2(30) - Owner of the replication group.

Column Datatype NULL Description
25-22 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
■ USER_REPGROUPED_COLUMN describes all of the columns that make up the

column groups for each table owned by the current user.

ALL_REPKEY_COLUMNS
Describes the replication key column(s) accessible to the current user in each table.

The replication key column(s) is an alternate column or group of columns, instead

of the primary key, used to determine which columns of a table to compare when

using row-level replication. You can set the replication key columns using the SET_
COLUMNS procedure in the DBMS_REPCAT package.

The following types of columns cannot be replication key columns:

■ LOB or LOB attribute of a column object

■ Collection or collection attribute of a column object

■ REF

■ An entire column object

Related Views:
■ DBA_REPKEY_COLUMNSdescribes the replication key column(s) in each table in

the database.

■ USER_REPKEY_COLUMNS describes the replication key column(s) in each table

owned by the current user.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the schema containing the replicated
table.

ONAME VARCHAR2(30) NOT NULL The name of the replicated table.

GROUP_NAME VARCHAR2(30) NOT NULLThe name of the column group.

COLUMN_NAME VARCHAR2(30) NOT NULLThe name of the column in the column group.

Note: The SNAME column is not present in the USER_
REPGROUPED_COLUMN version of the view.

See Also: "SET_COLUMNS Procedure" on page 20-97
Replication Catalog Views 25-23

ALL_REPOBJECT
ALL_REPOBJECT
Contains information about the objects in each replication group accessible to the

current user. An object can belong to only one replication group. A replication

group can span multiple schemas.

Related Views:
■ DBA_REPOBJECT contains information about the objects in each replication

group in the database.

■ USER_REPOBJECTcontains information about the objects owned by the current

user in each replication group.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL Owner of the replicated table.

ONAME VARCHAR2(30) NOT NULL Name of the replicated table.

COL VARCHAR2(4000) - Replication key column(s) in the table.

Column Datatype NULL Description

SNAME VARCHAR2(30) - The name of the schema containing the replicated
object.

ONAME VARCHAR2(30) - The name of the replicated object.

TYPE VARCHAR2(16) - The type of replicated object:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TABLE
OPERATOR TRIGGER
PACKAGE TYPE
PACKAGE BODY TYPE BODY
PROCEDURE VIEW

STATUS VARCHAR2(10) - CREATE indicates that Oracle is applying user
supplied or Oracle-generated DDL to the local
database in an attempt to create the object locally.
When a local replica exists, Oracle COMPAREs the
replica with the master definition to ensure that they
are consistent. When creation or comparison
complete successfully, Oracle updates the status to
VALID . Otherwise, it updates the status to ERROR. If
you drop an object, then Oracle updates its status to
DROPPED before deleting the row from the ALL_
REPOBJECT view.
25-24 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
ALL_REPPARAMETER_COLUMN
In addition to the information contained in the ALL_REPRESOLUTION view, the

ALL_REPPARAMETER_COLUMN view contains information about the columns that

are used to resolve conflicts for each replicated table accessible to the current user.

These are the column values that are passed as the list_of_column_names
argument to the ADD_conflicttype _RESOLUTION procedures in the DBMS_
REPCAT package.

Related Views:
■ DBA_REPPARAMETER_COLUMNcontains information about the columns that are

used to resolve conflicts for each replicated table in the database.

■ USER_REPPARAMETER_COLUMN contains information about the columns that

are used to resolve conflicts for each replicated table owned by the current user.

GENERATION_STATUS VARCHAR2(9) - Specifies whether the object needs to generate
replication packages.

ID NUMBER - The identifier of the local database object, if one
exists.

OBJECT_COMMENT VARCHAR2(80) - Any user supplied comments.

GNAME VARCHAR2(30) - The name of the replication group to which the
object belongs.

MIN_COMMUNICATION VARCHAR2(1) - If Y then use minimum communication for an
update.

If N then send all old and all new values for an
update.

REPLICATION_TRIGGER_EXISTS VARCHAR2(1) - If Y then internal replication trigger exists.

If N then internal replication trigger does not exist.

INTERNAL_PACKAGE_EXISTS VARCHAR2(1) - If Y then internal package exists.

If N then internal package does not exist.

GROUP_OWNER VARCHAR2(30) - Owner of the replication group.

NESTED_TABLE VARCHAR2(1) - If Y then the replicated object is the storage table of a
nested table.

If N then the replicated object is not a storage table.

Column Datatype NULL Description
Replication Catalog Views 25-25

ALL_REPPRIORITY
ALL_REPPRIORITY
Contains the value and priority level of each priority group member in each priority

group accessible to the current user. Priority group names must be unique within a

replication group. Priority levels and values must each be unique within a given

priority group.

Related Views:
■ DBA_REPPRIORITYcontains the value and priority level of each priority group

member in each priority group in the database.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the schema containing the replicated
table.

ONAME VARCHAR2(30) NOT NULL The name of the replicated table.

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the method is used to
resolve: delete, uniqueness, or update.

REFERENCE_NAME VARCHAR2(30) NOT NULLThe object to which the method applies. For delete
conflicts, this is the table name. For uniqueness
conflicts, this is the constraint name. For update
conflicts, this is the column group name.

SEQUENCE_NO NUMBER NOT NULLThe order in which resolution methods are applied,
with 1 applied first.

METHOD_NAME VARCHAR2(80) NOT NULLThe name of an Oracle-supplied conflict resolution
method. For user-supplied methods, this value is
'user function'.

FUNCTION_NAME VARCHAR2(92) NOT NULL For methods of type 'user function', the name of the
user-supplied conflict resolution method.

PRIORITY_GROUP VARCHAR2(30) - For methods of name 'priority group', the name of
the priority group.

PARAMETER_TABLE_NAME VARCHAR2(30) NOT NULLDisplays the name of the table to which the
parameter column belongs.

PARAMETER_COLUMN_NAME VARCHAR2(4000) - The name of the column used as the IN parameter
for the conflict resolution method.

PARAMETER_SEQUENCE_NO NUMBER NOT NULLOrdering of column used as IN parameter.

Note: The SNAME column is not present in the USER_
REPPARAMETER_COLUMN view.
25-26 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
■ USER_REPPRIORITY contains the value and priority level of each priority

group member in each priority group owned by the current user.

ALL_REPPRIORITY_GROUP
Describes the priority group or site priority group defined for each replication

group accessible to the current user.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the replicated schema. Obsolete in
release 7.3 or later.

PRIORITY_GROUP VARCHAR2(30) NOT NULL The name of the priority group or site priority
group.

PRIORITY NUMBER NOT NULL The priority level of the member. The highest
number has the highest priority.

DATA_TYPE VARCHAR2(9) - The datatype of the values in the priority group.

FIXED_DATA_LENGTH NUMBER(38) - The maximum length of values of datatype CHAR.

CHAR_VALUE CHAR(255) - The value of the priority group member, if DATA_
TYPE is CHAR.

VARCHAR2_VALUE VARCHAR2(4000) - The value of the priority group member, if DATA_
TYPE is VARCHAR2.

NUMBER_VALUE NUMBER - The value of the priority group member, if DATA_
TYPE is NUMBER.

DATE_VALUE DATE - The value of the priority group member, if DATA_
TYPE is DATE.

RAW_VALUE RAW(2000) - The value of the priority group member, if DATA_
TYPE is RAW.

GNAME VARCHAR2(30) NOT NULL The name of the replication group.

NCHAR_VALUE NCHAR(500) - The value of the priority group member, if DATA_
TYPE is NCHAR.

NVARCHAR2_VALUE VARCHAR2(1000) - The value of the priority group member, if DATA_
TYPE is NVARCHAR2.

LARGE_CHAR_VALUE CHAR(2000) - The value of the priority group member, for
blank-padded character strings over 255 characters.

Note: The SNAME and GNAME columns are not present in the

USER_REPPRIORITY view.
Replication Catalog Views 25-27

ALL_REPPROP
Related Views:
■ DBA_REPPRIORITY_GROUP describes the priority group or site priority group

defined for each replication group in the database.

■ USER_REPPRIORITY_GROUPdescribes the priority group or site priority group

defined for each replication group owned by the current user.

ALL_REPPROP
Indicates the technique used to propagate operations on each replicated object to

the same object at another master site. These operations may have resulted from a

call to a stored procedure or procedure wrapper, or may have been issued against a

table directly. This view shows objects accessible to the current user.

Related Views:
■ DBA_REPPROP indicates the technique used to propagate operations on each

replicated object to the same object at another master site. This view shows all

objects in the database.

■ USER_REPPROP indicates the technique used to propagate operations on each

replicated object to the same object at another master site. This view shows

objects owned by the current user

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the replicated schema. Obsolete in
release 7.3 or later.

PRIORITY_GROUP VARCHAR2(30) NOT NULL The name of the priority group or site priority
group.

DATA_TYPE VARCHAR2(9) - The datatype of each value in the priority group.

FIXED_DATA_LENGTH NUMBER(38) - The maximum length for values of datatype CHAR.

PRIORITY_COMMENT VARCHAR2(80) - Any user-supplied comments.

GNAME VARCHAR2(30) NOT NULL The name of the replication group.

Note: The SNAME and GNAME columns are not present in the

USER_REPPRIORITY view.
25-28 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
ALL_REPRESOL_STATS_CONTROL
Describes statistics collection for conflict resolutions for all replicated tables

accessible to the current user.

Related Views:
■ DBA_REPRESOL_STATS_CONTROL describes statistics collection for conflict

resolutions for all replicated tables in the database.

■ USER_REPRESOL_STATS_CONTROL describes statistics collection for conflict

resolutions for all replicated tables owned by the current user.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the schema containing the replicated
object.

ONAME VARCHAR2(30) NOT NULL The name of the replicated object.

TYPE VARCHAR2(16) - The type of object being replicated:

FUNCTION PROCEDURE
INDEXTYPE SNAPSHOT
OPERATOR TABLE
PACKAGE TYPE
PACKAGE BODY TYPE BODY

DBLINK VARCHAR2(128) NOT NULL The fully qualified database name of the master site
to which changes are being propagated.

HOW VARCHAR2(13) - How propagation is performed. Values recognized
are 'none' for the local master site, and 'synchronous'
or 'asynchronous' for all others.

PROPAGATE_COMMENT VARCHAR2(80) - Any user-supplied comments.
Replication Catalog Views 25-29

ALL_REPRESOLUTION
ALL_REPRESOLUTION
Indicates the methods used to resolve update, uniqueness, or delete conflicts for

each table accessible to the current user that is replicated using row-level replication

for a given schema.

Related Views:
■ DBA_REPRESOLUTION indicates the methods used to resolve update,

uniqueness, or delete conflicts for each table in the database that is replicated

using row-level replication for a given schema.

■ USER_REPRESOLUTION indicates the methods used to resolve update,

uniqueness, or delete conflicts for each table owned by the current user that is

replicated using row-level replication.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL Owner of the table.

ONAME VARCHAR2(30) NOT NULL Table name.

CREATED DATE NOT NULL Timestamp for when statistics collection was first
started.

STATUS VARCHAR2(9) - Status of statistics collection: ACTIVE or
CANCELLED.

STATUS_UPDATE_DATE DATE NOT NULLTimestamp for when the status was last updated.

PURGED_DATE DATE - Timestamp for the last purge of statistics data.

LAST_PURGE_START_DATE DATE - The last start date of the statistics purging date
range.

LAST_PURGE_END_DATE DATE - The last end date of the statistics purging date
range.

Note: The SNAME column is not present in the USER_REPRESOL_
STATS_CONTROL view.
25-30 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
ALL_REPRESOLUTION_METHOD
Lists all of the conflict resolution methods available in the database. Initially, this

view lists the standard methods provided with Advanced Replication. As you

create new user functions and add them as conflict resolution methods for an object

in the database, these functions are added to this view.

Related Views:
■ DBA_REPRESOLUTION_METHOD lists all of the conflict resolution methods

available in the database.

■ USER_REPRESOLUTION_METHOD lists all of the conflict resolution methods

available in the database.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the replicated schema.

ONAME VARCHAR2(30) NOT NULL The name of the replicated table.

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the method is used to
resolve: delete, uniqueness, or update.

REFERENCE_NAME VARCHAR2(30) NOT NULLThe object to which the method applies. For delete
conflicts, this is the table name. For uniqueness
conflicts, this is the constraint name. For update
conflicts, this is the column group name.

SEQUENCE_NO NUMBER NOT NULLThe order that resolution methods are applied, with
1 applied first.

METHOD_NAME VARCHAR2(80) NOT NULLThe name of an Oracle-supplied conflict resolution
method. For user-supplied methods, this value is
'user function'.

FUNCTION_NAME VARCHAR2(92) NOT NULL For methods of type 'user function', the name of the
user-supplied conflict resolution method.

PRIORITY_GROUP VARCHAR2(30) - For methods of type 'priority group', the name of
the priority group.

RESOLUTION_COMMENT VARCHAR2(80) - Any user-supplied comments.

Note: The SNAME column is not present in the USER_
REPRESOLUTION view.
Replication Catalog Views 25-31

ALL_REPRESOLUTION_STATISTICS
ALL_REPRESOLUTION_STATISTICS
Lists information about successfully resolved update, uniqueness, and delete

conflicts for all replicated tables accessible to the current user. These statistics are

gathered for a table only if you have called the DBMS_REPCAT.REGISTER_
STATISTICS procedure.

Related Views:
■ DBA_REPRESOLUTION_STATISTICS lists information about successfully

resolved update, uniqueness, and delete conflicts for all replicated tables in the

database.

■ USER_REPRESOLUTION_STATISTICS lists information about successfully

resolved update, uniqueness, and delete conflicts for all replicated tables owned

by the current user.

Column Datatype NULL Description

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the resolution method is
designed to resolve: update, uniqueness, or delete.

METHOD_NAME VARCHAR2(80) NOT NULLThe name of the Oracle-supplied method, or the name
of the user-supplied method.

Column Datatype NULL Description

SNAME VARCHAR2(30) NOT NULL The name of the replicated schema.

ONAME VARCHAR2(30) NOT NULL The name of the replicated table.

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that was successfully resolved:
delete, uniqueness, or update.

REFERENCE_NAME VARCHAR2(30) NOT NULLThe object to which the conflict resolution method
applies. For delete conflicts, this is the table name.
For uniqueness conflicts, this is the constraint name.
For update conflicts, this is the column group name.

METHOD_NAME VARCHAR2(80) NOT NULLThe name of an Oracle-supplied conflict resolution
method. For user-supplied methods, this value is
'user function'.

FUNCTION_NAME VARCHAR2(92) - For methods of type 'user function', the name of the
user supplied conflict resolution method.

PRIORITY_GROUP VARCHAR2(30) - For methods of type 'priority group', the name of
the priority group.
25-32 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
ALL_REPSITES
Lists the members of each replication group accessible to the current user.

Related Views:
■ DBA_REPSITES lists the members of each replication group in the database.

■ USER_REPSITES lists the members of each replication group owned by the

current user.

The DBA_REPSITES view has the following additional columns:

RESOLVED_DATE DATE NOT NULLDate on which the conflict for this row was
resolved.

PRIMARY_KEY_VALUE VARCHAR2(2000) NOT NULL A concatenated representation of the row’s primary
key.

Note: The SNAME column is not present in the USER_
REPRESOLUTION_STATISTICS view.

Column Datatype NULL Description

GNAME VARCHAR2(30) NOT NULL The name of the replication group.

DBLINK VARCHAR2(128) NOT NULL The database link to a master site for this replication
group.

MASTERDEF VARCHAR2(1) - Indicates which of the DBLINKs is the master
definition site.

SNAPMASTER VARCHAR2(1) - Used by materialized view sites to indicate which of
the DBLINKs to use when refreshing.

MASTER_COMMENT VARCHAR2(80) - User-supplied comments.

MASTER VARCHAR2(1) - If Y then the site is a master site for the replicated
group.

If N then the site is not a master site for the
replicated group.

GROUP_OWNER VARCHAR2(30) NOT NULLOwner of the replication group.

Column Datatype NULL Description
Replication Catalog Views 25-33

DBA_REPCAT_REFRESH_TEMPLATES
DBA_REPCAT_REFRESH_TEMPLATES
This view contains global information about each deployment template in the

database, such as the template name, template owner, what refresh group the

template objects belong to, and the type of template (private or public).

Its columns are the same as those in ALL_REPCAT_REFRESH_TEMPLATES. For

detailed information about this view and its columns, see ALL_REPCAT_REFRESH_
TEMPLATES on page 25-5.

DBA_REPCAT_TEMPLATE_OBJECTS
The DBA_REPCAT_TEMPLATE_OBJECTS view contains the individual object

definitions that are contained in all deployment templates in the database.

Individual objects are added to a template by specifying the target template in

REFRESH_TEMPLATE_NAME.

Its columns are the same as those in ALL_REPCAT_TEMPLATE_OBJECTS. For

detailed information about this view and its columns, see ALL_REPCAT_
TEMPLATE_OBJECTS on page 25-6.

DBA_REPCAT_TEMPLATE_PARMS
Parameters defined in the object DDL for all templates in the database are stored in

the DBA_REPCAT_TEMPLATE_PARMS table. When an object is added to a template,

the DDL is examined for variables. Any found parameters are automatically added

to this view.

Its columns are the same as those in ALL_REPCAT_TEMPLATE_PARMS. For detailed

information about this view and its columns, see ALL_REPCAT_TEMPLATE_PARMS
on page 25-8.

Column Datatype NULL Description

PROP_UPDATES NUMBER - Encoding of propagating technique for master site.

MY_DBLINK VARCHAR2(1) - Used to detect problems after import. If Y then the
DBLINK is the global name.
25-34 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
DBA_REPCAT_TEMPLATE_SITES
The DBA_REPCAT_TEMPLATE_SITES view provides the DBA with information

about the current status of template instantiation for all the sites of a enterprise

network. This view contains information about instantiation sites for all

deployment templates in the database. Specifically, the DBA can monitor the

installation and deletion of templates at specific sites. Its columns are the same as

those in ALL_REPCAT_TEMPLATE_SITES on page 25-10.

DBA_REPCAT_USER_AUTHORIZATIONS
The DBA_REPCAT_USER_AUTHORIZATIONS view lists the authorized users for all

templates in the database specified for private use. Users listed in this view have the

ability to instantiate the specified template. Users not contained in this view cannot

instantiate the template. Its columns are the same as those in ALL_REPCAT_USER_
AUTHORIZATIONS on page 25-11.

DBA_REPCAT_USER_PARM_VALUES
The DBA_REPCAT_USER_PARM_VALUES view describes the template parameters

for all deployment templates in the database. The DBA has the option of building a

table of user parameters prior to distributing the template for instantiation. When a

template is instantiated by a specified user, the values stored in the DBA_REPCAT_
USER_PARM_VALUES table for the specified user are used automatically.

Its columns are the same as those in ALL_REPCAT_USER_PARM_VALUES. For

detailed information about this view and its columns, see ALL_REPCAT_USER_
PARM_VALUES on page 25-12.

DBA_REPCATLOG
The DBA_REPCATLOG view at each master site contains the interim status of any

asynchronous administrative requests and any error messages generated. All

messages encountered while executing a request are eventually transferred to the

DBA_REPCATLOG view at the master site that originated the request. If an

administrative request completes without error, then ultimately all traces of this

request are removed from the DBA_REPCATLOG view. Its columns are the same as

those in ALL_REPCATLOG on page 25-15.
Replication Catalog Views 25-35

DBA_REPCOLUMN
DBA_REPCOLUMN
The DBA_REPCOLUMN view lists the replicated columns for all the tables in the

database. Its columns are the same as those in ALL_REPCOLUMN on page 25-16.

DBA_REPCOLUMN_GROUP
The DBA_REPCOLUMN_GROUPview lists all the column groups each replicated table

in the database. Its columns are the same as those in ALL_REPCOLUMN_GROUP on

page 25-18.

DBA_REPCONFLICT
The DBA_REPCONFLICT view displays the name of each table in the database on

which a conflict resolution method has been defined and the type of conflict that the

method is used to resolve. Its columns are the same as those in ALL_REPCONFLICT
on page 25-19.

DBA_REPDDL
The DBA_REPDDL contains the DDL for each replication object in the database. Its

columns are the same as those in ALL_REPDDL on page 25-20.

DBA_REPEXTENSIONS
The DBA_REPEXTENSIONSview contains information about current operations that

are adding new master sites to a master group without quiescing the master group.

See Also: "Adding New Master Sites Without Quiescing the

Master Group" on page 7-4 for information about the procedure

that adds new master sites to a replication environment

Column Datatype NULL Description

EXTENSION_ID RAW(16) NOT NULL The identifier for a current pending request to add
master databases to a master group without
quiesce.

REQUEST VARCHAR2(15) - Extension request type. Currently, the only
possible value is ADD_NEW_MASTERS, which
indicates a request to add new master sites to a
master group without quiescing.
25-36 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
MASTERDEF VARCHAR2(128) - The global name of the master definition site of the
master groups to which new master sites are being
added.

EXPORT_REQUIRED VARCHAR2(3) - YES indicates that one or more new master sites
will be added using export/import of either the
entire database or at the table level.

NO indicates that all new master sites will be
added using change-based recovery.

REPCATLOG_ID NUMBER - Identifier of replication catalog records related to a
replication extension, on which the master
definition site is waiting. This value is only
meaningful at the master definition site.

EXTENSION_STATUS VARCHAR2(13) - Status of each replication extension. This value is
only meaningful at the master definition site.

The possible values are:

READY: The extension request has been created
and is ready.

STOPPING: The new master sites have been added
to the master group and the master definition site
is attempting to stop propagation from existing
masters to new master sites and to the master
definition site.

EXPORTING: The propagation of deferred
transactions has been stopped from existing
master sites to new master sites and to the master
definition site. The master definition site is waiting
for the export to finish.

INSTANTIATING : The DBMS_REPCAT.RESUME_
PROPAGATION_TO_MDEF procedure has been
invoked (if export was used), and the master
definition site is waiting for the new masters to
instantiate.

ERROR: An error occurred during the execution of
this extension request.

FLASHBACK_SCN NUMBER - The system change number (SCN) that must be
used during export or change-based recovery
when the new master sites are added. The new
master sites must be consistent with the SCN
listed.

Column Datatype NULL Description
Replication Catalog Views 25-37

DBA_REPEXTENSIONS
BREAK_TRANS_TO_MASTERDEF VARCHAR2(3) - This value is meaningful only if EXPORT_
REQUIRED is TRUE.

If BREAK_TRANS_TO_MASTERDEF is TRUE, then
existing masters may continue to propagate their
deferred transactions to the master definition site
for replication groups that are not adding master
sites. Deferred transactions for replication groups
that are adding master sites cannot be propagated
until the export completes.

If BREAK_TRANS_TO_MASTERDEF is FALSE, then
existing masters cannot propagate any deferred
transactions to the master definition site.

BREAK_TRANS_TO_NEW_MASTERS VARCHAR2(3) - If BREAK_TRANS_TO_NEW_MASTERS is TRUE,
then existing master sites may continue to
propagate deferred transactions to the new master
sites for replication groups that are not adding
master sites.

If BREAK_TRANS_TO_NEW_MASTERS is FALSE,
then propagation of deferred transaction queues to
the new masters is disabled.

PERCENTAGE_FOR_CATCHUP_MDEF NUMBER - This value is meaningful only if BREAK_TRANS_
TO_MASTERDEF is TRUE.

The percentage of propagation resources that
should be used for catching up propagation to the
master definition site.

CYCLE_SECONDS_MDEF NUMBER - This value is meaningful when PERCENTAGE_
FOR_CATCHUP_MDEF is both meaningful and is a
value between 10 and 90, inclusive. In this case,
propagation to the master definition site alternates
between replication groups that are not being
extended and replication groups that are being
extended, with one push to each during each
cycle. This value indicates the length of the cycle
in seconds.

PERCENTAGE_FOR_CATCHUP_NEW NUMBER - This value is meaningful only if BREAK_TRANS_
TO_NEW_MASTERS is TRUE.

The percentage of propagation resources that
should be used for catching up propagation to
new master sites.

Column Datatype NULL Description
25-38 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
DBA_REPGENOBJECTS
The DBA_REPGENOBJECTS view describes each object in the database that was

generated to support replication. Its columns are the same as those in ALL_
REPGENOBJECTS on page 25-20.

DBA_REPGROUP
The DBA_REPGROUP view describes all of the replication groups in the database.

The members of each replication group are listed in a different view, DBA_
REPOBJECT. The DBA_REPGROUP view’s columns are the same as those in ALL_
REPGROUP on page 25-21.

DBA_REPGROUP_PRIVILEGES
The DBA_REPGROUP_PRIVILEGES view contains information about the users who

are registered for privileges in replication groups. Shows all replication groups in

the database. Its columns are the same as those in ALL_REPGROUP_PRIVILEGES
on page 25-22.

DBA_REPGROUPED_COLUMN
The DBA_REPGROUPED_COLUMN view lists all of the columns that make up the

column groups for each table in the database. Its columns are the same as those in

ALL_REPGROUPED_COLUMN on page 25-22.

DBA_REPKEY_COLUMNS
The DBA_REPKEY_COLUMNS view describes the replication key column(s) in each

table in the database. Its columns are the same as those in ALL_REPKEY_COLUMNS
on page 25-23.

CYCLE_SECONDS_NEW NUMBER - This value is meaningful when PERCENTAGE_
FOR_CATCHUP_NEW is both meaningful and is a
value between 10 and 90, inclusive. In this case,
propagation to a new master alternates between
replication groups that are not being extended and
replication groups that are being extended, with
one push to each during each cycle. This value
indicates the length of the cycle in seconds.

Column Datatype NULL Description
Replication Catalog Views 25-39

DBA_REPOBJECT
DBA_REPOBJECT
The DBA_REPOBJECT view contains information about the objects in each

replication group in the database. An object can belong to only one replication

group. A replication group can span multiple schemas. Its columns are the same as

those in ALL_REPOBJECT on page 25-24.

DBA_REPPARAMETER_COLUMN
In addition to the information contained in the DBA_REPRESOLUTION view, the

DBA_REPPARAMETER_COLUMN view contains information about the columns that

are used to resolve conflicts for each replicated table in the database. These are the

column values that are passed as the list_of_column_names argument to the

ADD_conflicttype _RESOLUTION procedures in the DBMS_REPCAT package. Its

columns are the same as those in ALL_REPPARAMETER_COLUMN on page 25-25.

DBA_REPPRIORITY
The DBA_REPPRIORITY view contains the value and priority level of each priority

group member in each priority group in the database. Priority group names must be

unique within a replication group. Priority levels and values must each be unique

within a given priority group. Its columns are the same as those in ALL_
REPPRIORITY on page 25-26.

DBA_REPPRIORITY_GROUP
The DBA_REPPRIORITY_GROUP view describes the priority group or site priority

group defined for each replication group in the database. Its columns are the same

as those in ALL_REPPRIORITY_GROUP on page 25-27.

DBA_REPPROP
The DBA_REPPROP view indicates the technique used to propagate operations on

each replicated object to the same object at another master site. These operations

may have resulted from a call to a stored procedure or procedure wrapper, or may

have been issued against a table directly. This view shows all objects in the

database. Its columns are the same as those in ALL_REPPROP on page 25-28.
25-40 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
DBA_REPRESOL_STATS_CONTROL
The DBA_REPRESOL_STATS_CONTROL view describes statistics collection for

conflict resolutions for all replicated tables in the database. Its columns are the same

as those in ALL_REPRESOL_STATS_CONTROL on page 25-29.

DBA_REPRESOLUTION
The DBA_REPRESOLUTION view indicates the methods used to resolve update,

uniqueness, or delete conflicts for each table in the database that is replicated using

row-level replication for a given schema. Its columns are the same as those in ALL_
REPRESOLUTION on page 25-30.

DBA_REPRESOLUTION_METHOD
The DBA_REPRESOLUTION_METHODview lists all of the conflict resolution methods

available in the database. Initially, this view lists the standard methods provided

with the advanced replication facility. As you create new user functions and add

them as conflict resolution methods for an object in the database, these functions are

added to this view. Its columns are the same as those in ALL_REPRESOLUTION_
METHOD on page 25-31.

DBA_REPRESOLUTION_STATISTICS
The DBA_REPRESOLUTION_STATISTICSview lists information about successfully

resolved update, uniqueness, and delete conflicts for all replicated tables in the

database. These statistics are only gathered for a table if you have called the DBMS_
REPCAT.REGISTER_STATISTICS procedure. The DBA_REPRESOLUTION_
STATISTICS view’s columns are the same as those in ALL_REPRESOLUTION_
STATISTICS on page 25-32.

DBA_REPSITES
The DBA_REPSITES view lists the members of each replication group in the

database.

This view has the following additional columns that are not included in the ALL_
REPSITES and USER_REPSITES views:

Column Datatype NULL Description

PROP_UPDATES NUMBER - Encoding of propagating technique for master site.
Replication Catalog Views 25-41

DBA_REPSITES_NEW
Except for these additional columns, its columns are the same as those in ALL_
REPSITES on page 25-33.

DBA_REPSITES_NEW
The DBA_REPSITES_NEW view lists the new replication sites that you plan to add

to your replication environment.

MY_DBLINK VARCHAR2(1) - Used to detect problem after import. If Y then the
dblink is the global name.

See Also: "Adding New Master Sites Without Quiescing the

Master Group" on page 7-4 for information about the procedure

that adds new master sites to a replication environment

Column Datatype NULL Description
25-42 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
USER_REPCAT_REFRESH_TEMPLATES
This view contains global information about each deployment template owned by

the current user, such as the template name, template owner, what refresh group the

template objects belong to, and the type of template (private or public).

Its columns are the same as those in ALL_REPCAT_REFRESH_TEMPLATES. For

detailed information about this view and its columns, see ALL_REPCAT_REFRESH_
TEMPLATES on page 25-5.

Column Datatype NULL Description

EXTENSION_ID RAW(16) NOT NULL The identifier for a current pending request to add
master databases to a master group without quiesce.

GOWNER VARCHAR2(30) NOT NULLThe name of the user who owns the master group.

GNAME VARCHAR2(30) NOT NULL The name of the master group.

DBLINK VARCHAR2(128) NOT NULL The database link for a new master site.

FULL_INSTANTIATION VARCHAR2(1) - Y indicates that the new database in DBLINK is to be
added using full database export/import or
change-based recovery.

N indicates that the new database in DBLINK is to be
added using object-level export/import.

MASTER_STATUS VARCHAR2(13) - The instantiation status of a new master site. This
value is only meaningful at the master definition
site.

The possible values are:

READY: The new master site is ready.

INSTANTIATING : The new master site is in the
process of being instantiated.

INSTANTIATED: The new master has been
instantiated and is being prepared for replication
activity. That is, the DBMS_REPCAT.PREPARE_
INSTANTIATED_MASTER procedure has been run.

PREPARED: The propagation of deferred
transactions is enabled from the new master site to
other prepared masters, to existing masters, and to
the master definition site. The new master is now
prepared to participate in the replication
environment.
Replication Catalog Views 25-43

USER_REPCAT_TEMPLATE_OBJECTS
USER_REPCAT_TEMPLATE_OBJECTS
The USER_REPCAT_TEMPLATE_OBJECTS view contains the individual object

definitions that are contained in each deployment template owned by the current

user. Individual objects are added to a template by specifying the target template in

REFRESH_TEMPLATE_NAME.

Its columns are the same as those in ALL_REPCAT_TEMPLATE_OBJECTS. For

detailed information about this view and its columns, see ALL_REPCAT_
TEMPLATE_OBJECTS on page 25-6.

USER_REPCAT_TEMPLATE_PARMS
Parameters defined in the object DDL for all templates owned by the current user

are stored in the USER_REPCAT_TEMPLATE_PARMS table. When an object is added

to a template, the DDL is examined for variables; any found parameters are

automatically added to this view.

Its columns are the same as those in ALL_REPCAT_TEMPLATE_PARMS. For detailed

information about this view and its columns, see ALL_REPCAT_TEMPLATE_PARMS
on page 25-8.

USER_REPCAT_TEMPLATE_SITES
The USER_REPCAT_TEMPLATE_SITES view provides the user with information

about the current status of template instantiation amongst the sites of a enterprise

network. This view contains information about instantiation sites for deployment

templates that are owned by the current user. Specifically, the user can monitor the

installation and deletion of templates at specific sites. Its columns are the same as

those in ALL_REPCAT_TEMPLATE_SITES on page 25-10.

USER_REPCAT_USER_AUTHORIZATION
The USER_REPCAT_USER_AUTHORIZATION view lists the authorized users for all

of the templates that are owned by the current user and specified for private use.

Users listed in this view have the ability to instantiate the specified template. Users

not contained in this view cannot instantiate the template. Its columns are the same

as those in ALL_REPCAT_USER_AUTHORIZATIONS on page 25-11.
25-44 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
USER_REPCAT_USER_PARM_VALUES
The USER_REPCAT_USER_PARM_VALUES view describes the template parameters

for all deployment templates owned by the current user. The DBA has the option of

building a table of user parameters prior to distributing the template for

instantiation. When a template is instantiated by a specified user, the values stored

in the USER_REPCAT_USER_PARM_VALUES view for the specified user are used

automatically.

Its columns are the same as those in ALL_REPCAT_USER_PARM_VALUES. For

detailed information about this view and its columns, see ALL_REPCAT_USER_
PARM_VALUES on page 25-12.

USER_REPCATLOG
The USER_REPCATLOG view at each master site contains the interim status of any

asynchronous administrative requests and any error messages generated. All

messages encountered while executing a request are eventually transferred to the

USER_REPCATLOG view at the master site that originated the request. If an

administrative request completes without error, then ultimately all traces of this

request are removed from the USER_REPCATLOG view.

This view contains asynchronous administrative requests and error messages that

are owned by the current user. Its columns are the same as those in ALL_
REPCATLOG on page 25-15.

USER_REPCOLUMN
The USER_REPCOLUMNview lists the replicated columns for all the tables owned by

the current user. Its columns are the same as those in ALL_REPCOLUMN on

page 25-16.

USER_REPCOLUMN_GROUP
The USER_REPCOLUMN_GROUP view lists the column groups for each replicated

table owned by the current user. Its columns are the same as those in ALL_
REPCOLUMN_GROUP on page 25-18.

Note: The SNAME column is not present in the USER_
REPCOLUMN_GROUP view. This column is available in the ALL_
REPCOLUMN_GROUP and DBA_REPCOLUMN_GROUP views.
Replication Catalog Views 25-45

USER_REPCONFLICT
USER_REPCONFLICT
The USER_REPCONFLICT view displays the name of each table owned by the

current user on which a conflict resolution method has been defined and the type of

conflict that the method is used to resolve. Its columns are the same as those in

ALL_REPCONFLICT on page 25-19.

USER_REPDDL
The USER_REPDDL contains the DDL for each replication object owned by the

current user. Its columns are the same as those in ALL_REPDDL on page 25-20.

USER_REPGENOBJECTS
The USER_REPGENOBJECTS view describes each object owned by the current user

that was generated to support replication. Its columns are the same as those in ALL_
REPGENOBJECTS on page 25-20.

USER_REPGROUP
The USER_REPGROUP view describes all of the replication groups owned by the

current user. The members of each replication group are listed in a different view,

USER_REPOBJECT. The USER_REPGROUP view’s columns are the same as those in

ALL_REPGROUP on page 25-21.

USER_REPGROUP_PRIVILEGES
The USER_REPGROUP_PRIVILEGES view contains information about the users

who are registered for privileges in replication groups. Shows only those replication

groups owned by the current user. Its columns are the same as those in ALL_
REPGROUP_PRIVILEGES on page 25-22.

USER_REPGROUPED_COLUMN
The USER_REPGROUPED_COLUMN view lists all of the columns that make up the

column groups for each table. Its columns are the same as those in ALL_
REPGROUPED_COLUMN on page 25-22.

Note: The SNAME column is not present in the USER_
REPCONFLICT view. This column is available in the ALL_
REPCONFLICT and DBA_REPCONFLICT views.
25-46 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
USER_REPKEY_COLUMNS
The USER_REPKEY_COLUMNS view describes the replication key column(s) in each

table owned by the current user. Its columns are the same as those in ALL_REPKEY_
COLUMNS on page 25-23.

USER_REPOBJECT
The USER_REPOBJECT view contains information about the objects owned by the

current user in each replication group. An object can belong to only one replication

group. A replication group can span multiple schemas. Its columns are the same as

those in ALL_REPOBJECT on page 25-24.

USER_REPPARAMETER_COLUMN
In addition to the information contained in the USER_REPRESOLUTION view, the

USER_REPPARAMETER_COLUMN view contains information about the columns that

are used to resolve conflicts for each replicated table owned by the current user.

These are the column values that are passed as the list_of_column_names
argument to the ADD_conflicttype _RESOLUTION procedures in the DBMS_
REPCAT package. Its columns are the same as those in ALL_REPPARAMETER_
COLUMN on page 25-25.

USER_REPPRIORITY
The USER_REPPRIORITYview contains the value and priority level of each priority

group member in each priority group owned by the current user. Priority group

names must be unique within a replication group. Priority levels and values must

each be unique within a given priority group. Its columns are the same as those in

ALL_REPPRIORITY on page 25-26.

Note: The SNAME column is not present in the USER_
REPGROUPED_COLUMN view. This column is available in the ALL_
REPGROUPED_COLUMN and DBA_REPGROUPED_COLUMN views.

Note: The SNAME column is not present in the USER_
REPPARAMETER_COLUMN view. This column is available in the

ALL_REPPARAMETER_COLUMNand DBA_REPPARAMETER_COLUMN
views.
Replication Catalog Views 25-47

USER_REPPRIORITY_GROUP
USER_REPPRIORITY_GROUP
The USER_REPPRIORITY_GROUP view describes the priority group or site priority

group defined for each replication group owned by the current user. Its columns are

the same as those in ALL_REPPRIORITY_GROUP on page 25-27.

USER_REPPROP
The USER_REPPROP view indicates the technique used to propagate operations on

each replicated object to the same object at another master site. These operations

may have resulted from a call to a stored procedure or procedure wrapper, or may

have been issued against a table directly. This view shows objects owned by the

current user. Its columns are the same as those in ALL_REPPROP on page 25-28.

USER_REPRESOL_STATS_CONTROL
The USER_REPRESOL_STATS_CONTROL view describes statistics collection for

conflict resolutions for all replicated tables owned by the current user. Its columns

are the same as those in ALL_REPRESOL_STATS_CONTROL on page 25-29.

USER_REPRESOLUTION
The USER_REPRESOLUTION view indicates the methods used to resolve update,

uniqueness, or delete conflicts for each table owned by the current user that is

replicated using row-level replication for a given schema. Its columns are the same

as those in ALL_REPRESOLUTION on page 25-30.

Note: The SNAME column is not present in the USER_
REPPRIORITY view. This column is available in the ALL_
REPPRIORITY and DBA_REPPRIORITY views.

Note: The SNAME column is not present in the USER_REPRESOL_
STATS_CONTROL view. This column is available in the ALL_
REPRESOL_STATS_CONTROL and DBA_REPRESOL_STATS_
CONTROL views.
25-48 Oracle9i Replication Management API Reference

Summary of Replication Catalog Views
USER_REPRESOLUTION_METHOD
The USER_REPRESOLUTION_METHOD view lists all of the conflict resolution

methods available in the database. Initially, this view lists the standard methods

provided with the advanced replication facility. As you create new user functions

and add them as conflict resolution methods for an object in the database, these

functions are added to this view. Its columns are the same as those in ALL_
REPRESOLUTION_METHOD on page 25-31.

USER_REPRESOLUTION_STATISTICS
The USER_REPRESOLUTION_STATISTICS view lists information about

successfully resolved update, uniqueness, and delete conflicts for all replicated

tables owned by the current user. These statistics are only gathered for a table if you

have called the DBMS_REPCAT.REGISTER_STATISTICS procedure. The USER_
REPRESOLUTION_STATISTICS view’s columns are the same as those in ALL_
REPRESOLUTION_STATISTICS on page 25-32.

USER_REPSITES
The USER_REPSITES view lists the members of each replication group owned by

the current user. Its columns are the same as those in ALL_REPSITES on

page 25-33.

Note: The SNAME column is not present in the USER_
REPREPRESOLUTION view. This column is available in the ALL_
REPREPRESOLUTION and DBA_REPREPRESOLUTION views.

Note: The SNAME column is not present in the USER_
REPRESOLUTION_STATISTICS view. This column is available in

the ALL_REPRESOLUTION_STATISTICS and DBA_
REPRESOLUTION_STATISTICS views.
Replication Catalog Views 25-49

USER_REPSITES
25-50 Oracle9i Replication Management API Reference

Replication Dynamic Performance
26

Replication Dynamic Performance Views

All Oracle installations include the dynamic performance views, often referred to as

V$ views, described in this chapter. These views are used by master sites and

materialized view sites to determine such information as which materialized views

are being refreshed currently and statistics about the deferred transaction queue.

This chapter describes the following views:

■ V$MVREFRESH

■ V$REPLPROP

■ V$REPLQUEUE

See Also: Chapter 10, "Monitoring a Replication Environment"
 Views 26-1

V$MVREFRESH
V$MVREFRESH
Contains information about the materialized views currently being refreshed.

V$REPLPROP
Contains information about the parallel propagation currently in progress at the

replication site. Use this view to determine which transactions are currently being

propagated, the number of calls propagated in each transaction, and the current

activity of the parallel propagation slave processes or parallel propagation

coordinator process.

Column Datatype Description

SID NUMBER Session identifier.

SERIAL# NUMBER Session serial number, which is used to identify uniquely a
session's objects. Guarantees that session-level commands are
applied to the correct session objects if the session ends and
another session begins with the same session ID.

CURRMVOWNER VARCHAR2(31) Owner of the materialized view currently being refreshed. The
materialized view resides in this user’s schema.

CURRMVNAME VARCHAR2(31) Name of the materialized view currently being refreshed.

Note: This view only contains data when deferred transactions

are being pushed using parallel propagation at the current site. The

parallelism parameter must be set to 1 or higher in the DBMS_
DEFER_SYS.PUSH function for a push to use parallel propagation.

Otherwise, the push uses serial propagation, and no data appears

in this view during the push.
26-2 Oracle9i Replication Management API Reference

Column Datatype Description

SID NUMBER Session identifier.

SERIAL# NUMBER Session serial number. Used to identify uniquely a session's
objects. Guarantees that session-level commands are applied to
the correct session objects if the session ends and another session
begins with the same session ID.

NAME VARCHAR2(71) Replication Parallel Prop Slave n indicates that the slave
process is active, either waiting, pushing deferred transactions,
purging metadata, or creating an error transaction.

Replication Parallel Prop Coordinator indicates that the
coordinator process is active, either waiting, sleeping, or
scheduling slaves to perform operations.

The Replication Parallel Prop Coordinator reads
transactions from the deferred transaction queue and assigns
them to the Replication Parallel Prop Slaves . Then, the
slaves propagate the transactions to the destination site. When the
slaves push transactions in a push session, the slaves remain
active until the push session completes, even if there are no more
transactions to push.

DBLINK VARCHAR2(128) Database link on which this replication session is propagating.

STATE VARCHAR2(12) WAIT indicates that either the slave or coordinator process is
waiting for an event (that is, a message).

SLEEP indicates that the coordinator process is sleeping for the
duration of the delay_seconds setting. You set delay_
seconds with the SCHEDULE_PUSH procedure in the DBMS_
DEFER_SYS package.

PUSHindicates that the slave process is pushing transactions from
the deferred transaction queue to the remote site.

PURGE indicates that the slave process is purging metadata
related to successfully applied transactions from the remote site.

CREATE ERROR indicates that the slave process is creating an
error transaction. In this case, an error or a conflict occurred while
the slave was pushing deferred transactions to the remote site.

SCHEDULE TXN indicates that the coordinator process is
determining the order that transactions are applied and assigning
slave processes to execute the transactions.

XID VARCHAR2(22) If the session is a slave session, then indicates the transaction id of
the transaction that the slave is currently propagating.

SEQUENCE NUMBER If the process is a slave process, then the sequence number of the
calls propagated in the current operation, if relevant. Each
transaction must process one or more calls, and the value of
SEQUENCE starts at zero and increases as each call is processed.
So, the SEQUENCE value shows the call that is currently being
processed in each transaction. This value increases until the slave
has processed all of the calls in a transaction.
Replication Dynamic Performance Views 26-3

V$REPLQUEUE
V$REPLQUEUE
Contains statistics about the replication deferred transactions queue. All values are

stored since the start of the current database instance.

Column Datatype Description

TXNS_ENQUEUED NUMBER Number of transactions enqueued in the deferred transactions
queue.

CALLS_ENQUEUED NUMBER Number of calls enqueued into the deferred transactions queue.

TXNS_PURGED NUMBER Number of transactions purged from the deferred transactions
queue.

LAST_ENQUEUE_TIME DATE Date when the last transaction was enqueued into the deferred
transaction queue. NULL if no transactions have been enqueued
into the deferred transaction queue since the instance started.

LAST_PURGE_TIME DATE Date when the last transaction was purged from the deferred
transaction queue. NULLif no transactions have been purged from
the deferred transaction queue since the instance started.
26-4 Oracle9i Replication Management API Reference

Deferred Transaction
27

Deferred Transaction Views

Oracle provides several views for you to use when administering deferred

transactions. These views provide information about each deferred transaction,

such as the transaction destinations, the deferred calls that make up the

transactions, and any errors encountered during attempted execution of the

transaction.

This chapter describes the following views:

■ DEFCALL

■ DEFCALLDEST

■ DEFDEFAULTDEST

■ DEFERRCOUNT

■ DEFERROR

■ DEFLOB

■ DEFPROPAGATOR

■ DEFSCHEDULE

■ DEFTRAN

■ DEFTRANDEST

Caution: You should not modify the tables directly. Instead, use

the procedures provided in the DBMS_DEFER and DBMS_DEFER_
SYS packages.

See Also: Chapter 10, "Monitoring a Replication Environment"
 Views 27-1

DEFCALL
DEFCALL
Records all deferred remote procedure calls.

For calls placed in the queue using asynchronous replication, Oracle uses null

compression for column objects and object tables that contain three or more

consecutive nulls. Therefore, this view may show fewer attributes than the total

number of attributes in a column object and fewer columns than the total number

for an object table. For example, null compression may cause a column object with

eight attributes to show only five attributes.

Null compression does not apply to error transactions.

DEFCALLDEST
Lists the destinations for each deferred remote procedure call.

DEFDEFAULTDEST
If you are not using Advanced Replication and do not supply a destination for a

deferred transaction or the calls within that transaction, then Oracle uses the

Column Datatype NULL Description

CALLNO NUMBER - The unique ID of a call within a transaction.

DEFERRED_TRAN_ID VARCHAR2(30) - The unique ID of the associated transaction.

SCHEMANAME VARCHAR2(30) - The schema name of the deferred call.

PACKAGENAME VARCHAR2(30) - The package name of the deferred call. For a
replicated table, this may refer to the table name.

PROCNAME VARCHAR2(30) - The procedure name of the deferred call. For a
replicated table, this may refer to an operation
name.

ARGCOUNT NUMBER - The number of arguments in the deferred call.

Column Datatype NULL Description

CALLNO NUMBER NOT NULLUnique ID of a call within a transaction.

DEFERRED_TRAN_ID VARCHAR2(30) NOT NULL Corresponds to the DEFERRED_TRAN_IDcolumn in
the DEFTRAN view. Each deferred transaction is
made up of one or more deferred calls.

DBLINK VARCHAR2(128) NOT NULL The fully qualified database name of the destination
database.
27-2 Oracle9i Replication Management API Reference

DEFDEFAULTDEST view to determine the destination databases to which you want

to defer a remote procedure call.

DEFERRCOUNT
Contains information about the error transactions for a destination.

DEFERROR
Contains the ID of each transaction that could not be applied. You can use this ID to

locate the queued calls associated with this transaction. These calls are stored in the

DEFCALL view. You can use the procedures in the DBMS_DEFER_QUERY package to

determine the arguments to the procedures listed in the DEFCALL view.

DEFLOB
Contains the LOB parameters to deferred remote procedure calls (RPCs).

Column Datatype NULL Description

DBLINK VARCHAR2(128) NOT NULL The fully qualified database name to which a
transaction is replicated.

Column Datatype NULL Description

ERRCOUNT NUMBER - Number of existing transactions that caused an error
for the destination.

DESTINATION VARCHAR2(128) - Database link used to address destination.

Column Datatype NULL Description

DEFERRED_TRAN_ID VARCHAR2(22) NOT NULL The ID of the transaction causing the error.

ORIGIN_TRAN_DB VARCHAR2(128) - The database originating the deferred transaction.

ORIGIN_TRAN_ID VARCHAR2(22) - The original ID of the transaction.

CALLNO NUMBER - Unique ID of the call at DEFERRED_TRAN_ID.

DESTINATION VARCHAR2(128) - Database link used to address destination.

START_TIME DATE - Time when the original transaction was enqueued.

ERROR_NUMBER NUMBER - Oracle error number.

ERROR_MSG VARCHAR2(2000) - Error message text.

RECEIVER VARCHAR2(30) - Original receiver of the deferred transaction.
Deferred Transaction Views 27-3

DEFPROPAGATOR
DEFPROPAGATOR
Contains information about the local propagator.

DEFSCHEDULE
Contains information about when a job is next scheduled to be executed and also

includes propagation statistics. The propagation statistics are for propagation of

deferred transactions from the current site to the site specified in the DBLINK
column.

 To clear the propagation statistics for a remote site and start fresh, use the CLEAR_
PROP_STATISTICS procedure in the DBMS_DEFER_SYS package.

Column Datatype NULL Description

ID RAW(16) NOT NULL Identifier of the LOB parameter.

DEFERRED_TRAN_ID VARCHAR2(22) - Transaction ID for deferred remote procedure calls
(RPCs) with this LOB parameter.

BLOB_COL BLOB(4000) - The binary LOB parameter.

CLOB_COL CLOB(4000) - The character LOB parameter.

NCLOB_COL NCLOB(4000) - The national character LOB parameter.

Column Datatype NULL Description

USERNAME VARCHAR2(30) NOT NULL Username of the propagator.

USERID NUMBER NOT NULL User ID of the propagator.

STATUS VARCHAR2(7) - Status of the propagator.

CREATED DATE NOT NULL Time when the propagator was registered.

See Also: "CLEAR_PROP_STATISTICS Procedure" on page 14-4

Column Datatype NULL Description

DBLINK VARCHAR2(128) NOT NULL Fully qualified path name to the master site for
which you have scheduled periodic execution of
deferred remote procedure calls.

JOB NUMBER - Number assigned to job when you created it by
calling DBMS_DEFER_SYS.SCHEDULE_PUSH.
Query the WHAT column of the USER_JOBS view to
determine what is executed when the job is run.
27-4 Oracle9i Replication Management API Reference

INTERVAL VARCHAR2(200) - Function used to calculate the next time to push the
deferred transaction queue to destination.

NEXT_DATE DATE - Next date that job is scheduled to be executed.

LAST_DATE DATE - Last time the queue was pushed (or attempted to
push) remote procedure calls to this destination.

DISABLED CHAR(1) - If Y then propagation to destination is disabled.

If N then propagation to the destination is enabled.

LAST_TXN_COUNT NUMBER - Number of transactions pushed during last attempt.

LAST_ERROR_NUMBER NUMBER - Oracle error number from last push.

LAST_ERROR_MESSAGE VARCHAR2(2000) - Error message from last push.

CATCHUP RAW(16) NOT NULL The extension identifier associated with a new
master site that is being added to a master group
without quiescing the master group. If there is no
extension identifier for a master site, then the value
is 00 .

TOTAL_TXN_COUNT NUMBER - Total combined number of successful transactions
and error transactions.

AVG_THROUGHPUT NUMBER - The average number of transactions per second that
are propagated using parallel propagation. The
transactions include both successfully applied
transactions and error transactions created on the
remote site. Time that has elapsed when the
propagation coordinator is inactive (sleeping) is
included in the calculation.

AVG_LATENCY NUMBER - If the transaction is successfully applied at the
remote site, then the average number of seconds
between the first call of a transaction on the current
site and the confirmation that the transaction was
applied at the remote site. The first call begins when
the user makes the first data manipulation language
(DML) change, not when the transaction is
committed.

If the transaction is an error transaction, then the
average number of seconds between the first call of
a transaction on the current site and the
confirmation that the error transaction is committed
on the remote site.

TOTAL_BYTES_SENT NUMBER - Total number of bytes sent, including replicated
data and metadata.

TOTAL_BYTES_RECEIVED NUMBER - Total number of bytes received in propagation
confirmation messages.

Column Datatype NULL Description
Deferred Transaction Views 27-5

DEFTRAN
DEFTRAN
Records all deferred transactions in the deferred transactions queue at the current

site.

TOTAL_ROUND_TRIPS NUMBER - Total number of network round trips completed to
replicate data. A round trip is one or more
consecutively sent messages followed by one or
more consecutively received messages. So, if site A
sends 20 messages to site B and then site B sends
one message to site A, then that is that one round
trip.

TOTAL_ADMIN_COUNT NUMBER - Total number of administrative requests sent to
maintain information about transactions applied at
the receiving site. The receiving site is the site
specified in the DBLINK column. This special
administration is only required for parallel
propagation.

TOTAL_ERROR_COUNT NUMBER - Total number of unresolved conflicts for which a
remote error was created.

TOTAL_SLEEP_TIME NUMBER - Total number of seconds the propagation
coordinator was inactive (sleeping). You control the
amount of time that the propagation coordinator
sleeps using the delay_seconds parameter in the
DBMS_DEFER_SYS.PUSH function.

DISABLED_INTERNALLY_SET VARCHAR2(1) - This value is relevant only if DISABLED is Y.

If DISABLED_INTERNALLY_SET is Y then
propagation to destination was set to disabled
internally by Oracle for propagation
synchronization when adding a new master site to a
master group without quiescing the master group.
Oracle will enable propagation automatically at a
later time.

If DISABLED_INTERNALLY_SET is N then
propagation was not disabled internally.

Column Datatype NULL Description
27-6 Oracle9i Replication Management API Reference

DEFTRANDEST
Lists the destinations for each deferred transaction in the deferred transactions

queue at the current site.

Column Datatype NULL Description

DEFERRED_TRAN_ID VARCHAR2(30) - The transaction ID that enqueued the calls.

DELIVERY_ORDER NUMBER - An identifier that determines the order of deferred
transactions in the queue. The identifier is derived
from the system change number (SCN) of the
originating transaction.

DESTINATION_LIST VARCHAR2(1) - R indicates that the destinations are determined by
the ALL_REPSITES view.

D indicates that the destinations were determined by
the DEFDEFAULTDEST view or the NODE_LIST
argument to the TRANSACTION or CALL procedures.

START_TIME DATE - The time that the original transaction was
enqueued.

Column Datatype NULL Description

DEFERRED_TRAN_ID VARCHAR2(30) NOT NULL The transaction ID of the transaction to replicate to
the given database link.

DELIVERY_ORDER NUMBER - An identifier that determines the order of deferred
transactions in the queue. The identifier is derived
from the system change number (SCN) of the
originating transaction.

DBLINK VARCHAR2(128) NOT NULL The fully qualified database name of the destination
database.
Deferred Transaction Views 27-7

DEFTRANDEST
27-8 Oracle9i Replication Management API Reference

Materialized View and Refresh Group
28

Materialized View and Refresh Group Views

This chapter lists the following data dictionary views, which provide information

about materialized views and materialized view refresh groups.

ALL_ Views DBA_ Views USER_ Views

ALL_BASE_TABLE_MVIEWS DBA_BASE_TABLE_MVIEWS USER_BASE_TABLE_MVIEWS

- DBA_MVIEW_LOG_FILTER_COLS -

ALL_MVIEW_LOGS DBA_MVIEW_LOGS USER_MVIEW_LOGS

ALL_MVIEW_REFRESH_TIMES DBA_MVIEW_REFRESH_TIMES USER_MVIEW_REFRESH_TIMES

ALL_MVIEWS DBA_MVIEWS USER_MVIEWS

- DBA_RCHILD -

ALL_REFRESH DBA_REFRESH USER_REFRESH

ALL_REFRESH_CHILDREN DBA_REFRESH_CHILDREN USER_REFRESH_CHILDREN

ALL_REGISTERED_MVIEWS DBA_REGISTERED_MVIEWS USER_REGISTERED_MVIEWS

- DBA_RGROUP -

See Also: Chapter 10, "Monitoring a Replication Environment"
 Views 28-1

28-2 Oracle9i Replication Management API Reference

Part V

Appendixes

Part V includes the following appendixes:

■ Appendix A, "Security Options"

■ Appendix B, "User-Defined Conflict Resolution Methods"

Security Op
A

Security Options

This appendix contains these topics:

■ Security Setup for Multimaster Replication

■ Security Setup for Materialized View Replication
tions A-1

Security Setup for Multimaster Replication
Security Setup for Multimaster Replication
Nearly all users should find it easiest to use the Replication Manager Setup Wizard

when configuring multimaster replication security. However, in certain cases you

may need to use the replication management API to perform these setup

operations.

To configure a replication environment, the database administrator must connect

with DBA privileges to grant the necessary privileges to the replication

administrator.

First set up user accounts at each master site with the appropriate privileges to

configure and maintain the replication environment and to propagate and apply

replicated changes. You must also define links for users at each master site.

In addition to the end users who access replicated objects, there are three special

categories of "users" in a replication environment:

■ Replication administrators, who are responsible for configuring and

maintaining a replication environment.

■ Propagators, who are responsible for propagating deferred transactions.

■ Receivers at remote sites, who are responsible for applying these transactions.

Typically, a single user acts as administrator, propagator, and receiver. However,

you can have separate users perform each of these functions. You can choose to

have a single, global replication administrator or, if your replication groups do not

span schema boundaries, you may prefer to have separate replication

administrators for different schemas. Note, however, that you can have only one

registered propagator for each database.

Table A–1 on page A-4 describes the necessary privileges that must be assigned to

these specialized accounts. Most privileges needed by these users are granted to

them through calls to the replication management API. You also must grant certain

privileges directly, such as CONNECT and RESOURCE privileges.
A-2 Oracle9i Replication Management API Reference

Security Setup for Multimaster Replication
Trusted Compared With Untrusted Security
In addition to the different types of users, you also need to determine which type of

security model you will implement: trusted or untrusted. With a trusted security

model, the receiver has access to all local master groups. Because the receiver

performs database activities at the local master site on behalf of the propagator at

the remote site, the propagator also has access to all master groups at the receiver’s

site. Remember that a single receiver is used for all incoming transactions.

For example, consider the scenario in Figure A–1. Even though only Master Groups

A and C exist at Master Site B, the propagator has access to Master Groups A, B, C,

and D at Master Site A because the trusted security model has been used. While this

greatly increases the flexibility of database administration, due to the mobility of

remote database administration, it also increases the chances of a malicious user at a

remote site viewing or corrupting data at the master site.

Regardless of the security model used, Oracle automatically grants the appropriate

privileges for objects as they are added to or removed from a replication

environment.

Figure A–1 Trusted Security: Multimaster Replication

Untrusted security assigns only the privileges to the receiver that are required to

work with specified master groups. The propagator, therefore, can only access the

specified master groups that are local to the receiver. Figure A–2 illustrates an

untrusted security model. Because Master Site B contains only Master Groups A

and C, the receiver at Master Site A has been granted privileges for Master Groups

A and C only, thereby limiting the propagator’s access at Master Site A.

Master Site A Master Site B

Master
Group

A

Master
Group

C

Master
Group

B

Master
Group

D

Master
Group

A

Master
Group

C

re
ce

iv
er

pr
op

ag
at

or
Security Options A-3

Security Setup for Multimaster Replication
Figure A–2 Untrusted Security: Multimaster Replication

Typically, master sites are considered trusted and therefore the trusted security

model is used. If, however, your remote master sites are untrusted, then you may

want to use the untrusted model and assign your receiver limited privileges. A site

might be considered untrusted, for example, if a consulting shop performs work for

multiple customers. Use the appropriate API call listed for the receiver in Table A–1

to assign the different users the appropriate privileges.

Table A–1 Required User Accounts

User Privileges

global replication
administrator

DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA

schema-level replication
administrator

DBMS_REPCAT_ADMIN.GRANT_ADMIN_SCHEMA

propagator DBMS_DEFER_SYS.REGISTER_PROPAGATOR

receiver See "REGISTER_USER_REPGROUP Procedure" on page 21-4
for details.

Trusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => NULL

Untrusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => ' mastergroupname'

Master Site A Master Site B

Master
Group

A

Master
Group

C

Master
Group

B

Master
Group

D

Master
Group

A

Master
Group

C

re
ce

iv
er

pr
op

ag
at

or
A-4 Oracle9i Replication Management API Reference

Security Setup for Multimaster Replication
After you have created these accounts and assigned the appropriate privileges,

create the following private database links, including username and password

between each site:

■ From the local replication administrator to the remote replication administrator.

■ From the local propagator to the remote receiver.

Assuming you have designated a single user account to act as replication

administrator, propagator, and receiver, you must create N(N-1) links, where N is

the number of master sites in your replication environment.

After creating these links, you must call DBMS_DEFER_SYS.SCHEDULE_PUSH and

DBMS_DEFER_SYS.SCHEDULE_PURGE, at each location, to define how frequently

you want to propagate your deferred transaction queue to each remote location,

and how frequently you wish to purge this queue. You must call DBMS_DEFER_
SYS.SCHEDULE_PUSH multiple times at each site, once for each remote location.

A sample script for setting up multimaster replication between hq.world and

sales.world is shown below:

/*--- Create global replication administrator at HQ ---*/
connect system/manager@hq.world
create user repadmin identified by repadmin
execute dbms_repcat_admin.grant_admin_any_schema(username => 'repadmin')

/*--- Create global replication administrator at Sales ---*/
connect system/manager@sales.world
create user repadmin identified by repadmin
execute dbms_repcat_admin.grant_admin_any_schema(username => 'repadmin')

/*--- Create single user to act as both propagator and receiver at HQ ---*/
connect system/manager@hq.world
create user prop_rec identified by prop_rec
/*--- Grant privileges necessary to act as propagator ---*/
execute dbms_defer_sys.register_propagator(username => 'prop_rec')
/*--- Grant privileges necessary to act as receiver ---*/
execute dbms_repcat_admin.register_user_repgroup(

username => 'prop_rec',
privilege_type => 'receiver',
list_of_gnames => NULL)

/*--- Create single user to act as both propagator and receiver at Sales ---*/
connect system/manager@sales.world
create user prop_rec identified by prop_rec
/*--- Grant privileges necessary to act as propagator ---*/execute
Security Options A-5

Security Setup for Multimaster Replication
dbms_defer_sys.register_propagator(username => 'prop_rec')
/*--- Grant privileges necessary to act as receiver ---*/
execute dbms_repcat_admin.register_user_repgroup(

username => 'prop_rec',
privilege_type => 'receiver',
list_of_gnames => NULL)

/*--- Create public link from HQ to Sales with necessary USING clause ---*/
connect system/manager@hq.world
create public database link sales.world using sales.world

/*--- Create private repadmin to repadmin link ---*/
connect repadmin/repadmin@hq.world
create database link sales.world connect to repadmin identified by repadmin

/*--- Schedule replication from HQ to Sales ---*/
execute dbms_defer_sys.schedule_push(
 destination => 'sales.world',
 interval => 'sysdate + 1/24',
 next_date => sysdate,
 stop_on_error => FALSE,
 parallelism => 1)

/*--- Schedule purge of def tran queue at HQ ---*/
execute dbms_defer_sys.schedule_purge(
 next_date => sysdate,
 interval => 'sysdate + 1',
 delay_seconds => 0,
 rollback_segment => '')

/*--- Create link from propagator to receiver for scheduled push ---*/
connect prop_rec/prop_rec@hq.world
create database link sales.world connect to prop_rec identified by prop_rec

/*--- Create public link from Sales to HQ with necessary USING clause ---*/
connect system/manager@sales.world
create public database link hq.world using hq.world

/*--- Create private repadmin to repadmin link ---*/
connect repadmin/repadmin@sales.world
create database link hq.world connect to repadmin identified by repadmin
A-6 Oracle9i Replication Management API Reference

Security Setup for Materialized View Replication
/*--- Schedule replication from Sales to HQ ---*/
execute dbms_defer_sys.schedule_push(
 destination => 'hq.world',
 interval => 'sysdate + 1/24',
 next_date => sysdate,
 stop_on_error => FALSE,
 parallelism => 1)

/*--- Schedule purge of def tran queue at Sales ---*/
execute dbms_defer_sys.schedule_purge(
 next_date => sysdate,
 interval => 'sysdate + 1',
 delay_seconds => 0,
 rollback_segment =>'')

/*--- Create link from propagator to receiver for scheduled push ---*/
connect prop_rec/prop_rec@sales.world
create database link hq.world connect to prop_rec identified by prop_rec

Security Setup for Materialized View Replication
Nearly all users should find it easiest to use the Replication Manager Setup Wizard

when configuring materialized view replication security. However, for certain

specialized cases, you may need to use the replication management API to perform

these setup operations. To configure a replication environment, the database

administrator must connect with DBA privileges to grant the necessary privileges to

the replication administrator.

First set up user accounts at each materialized view site with the appropriate

privileges to configure and maintain the replication environment and to propagate

replicated changes. You must also define links for these users to the associated

master site or master materialized view site. You may need to create additional

users, or assign additional privileges to users at the associated master site or master

materialized view site.

In addition to end users who will be accessing replicated objects, there are three

special categories of "users" at a materialized view site:

■ Replication administrators, who are responsible for configuring and

maintaining a replication environment.

■ Propagators, who are responsible for propagating deferred transactions.

■ Refreshers, who are responsible for pulling down changes to the materialized

views from the associated master tables or master materialized views.
Security Options A-7

Security Setup for Materialized View Replication
Typically, a single user performs each of these functions. However, there may be

situations where you need different users performing these functions. For example,

materialized views may be created by a materialized view site administrator and

refreshed by another end user.

Table A–2 describes the privileges needed to create and maintain a materialized

view site.

In addition to creating the appropriate users at the materialized view site, you may

need to create additional users at the associated master site or master materialized

view site, as well. Table A–3 on on page A-11 describes the privileges need by

master site or master materialized view site users to support a new materialized

view site.

Trusted Compared With Untrusted Security
In addition to the different users at the master site or master materialized view site,

you also need to determine which type of security model you will implement:

trusted or untrusted. With a trusted security model, the receiver and proxy

materialized view administrator have access to all local replication groups. The

receiver and proxy materialized view administrator perform database activities at

the local master site or master materialized view site on behalf of the propagator

and materialized view administrator, respectively, at the remote materialized view

site. Therefore, the propagator and materialized view administrator at the remote

materialized view site also have access to all replication groups at the master site or

master materialized view site. Remember that a single receiver is used for all

incoming transactions.

Table A–2 Required Materialized View Site User Accounts

User Privileges

Materialized view site
replication administrator

DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA

Propagator DBMS_DEFER_SYS.REGISTER_PROPAGATOR

Refresher CREATE ANY MATERIALIZED VIEW
ALTER ANY MATERIALIZED VIEW
A-8 Oracle9i Replication Management API Reference

Security Setup for Materialized View Replication
For example, consider the scenario in Figure A–3. Even though Materialized View

Groups A and C exist at the materialized view site (based on Master Groups A and

C at the Master Site), the propagator and materialized view administrator have

access to Master Groups A, B, C, and D at the Master Site because the trusted

security model has been used. While this greatly increases the flexibility of database

administration, because the DBA can perform administrative functions at any of

these remote sites and have these changes propagated to the master sites, it also

increases the chances of a malicious user at a remote site viewing or corrupting data

at the master site.

Regardless of the security model used, Oracle automatically grants the appropriate

privileges for objects as they are added to or removed from a replication

environment.

Figure A–3 Trusted Security: Materialized View Replication

Untrusted security assigns only the privileges to the proxy materialized view

administrator and receiver that are required to work with specified replication

groups. The propagator and materialized view administrator, therefore, can only

access these specified replication groups at the Master Site. Figure A–4 illustrates an

untrusted security model with materialized view replication. Because the

Materialized View Site contains Materialized View Groups A and C, access to only

Master Groups A and C are required. Using untrusted security does not allow the

propagator or the materialized view administrator at the Materialized View Site to

access Master Groups B and D at the Master Site.

Master Site Materialized View Site

Master
Group

A

Master
Group

C

Master
Group

B

Master
Group

D

re
ce

iv
er

pr
op

ag
at

or

Materialized
View

Group
A

Materialized
View

Group
C

Security Options A-9

Security Setup for Materialized View Replication
Figure A–4 Untrusted Security: Materialized View Replication

Typically, materialized view sites are more vulnerable to security breaches and

therefore the untrusted security model is used. There are very few reasons why you

would want to use a trusted security model with your materialized view site and it

is recommended that you use the untrusted security model with materialized view

sites.

One reason you might choose to use a trusted security model is if your materialized

view site is considered a master site in every way (security, constant network

connectivity, resources) but is a materialized view only because of data subsetting

requirements. Remember that row and column subsetting are not supported in a

multimaster configuration.

Use the appropriate API calls listed for the proxy materialized view administrator

and receiver in Table A–3 to assign the different users the appropriate privileges.

Master Site Materialized View Site

Master
Group

A

Master
Group

C

Master
Group

B

Master
Group

D

Materialized
View

Group
A

re
ce

iv
er

pr
op

ag
at

or

Materialized
View

Group
C

A-10 Oracle9i Replication Management API Reference

Security Setup for Materialized View Replication
Table A–3 Required Master Site or Master Materialized View Site User Accounts

User Privileges

proxy materialized view
site administrator

See "REGISTER_USER_REPGROUP Procedure" on page 21-4
for details.

Trusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'proxy_snapadmin'
list_of_gnames => NULL

Untrusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'proxy_snapadmin'
list_of_gnames => ' mastergroupname'

receiver See "REGISTER_USER_REPGROUP Procedure" on page 21-4
for details.

Trusted :
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => NULL

Untrusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => ' mastergroupname'

proxy refresher Trusted:

Grant CREATE SESSION
Grant SELECT ANY TABLE

Untrusted:

Grant CREATE SESSION
Grant SELECT on necessary master tables or master
materialized views and materialized view logs
Security Options A-11

Security Setup for Materialized View Replication
After creating the accounts at both the materialized view and associated master

sites or master materialized view sites, you need to create the following private

database links, including username and password, from the materialized view site

to the master site or master materialized view site:

■ From the materialized view replication administrator to the proxy materialized

view replication administrator.

■ From the propagator to the receiver.

■ From the refresher to the proxy refresher.

■ From the materialized view owner to the master site or master materialized

view site for refreshes.

Assuming you have designated a single user account to act as materialized view

administrator, propagator, and refresher, you must create one link for each

materialized view site for those functions. You do not need a link from the master

site or master materialized view site to the materialized view site.

After creating these links, you must call DBMS_DEFER_SYS.SCHEDULE_PUSH and

DBMS_DEFER_SYS.SCHEDULE_PURGE at the materialized view site to define how

frequently you want to propagate your deferred transaction queue to the associated

master site or master materialized view site, and how frequently you wish to purge

this queue. You must also call DMBS_REFRESH.REFRESH at the materialized view

site to schedule how frequently to pull changes from the associated master site or

master materialized view site.
A-12 Oracle9i Replication Management API Reference

User-Defined Conflict Resolution Me
B

User-Defined Conflict Resolution Methods

This appendix describes how to build user-defined conflict resolution methods and

user-defined conflict notification methods. This appendix contains these topics:

■ User-Defined Conflict Resolution Methods

■ User-Defined Conflict Notification Methods

■ Viewing Conflict Resolution Information
thods B-1

User-Defined Conflict Resolution Methods
User-Defined Conflict Resolution Methods
Oracle enables you to write your own conflict resolution or notification methods. A

user-defined conflict resolution method is a PL/SQL function that returns either

TRUE or FALSE. TRUE indicates that the method has successfully resolved all

conflicting modifications for a column group. If the method cannot successfully

resolve a conflict, then it should return FALSE. Oracle continues to evaluate

available conflict resolution methods, in sequence order, until either a method

returns TRUE or there are no more methods available.

If the conflict resolution method raises an exception, then Oracle stops evaluation of

the method, and, if any other methods were provided to resolve the conflict with a

later sequence number, then Oracle does not evaluate them.

Conflict Resolution Method Parameters
The parameters needed by a user-defined conflict resolution method are

determined by the type of conflict being resolved (uniqueness, update, or delete)

and the columns of the table being replicated. All conflict resolution methods take

some combination of old, new, and current column values for the table.

■ The old value represents the value of the row at the initiating site before you

made the change.

■ The new value represents the value of the row at the initiating site after you

made the change.

■ The current value represents the value of the equivalent row at the receiving

site.

The conflict resolution function should accept as parameters the values for the

columns specified in the PARAMETER_COLUMN_NAME argument to the DBMS_
REPCAT.ADD_conflicttype _RESOLUTION procedures. The column parameters

are passed to the conflict resolution method in the order listed in the PARAMETER_
COLUMN_NAME argument, or in ascending alphabetical order if you specified '*' for

this argument. When both old and new column values are passed as parameters

(for update conflicts), the old value of the column immediately precedes the new

value.

Note: Recall that Oracle uses the primary key, or the key specified

by SET_COLUMNS, to determine which rows to compare.
B-2 Oracle9i Replication Management API Reference

User-Defined Conflict Resolution Methods
Resolving Update Conflicts
For update conflicts, a user-defined function should accept the following values for

each column in the column group:

■ Old column value from the initiating site. The mode for this parameter is IN .

This value should not be changed.

■ New column value from the initiating site. The mode for this parameter is IN
OUT. If the function can resolve the conflict successfully, then it should modify

the new column value as needed.

■ Current column value from the receiving site. The mode for this parameter

is IN .

The old, new, and current values for a column are received consecutively. The final

argument to the conflict resolution method should be a Boolean flag. If this flag is

false , then it indicates that you have updated the value of the IN OUT parameter

(new) and that you should update the current column value with this new value. If

this flag is true , then it indicates that the current column value should not be

changed.

Resolving Uniqueness Conflicts
Uniqueness conflicts can occur as the result of an INSERT or UPDATE. Your

uniqueness conflict resolution method should accept the new column value from

the initiating site in IN OUT mode for each column in the column group. The final

parameter to the conflict resolution method should be a Boolean flag.

If the method can resolve the conflict, then it should modify the new column values

so that Oracle can insert or update the current row with the new column values.

Your function should set the Boolean flag to true if it wants to discard the new

column values, and false otherwise.

Note:

■ Type checking of parameter columns in user-defined conflict

resolution methods is not performed until you regenerate

replication support for the associated replicated table.

■ Attributes of column objects cannot be defined as column

parameters for user-defined conflict resolution methods.
User-Defined Conflict Resolution Methods B-3

User-Defined Conflict Resolution Methods
Because a conflict resolution method cannot guarantee convergence for uniqueness

conflicts, a user-defined uniqueness resolution method should include a notification

mechanism.

Resolving Delete Conflicts
Delete conflicts occur when you successfully delete from the local site, but the

associated row cannot be found at the remote site (for example, because it had been

updated). For delete conflicts, the function should accept old column values in IN
OUT mode for the entire row. The final parameter to the conflict resolution method

should be a Boolean flag.

If the conflict resolution method can resolve the conflict, then it modifies the old

column values so that Oracle can delete the current row that matches all old column

values. Your function should set the Boolean flag to true if it wants to discard these

column values, and false otherwise.

If you perform a delete at the local site and an update at the remote site, then the

remote site detects the delete conflict, but the local site detects an unresolvable

update conflict. This type of conflict cannot be handled automatically. The conflict

raises a NO_DATA_FOUND exception and Oracle logs the transaction as an error

transaction.

Designing a mechanism to properly handle these types of update/delete conflicts is

difficult. It is far easier to avoid these types of conflicts entirely, by simply "marking"

deleted rows, and then purging them using procedural replication.

Multitier Materialized Views and User-Defined Conflict Resolution Methods
When you use user-defined conflict resolution methods with multitier materialized

views, the information about these methods is pulled down to the master

materialized view sites automatically. This information is stored in the data

dictionary at the master materialized view site. However, the user-defined conflict

resolution methods themselves cannot be pulled down from the master site.

Therefore, you must re-create these methods at the master materialized view site.

See Also: "Creating Conflict Avoidance Methods for Delete

Conflicts" on page 6-31
B-4 Oracle9i Replication Management API Reference

User-Defined Conflict Resolution Methods
Restrictions for User-Defined Conflict Resolution Methods
The following sections describe restrictions for user-defined conflict resolution

methods.

SQL Statement Restrictions for User-Defined Conflict Resolution Methods
Avoid the following types of SQL statements in user-defined conflict resolution

methods. Use of such statements can result in unpredictable results.

■ Data definition language (DDL) statements (such as CREATE, ALTER, DROP)

■ Transaction control statements (such as COMMIT, ROLLBACK)

■ Session control (such as ALTER SESSION)

■ System control (such as ALTER SYSTEM)

Column Subsetting Restrictions for User-Defined Conflict Resolution Methods
Avoid subsetting the columns in a column group when you create updatable

multitier materialized views. Column subsetting excludes columns that are in

master tables or master materialized views from a materialized view based on these

masters. You do this by specifying certain select columns in the SELECT statement

during materialized view creation.

When you use conflict resolution with multitier materialized views, you cannot

define the conflict resolution methods at the materialized view site. Conflict

resolution methods are always pulled down from the master site. Therefore, if you

subset the columns in a column group that has a user-defined conflict resolution

applied to it, the conflict resolution method will not be able to find all of the

columns in the column group at a master materialized view site. When this

happens, the conflict resolution method returns the following error:

ORA-23460 missing value for column in resolution method

See Also:

■ "Viewing Conflict Resolution Information" on page B-12 for

information about the data dictionary views that store

information about user-defined conflict resolution methods

■ Oracle9i Replication for more information about conflict

resolution and multitier materialized views
User-Defined Conflict Resolution Methods B-5

User-Defined Conflict Resolution Methods
For example, consider a case where the job_id , salary , and commission_pct
columns in the hr.employees table are part of a column group name

employees_cg1 that has a user-defined conflict resolution method applied to it at

the master site hq.world . To protect the privacy of your sales staff, you create a

level 1 updatable materialized view that uses column subsetting to exclude the

salary and commission_pct columns at the ca.us office. When you create this

materialized view at the ca.us office, the conflict resolution method is pulled

down from hq.world . You then create an updatable multitier materialized view at

the sf.ca office based on the level 1 materialized view at the ca.us office.

Given this replication environment, if a conflict arises for a job_id value at the

level 1 materialized view at the ca.us office, then the conflict resolution method

fails to find the salary and commission_pct columns and returns the

ORA-23460 error mentioned previously.

Examples of User-Defined Conflict Resolution Method
The following examples show user-defined methods that are variations on the

standard maximum and additive prebuilt conflict resolution methods. Unlike the

standard methods, these custom functions can handle nulls in the columns used to

resolve the conflict.

Maximum User Function
-- User function similar to MAXIMUM method.
-- If curr is null or curr < new, then use new values.
-- If new is null or new < curr, then use current values.
-- If both are null, then no resolution.
-- Does not converge with > 2 masters, unless
-- always increasing.

FUNCTION max_null_loses(old IN NUMBER,
 new IN OUT NUMBER,
 cur IN NUMBER,
 ignore_discard_flag OUT BOOLEAN)
 RETURN BOOLEAN IS

See Also: Oracle9i Replication for more information about column

subsetting
B-6 Oracle9i Replication Management API Reference

User-Defined Conflict Resolution Methods
BEGIN
 IF (new IS NULL AND cur IS NULL) OR new = cur THEN
 RETURN FALSE;
 END IF;
 IF new IS NULL THEN
 ignore_discard_flag := TRUE;
 ELSIF cur IS NULL THEN
 ignore_discard_flag := FALSE;
 ELSIF new < cur THEN
 ignore_discard_flag := TRUE;
 ELSE
 ignore_discard_flag := FALSE;
 END IF;
 RETURN TRUE;
END max_null_loses;

Additive User Function
-- User function similar to ADDITIVE method.
-- If old is null, then old = 0.
-- If new is null, then new = 0.
-- If curr is null, then curr = 0.
-- new = curr + (new - old) -> just like ADDITIVE method.

FUNCTION additive_nulls(old IN NUMBER,
 new IN OUT NUMBER,
 cur IN NUMBER,
 ignore_discard_flag OUT BOOLEAN)
 RETURN BOOLEAN IS
 old_val NUMBER := 0.0;
 new_val NUMBER := 0.0;
 cur_val NUMBER := 0.0;
BEGIN
 IF old IS NOT NULL THEN
 old_val := old;
 END IF;
 IF new IS NOT NULL THEN
 new_val := new;
 END IF;
 IF cur IS NOT NULL THEN
 cur_val := cur;
 END IF;
 new := cur_val + (new_val - old_val);
 ignore_discard_flag := FALSE;
 RETURN TRUE;
END additive_nulls;
User-Defined Conflict Resolution Methods B-7

User-Defined Conflict Notification Methods
User-Defined Conflict Notification Methods
A conflict notification method is a user-defined function that provides conflict

notification rather than or in addition to conflict resolution. For example, you can

write your own conflict notification methods to log conflict information in a

database table, send an email message, or page an administrator. After you write a

conflict notification method, you can assign it to a column group (or constraint) in a

specific order so that Oracle notifies you when a conflict happens, before attempting

subsequent conflict resolution methods, or after Oracle attempts to resolve a conflict

but cannot do so.

To configure a replicated table with a user-defined conflict notification mechanism,

you must complete the following steps:

Step 1 Create a conflict notification log.

Step 2 Create the user-defined conflict notification method in a package.
The following sections explain each step.

Creating a Conflict Notification Log
When configuring a replicated table to use a user-defined conflict notification

method, the first step is to create a database table that can record conflict

notifications. You can create a table to log conflict notifications for one or many

tables in a master group.

To create a conflict notification log table at all master sites, use the replication

execute DDL facility. For more information, see "EXECUTE_DDL Procedure" on

page 20-74. Do not generate replication support for the conflict notification tables

because their entries are specific to the site that detects a conflict.

Sample Conflict Notification Log Table
The following CREATE TABLE statement creates a table that you can use to log

conflict notifications from several tables in a master group.

CREATE TABLE conf_report (
 line NUMBER(2), --- used to order message text
 txt VARCHAR2(80), --- conflict notification message
 timestamp DATE, --- time of conflict
 table_name VARCHAR2(30), --- table in which the
 --- conflict occurred
 table_owner VARCHAR2(30), --- owner of the table
 conflict_type VARCHAR2(6) --- INSERT, DELETE or UNIQUE
B-8 Oracle9i Replication Management API Reference

User-Defined Conflict Notification Methods
);

Creating a Conflict Notification Package
To create a conflict notification method, you must define the method in a PL/SQL

package and then replicate the package as part of a master group along with the

associated replicated table.

A conflict notification method can perform conflict notification only, or both conflict

notification and resolution. If possible, you should always use one of Oracle’s

prebuilt conflict resolution methods to resolve conflicts. When a user-defined

conflict notification method performs only conflict notification, assign the

user-defined method to a column group (or constraint) along with conflict

resolution methods that can resolve conflicts.

Sample Conflict Notification Package
The following package and package body perform a simple form of conflict
notification by logging uniqueness conflicts for a CUSTOMERS table into the

previously defined CONF_REPORT table.

Note: If Oracle cannot ultimately resolve a replication conflict,

then Oracle rolls back the entire transaction, including any updates

to a notification table. If notification is necessary independent of

transactions, then you can design a notification mechanism to use

the Oracle DBMS_PIPES package.

Note: This example of conflict notification does not resolve any

conflicts. You should either provide a method to resolve conflicts

(such as discard or overwrite), or provide a notification mechanism

that will succeed (for example, using e-mail) even if the error is not

resolved and the transaction is rolled back. With simple

modifications, the following user-defined conflict notification

method can take more active steps. For example, instead of just

recording the notification message, the package can use the DBMS_
OFFICE utility package to send an Oracle Office email message to

an administrator.
User-Defined Conflict Resolution Methods B-9

User-Defined Conflict Notification Methods
CREATE OR REPLACE PACKAGE notify AS
 -- Report uniqueness constraint violations on CUSTOMERS table
 FUNCTION customers_unique_violation (
 first_name IN OUT VARCHAR2,
 last_name IN OUT VARCHAR2,
 discard_new_values IN OUT BOOLEAN)
 RETURN BOOLEAN;
END notify;
/

CREATE OR REPLACE PACKAGE BODY notify AS
 -- Define a PL/SQL index-by table to hold the notification message
 TYPE message_table IS TABLE OF VARCHAR2(80) INDEX BY BINARY_INTEGER;
 PROCEDURE report_conflict (
 conflict_report IN MESSAGE_TABLE,
 report_length IN NUMBER,
 conflict_time IN DATE,
 conflict_table IN VARCHAR2,
 table_owner IN VARCHAR2,
 conflict_type IN VARCHAR2) IS
 BEGIN
 FOR idx IN 1..report_length LOOP
 BEGIN
 INSERT INTO sales.conf_report
 (line, txt, timestamp, table_name, table_owner, conflict_type)
 VALUES (idx, SUBSTR(conflict_report(idx),1,80), conflict_time,
 conflict_table, table_owner, conflict_type);
 EXCEPTION WHEN others THEN NULL;
 END;
 END LOOP;
 END report_conflict;
 -- This is the conflict resolution method that is called first when
 -- a uniqueness constraint violated is detected in the CUSTOMERS table.
 FUNCTION customers_unique_violation (
 first_name IN OUT VARCHAR2,
 last_nameIN OUT VARCHAR2,
 discard_new_valuesIN OUT BOOLEAN)
 RETURN BOOLEAN IS
 local_node VARCHAR2(128);
 conf_report MESSAGE_TABLE;
 conf_time DATE := SYSDATE;
B-10 Oracle9i Replication Management API Reference

User-Defined Conflict Notification Methods
 BEGIN
 -- Get the global name of the local site
 BEGIN
 SELECT global_name INTO local_node FROM global_name;
 EXCEPTION WHEN others THEN local_node := '?';
 END;
 -- Generate a message for the DBA
 conf_report(1) := 'UNIQUENESS CONFLICT DETECTED IN TABLE CUSTOMERS ON ' ||
 TO_CHAR(conf_time, 'MM-DD-YYYY HH24:MI:SS');
 conf_report(2) := ' AT NODE ' || local_node;
 conf_report(3) := 'ATTEMPTING TO RESOLVE CONFLICT USING ' ||
 'APPEND SEQUENCE METHOD';
 conf_report(4) := 'FIRST NAME: ' || first_name;
 conf_report(5) := 'LAST NAME: ' || last_name;
 conf_report(6) := NULL;
 --- Report the conflict
 report_conflict(conf_report, 5, conf_time, 'CUSTOMERS',
 'OFF_SHORE_ACCOUNTS', 'UNIQUE');
 --- Do not discard the new column values. They are still needed by
 --- other conflict resolution methods.
 discard_new_values := FALSE;
 --- Indicate that the conflict was not resolved.
 RETURN FALSE;
 END customers_unique_violation;
END notify;
/

User-Defined Conflict Resolution Methods B-11

Viewing Conflict Resolution Information
Viewing Conflict Resolution Information
Oracle provides replication catalog (REPCAT) views that you can use to determine

what conflict resolution methods are being used by each of the tables and column

groups in your replication environment. Each view has three versions: USER_*,
ALL_* , SYS.DBA_* . The available views are shown in the following table.

View Description

ALL_REPRESOLUTION_METHOD Lists all of the available conflict resolution methods.

ALL_REPCOLUMN_GROUP Lists all of the column groups defined for the
database.

ALL_REPGROUPED_COLUMN Lists all of the columns in each column group in the
database.

ALL_REPPRIORITY_GROUP Lists all of the priority groups and site priority groups
defined for the database.

ALL_REPPRIORITY Lists the values and corresponding priority levels for
each priority or site priority group.

ALL_REPCONFLICT Lists the types of conflicts (delete, update, or
uniqueness) for which you have specified a resolution
method, for the tables, column groups, and unique
constraints in the database.

ALL_REPRESOLUTION Shows more specific information about the conflict
resolution method used to resolve conflicts on each
object.

ALL_REPPARAMETER_COLUMN Shows which columns are used by the conflict
resolution methods to resolve a conflict.

See Also: Chapter 25, "Replication Catalog Views"
B-12 Oracle9i Replication Management API Reference

Index
A
administrative requests

monitoring, 10-16

errors, 10-17

jobs, 10-18

administrators

for materialized view sites

creating, 2-25

ALL_REPCAT_REFRESH_TEMPLATES

view, 25-5

ALL_REPCAT_TEMPLATE_OBJECTS view, 25-6

ALL_REPCAT_TEMPLATE_PARMS view, 25-8

ALL_REPCAT_TEMPLATE_SITES view, 25-10

ALL_REPCAT_USER_AUTHORIZATIONS

view, 25-11

ALL_REPCAT_USER_PARM_VALUES

view, 25-12

ALL_REPCATLOG view, 25-15

ALL_REPCOLUMN view, 25-16

ALL_REPCOLUMN_GROUP view, 25-18

ALL_REPCONFLICT view, 25-19

ALL_REPDDL view, 25-20

ALL_REPGENOBJECTS view, 25-20

ALL_REPGROUP view, 25-21

ALL_REPGROUP_PRIVILEGES view, 25-22

ALL_REPGROUPED_COLUMN view, 25-22

ALL_REPKEY_COLUMNS view, 25-23

ALL_REPOBJECT view, 25-24

ALL_REPPARAMETER_COLUMN view, 25-25

ALL_REPPRIORITY view, 25-26

ALL_REPPRIORITY_GROUP view, 25-27

ALL_REPPROP view, 25-28

ALL_REPRESOL_STATS_CONTROL view, 25-29

ALL_REPRESOLUTION view, 25-30

ALL_REPRESOLUTION_METHOD view, 25-31

ALL_REPRESOLUTION_STATISTICS view, 25-32

gathering statistics, 6-41

ALL_REPSITES view, 25-33

ALTER MATERIALIZED VIEW LOG

statement, 8-16

AnyData datatype

replication, 9-16

authorization

template users, 4-12

availability

extended, 6-3, 7-4, 9-2, 20-9, 20-28, 20-81, 20-94,

20-99, 20-104

C
column objects

user-defined conflict resolution, B-3

column subsetting

user-defined conflict resolution methods, B-5

columns

adding to master tables, 20-91

column groups, 6-4, 6-7, 6-11, 6-14, 6-17, 6-22

adding members to, 20-7

creating, 20-56, 20-79

dropping, 20-60

removing members from, 20-61

comments

comments field

updating in views, 7-45

updating, 7-45

comparing

tables, 18-3
Index-1

conflict resolution, 6-1

additive method, 6-13, 20-17

auditing, 6-41

average method, 6-13

column groups, 6-4, 6-7, 6-11, 6-14, 6-17, 6-22

configuring without quiesce, 6-3

DBA_REPRESOLUTION_STATISTICS

view, 6-42

discard method, 6-3

information

viewing, B-12

maximum method, 6-6

minimum method, 6-6

overwrite method, 6-3

preparing for, 6-2

priority groups method, 6-16

procedural replication and, 7-50

site priority method, 6-20

sample trigger, 6-22

statistics, 20-35, 20-87

canceling, 6-42

collecting, 6-41

viewing, 6-41

timestamp method, 6-9

sample trigger, 6-11

uniqueness, 6-25

user-defined methods, B-2

column objects, B-3

column subsetting, B-5

example, B-6

for delete conflicts, B-4

for uniqueness conflicts, B-3

for update conflicts, B-3

multitier materialized views, B-4

parameters, B-2

restrictions, B-5

viewing information, B-12

conflicts

avoiding

delete, 6-31

dynamic ownership, 6-35

notification log table

creating, B-8

sample, B-8

notification methods

user-defined, B-8

notification package

creating, B-9

sample, B-9

token passing, 6-37

workflow, 6-36

D
data definition language

altering replicated objects, 20-25

asynchronous, 20-74

data dictionary views

comments

updating, 7-45

materialized views, 28-1

refresh groups, 28-1

replication, 10-1, 25-1

database links

creating, 2-20, 2-34, 4-20, 5-5, 5-6, 5-12, 5-13

date expressions, 2-7

DBA_REGISTERED_MVIEW_GROUPS view, 25-5

DBA_REPCAT_REFRESH_TEMPLATES

view, 25-34

DBA_REPCAT_TEMPLATE_OBJECTS view, 25-34

DBA_REPCAT_TEMPLATE_PARMS view, 25-34

DBA_REPCAT_TEMPLATE_SITES view, 25-35

DBA_REPCAT_USER_AUTHORIZATIONS

view, 25-35

DBA_REPCAT_USER_PARM_VALUES

view, 25-35

DBA_REPCATLOG view, 25-35

purging requests from, 20-82

DBA_REPCOLUMN view, 25-36

DBA_REPCOLUMN_GROUP view, 25-36

updating, 7-45, 20-36

DBA_REPCONFLICT view, 25-36

DBA_REPDDL view, 25-36

DBA_REPEXTENSIONS view, 25-36

DBA_REPGENOBJECTS view, 25-39

DBA_REPGROUP view, 25-39

updating, 7-45, 20-39

DBA_REPGROUP_PRIVILEGES view, 25-39

DBA_REPGROUPED_COLUMN view, 25-39

DBA_REPKEY_COLUMNS view, 25-39
Index-2

DBA_REPOBJECT view, 25-40

updating, 7-45, 20-40

DBA_REPPARAMETER_COLUMN view, 25-40

DBA_REPPRIORITY view, 25-40

DBA_REPPRIORITY_GROUP view, 25-40

updating, 7-45, 20-38

DBA_REPPROP view, 25-40

DBA_REPRESOL_STATS_CONTROL view, 25-41

DBA_REPRESOLUTION view, 25-41

updating, 7-45, 20-43

DBA_REPRESOLUTION_METHOD view, 25-41

DBA_REPRESOLUTION_STATISTICS view, 25-41

purging, 6-42, 20-83

DBA_REPSITES view, 25-41

updating, 7-45, 20-41

DBA_REPSITES_NEW view, 25-42

DBMS_DEFER package, 12-1

ANY_CHAR_ARG procedure, 12-5

ANY_CLOB_ARG procedure, 12-5

ANY_VARCHAR2_ARG procedure, 12-5

ANYDATA_ARG procedure, 12-5

BLOB_ARG procedure, 12-5

CALL procedure, 12-3

CHAR_ARG procedure, 12-5

CLOB_ARG procedure, 12-5

COMMIT_WORK procedure, 12-4

datatype_ARG procedure, 12-5

DATE_ARG procedure, 12-5

IDS_ARG procedure, 12-5

IYM_ARG procedure, 12-5

NCHAR_ARG procedure, 12-5

NCLOB_ARG procedure, 12-5

NUMBER_ARG procedure, 12-5

NVARCHAR2_ARG procedure, 12-5

RAW_ARG procedure, 12-5

ROWID_ARG procedure, 12-5

TIMESTAMP_ARG procedure, 12-5

TRANSACTION procedure, 12-6

TSLTZ_ARG procedure, 12-5

TSTZ_ARG procedure, 12-5

VARCHAR2_ARG procedure, 12-5

DBMS_DEFER_QUERY package, 13-1

GET_AnyData_ARG function, 9-16, 13-7

GET_ARG_FORM function, 13-3

GET_ARG_TYPE function, 13-4

GET_BLOB_ARG function, 13-7

GET_CALL_ARGS procedure, 13-6

GET_CHAR_ARG function, 13-7

GET_CLOB_ARG function, 13-7

GET_datatype_ARG function, 13-7

GET_DATE_ARG function, 13-7

GET_IDS_ARG function, 13-7

GET_IYM_ARG function, 13-7

GET_NCHAR_ARG function, 13-7

GET_NCLOB_ARG function, 13-7

GET_NUMBER_ARG function, 13-7

GET_NVARCHAR2_ARG function, 13-7

GET_OBJECT_NULL_VECTOR_ARG

function, 13-10

GET_RAW_ARG function, 13-7

GET_ROWID_ARG function, 13-7

GET_TIMESTAMP_ARG function, 13-7

GET_TSLTZ_ARG function, 13-7

GET_TSTZ_ARG function, 13-7

GET_VARCHAR2_ARG function, 13-7

DBMS_DEFER_SYS package

ADD_DEFAULT_DEST procedure, 14-4

CLEAR_PROP_STATISTICS procedure, 10-31,

14-4

DELETE_DEF_DESTINATION procedure, 14-5

DELETE_DEFAULT_DEST procedure, 14-5

DELETE_ERROR procedure, 14-6

DELETE_TRAN procedure, 14-7, 14-9

DISABLED function, 14-7

EXCLUDE_PUSH function, 14-8

EXECUTE_ERROR procedure, 7-37, 9-19, 14-9

EXECUTE_ERROR_AS_USER procedure, 9-20,

14-10

PURGE function, 9-15, 14-11

PUSH function, 9-14, 14-14

REGISTER_PROPAGATOR procedure, 2-7,

2-26, 2-33, 14-16

SCHEDULE_EXECUTION procedure, 14-19

SCHEDULE_PURGE procedure, 2-8, 2-29, 2-35,

14-17

SCHEDULE_PUSH procedure, 2-21, 2-29, 2-35,

14-19

SET_DISABLED procedure, 14-21

UNREGISTER_PROPAGATOR

procedure, 14-23
Index-3

UNSCHEDULE_PURGE procedure, 14-24

UNSCHEDULE_PUSH procedure, 14-24

DBMS_MVIEW package

BEGIN_TABLE_REORGANIZATION

procedure, 8-20, 15-3

END_TABLE_REORGANIZATION

procedure, 8-20, 15-3

EXPLAIN_MVIEW procedure, 15-4

EXPLAIN_REWRITE procedure, 15-5

I_AM_A_REFRESH function, 15-6

PMARKER function, 15-6

PURGE_DIRECT_LOAD_LOG procedure, 15-7

PURGE_LOG procedure, 8-18, 15-7

PURGE_MVIEW_FROM_LOG procedure, 8-11,

8-13, 8-15, 8-18, 15-8

REFRESH procedure, 8-2, 8-34, 15-9

REFRESH_ALL_MVIEWS procedure, 15-12

REFRESH_DEPENDENT procedure, 15-13

REGISTER_MVIEW procedure, 15-15

UNREGISTER_MVIEW procedure, 8-13, 15-18

DBMS_OFFLINE_OG package

BEGIN_INSTANTIATION procedure, 7-38,

16-3

BEGIN_LOAD procedure, 7-39, 16-4

END_INSTANTIATION procedure, 7-41, 16-5

END_LOAD procedure, 7-40, 16-6

RESUME_SUBSET_OF_MASTERS

procedure, 7-39, 16-8

DBMS_OFFLINE_SNAPSHOT package

BEGIN_LOAD procedure, 8-30, 17-3

END_LOAD procedure, 8-32, 17-4

DBMS_RECTIFIER_DIFF package, 9-9

DIFFERENCES procedure, 9-9, 18-3

RECTIFY procedure, 9-9, 18-5

DBMS_REFRESH package

ADD procedure, 5-10, 5-18, 19-3

CHANGE procedure, 19-3

DESTROY procedure, 19-5

MAKE procedure, 5-7, 5-14, 19-6

REFRESH procedure, 8-2, 19-8

SUBTRACT procedure, 19-9

DBMS_REPCAT package

ADD_DELETE_RESOLUTION

procedure, 20-17

ADD_GROUPED_COLUMN procedure, 20-7

ADD_MASTER_DATABASE procedure, 3-11,

7-31, 7-33, 20-8

ADD_NEW_MASTERS procedure, 7-13, 7-25,

20-9

ADD_PRIORITY_CHAR procedure, 20-14

ADD_PRIORITY_datatype procedure, 20-14

ADD_PRIORITY_DATE procedure, 20-14

ADD_PRIORITY_NUMBER procedure, 20-14

ADD_PRIORITY_VARCHAR2

procedure, 20-14

ADD_SITE_PRIORITY_SITE procedure, 6-23,

20-16

ADD_UNIQUENESS_RESOLUTION

procedure, 20-17

ADD_UPDATE_RESOLUTION procedure, 6-5,

6-8, 6-12, 6-14, 6-19, 6-24, 20-17

ALTER_CATCHUP_PARAMETERS

procedure, 20-22

ALTER_MASTER_PROPAGATION

procedure, 20-24

ALTER_MASTER_REPOBJECT

procedure, 6-10, 6-21, 6-32, 9-2, 20-25

ALTER_MVIEW_PROPAGATION

procedure, 20-29

ALTER_PRIORITY procedure, 20-30

ALTER_PRIORITY_CHAR procedure, 20-31

ALTER_PRIORITY_datatype procedure, 20-31

ALTER_PRIORITY_DATE procedure, 20-31

ALTER_PRIORITY_NUMBER procedure, 20-31

ALTER_PRIORITY_RAW procedure, 20-31

ALTER_SITE_PRIORITY procedure, 20-33

ALTER_SITE_PRIORITY_SITE

procedure, 20-34

CANCEL_STATISTICS procedure, 6-42, 20-35

comment procedures, 7-45

COMMENT_ON_COLUMN_GROUP

procedure, 7-45, 20-36

COMMENT_ON_DELETE_RESOLUTION

procedure, 7-45, 20-43

COMMENT_ON_MVIEW_REPSITES

procedure, 20-37

COMMENT_ON_PRIORITY_GROUP

procedure, 7-45, 20-38

COMMENT_ON_REPGROUP procedure, 7-45,

20-39
Index-4

COMMENT_ON_REPOBJECT procedure, 7-45,

20-40

COMMENT_ON_REPSITES procedure, 7-45,

20-41

COMMENT_ON_SITE_PRIORITY

procedure, 20-38

COMMENT_ON_UNIQUE_RESOLUTION

procedure, 7-45, 20-43

COMMENT_ON_UPDATE_RESOLUTION

procedure, 7-45, 20-43

COMPARE_OLD_VALUES procedure, 20-44

CREATE_MASTER_REPGROUP

procedure, 3-6, 20-47

CREATE_MASTER_REPOBJECT

procedure, 6-11, 6-22, 20-48

CREATE_MVIEW_REPGROUP procedure, 5-7,

5-14, 8-30, 8-36, 8-37, 20-52

CREATE_MVIEW_REPOBJECT procedure, 5-8,

5-9, 5-10, 5-16, 5-17, 8-36, 8-39, 20-53

DEFINE_COLUMN_GROUP procedure, 20-56

DEFINE_PRIORITY_GROUP procedure, 20-57

DEFINE_SITE_PRIORITY procedure, 6-23,

20-58

DO_DEFERRED_REPCAT_ADMIN

procedure, 6-35, 7-37, 20-59

DROP_COLUMN_GROUP procedure, 20-60

DROP_DELETE_RESOLUTION

procedure, 20-72

DROP_GROUPED_COLUMN procedure, 20-61

DROP_MASTER_REPGROUP procedure, 20-62

DROP_MASTER_REPOBJECT procedure, 20-64

DROP_MVIEW_REPGROUP procedure, 8-4,

8-6, 8-9, 20-65

DROP_MVIEW_REPOBJECT procedure, 8-10,

20-66

DROP_PRIORITY procedure, 20-67

DROP_PRIORITY_CHAR procedure, 20-69

DROP_PRIORITY_datatype procedure, 20-69

DROP_PRIORITY_DATE procedure, 20-69

DROP_PRIORITY_GROUP procedure, 20-68

DROP_PRIORITY_NUMBER procedure, 20-69

DROP_PRIORITY_VARCHAR2

procedure, 20-69

DROP_SITE_PRIORITY procedure, 20-70

DROP_SITE_PRIORITY_SITE procedure, 20-71

DROP_UNIQUE_RESOLUTION

procedure, 20-72

DROP_UPDATE_RESOLUTION

procedure, 20-72

EXECUTE_DDL procedure, 20-74

GENERATE_MVIEW_SUPPORT

procedure, 20-75

GENERATE_REPLICATION_SUPPORT

procedure, 3-13, 3-14, 9-4, 20-77

MAKE_COLUMN_GROUP procedure, 6-4, 6-7,

6-11, 6-14, 6-17, 6-22, 20-79

PREPARE_INSTANTIATED_MASTER

procedure, 7-19, 7-29

PREPARE_INSTANTIATED_MASTERS

procedure, 20-81

PURGE_MASTER_LOG procedure, 20-82

PURGE_STATISTICS procedure, 6-42, 20-83

REFRESH_MVIEW_REPGROUP

procedure, 20-84

REGISTER_MVIEW_REPGROUP

procedure, 20-86

REGISTER_STATISTICS procedure, 6-41, 20-87

RELOCATE_MASTERDEF procedure, 7-2,

20-88

REMOVE_MASTER_DATABASE

procedure, 7-42

REMOVE_MASTER_DATABASES

procedure, 20-90

RENAME_SHADOW_COLUMN_GROUP

procedure, 20-91

REPCAT_IMPORT_CHECK procedure, 20-92

RESUME_MASTER_ACTIVITY

procedure, 3-15, 20-93

RESUME_PROPAGATION_TO_MDEF

procedure, 7-16, 7-28, 20-94

SEND_OLD_VALUES procedure, 20-95

SET_COLUMNS procedure, 20-47, 20-97

SPECIFY_NEW_MASTERS procedure, 7-12,

7-25, 20-99

SUSPEND_MASTER_ACTIVITY

procedure, 20-102

SWITCH_MVIEW_MASTER procedure, 8-2,

20-102

UNDO_ADD_NEW_MASTERS_REQUEST

procedure, 20-104
Index-5

UNREGISTER_MVIEW_REPGROUP

procedure, 8-11, 20-105

VALIDATE procedure, 20-106

WAIT_MASTER_LOG procedure, 20-108

DBMS_REPCAT_ADMIN package

GRANT_ADMIN_ANY_SCHEMA

procedure, 2-6, 2-26, 2-32, 21-3

GRANT_ADMIN_SCHEMA procedure, 21-3

REGISTER_USER_REPGROUP procedure, 2-7,

2-9, 2-14, 2-19, 2-27, 2-30, 21-4

REVOKE_ADMIN_ANY_SCHEMA

procedure, 21-6

REVOKE_ADMIN_SCHEMA procedure, 21-6

UNREGISTER_USER_REPGROUP

procedure, 21-7

DBMS_REPCAT_INSTANTIATE package

DROP_SITE_INSTANTIATION procedure, 8-4,

8-6, 22-3

INSTANTIATE_OFFLINE function, 22-3

INSTANTIATE_ONLINE function, 22-6

DBMS_REPCAT_RGT package

ALTER_REFRESH_TEMPLATE

procedure, 23-5

ALTER_TEMPLATE_OBJECT procedure, 23-7

ALTER_TEMPLATE_PARM procedure, 23-10

ALTER_USER_AUTHORIZATION

procedure, 23-11

ALTER_USER_PARM_VALUE

procedure, 23-13

COMPARE_TEMPLATES function, 23-15

COPY_TEMPLATE function, 23-16

CREATE_OBJECT_FROM_EXISTING

function, 23-19

CREATE_REFRESH_TEMPLATE

function, 23-21

CREATE_REFRESH_TEMPLATE

procedure, 4-5

CREATE_TEMPLATE_OBJECT function, 23-23

CREATE_TEMPLATE_OBJECT procedure, 4-7

CREATE_TEMPLATE_PARM function, 23-26

CREATE_USER_AUTHORIZATION

function, 23-28

CREATE_USER_AUTHORIZATION

procedure, 4-12

CREATE_USER_PARM_VALUE

function, 23-29

DELETE_RUNTIME_PARMS procedure, 23-31

DROP_ALL_OBJECTS procedure, 23-32

DROP_ALL_TEMPLATE_PARMS

procedure, 23-33

DROP_ALL_TEMPLATE_SITES

procedure, 23-34

DROP_ALL_TEMPLATES procedure, 23-35

DROP_ALL_USER_AUTHORIZATIONS

procedure, 23-35

DROP_ALL_USER_PARM_VALUES

procedure, 23-36

DROP_REFRESH_TEMPLATE

procedure, 23-37

DROP_SITE_INSTANTIATION

procedure, 23-38

DROP_TEMPLATE_OBJECT procedure, 23-39

DROP_TEMPLATE_PARM procedure, 23-40

DROP_USER_AUTHORIZATION

procedure, 23-41

DROP_USER_PARM_VALUE procedure, 23-42

GET_RUNTIME_PARM_ID function, 23-43

INSERT_RUNTIME_PARMS procedure, 23-43

INSTANTIATE_OFFLINE function, 23-45

INSTANTIATE_OFFLINE procedure, 4-15

INSTANTIATE_ONLINE function, 23-48

INSTANTIATE_ONLINE procedure, 4-16

LOCK_TEMPLATE_EXCLUSIVE

procedure, 23-50

LOCK_TEMPLATE_SHARED procedure, 23-51

DBMS_REPUTIL package

FROM_REMOTE function, 24-4

GLOBAL_NAME function, 24-4

MAKE_INTERNAL_PKG procedure, 24-4

REPLICATION_IS_ON function, 24-3

REPLICATION_OFF procedure, 7-50, 9-5, 24-3

REPLICATION_ON procedure, 7-50, 9-6, 24-3

SYNC_UP_REP procedure, 24-5

DDL. See data definition language

DEFCALL view, 27-2

DEFCALLDEST view, 27-2

DEFDEFAULTDEST view, 27-2

adding destinations to, 14-4

removing destinations from, 14-5

DEFERRCOUNT view, 27-3
Index-6

deferred transaction queues

deferred calls

determining value of, 9-16

managing, 9-14

purging propagated transactions, 9-15

pushing, 9-14

deferred transactions

data dictionary views, 27-1

DEFDEFAULTDEST view

adding destination to, 14-4

removing destinations from, 14-5

deferred remote procedure calls (RPCs)

argument types, 13-4

argument values, 13-7

arguments to, 12-5

building, 12-3

executing immediately, 14-14

DEFSCHEDULE view

clearing statistics, 14-4

removing destinations from, 14-5

deleting from queue, 14-7

monitoring, 10-19

purge job, 10-22, 10-23

push jobs, 10-20, 10-21

reexecuting, 14-9

scheduling execution, 14-19

starting, 12-6

DEFERROR view, 9-18, 27-3

deleting transactions from, 14-6

DEFLOB view, 27-3

DEFPROPAGATOR view, 27-4

DEFSCHEDULE view, 27-4

clearing statistics, 10-31, 14-4

DEFTRAN view, 27-6

DEFTRANDEST view, 27-7

deployment templates

adding objects to, 4-6

alter object, 23-7

alter parameters, 23-10

alter template, 23-5

alter user authorization, 23-11

alter user parameter values, 23-13

authorize users, 4-12

compare templates, 23-15

concepts, 4-2

copy template, 23-16

create object from existing, 23-19

create template, 23-21

creating, 4-3, 4-5

data dictionary views for, 25-5

distributing files, 4-18

drop site instantiation, 22-3

dropping, 23-37

dropping all, 23-35

dropping materialized view group, 8-4

flowchart for creating, 4-4

instantiating, 4-19

instantiation script, 4-16

lock template, 23-50, 23-51

monitoring, 10-9

objects

creating, 23-23

dropping, 23-39

dropping all, 23-32

offline instantiation, 4-12, 22-3, 23-45

online instantiation, 22-6, 23-48

packaging, 4-12, 4-14

for offline instantiation, 4-14

for online instantiation, 4-15

parameters

creating, 4-10, 23-26

dropping, 23-40

dropping all, 23-33

user values, 4-11

runtime parameters

creating, 23-43

deleting, 23-31

get ID, 23-43

inserting, 23-43

sites

dropping, 23-38

dropping all, 23-34

user authorizations

creating, 23-28

dropping, 23-41

dropping all, 23-35

user parameter values

creating, 23-29

dropping, 23-42

dropping all, 23-36
Index-7

user-defined types, 4-2

differences

between tables, 18-3

rectifying, 18-5

disabling

propagation, 14-21

DROP MATERIALIZED VIEW LOG

statement, 8-24

dynamic ownership

conflict avoidance and, 6-35

locating owner of a row, 6-39

obtaining ownership, 6-39

workflow partitioning, 6-36

dynamic performance views

replication, 26-1

E
errors

error queues

DEFERROR view, 9-18

managing, 9-18

error transactions

monitoring, 10-24

reexecuting as alternate user, 9-20

reexecuting as receiver, 9-19

reexecuting multiple, 9-19

extended availability, 6-3, 7-4, 9-2, 20-9, 20-28,

20-81, 20-94, 20-99, 20-104

F
foreign key constraints

adding master sites, 7-4

G
generating

replication support, 3-13

procedural replication, 7-50

I
Import

materialized views

offline instantiation and, 17-3, 17-4

replication groups

offline instantiation and, 16-4, 16-6

status check, 20-92

instantiation, 4-19

DROP_SITE_INSTANTIATION

procedure, 22-3, 23-38

offline, 4-12

INSTANTIATE_OFFLINE function, 22-3,

23-45

online

INSTANTIATE_ONLINE function, 22-6,

23-48

refreshing after, 4-21

script, 4-16

J
jobs

queues for

removing jobs from, 14-24

L
LONG columns

replication, 9-7

M
master definition site

relocating, 20-88

master groups

adding master sites to

with quiesce, 7-31

without quiesce, 7-4

adding objects to, 3-7

creating, 3-2, 3-6, 20-47

dropping, 20-62

flowchart for creating, 3-5

monitoring, 10-3

quiescing, 20-102

removing master sites from, 7-41

resuming replication activity, 20-93

master materialized views

monitoring, 10-6

reorganizing, 8-20
Index-8

master sites

adding, 3-11, 7-4

circular dependencies, 3-11, 7-4

flowchart for, 7-10, 7-21

flowchart for determining method, 7-6

foreign key constraints, 7-4

restrictions, 7-7

restrictions for change-based recovery, 7-5

restrictions for full database

export/import, 7-5

self-referential constraints, 3-11, 7-4

using change-based recovery, 7-9

using full database export/import, 7-9

using object-level export/import, 7-20

using offline instantiation, 7-35

with quiesce, 7-31

without quiesce, 7-4

changing master definition site, 7-2

cleaning up, 8-10

creating, 20-8

creating users for, 2-8, 2-12, 2-17, 2-30

database links, 2-20

determining differences, 9-9

dropping, 20-90

flowchart for setting up, 2-4

monitoring, 10-2, 10-6

propagating changes between, 14-19

removing, 7-41

scheduled links for, 2-21

scheduled purges for, 2-7

setup, 2-5

master tables

adding columns to, 20-91

redefining online, 8-20

reorganizing, 8-20

methods, 8-21

truncating, 8-20

materialized view groups

adding objects to, 5-8, 5-16, 8-39

changing masters, 8-2

creating, 5-4, 5-6, 5-14, 20-52

dropping, 8-4, 8-9

group owner, 8-36

monitoring, 10-11

refreshing, 20-84

unregistering from master, 8-11

materialized view logs

adding columns, 8-16

altering, 8-16

privileges required, 8-16

dropping, 8-24

managing, 8-16

space, 8-17

master table

purging, 15-7, 15-8

monitoring, 10-7

purging

materialized views from, 8-11, 8-13

privileges required, 8-18

purging rows from

manually, 8-18

reducing space allocated to, 8-18

reorganizing masters with, 8-20

truncating, 8-18

truncating master table with, 8-20

materialized view sites

adding

using offline instantiation, 8-25

administrators

creating, 2-25

changing masters, 20-102

database links

creating, 2-34, 4-20, 5-5, 5-6, 5-12, 5-13

dropping, 8-3, 20-65

dropping objects from, 8-8

flowchart for setting up, 2-24

group owner

using, 8-36

monitoring, 10-10

multitier

setting up, 2-24

propagating changes to master, 14-19

refresher

creating, 2-25, 2-32

schedule purge, 2-28, 2-35

users

creating, 2-25

materialized views

data dictionary views, 28-1

deployment templates
Index-9

user-defined types, 4-2

dropping, 8-10

generating support for, 20-75

monitoring, 10-10, 10-12

multitier

setting up, 5-4

user-defined conflict resolution, B-4

offline instantiation of, 17-3, 17-4

purging from materialized view logs, 8-11, 8-13

refresh groups

creating, 5-7, 5-14

refreshing, 4-21, 8-2, 8-34, 15-9, 15-12, 15-13

security, A-7

trusted compared with untrusted, A-8

unregistering from master, 8-13

multimaster replication

monitoring, 10-2

security

trusted compared with untrusted, A-3

multitier materialized views

setting up, 2-24

N
notification log table

conflicts

creating, B-8

sample, B-8

notification methods

user-defined, B-8

notification package

conflicts

creating, B-9

O
objects

adding to materialized view sites, 20-53

altering, 20-25

altering replication, 9-2

creating

for master group, 20-47, 20-48

for materialized view sites, 20-53

dropping

from materialized view site, 8-8, 20-66

generating replication support for, 20-77

offline instantiation

adding a master site, 7-35

adding a materialized view site, 8-25

INSTANTIATE_OFFLINE function, 22-3, 23-45

materialized views, 17-3, 17-4

replication groups, 16-3, 16-4, 16-5, 16-6, 16-8

online instantiation

INSTANTIATE_ONLINE function, 22-6, 23-48

online redefinition of tables, 8-20

Oracle Replication Management tool

monitoring replication, 10-1

P
packaging

deployment templates, 4-12

parallel propagation

monitoring, 10-30, 10-31

parameters

deployment templates, 4-10

user values, 4-11

performance

replication

monitoring, 10-28

planning

for replication, 1-4

PRESERVE MATERIALIZED VIEW LOG option

TRUNCATE TABLE statement, 8-21

priority groups

adding members to, 20-14

altering members

priorities, 20-30

values, 20-31

creating, 20-57

dropping, 20-68

removing members from, 20-67, 20-69

site priority groups

adding members to, 20-16

procedural replication

conflicts and, 7-50

generating replication support for, 7-50

restrictions, 7-47

serialization of transactions, 7-50

user-defined types, 7-49
Index-10

using, 7-47

propagation

altering method, 20-24, 20-29

disabling, 14-21

of changes, 20-24

parallel

monitoring, 10-30, 10-31

status of, 14-7

propagator

registering, 2-6, 2-7, 14-16

proxy materialized view administrator

creating, 2-8, 2-12, 2-17, 2-30

purges

DBA_REPCATLOG table, 20-82

deferred transaction queue, 9-15

master sites, 2-7

materialized view sites, 2-28, 2-35

monitoring, 10-22

pushes

deferred transaction queue, 9-14

Q
quiescing

adding master sites with, 7-31

adding master sites without, 7-4

altering replicated objects without, 9-2

configuring conflict resolution methods

without, 6-3

master groups, 20-102

R
receiver

registering, 2-7

rectifying

tables, 9-9, 18-5

redefining tables

online

replication, 8-20

refresh

materialized view sites, 20-84

materialized views, 8-2, 8-34, 15-9, 15-12, 15-13

monitoring, 10-15, 10-16

refresh groups

adding members to, 19-3

adding objects to, 5-10, 5-18

creating, 5-7, 5-14, 19-6

data dictionary views, 28-1

deleting, 19-5

monitoring, 10-14

refresh, 8-2

refresh interval

changing, 19-3

refreshing

manually, 19-8

removing members from, 19-9

refresher

creating, 2-25, 2-32

replication

catalog views, 10-1, 25-1

column groups, 6-4, 6-7, 6-11, 6-14, 6-17, 6-22

conflict resolution, 6-1

uniqueness, 6-25

creating an environment, 1-2

data dictionary views, 10-1, 25-1

database links

creating, 2-20

datetime datatypes

abbreviations, 11-4

deferred transaction queues

managing, 9-14

deferred transactions

data dictionary views, 27-1

deployment templates

user-defined types, 4-2

determining differences between tables, 9-9

disabling, 7-50, 9-5, 24-3

dynamic performance views, 26-1

enabling, 7-50, 9-5, 9-6, 24-3

error queues

managing, 9-18

flowchart for creating environment, 1-2

generating support for, 3-13

interval datatypes

abbreviations, 11-4

LONG column

converting to LOB, 9-7

managing an environment, 43

master groups
Index-11

creating, 3-2

master sites

adding, 3-11

materialized view groups

creating, 5-4, 5-6, 5-14

materialized view logs

managing, 8-16

monitoring, 10-1

deferred transactions, 10-19

error transactions, 10-24

master environments, 10-2

materialized view environments, 10-10

performance, 10-28

objects

adding to deployment template, 4-6

adding to master group, 3-7

altering, 6-10, 9-2

dropping from master sites, 20-64

parallel propagation

monitoring, 10-30, 10-31

planning for, 1-4

procedural replication, 7-47

restrictions, 7-47

user-defined types, 7-49

propagator

registering, 2-6, 2-7

receiver

registering, 2-7

replicated objects, 9-1

replication queues, 9-1

resuming, 3-15

scheduled links

creating, 2-21

security, A-1

setting up sites, 2-2

sites

setup, 2-2

statistics

clearing, 10-31

triggers, 9-7

replication catalog views, 25-1

comments

updating, 7-45

monitoring replication, 10-1

replication management API, 11-1

conflict resolution, 6-1

deployment templates

creating, 4-3

instantiating, 4-19

packaging, 4-12

examples, 11-2

managing a replication environment, 43

managing replicated objects, 9-1

managing replication queues, 9-1

master groups

creating, 3-2

materialized view groups

creating, 5-4

overview, 1-1

packages, 35, 36, 11-1

setting up replication sites, 2-2

replication objects

altering, 9-2

tables

altering, 9-5

resuming replication activity, 20-93

S
scheduled links

creating, 2-21

security

for materialized view replication, A-7

trusted compared with untrusted, A-8

for multimaster replication, A-2

trusted compared with untrusted, A-3

replication, A-1

trusted compared with untrusted, A-3, A-8

serialization

of transactions, 7-50

site priority

altering, 20-33

site priority groups

adding members to, 20-16

creating

syntax, 20-58

dropping, 20-70

removing members from, 20-71

snapshots. See materialized views

statistics
Index-12

for conflict resolution

auditing, 6-41

cancelling, 6-42

clearing, 6-42, 20-83

collecting, 6-41, 20-87

viewing, 6-41

for propagation

clearing, 10-31, 14-4

status

propagation, 14-7

storage parameters

materialized view log

altering, 8-16

SYS.ANYDATA, 13-7

T
tables

altering

without replicating changes, 9-5

altering replicated, 9-2

comparing, 18-3

differences between, 9-9

rectifying, 9-9, 18-5

redefining online

replication, 8-20

updating comments, 7-45

templates. See deployment templates

token passing, 6-37

sample implementation, 6-35

transactions

serialization of, 7-50

triggers

for site priority conflict resolution, 6-22

for timestamp conflict resolution, 6-11

replicating, 9-7

TRUNCATE statement, 8-19

TRUNCATE TABLE statement

PRESERVE MATERIALIZED VIEW LOG

option, 8-21

trusted security, A-3, A-8

U
USER_REPCAT_REFRESH_TEMPLATES

view, 25-43

USER_REPCAT_TEMP_OUTPUT view, 4-14

USER_REPCAT_TEMPLATE_OBJECTS

view, 25-44

USER_REPCAT_TEMPLATE_PARMS view, 25-44

USER_REPCAT_TEMPLATE_SITES view, 25-44

USER_REPCAT_USER_AUTHORIZATIONS

view, 25-44

USER_REPCAT_USER_PARM_VALUES

view, 25-45

USER_REPCATLOG view, 25-45

USER_REPCOLUMN view, 25-45

USER_REPCOLUMN_GROUP view, 25-45

USER_REPCONFLICT view, 25-46

USER_REPDDL view, 25-46

USER_REPGENOBJECTS view, 25-46

USER_REPGROUP view, 25-46

USER_REPGROUP_PRIVILEGES view, 25-46

USER_REPGROUPED_COLUMN view, 25-46

USER_REPKEY_COLUMNS view, 25-47

USER_REPOBJECT view, 25-47

USER_REPPARAMETER_COLUMN view, 25-47

USER_REPPRIORITY view, 25-47

USER_REPPRIORITY_GROUP view, 25-48

USER_REPPROP view, 25-48

USER_REPRESOL_STATS_CONTROL view, 25-48

USER_REPRESOLUTION view, 25-48

USER_REPRESOLUTION_METHOD view, 25-49

USER_REPRESOLUTION_STATISTICS

view, 25-49

USER_REPSITES view, 25-49

users

authorize for deployment template, 4-12

master materialized view sites, 2-30

master sites, 2-8, 2-12, 2-17

materialized view sites, 2-25

V
V$MVREFRESH view, 26-2

V$REPLPROP view, 10-31, 26-2

V$REPLQUEUE view, 26-4
Index-13

W
workflow, 6-36
Index-14

	Contents
	Send Us Your Comments
	Preface
	1 Replication Overview
	Creating a Replication Environment Overview
	Before You Start

	2 Create Replication Site
	Overview of Setting Up Replication Sites
	Setting Up Master Sites
	Setting Up orc1.world
	Setting Up orc2.world
	Setting Up orc3.world
	Creating Scheduled Links Between the Master Sites

	Setting Up Materialized View Sites
	Setting Up mv1.world
	Setting Up mv2.world

	3 Create a Master Group
	Overview of Creating a Master Group
	Before You Start

	Creating a Master Group

	4 Create a Deployment Template
	Oracle Deployment Templates Concepts
	Before Creating the Deployment Template
	Creating a Deployment Template
	Packaging a Deployment Template for Instantiation
	Packaging a Deployment Template
	Saving an Instantiation Script to File
	Distributing Instantiation Files
	Instantiating a Deployment Template
	Refreshing a Refresh Group After Instantiation

	5 Create Materialized View Group
	Overview of Creating a Materialized View Group
	Creating a Materialized View Group
	Creating the Materialized View Group at mv1.world
	Creating the Materialized View Group at mv2.world

	6 Configure Conflict Resolution
	Preparing for Conflict Resolution
	Creating Conflict Resolution Methods for Update Conflicts
	Overwrite and Discard Conflict Resolution Methods
	Minimum and Maximum Conflict Resolution Methods
	Timestamp Conflict Resolution Methods
	Additive and Average Conflict Resolution Methods
	Priority Groups Conflict Resolution Methods
	Site Priority Conflict Resolution Methods

	Creating Conflict Resolution Methods for Uniqueness Conflicts
	Creating Conflict Avoidance Methods for Delete Conflicts
	Using Dynamic Ownership Conflict Avoidance
	Workflow
	Token Passing
	Locating the Owner of a Row
	Obtaining Ownership
	Applying the Change

	Auditing Successful Conflict Resolution
	Collecting Conflict Resolution Statistics
	Viewing Conflict Resolution Statistics
	Canceling Conflict Resolution Statistics
	Clearing Statistics Information

	7 Managing a Master Replication Environment
	Changing the Master Definition Site
	Option 1: All Master Sites Are Available
	Option 2: The Old Master Definition Site Is Not Available

	Adding New Master Sites
	Adding New Master Sites Without Quiescing the Master Group
	Adding New Master Sites to a Quiesced Master Group

	Removing a Master Site from a Master Group
	Removing an Unavailable Master Site

	Updating the Comments Fields in Data Dictionary Views
	Using Procedural Replication
	Restrictions on Procedural Replication
	User-Defined Types and Procedural Replication
	Serializing Transactions
	Generating Support for Replicated Procedures

	8 Managing a Materialized View Replication Environment
	Refreshing Materialized Views
	Changing a Materialized View Group’s Master Site
	Dropping Materialized View Groups and Objects
	Dropping a Materialized View Groups Created with a Deployment Template
	Dropping a Materialized View Group or Objects Created Manually
	Cleaning Up a Master Site or Master Materialized View Site

	Managing Materialized View Logs
	Altering Materialized View Logs
	Managing Materialized View Log Space
	Reorganizing Master Tables that Have Materialized View Logs
	Dropping a Materialized View Log

	Performing an Offline Instantiation of a Materialized View Site Using Export/Import
	Using a Group Owner for a Materialized View Group

	9 Managing Replication Objects and Queues
	Altering a Replicated Object
	Altering a Replicated Object in a Quiesced Master Group

	Modifying Tables without Replicating the Modifications
	Disabling Replication
	Reenabling the Replication Facility
	Ensuring That Replicated Triggers Fire Only Once

	Converting a LONG Column to a LOB Column in a Replicated Table
	Determining Differences Between Replicated Tables
	Using the DIFFERENCES Procedure
	Using the RECTIFY Procedure

	Managing the Deferred Transactions Queue
	Pushing the Deferred Transaction Queue
	Purging the Deferred Transaction Queue
	Using the AnyData Type to Determine the Value of an Argument in a Deferred Call

	Managing the Error Queue
	Reexecuting Error Transaction as the Receiver
	Reexecuting Error Transaction as Alternate User

	10 Monitoring a Replication Environment
	Monitoring Master Replication Environments
	Monitoring Master Sites
	Monitoring Master Groups
	Monitoring Masters

	Monitoring Materialized View Sites
	Listing General Information About a Materialized View Site
	Listing General Information About Materialized View Groups
	Listing Information About Materialized Views
	Listing Information About the Refresh Groups at a Materialized View Site
	Determining the Job ID for Each Refresh Job at a Materialized View Site
	Determining Which Materialized Views Are Currently Refreshing

	Monitoring Administrative Requests
	Listing General Information About Administrative Requests
	Determining the Cause of Administrative Request Errors
	Listing General Information About the Job that Executes Administrative Requests

	Monitoring the Deferred Transactions Queue
	Monitoring Transaction Propagation
	Monitoring Purges of Successfully Propagated Transactions

	Monitoring the Error Queue
	Listing General Information About the Error Transactions at a Replication Site
	Determining the Percentage of Error Transactions
	Listing the Number of Error Transactions from Each Origin Master Site
	Listing the Error Messages for the Error Transactions at a Replication Site
	Determining the Error Operations at a Replication Site

	Monitoring Performance in a Replication Environment
	Tracking the Average Number of Row Changes in a Replication Transaction
	Tracking the Rate of Transactions Entering the Deferred Transactions Queue
	Determining the Average Network Traffic Created To Propagate a Transaction
	Determining the Average Amount of Time to Apply Transactions at Remote Sites
	Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping
	Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View
	Monitoring Parallel Propagation of Deferred Transactions Using V$REPLPROP

	11 Introduction to the Replication Management API Reference
	Examples of Using Oracle’s Replication Management API
	Issues to Consider When Using the Replication Management API
	The Replication Management Tool and the Replication Management API
	Abbreviations for Datetime and Interval Datatypes

	12 DBMS_DEFER
	Summary of DBMS_DEFER Subprograms
	CALL Procedure
	COMMIT_WORK Procedure
	datatype_ARG Procedure
	TRANSACTION Procedure

	13 DBMS_DEFER_QUERY
	Summary of DBMS_DEFER_QUERY Subprograms
	GET_ARG_FORM Function
	GET_ARG_TYPE Function
	GET_CALL_ARGS Procedure
	GET_datatype_ARG Function
	GET_OBJECT_NULL_VECTOR_ARG Function

	14 DBMS_DEFER_SYS
	Summary of DBMS_DEFER_SYS Subprograms
	ADD_DEFAULT_DEST Procedure
	CLEAR_PROP_STATISTICS Procedure
	DELETE_DEFAULT_DEST Procedure
	DELETE_DEF_DESTINATION Procedure
	DELETE_ERROR Procedure
	DELETE_TRAN Procedure
	DISABLED Function
	EXCLUDE_PUSH Function
	EXECUTE_ERROR Procedure
	EXECUTE_ERROR_AS_USER Procedure
	PURGE Function
	PUSH Function
	REGISTER_PROPAGATOR Procedure
	SCHEDULE_PURGE Procedure
	SCHEDULE_PUSH Procedure
	SET_DISABLED Procedure
	UNREGISTER_PROPAGATOR Procedure
	UNSCHEDULE_PURGE Procedure
	UNSCHEDULE_PUSH Procedure

	15 DBMS_MVIEW
	Summary of DBMS_MVIEW Subprograms
	BEGIN_TABLE_REORGANIZATION Procedure
	END_TABLE_REORGANIZATION Procedure
	EXPLAIN_MVIEW Procedure
	EXPLAIN_REWRITE Procedure
	I_AM_A_REFRESH Function
	PMARKER Function
	PURGE_DIRECT_LOAD_LOG Procedure
	PURGE_LOG Procedure
	PURGE_MVIEW_FROM_LOG Procedure
	REFRESH Procedure
	REFRESH_ALL_MVIEWS Procedure
	REFRESH_DEPENDENT Procedure
	REGISTER_MVIEW Procedure
	UNREGISTER_MVIEW Procedure

	16 DBMS_OFFLINE_OG
	Summary of DBMS_OFFLINE_OG Subprograms
	BEGIN_INSTANTIATION Procedure
	BEGIN_LOAD Procedure
	END_INSTANTIATION Procedure
	END_LOAD Procedure
	RESUME_SUBSET_OF_MASTERS Procedure

	17 DBMS_OFFLINE_SNAPSHOT
	Summary of DBMS_OFFLINE_SNAPSHOT Subprograms
	BEGIN_LOAD Procedure
	END_LOAD Procedure

	18 DBMS_RECTIFIER_DIFF
	Summary of DBMS_RECTIFIER_DIFF Subprograms
	DIFFERENCES Procedure
	RECTIFY Procedure

	19 DBMS_REFRESH
	Summary of DBMS_REFRESH Subprograms
	ADD Procedure
	CHANGE Procedure
	DESTROY Procedure
	MAKE Procedure
	REFRESH Procedure
	SUBTRACT Procedure

	20 DBMS_REPCAT
	Summary of DBMS_REPCAT Subprograms
	ADD_GROUPED_COLUMN Procedure
	ADD_MASTER_DATABASE Procedure
	ADD_NEW_MASTERS Procedure
	ADD_PRIORITY_datatype Procedure
	ADD_SITE_PRIORITY_SITE Procedure
	ADD_conflicttype_RESOLUTION Procedure
	ALTER_CATCHUP_PARAMETERS Procedure
	ALTER_MASTER_PROPAGATION Procedure
	ALTER_MASTER_REPOBJECT Procedure
	ALTER_MVIEW_PROPAGATION Procedure
	ALTER_PRIORITY Procedure
	ALTER_PRIORITY_datatype Procedure
	ALTER_SITE_PRIORITY Procedure
	ALTER_SITE_PRIORITY_SITE Procedure
	CANCEL_STATISTICS Procedure
	COMMENT_ON_COLUMN_GROUP Procedure
	COMMENT_ON_MVIEW_REPSITES Procedure
	COMMENT_ON_PRIORITY_GROUP/COMMENT_ON_SITE_PRIORITY Procedures
	COMMENT_ON_REPGROUP Procedure
	COMMENT_ON_REPOBJECT Procedure
	COMMENT_ON_REPSITES Procedure
	COMMENT_ON_conflicttype_RESOLUTION Procedure
	COMPARE_OLD_VALUES Procedure
	CREATE_MASTER_REPGROUP Procedure
	CREATE_MASTER_REPOBJECT Procedure
	CREATE_MVIEW_REPGROUP Procedure
	CREATE_MVIEW_REPOBJECT Procedure
	DEFINE_COLUMN_GROUP Procedure
	DEFINE_PRIORITY_GROUP Procedure
	DEFINE_SITE_PRIORITY Procedure
	DO_DEFERRED_REPCAT_ADMIN Procedure
	DROP_COLUMN_GROUP Procedure
	DROP_GROUPED_COLUMN Procedure
	DROP_MASTER_REPGROUP Procedure
	DROP_MASTER_REPOBJECT Procedure
	DROP_MVIEW_REPGROUP Procedure
	DROP_MVIEW_REPOBJECT Procedure
	DROP_PRIORITY Procedure
	DROP_PRIORITY_GROUP Procedure
	DROP_PRIORITY_datatype Procedure
	DROP_SITE_PRIORITY Procedure
	DROP_SITE_PRIORITY_SITE Procedure
	DROP_conflicttype_RESOLUTION Procedure
	EXECUTE_DDL Procedure
	GENERATE_MVIEW_SUPPORT Procedure
	GENERATE_REPLICATION_SUPPORT Procedure
	MAKE_COLUMN_GROUP Procedure
	PREPARE_INSTANTIATED_MASTER Procedure
	PURGE_MASTER_LOG Procedure
	PURGE_STATISTICS Procedure
	REFRESH_MVIEW_REPGROUP Procedure
	REGISTER_MVIEW_REPGROUP Procedure
	REGISTER_STATISTICS Procedure
	RELOCATE_MASTERDEF Procedure
	REMOVE_MASTER_DATABASES Procedure
	RENAME_SHADOW_COLUMN_GROUP Procedure
	REPCAT_IMPORT_CHECK Procedure
	RESUME_MASTER_ACTIVITY Procedure
	RESUME_PROPAGATION_TO_MDEF Procedure
	SEND_OLD_VALUES Procedure
	SET_COLUMNS Procedure
	SPECIFY_NEW_MASTERS Procedure
	SUSPEND_MASTER_ACTIVITY Procedure
	SWITCH_MVIEW_MASTER Procedure
	UNDO_ADD_NEW_MASTERS_REQUEST Procedure
	UNREGISTER_MVIEW_REPGROUP Procedure
	VALIDATE Function
	WAIT_MASTER_LOG Procedure

	21 DBMS_REPCAT_ADMIN
	Summary of DBMS_REPCAT_ADMIN Subprograms
	GRANT_ADMIN_ANY_SCHEMA Procedure
	GRANT_ADMIN_SCHEMA Procedure
	REGISTER_USER_REPGROUP Procedure
	REVOKE_ADMIN_ANY_SCHEMA Procedure
	REVOKE_ADMIN_SCHEMA Procedure
	UNREGISTER_USER_REPGROUP Procedure

	22 DBMS_REPCAT_INSTANTIATE
	Summary of DBMS_REPCAT_INSTANTIATE Subprograms
	DROP_SITE_INSTANTIATION Procedure
	INSTANTIATE_OFFLINE Function
	INSTANTIATE_ONLINE Function

	23 DBMS_REPCAT_RGT
	Summary of DBMS_REPCAT_RGT Subprograms
	ALTER_REFRESH_TEMPLATE Procedure
	ALTER_TEMPLATE_OBJECT Procedure
	ALTER_TEMPLATE_PARM Procedure
	ALTER_USER_AUTHORIZATION Procedure
	ALTER_USER_PARM_VALUE Procedure
	COMPARE_TEMPLATES Function
	COPY_TEMPLATE Function
	CREATE_OBJECT_FROM_EXISTING Function
	CREATE_REFRESH_TEMPLATE Function
	CREATE_TEMPLATE_OBJECT Function
	CREATE_TEMPLATE_PARM Function
	CREATE_USER_AUTHORIZATION Function
	CREATE_USER_PARM_VALUE Function
	DELETE_RUNTIME_PARMS Procedure
	DROP_ALL_OBJECTS Procedure
	DROP_ALL_TEMPLATE_PARMS Procedure
	DROP_ALL_TEMPLATE_SITES Procedure
	DROP_ALL_TEMPLATES Procedure
	DROP_ALL_USER_AUTHORIZATIONS Procedure
	DROP_ALL_USER_PARM_VALUES Procedure
	DROP_REFRESH_TEMPLATE Procedure
	DROP_SITE_INSTANTIATION Procedure
	DROP_TEMPLATE_OBJECT Procedure
	DROP_TEMPLATE_PARM Procedure
	DROP_USER_AUTHORIZATION Procedure
	DROP_USER_PARM_VALUE Procedure
	GET_RUNTIME_PARM_ID Function
	INSERT_RUNTIME_PARMS Procedure
	INSTANTIATE_OFFLINE Function
	INSTANTIATE_ONLINE Function
	LOCK_TEMPLATE_EXCLUSIVE Procedure
	LOCK_TEMPLATE_SHARED Procedure

	24 DBMS_REPUTIL
	Summary of DBMS_REPUTIL Subprograms
	REPLICATION_OFF Procedure
	REPLICATION_ON Procedure
	REPLICATION_IS_ON Function
	FROM_REMOTE Function
	GLOBAL_NAME Function
	MAKE_INTERNAL_PKG Procedure
	SYNC_UP_REP Procedure

	25 Replication Catalog Views
	Summary of Replication Catalog Views
	DBA_REGISTERED_MVIEW_GROUPS
	ALL_REPCAT_REFRESH_TEMPLATES
	ALL_REPCAT_TEMPLATE_OBJECTS
	ALL_REPCAT_TEMPLATE_PARMS
	ALL_REPCAT_TEMPLATE_SITES
	ALL_REPCAT_USER_AUTHORIZATIONS
	ALL_REPCAT_USER_PARM_VALUES
	ALL_REPCATLOG
	ALL_REPCOLUMN
	ALL_REPCOLUMN_GROUP
	ALL_REPCONFLICT
	ALL_REPDDL
	ALL_REPGENOBJECTS
	ALL_REPGROUP
	ALL_REPGROUP_PRIVILEGES
	ALL_REPGROUPED_COLUMN
	ALL_REPKEY_COLUMNS
	ALL_REPOBJECT
	ALL_REPPARAMETER_COLUMN
	ALL_REPPRIORITY
	ALL_REPPRIORITY_GROUP
	ALL_REPPROP
	ALL_REPRESOL_STATS_CONTROL
	ALL_REPRESOLUTION
	ALL_REPRESOLUTION_METHOD
	ALL_REPRESOLUTION_STATISTICS
	ALL_REPSITES
	DBA_REPCAT_REFRESH_TEMPLATES
	DBA_REPCAT_TEMPLATE_OBJECTS
	DBA_REPCAT_TEMPLATE_PARMS
	DBA_REPCAT_TEMPLATE_SITES
	DBA_REPCAT_USER_AUTHORIZATIONS
	DBA_REPCAT_USER_PARM_VALUES
	DBA_REPCATLOG
	DBA_REPCOLUMN
	DBA_REPCOLUMN_GROUP
	DBA_REPCONFLICT
	DBA_REPDDL
	DBA_REPEXTENSIONS
	DBA_REPGENOBJECTS
	DBA_REPGROUP
	DBA_REPGROUP_PRIVILEGES
	DBA_REPGROUPED_COLUMN
	DBA_REPKEY_COLUMNS
	DBA_REPOBJECT
	DBA_REPPARAMETER_COLUMN
	DBA_REPPRIORITY
	DBA_REPPRIORITY_GROUP
	DBA_REPPROP
	DBA_REPRESOL_STATS_CONTROL
	DBA_REPRESOLUTION
	DBA_REPRESOLUTION_METHOD
	DBA_REPRESOLUTION_STATISTICS
	DBA_REPSITES
	DBA_REPSITES_NEW
	USER_REPCAT_REFRESH_TEMPLATES
	USER_REPCAT_TEMPLATE_OBJECTS
	USER_REPCAT_TEMPLATE_PARMS
	USER_REPCAT_TEMPLATE_SITES
	USER_REPCAT_USER_AUTHORIZATION
	USER_REPCAT_USER_PARM_VALUES
	USER_REPCATLOG
	USER_REPCOLUMN
	USER_REPCOLUMN_GROUP
	USER_REPCONFLICT
	USER_REPDDL
	USER_REPGENOBJECTS
	USER_REPGROUP
	USER_REPGROUP_PRIVILEGES
	USER_REPGROUPED_COLUMN
	USER_REPKEY_COLUMNS
	USER_REPOBJECT
	USER_REPPARAMETER_COLUMN
	USER_REPPRIORITY
	USER_REPPRIORITY_GROUP
	USER_REPPROP
	USER_REPRESOL_STATS_CONTROL
	USER_REPRESOLUTION
	USER_REPRESOLUTION_METHOD
	USER_REPRESOLUTION_STATISTICS
	USER_REPSITES

	26 Replication Dynamic Performance Views
	V$MVREFRESH
	V$REPLPROP
	V$REPLQUEUE

	27 Deferred Transaction Views
	DEFCALL
	DEFCALLDEST
	DEFDEFAULTDEST
	DEFERRCOUNT
	DEFERROR
	DEFLOB
	DEFPROPAGATOR
	DEFSCHEDULE
	DEFTRAN
	DEFTRANDEST

	28 Materialized View and Refresh Group Views
	A Security Options
	Security Setup for Multimaster Replication
	Trusted Compared With Untrusted Security

	Security Setup for Materialized View Replication
	Trusted Compared With Untrusted Security

	B User-Defined Conflict Resolution Methods
	User-Defined Conflict Resolution Methods
	Conflict Resolution Method Parameters
	Resolving Update Conflicts
	Resolving Uniqueness Conflicts
	Resolving Delete Conflicts
	Multitier Materialized Views and User-Defined Conflict Resolution Methods
	Restrictions for User-Defined Conflict Resolution Methods
	Examples of User-Defined Conflict Resolution Method

	User-Defined Conflict Notification Methods
	Creating a Conflict Notification Log
	Creating a Conflict Notification Package

	Viewing Conflict Resolution Information

	Index

