
Oracle9 i

User-Managed Backup and Recovery Guide

Release 2 (9.2)

March 2002

Part No. A96572-01

Oracle9i User-Managed Backup and Recovery Guide, Release 2 (9.2)

Part No. A96572-01

Copyright © 1996, 2002, Oracle Corporation. All rights reserved.

Primary Author: Lance Ashdown

Contributors: Tammy Bednar, Wei Hu, Vikram Joshi, Bill Lee, Yunrui Li, Gary Ngai, Ron Obermarck,
Alok Pareek, Vinay Srihari, Janet Stern, Mike Stewart, Kothanda Umamageswaran

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle7, Oracle8, Oracle8i, Oracle9i, PL/SQL, and
SQL*Plus are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface .. xi

What’s New in User-Managed Backup and Recovery? .. xxi

1 Introduction to User-Managed Backup and Recovery

About User-Managed Backup and Recovery .. 1-2
Why Use User-Managed Backup and Recovery Methods? .. 1-2
Overview of User-Managed Backup and Recovery ... 1-3

About User-Managed Backups... 1-3
About User-Managed Restore and Recovery ... 1-6

2 Making User-Managed Backups

Querying V$ Views to Obtain Backup Information .. 2-2
Listing Database Files Before a Backup... 2-2
Determining Datafile Status for Online Tablespace Backups .. 2-3

Making User-Managed Backups of the Whole Database ... 2-4
Making Consistent Whole Database Backups.. 2-4

Making User-Managed Backups of Offline Tablespaces and Datafiles................................... 2-6
Making User-Managed Backups of Online Tablespaces and Datafiles 2-7

Making User-Managed Backups of Online Read/Write Tablespaces.................................. 2-8
Making Multiple User-Managed Backups of Online Read/Write Tablespaces.................. 2-9
Ending a Backup After an Instance Failure or SHUTDOWN ABORT 2-11
iii

Making User-Managed Backups of Read-Only Tablespaces ... 2-14
Making User-Managed Backups of Undo Tablespaces .. 2-15

Making User-Managed Backups in SUSPEND Mode... 2-16
About the Suspend/Resume Feature .. 2-16
Making Backups in a Suspended Database .. 2-17

Making User-Managed Backups of the Control File ... 2-19
Backing Up the Control File to a Binary File .. 2-19
Backing Up the Control File to a Trace File .. 2-19

Making User-Managed Backups of Archived Redo Logs... 2-22
Making User-Managed Backups to Raw Devices .. 2-22

Backing Up to Raw Devices on UNIX ... 2-22
Backing Up to Raw Devices on Windows NT.. 2-25

Verifying User-Managed Backups... 2-27
Testing the Restore of Backups... 2-27
Using the DBVERIFY Utility ... 2-27

Making Logical Backups with Export... 2-28
Using Export.. 2-28
Using Import ... 2-29

Making User-Managed Backups of Miscellaneous Oracle Files ... 2-29

3 Performing User-Managed Restore Operations

About User-Managed Restore Operations ... 3-2
Keeping Records For Use in a Restore Scenario ... 3-3

Recording the Locations of Datafiles, Control Files, and Online Redo Logs....................... 3-3
Recording the Locations of Archived Redo Logs... 3-4
Recording the Locations of Backup Files .. 3-4

Determining Which Datafiles Require Recovery ... 3-5
Restoring Datafiles.. 3-6
Re-Creating Datafiles When Backups Are Unavailable .. 3-7
Restoring and Re-Creating Control Files ... 3-8

Losing a Member of a Multiplexed Control File .. 3-9
Losing All Members of a Multiplexed Control File When a Backup Is Available 3-10
Losing All Current and Backup Control Files .. 3-13

Restoring Archived Redo Logs... 3-15
iv

4 Performing User-Managed Media Recovery

Performing User-Managed Media Recovery: Overview ... 4-2
Preconditions of Performing User-Managed Recovery .. 4-2
Applying Logs Automatically with the RECOVER Command... 4-2
Recovering When Archived Logs Are in the Default Location ... 4-5
Recovering When Archived Logs Are in a Nondefault Location ... 4-6
Resetting the Archived Log Destination ... 4-7
Overriding the Archived Log Destination.. 4-7
Responding to Unsuccessful Application of Redo Logs... 4-8

Performing Complete User-Managed Media Recovery .. 4-9
Performing Closed Database Recovery... 4-9
Performing Datafile Recovery in an Open Database... 4-12

Performing Incomplete User-Managed Media Recovery ... 4-16
Preparing for Incomplete Recovery ... 4-16
Restoring Datafiles Before Performing Incomplete Recovery ... 4-16
Performing Cancel-Based Incomplete Recovery.. 4-18
Performing Time-Based Incomplete Recovery... 4-20
Performing Change-Based Incomplete Recovery .. 4-21

Recovering a Database in NOARCHIVELOG Mode .. 4-22
Restoring the Database to its Default Location .. 4-23
Restoring the Database to a New Location... 4-24

Performing Media Recovery in Parallel ... 4-25
Opening the Database After User-Managed Media Recovery .. 4-26

About RESETLOGS Operations ... 4-26
Determining Whether to Reset the Online Redo Logs.. 4-28
Following Up After a RESETLOGS Operation .. 4-30
Recovering a Backup Created Before a RESETLOGS.. 4-31

Interrupting User-Managed Media Recovery ... 4-33
User-Managed Media Recovery Restrictions .. 4-34

User-Managed Recovery of Unrecoverable Tables and Indexes... 4-34
User-Managed Recovery of Read-Only Tablespaces with a Noncurrent Control File 4-35

5 Troubleshooting User-Managed Media Recovery

About User-Managed Media Recovery Problems .. 5-2
Investigating the Media Recovery Problem: Phase 1 .. 5-4
v

Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2 5-5
Deciding Whether to Allow Recovery to Corrupt Blocks: Phase 3 ... 5-7
Allowing Recovery to Corrupt Blocks: Phase 4 .. 5-8
Performing Trial Recovery .. 5-9

About Trial Recovery ... 5-9
How Trial Recovery Works... 5-9
Executing the RECOVER ... TEST Statement.. 5-10

6 User-Managed Media Recovery Scenarios

Recovering After the Loss of Datafiles: Scenarios.. 6-2
Losing Datafiles in NOARCHIVELOG Mode .. 6-2
Losing Datafiles in ARCHIVELOG Mode... 6-2

Recovering Through an Added Datafile: Scenario... 6-3
Recovering Transportable Tablespaces: Scenario ... 6-4
Recovering After the Loss of Online Redo Log Files: Scenarios ... 6-5

Recovering After Losing a Member of a Multiplexed Online Redo Log Group 6-6
Recovering After the Loss of All Members of an Online Redo Log Group 6-7

Recovering After the Loss of Archived Redo Log Files: Scenario... 6-12
Recovering from User Errors: Scenario... 6-13
Performing Media Recovery in a Distributed Environment: Scenario 6-13

Coordinating Time-Based and Change-Based Distributed Database Recovery 6-14

7 Performing User-Managed TSPITR

Introduction to User-Managed Tablespace Point-in-Time Recovery.. 7-2
TSPITR Terminology.. 7-2
TSPITR Methods ... 7-3

Preparing for Tablespace Point-in-Time Recovery: Basic Steps ... 7-4
Step 1: Review TSPITR Requirements ... 7-5
Step 2: Identify All of the Files in the Recovery and Auxiliary Set Tablespaces 7-5
Step 3: Determine Whether Objects Will Be Lost ... 7-6
Step 4: Choose a Method for Connecting to the Auxiliary Instance 7-7
Step 5: Create an Oracle Password File for the Auxiliary Instance 7-7
Step 6: Create the Initialization Parameter File for the Auxiliary Instance.......................... 7-7

Restoring and Recovering the Auxiliary Database: Basic Steps.. 7-9
Restoring and Recovering the Auxiliary Database on the Same Host 7-10
vi

Restoring the Auxiliary Database on a Different Host with the Same Path Names......... 7-12
Restoring the Auxiliary Database on a Different Host with Different Path Names......... 7-14

Performing TSPITR with Transportable Tablespaces ... 7-14
Step 1: Unplugging the Tablespaces from the Auxiliary Database..................................... 7-14
Step 2: Transporting the Tablespaces into the Primary Database 7-15

Performing Partial TSPITR of Partitioned Tables.. 7-16
Step 1: Create a Table on the Primary Database for Each Partition Being Recovered 7-16
Step 2: Drop the Indexes on the Partition Being Recovered... 7-17
Step 3: Exchange Partitions with Standalone Tables... 7-17
Step 4: Drop the Recovery Set Tablespace .. 7-17
Step 5: Create Tables at Auxiliary Database ... 7-17
Step 6: Drop Indexes on Partitions Being Recovered .. 7-18
Step 7: Exchange Partitions with Standalone Tables on the Auxiliary Database.............. 7-18
Step 8: Transport the Recovery Set Tablespaces .. 7-18
Step 9: Exchange Partitions with Standalone Tables on the Primary Database 7-18
Step 10: Back Up the Recovered Tablespaces in the Primary Database 7-18

Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped 7-18
Step 1: Find the Low and High Range of the Partition that Was Dropped........................ 7-19
Step 2: Create a Temporary Table .. 7-19
Step 3: Delete Records From the Partitioned Table ... 7-19
Step 4: Drop the Recovery Set Tablespace .. 7-20
Step 5: Create Tables at the Auxiliary Database .. 7-20
Step 6: Drop Indexes on Partitions Being Recovered .. 7-20
Step 7: Exchange Partitions with Standalone Tables... 7-20
Step 8: Transport the Recovery Set Tablespaces .. 7-20
Step 9: Insert Standalone Tables into Partitioned Tables.. 7-20
Step 10: Back Up the Recovered Tablespaces in the Primary Database 7-21

Performing TSPITR of Partitioned Tables When a Partition Has Split 7-21
Step 1: Drop the Lower of the Two Partitions at the Primary Database 7-21
Steps 2: Follow Same Procedure as for Partial TSPITR of Partitioned Tablespaces 7-22

Index
vii

viii

Send Us Your Comments

Oracle9 i User-Managed Backup and Recovery Guide, Release 2 (9.2)

Part No. A96572-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
ix

x

Preface

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xi

Audience
This manual is intended for database administrators who perform the following

tasks:

■ Perform backups and restore database files with operating system utilities, and

perform recovery with the SQL*Plus RECOVER command.

■ Use Recovery Manager as a backup and recovery solution but choose to back

up some files with user-managed methods.

To use this document, you need to be familiar with relational database concepts and

basic database administration as described in these manuals:

■ Oracle9i Database Concepts

■ Oracle9i Backup and Recovery Concepts

■ Oracle9i Database Administrator’s Guide

■ You should also be familiar with the operating system environment under

which you are running Oracle.

Organization
This document contains:

"What’s New in User-Managed Backup and Recovery?"
This preface describes the new features and enhancements to user-managed backup

and recovery.

Chapter 1, "Introduction to User-Managed Backup and Recovery"
This chapter explains the purpose and basic functionality of user-managed backup

and recovery methods.

Chapter 2, "Making User-Managed Backups"
This chapter describes how to back up control files, datafiles, and archived redo

logs with operating system commands.

Chapter 3, "Performing User-Managed Restore Operations"
This chapter describes how to restore control files, database file, and archived redo

logs with operating system commands.
xii

Chapter 4, "Performing User-Managed Media Recovery"
This chapter describes how to use the SQL*Plus RECOVER command to perform

media recovery on restored datafiles.

Chapter 5, "Troubleshooting User-Managed Media Recovery"
This chapter describes how to troubleshoot problems that can occur when

performing user-managed media recovery.

Chapter 6, "User-Managed Media Recovery Scenarios"
This chapter describes basic scenarios involving user-managed restore and recovery.

Chapter 7, "Performing User-Managed TSPITR"
This chapter describes how recover a tablespace to a time that is different from the

rest of the database.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Backup and Recovery Concepts to gain a conceptual overview of backup

and recovery

■ Oracle9i Recovery Manager User’s Guide to learn how to use Recovery Manager

■ http://www.oracle.com/database/recovery

Many books in the documentation set use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.
xiii

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.
xiv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example
xv

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME =database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;
xvi

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and

provides examples of their use.

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

Convention Meaning Example
xvii

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"
C:\>imp SYSTEM/ password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_NAMETNSListener

Convention Meaning Example
xviii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora nn , where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example
xix

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xx

What’s New in User-Managed Backup and
Recovery?

This chapter describes the new user-managed backup and recovery features of

Oracle9i Release 2 (9.2) and provides pointers to additional information. New

features information from previous releases is also retained to help those users

migrating to the current release.

The following sections describe the new features in user-managed backup and

recovery:

■ Oracle9i New Features in User-Managed Backup and Recovery

■ Oracle8i New Features in User-Managed Backup and Recovery
xxi

Oracle9i New Features in User-Managed Backup and Recovery
This section contains these topics:

■ Oracle9i Release 2 (9.2) New Features in User-Managed Backup and Recovery

■ Oracle9i Release 1 (9.0.1) New Features in User-Managed Backup and
Recovery

Oracle9 i Release 2 (9.2) New Features in User-Managed Backup and
Recovery
Oracle9i Release 2 (9.2) includes the following new features for backup and

recovery that improve database availability and manageability.

■ Redo Log Parallelism

This feature allows server processes to generate redo in parallel, thereby

increasing the throughput of update-intensive workloads. When the parallel

redo feature is enabled, Oracle generates redo logs in a new format. Releases

prior to Oracle9i Release 2 (9.2) cannot apply redo logs in this new format.

Hence, if you are attempting to apply parallel logs in a release prior to Oracle9i
Release 2 (9.2), then you must temporarily upgrade to Oracle9i Release 2 (9.2),

recover the database, and then downgrade to the prior release.

Oracle9 i Release 1 (9.0.1) New Features in User-Managed Backup and
Recovery
Oracle9i Release 1 (9.0.1) includes the following new features for backup and

recovery that improve database availability and manageability.

■ Batch Termination of Backup Mode

The ALTER DATABASE END BACKUP statement takes all datafiles currently in

backup mode out of backup mode. The purpose of this feature is to allow a

crash recovery script to restart a database without intervention even though the

failure occurred during an online backup. Previously, if the database crashed

during an online backup, then each tablespace has to be taken out of backup

mode individually, or media recovery had to be performed on the database.

See Also: "About User-Managed Media Recovery Problems" on

page 5-2 to learn how to troubleshoot parallel redo problems, and

Oracle9i Database Performance Tuning Guide and Reference to learn

how to enable and disable the feature
xxii

■ Database Can Be Opened After Media Recovery Problem

If database media recovery encounters a problem, Oracle stops and leaves the

database in a consistent state. You can then open the database read-only or with

the RESTLOGS options.

■ Trial Recovery

The SQL*Plus RECOVER ... TEST statement can perform a trial recovery in

memory without affecting the physical database. This feature enables you to

test backup and recovery strategies without actually applying changes to the

files on disk. Also, if you are troubleshooting media recovery problems, trial

recovery lets you foresee what problems might occur if you were to continue

with normal recovery.

■ Recovery Through Media Recovery Problems

Use the RECOVERstatement with the ALLOW ... CORRUPTIONclause to permit

recovery to corrupt blocks during datafile media recovery. After recovery

completes, you can use RMAN to perform block media recovery on the

corrupted blocks. Hence, this feature can shorten recovery time and increase

database availability.

■ Multiple Conversion Pairs for *_FILE_NAME_CONVERT Parameters

You can specify multiple conversion pairs in the DB_FILE_NAME_CONVERT
and LOG_FILE_NAME_CONVERT initialization parameters.

■ LOG_ARCHIVE_DEST_n Supports Up to 10 Locations

The LOG_ARCHIVE_DEST_n initialization parameter can archive to up to 10

locations.

See Also: "Ending a Backup After an Instance Failure or

SHUTDOWN ABORT" on page 2-11

See Also: "About User-Managed Media Recovery Problems" on

page 5-2

See Also: "Performing Trial Recovery" on page 5-9

See Also: Chapter 5, "Troubleshooting User-Managed Media

Recovery"
xxiii

Oracle8 i New Features in User-Managed Backup and Recovery
This section contains these topics:

■ Oracle8i Release 2 (8.1.6) New Features in User-Managed Backup and
Recovery

■ Oracle8i Release 1 (8.1.5) New Features in User-Managed Backup and
Recovery

Oracle8 i Release 2 (8.1.6) New Features in User-Managed Backup and
Recovery
Oracle8i Release 2 (8.1.6) contains a number of internal improvements that provide

more robust protection against data corruption.

■ Protection Against Logical Corruption

Logical data corruptions are typically caused by application errors and are

difficult to repair because these corruptions are in the redo logs. You can

prevent most logical corruptions by enabling block checking, which can detect

and roll back changes that corrupt the database. Block checking is improved in

these ways:

– Oracle checks more block types, such as rollback segment blocks,

transaction table blocks, and segment header blocks.

– Block checking is more efficient, checking more blocks without increasing

system overhead.

– Block checking is always turned on for the SYSTEMtablespace, regardless of

the setting of the DB_BLOCK_CHECKING initialization parameter.

■ Protection Against Memory Corruptions

If block checking is turned on, then the database writer process performs block

checking immediately before writing a block to disk. This check enables Oracle

to catch some corruptions when they are still in memory and automatically

repair corrupted blocks before they are written to disk.

■ Protection Against Physical Data Corruption

Typically, Oracle detects physical I/O corruptions by storing a checksum in

each data block. Oracle release 8.1.6 always performs checksum calculations in

See Also: "Listing Database Files Before a Backup" on page 2-2,

and "About User-Managed Restore Operations" on page 3-2
xxiv

the SYSTEM tablespace, regardless of the DB_BLOCK_CHECKSUM parameter

setting.

If the calculated checksum does not match the stored checksum when Oracle

reads the control file or redo logs, then Oracle rereads the data from either a

different log or the same member in more situations than previous Oracle

releases. Hence, Oracle has a second chance to find a good copy of the data and

repair any physical data corruption.

Oracle8 i Release 1 (8.1.5) New Features in User-Managed Backup and
Recovery
The following backup and recovery features are new in release 8.1.5:

■ Backups with the SUSPEND/RESUME Feature

You can temporarily suspend and then resume database operations without

shutting down the database. While the database is suspended, you can make

online backups of split mirrors.

■ TSPITR Supports Transportable Tablespaces

You can use transportable tablespaces to perform tablespace point-in-time

recovery (TSPITR).

■ LOG_ARCHIVE_DEST_n Initialization Parameter

The LOG_ARCHIVE_DEST_n (where n is an integer from 1 to 5) initialization

parameter can archive to up to 5 locations.

See Also: see "Making User-Managed Backups in SUSPEND

Mode" on page 2-16

See Also: "Performing TSPITR with Transportable Tablespaces"

on page 7-14
xxv

xxvi

Introduction to User-Managed Backup and Rec
1

Introduction to User-Managed Backup and

Recovery

This chapter introduces database concepts that are fundamental to user-managed

backup and recovery.

This chapter includes the following topics:

■ About User-Managed Backup and Recovery

■ Why Use User-Managed Backup and Recovery Methods?

■ Overview of User-Managed Backup and Recovery

See Also: Oracle9i Backup and Recovery Concepts for a conceptual

overview of essential backup and recovery concepts
overy 1-1

About User-Managed Backup and Recovery
About User-Managed Backup and Recovery
User-managed backup and recovery is any strategy in which Recovery Manager

(RMAN) is not used as the principal backup and recovery tool. The basic

user-managed backup strategy is to make periodic backups of datafiles and

archived logs with operating system commands.

The basic user-managed procedure for recovering from a media failure is as follows:

1. Restore database file backups with operating system commands.

2. Recover restored datafiles with the SQL*Plus RECOVER statement.

3. If the database is closed, then open it for normal use; if it is open, then bring the

recovered tablespaces back online.

Why Use User-Managed Backup and Recovery Methods?
Oracle Corporation recommends using RMAN as the foundation of an enterprise

backup and recovery strategy, but user-managed methods (that is, methods that do

not involve RMAN) are also just as effective. Note that some features such as block

media recovery can only be performed with RMAN.

The following are possible circumstances in which you may choose to employ

user-managed methods rather than use RMAN:

■ You are migrating from an older version of the database to the current version

and do not immediately want to update your legacy backup scripts.

■ You maintain a network containing Oracle7 and later databases and want a

single backup and recovery method to handle all databases in the same way.

RMAN only supports Oracle databases of release 8.0 or greater.

■ All your RMAN backup are lost and you are forced to restore user-managed

backups and perform recovery with the SQL*Plus RECOVER command.

Oracle Corporation supports user-managed backup and recovery as a viable

alternative to RMAN.
1-2 Oracle9i User-Managed Backup and Recovery Guide

Overview of User-Managed Backup and Recovery
Overview of User-Managed Backup and Recovery
This section contains these topics:

■ About User-Managed Backups

■ About User-Managed Restore and Recovery

About User-Managed Backups
User-managed backups can be either logical or physical. You can use the Export

utility to make backups of logical objects such as tables, views, and stored

procedures, and use the Import utility to restore these objects.

If you do not use RMAN, then you can use operating system utilities to make

physical backups. A physical backup is a backup of an Oracle database file or

archived redo log located on the operating system. Note that these files can either be

manually-managed database files or Oracle-managed files. If you use the Oracle

Managed Files feature, then Oracle names the files for you and also deletes them for

you when you drop a tablespace. From the point of view of backup and recovery,

Oracle managed files are no different from user-managed files.

The following table illustrates the main types of physical backups and the

non-RMAN methods for performing these backups.

Backup Object Backup Method Example

Datafiles Operating system utility % cp df3.f df3.bak

Archived logs Operating system utility % cp log_1_23.arc log_1_23.bak

Control files SQL statement SQL> ALTER DATABASE BACKUP CONTROLFILE TO cf1.bak

Initialization
parameter file

SQL statement SQL> CREATE PFILE = init.ora.bak FROM SPFILE;

Network and
password files

Operating system utility % cp tnsnames.ora tnsnames.bak

C:\> copy tnsnames.ora tnsnames.bak

Logical objects
(tables, indexes,
PL/SQL units)

Export utility % export SYSTEM/manager TABLE=hr.emp FILE=emp.dmp
Introduction to User-Managed Backup and Recovery 1-3

Overview of User-Managed Backup and Recovery
Basic Backup Methodology
The basic method for taking user-managed backups of the whole database is as

follows:

1. Identify the datafiles, control files, and archived redo logs to be backed up by

querying dynamic performance views or data dictionary tables (refer to

"Querying V$ Views to Obtain Backup Information" on page 2-2 for

procedures).

2. Use an operating system command such as the UNIX cp command to back up

datafiles and archived redo logs (refer to "Making User-Managed Backups of

the Whole Database" on page 2-4 for procedures).

3. Use a SQL statement to back up the control file (refer to "Making User-Managed

Backups of the Control File" on page 2-19 for procedures).

4. Use an operating system command such as the UNIX cp command to back up

configuration files (refer to"Making User-Managed Backups of Miscellaneous

Oracle Files" on page 2-29 for procedures).

Consistent and Inconsistent User-Managed Backups
You can use RMAN or operating system commands to make an inconsistent
backup or a consistent backup. An inconsistent backup is a backup of one or more

database files made while the database is open or after the database has not been

shut down normally. A consistent backup is a backup of one or more database files

that you make after the database has been shut down normally. Unlike an

inconsistent backup, a consistent backup does not require recovery after it is

restored.

A consistent whole database backup is the only valid backup option for databases

running in NOARCHIVELOG mode, because otherwise redo needed for recovery is

See Also:

■ Oracle9i Database Utilities to learn how to use the Export and

Import utilities

■ Oracle9i Database Administrator’s Guide to learn about Oracle

Managed Files

Caution: Do not back up online redo logs. If you reset the online

logs after media recovery, and then accidentally apply the backed

up logs to the database, then you can corrupt the database.
1-4 Oracle9i User-Managed Backup and Recovery Guide

Overview of User-Managed Backup and Recovery
not available. In NOARCHIVELOG mode, Oracle overwrites redo records without

archiving them first.

If you run the database in ARCHIVELOG mode, then you can back up database files

while the database is open. These backups are inconsistent, but as long as you have

the necessary archived redo logs you can recover these backups. You can either take

a tablespace offline and back up its datafiles, or perform an online backup. An

online backup occurs when the tablespace is still online. To perform an online

backup, you must begin and end the backup with SQL statements that place the

tablespace in and take the tablespace out of backup mode.

Backups in SUSPEND Mode
Some third-party tools allow you to mirror a set of disks or logical devices, that is,

maintain an exact duplicate of the primary data in another location, and then split
the mirror. Splitting the mirror involves separating the copies so that you can use

them independently.

Using the SUSPEND/RESUME functionality, you can suspend I/O to the database,

then split the mirror and make a backup of the split mirror. By using this feature,

which complements the online backup functionality, you can quiesce the database

so that no new I/O can be performed. You can then access the suspended database

to make backups without I/O interference.

Verification of Backups
The best method for backup verification is to perform a test restore and recover of

the database to another location. If you successfully perform this operation, then

you know that the backup is valid.

You can also use the DBVERIFY utility to test backups for corruption. DBVERIFY is

an external command-line utility that performs a physical data structure integrity

check on offline datafiles. Use DBVERIFY primarily when you need to ensure that a

See Also:

■ "Making Consistent Whole Database Backups" on page 2-4

■ "Making User-Managed Backups of Offline Tablespaces and

Datafiles" on page 2-6

■ "Making User-Managed Backups of Online Tablespaces and

Datafiles" on page 2-7

See Also: "About the Suspend/Resume Feature" on page 2-16
Introduction to User-Managed Backup and Recovery 1-5

Overview of User-Managed Backup and Recovery
backup datafile is valid before it is restored or as a diagnostic aid when you have

encountered data corruption problems. The name and location of DBVERIFY is

dependent on your operating system (for example, dbv on Sun/Sequent systems).

About User-Managed Restore and Recovery
When a media failure occurs that damages datafiles, you must restore backups of

the affected datafiles using operating system commands and then perform recovery

with the SQL*Plus RECOVER command. You can either restore only some datafiles

and perform recovery of the tablespaces containing the restored datafiles, or restore

and recover the entire database. You should keep careful records of your backups so

that you know the original locations of the datafiles as well as the locations of the

backups.

To begin media recovery operations when your database is running in

ARCHIVELOG mode, use the SQL*Plus RECOVER command. The two basic types of

media recovery are complete recovery, in which all redo generated on the database

is applied, and incomplete recovery, in which not all the existing redo is applied.

Incomplete recovery is only valid for restore and recovery of the entire database. A

special procedure for performing incomplete recovery of an individual tablespace is

called tablespace point-in-time recovery (TSPITR).

Basic Restore and Recovery Methodology
The basic user-managed restore and recovery strategy is as follows:

1. Determine what you need to restore and recover (refer to "Determining Which

Datafiles Require Recovery" on page 3-5 for procedures).

2. Restore backups of files permanently damaged by media failure by using an

operating system utility. If you cannot restore a datafile to its original location,

then relocate the restored datafile and change the location in the control file

(refer to "Restoring Datafiles" on page 3-6 for procedures).

3. Restore any necessary archived redo log files with an operating system utility

(refer to "Restoring Archived Redo Logs" on page 3-15 for procedures).

4. Use the SQL*Plus RECOVER command to recover the files, as described in

"Performing User-Managed Media Recovery: Overview" on page 4-2.

See Also: "Verifying User-Managed Backups" on page 2-27
1-6 Oracle9i User-Managed Backup and Recovery Guide

Overview of User-Managed Backup and Recovery
Implications of the Archiving Mode for Media Recovery
The archiving mode of the database determines the type of recovery that you can

perform. For example, if a database is in NOARCHIVELOG mode and a media failure

damages some or all of the datafiles, then usually the only option for recovery is to

restore the most recent consistent, whole database backup and open it.

The disadvantage of NOARCHIVELOG mode is that to recover the database from the

time of the most recent full backup up to the time of the media failure, you have to

reenter manually all of the changes executed in that interval. If your database is in

ARCHIVELOG mode, and the redo logs covering this interval are available as

archived log files or online log files, then you can use complete or incomplete

recovery to reconstruct your database, thereby minimizing the number of lost

changes.

User-Managed Tablespace Point-in-Time Recovery (TSPITR)
User-managed tablespace point-in-time recovery (TSPITR) enables you to quickly

recover one or more tablespaces (other than the SYSTEMtablespace) to a time that is

different from that of the rest of the database.

User-managed TSPITR is most useful for recovering the following:

■ An erroneous DROP TABLE or TRUNCATE TABLE operation.

■ A table that is logically corrupted.

■ An incorrect batch job or other DML statement that has affected only a subset of

the database.

■ A logical schema to a point different from the rest of the physical database

when multiple schemas exist in separate tablespaces of one physical database.

■ A tablespace in a VLDB (very large database) when TSPITR is more efficient

than restoring the whole database from a backup and rolling it forward (see

"Preparing for Tablespace Point-in-Time Recovery: Basic Steps" on page 7-4

before making any decisions).

See Also: Chapter 7, "Performing User-Managed TSPITR"
Introduction to User-Managed Backup and Recovery 1-7

Overview of User-Managed Backup and Recovery
1-8 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Back
2

Making User-Managed Backups

If you do not use Recovery Manager (RMAN), then you can make backups of your

database files using user-managed methods.

This chapter contains the following sections:

■ Querying V$ Views to Obtain Backup Information

■ Making User-Managed Backups of the Whole Database

■ Making User-Managed Backups of Offline Tablespaces and Datafiles

■ Making User-Managed Backups of Online Tablespaces and Datafiles

■ Making User-Managed Backups in SUSPEND Mode

■ Making User-Managed Backups of the Control File

■ Making User-Managed Backups of Archived Redo Logs

■ Making User-Managed Backups to Raw Devices

■ Verifying User-Managed Backups

■ Making Logical Backups with Export

■ Making User-Managed Backups of Miscellaneous Oracle Files
ups 2-1

Querying V$ Views to Obtain Backup Information
Querying V$ Views to Obtain Backup Information
Before making a backup, identify all the files in your database. Then, ascertain what

you need to back up.

This section contains these topics:

■ Listing Database Files Before a Backup

■ Determining Datafile Status for Online Tablespace Backups

Listing Database Files Before a Backup
Before beginning a backup, query the database to determine which files you should

back up. Note that backups of Oracle Managed Files are not different from backups

of database files that you name manually.

To list datafiles, online redo logs, and control files:

1. Start SQL*Plus and query V$DATAFILE to obtain a list of datafiles. For

example, enter:

SQL> SELECT NAME FROM V$DATAFILE;

You can also join the V$TABLESPACE and V$DATAFILE views to obtain a

listing of datafiles along with their associated tablespaces:

SELECT t.NAME "Tablespace", f.NAME "Datafile"
 FROM V$TABLESPACE t, V$DATAFILE f
 WHERE t.TS# = f.TS#
 ORDER BY t.NAME;

2. Obtain the filenames of online redo log files by querying the V$LOGFILE view.

For example, issue the following query:

SQL> SELECT MEMBER FROM V$LOGFILE;

3. Obtain the filenames of the current control files by querying the

V$CONTROLFILE view. For example, issue the following query:

SQL> SELECT NAME FROM V$CONTROLFILE;

Note that you only need to back up one copy of a multiplexed control file.

4. If you plan to take a control file backup with the ALTER DATABASE BACKUP
CONTROLFILE TO 'filename ' statement, then save a list of all datafiles and

online redo log files with the control file backup. Because the current database

structure may not match the database structure at the time a given control file
2-2 Oracle9i User-Managed Backup and Recovery Guide

Querying V$ Views to Obtain Backup Information
backup was created, saving a list of files recorded in the backup control file can

aid the recovery procedure.

Determining Datafile Status for Online Tablespace Backups
To check whether a datafile is part of a current online tablespace backup, query the

V$BACKUP view. This view is useful only for user-managed online tablespace

backups, not offline tablespace backups or RMAN backups.

The V$BACKUP view is most useful when the database is open. It is also useful

immediately after an instance failure because it shows the backup status of the files

at the time of the failure. Use this information to determine whether you have left

any tablespaces in backup mode.

V$BACKUP is not useful if the control file currently in use is a restored backup or a

new control file created after the media failure occurred. A restored or re-created

control file does not contain the information Oracle needs to fill V$BACKUP
accurately. Also, if you have restored a backup of a file, this file's STATUS in
V$BACKUP reflects the backup status of the older version of the file, not the most

current version. Thus, this view can contain misleading data about restored files.

For example, the following query displays which datafiles are currently included in

a tablespace that has been placed in backup mode:

SELECT t.name AS "TB_NAME", d.file# as "DF#", d.name AS "DF_NAME", b.status
FROM V$DATAFILE d, V$TABLESPACE t, V$BACKUP b
WHERE d.TS#=t.TS#
AND b.FILE#=d.FILE#
AND b.STATUS=’ACTIVE’
/

Sample output follows:

TB_NAME DF# DF_NAME STATUS
---------------------- ---------- ---------------------- ------------------
TBS_1 3 /oracle/dbs/tbs_11.f ACTIVE
TBS_1 4 /oracle/dbs/tbs_12.f ACTIVE

In the STATUS column, NOT ACTIVE indicates that the file is not currently in

backup mode (that is, ALTER TABLESPACE ... BEGIN BACKUP), whereas ACTIVE
indicates that the file is currently in backup mode.
Making User-Managed Backups 2-3

Making User-Managed Backups of the Whole Database
Making User-Managed Backups of the Whole Database
You can make a whole database backup of all files in a database after the database

has been shut down with the NORMAL, IMMEDIATE, or TRANSACTIONAL options. A

whole database backup taken while the database is open or after an instance failure

or SHUTDOWN ABORT is inconsistent. In such cases, the files are inconsistent with

respect to the checkpoint SCN.

You can make a whole database backup if a database is operating in either

ARCHIVELOG or NOARCHIVELOG mode. If you run the database in NOARCHIVELOG
mode, however, the backup must be consistent; that is, you must shut down the

database cleanly before the backup.

The set of backup files that results from a consistent whole database backup is

consistent because all files are checkpointed to the same SCN. You can restore the

consistent database backup without performing recovery. After restoring the

backup files, you can perform additional recovery steps to recover the database to a

more current time if the database is operated in ARCHIVELOG mode. Also, you can

take inconsistent whole database backups if your database is in ARCHIVELOG mode.

Control files play a crucial role in database restore and recovery. For databases

running in ARCHIVELOG mode, Oracle recommends that you back up control files

with the ALTER DATABASE BACKUP CONTROLFILE TO 'filename ' statement. If

you back up the control file with an operating system utility during a closed,

consistent whole database backup, then you should only use this control file when

restoring the other datafiles taken in the backup. Although a control file backed up

with an operating system utility during a consistent backup can sometimes be used

for recovery (but only if you specify the USING BACKUP CONTROLFILE clause of

the RECOVER statement), Oracle does not recommend this practice because

neglecting to specify the USING BACKUP CONTROLFILE clause can cause recovery

problems.

Making Consistent Whole Database Backups
To guarantee that a database's datafiles are consistent, shut down the database with

the NORMAL, IMMEDIATE, or TRANSACTIONAL options before making a whole

database backup.

See Also: "Making User-Managed Backups of the Control File" on

page 2-19 for more information about backing up control files
2-4 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups of the Whole Database
To make a consistent whole database backup:

1. If the database is open, use SQL*Plus to shut down the database with the

NORMAL, IMMEDIATE, or TRANSACTIONAL options. For example, do one of the

following:

SQL> SHUTDOWN NORMAL
SQL> SHUTDOWN IMMEDIATE
SQL> SHUTDOWN TRANSACTIONAL

Do not make a whole database backup when the instance is aborted or stopped

because of a failure. If possible, reopen the database and shut it down cleanly.

2. Use an operating system utility to make backups of all datafiles as well as all

control files specified by the CONTROL_FILES parameter of the initialization

parameter file. Also, back up the initialization parameter file and other Oracle

product initialization files. To find these files, do a search for *.ora starting in

your Oracle home directory and recursively search all of its subdirectories.

For example, you can back up the datafiles and control files in the

/disk1/oracle/dbs directory to /disk2/backup as follows:

% cp /disk1/oracle/dbs/*.dbf /disk2/backup
% cp /disk1/oracle/dbs/*.cf /disk2/backup
% cp /disk1/oracle/network/admin/*.ora /disk2/backup
% cp /disk1/oracle/rdbms/admin/*.ora /disk2/backup

3. Restart the database. For example, enter:

SQL> STARTUP

Caution: If the database is in NOARCHIVELOG mode, then never

perform a whole database backup after an instance fails or is

aborted. This backup is inconsistent and requires recovery to be

made consistent, so unless the needed redo exists in the online redo

logs and these logs are intact, the backup is unusable.

Note: If you are forced to perform a restore operation, you must

restore the control files to all locations specified in the initialization

parameter file. Hence, it is better to make copies of each

multiplexed control file—even if the control files are identical—to

avoid problems at restore time.
Making User-Managed Backups 2-5

Making User-Managed Backups of Offline Tablespaces and Datafiles
Making User-Managed Backups of Offline Tablespaces and Datafiles
You can back up all or some of the datafiles of an individual tablespace while the

tablespace is offline. All other tablespaces of the database can remain open and

available for systemwide use. You must have the DBA privilege or have the MANAGE
TABLESPACE system privilege to take tablespaces offline and online.

Note the following guidelines when backing up offline tablespaces:

■ You cannot offline the SYSTEM tablespace or a tablespace with active rollback

segments. The following procedure cannot be used for such tablespaces.

■ Assume that a table is in tablespace Primary and its index is in tablespace

Index . Taking tablespace Index offline while leaving tablespace Primary
online can cause errors when DML is issued against the indexed tables located

in Primary . The problem only manifests when the access method chosen by the

optimizer needs to access the indexes in the Index tablespace.

To back up offline tablespaces:

1. Before beginning a backup of a tablespace, identify the tablespace's datafiles by

querying the DBA_DATA_FILES view. For example, assume that you want to

back up the users tablespace. Enter the following in SQL*Plus:

SELECT TABLESPACE_NAME, FILE_NAME
 FROM SYS.DBA_DATA_FILES
 WHERE TABLESPACE_NAME = 'users';

TABLESPACE_NAME FILE_NAME
------------------------------- -------------------
users /oracle/dbs/users.f

In this example, /oracle/dbs/users.f is a fully specified filename

corresponding to the datafile in the users tablespace.

2. Take the tablespace offline using normal priority if possible. Normal priority is

recommended because it guarantees that you can subsequently bring the

tablespace online without the requirement for tablespace recovery. For example,

the following statement takes a tablespace named users offline normally:

SQL> ALTER TABLESPACE users OFFLINE NORMAL;

After you take a tablespace offline with normal priority, all datafiles of the

tablespace are closed.

See Also: Oracle9i Database Administrator’s Guide for more

information on starting up and shutting down a database
2-6 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups of Online Tablespaces and Datafiles
3. Back up the offline datafiles. For example, a UNIX user might enter the

following to back up the datafile users.f :

% cp /disk1/oracle/dbs/users.f /disk2/backup/users.backup

4. Bring the tablespace online. For example, the following statement brings

tablespace users back online:

ALTER TABLESPACE users ONLINE;

After you bring a tablespace online, it is open and available for use.

5. Archive the unarchived redo logs so that the redo required to recover the

tablespace backup is archived. For example, enter:

ALTER SYSTEM ARCHIVE LOG CURRENT;

Making User-Managed Backups of Online Tablespaces and Datafiles
You can back up all or only specific datafiles of an online tablespace while the

database is open. The procedure differs depending on whether the online

tablespace is read/write or read-only.

This section contains these topics:

■ Making User-Managed Backups of Online Read/Write Tablespaces

■ Making Multiple User-Managed Backups of Online Read/Write Tablespaces

■ Ending a Backup After an Instance Failure or SHUTDOWN ABORT

■ Making User-Managed Backups of Read-Only Tablespaces

■ Making User-Managed Backups of Undo Tablespaces

Note: If you took the tablespace offline using temporary or

immediate priority, then you cannot bring the tablespace online

unless you perform tablespace recovery.

Note: You should not back up temporary tablespaces.
Making User-Managed Backups 2-7

Making User-Managed Backups of Online Tablespaces and Datafiles
Making User-Managed Backups of Online Read/Write Tablespaces
You must put a read/write tablespace in backup mode to make user-managed

datafile backups when the tablespace is online and the database is open. The ALTER
TABLESPACE BEGIN BACKUP statement places a tablespace in backup mode.

Oracle stops recording checkpoints to the datafiles in the tablespace when a

tablespace is in backup mode. Because a block can be partially updated at the very

moment that the operating system backup utility is copying it, Oracle copies whole

changed data blocks into the redo stream while in backup mode. After you take the

tablespace out of backup mode with the ALTER TABLESPACE ... END BACKUP or

ALTER DATABASE END BACKUP statement, Oracle advances the datafile header to

the current database checkpoint.

When you restore a datafile backed up in this way, the datafile header has a record

of the most recent datafile checkpoint that occurred before the online tablespace

backup, not any that occurred during it. As a result, Oracle asks for the appropriate

set of redo log files to apply should recovery be needed. The redo logs contain all

changes required to recover the datafiles and make them consistent.

To back up online read/write tablespaces in an open database:

1. Before beginning a backup of a tablespace, identify all of the datafiles in the

tablespace with the DBA_DATA_FILES data dictionary view. For example,

assume that you want to back up the users tablespace. Enter the following:

SELECT TABLESPACE_NAME, FILE_NAME
FROM SYS.DBA_DATA_FILES
WHERE TABLESPACE_NAME = 'users';

TABLESPACE_NAME FILE_NAME
------------------------------- --------------------
USERS /oracle/dbs/tbs_21.f
USERS /oracle/dbs/tbs_22.f

In this example, /oracle/dbs/tbs_21.f and /oracle/dbs/tbs_22.f are

fully specified filenames corresponding to the datafiles of the users tablespace.

2. Mark the beginning of the online tablespace backup. For example, the following

statement marks the start of an online backup for the tablespace users :

SQL> ALTER TABLESPACE users BEGIN BACKUP;
2-8 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups of Online Tablespaces and Datafiles
3. Back up the online datafiles of the online tablespace with operating system

commands. For example, UNIX users might enter:

% cp /oracle/dbs/tbs_21.f /oracle/backup/tbs_21.backup
% cp /oracle/dbs/tbs_22.f /oracle/backup/tbs_22.backup

4. After backing up the datafiles of the online tablespace, indicate the end of the

online backup by using the SQL statement ALTER TABLESPACE with the END
BACKUPoption. For example, the following statement ends the online backup of

the tablespace users :

SQL> ALTER TABLESPACE users END BACKUP;

5. Archive the unarchived redo logs so that the redo required to recover the

tablespace backup is archived. For example, enter:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Making Multiple User-Managed Backups of Online Read/Write Tablespaces
When backing up several online tablespaces, you can back them up either serially

or in parallel. Use either of the following procedures depending on your needs.

Caution: If you forget to mark the beginning of an online

tablespace backup, or neglect to assure that the BEGIN BACKUP
statement has completed before backing up an online tablespace,

then the backup datafiles are not useful for subsequent recovery

operations. Attempting to recover such a backup is risky and can

return errors that result in inconsistent data. For example, the

attempted recovery operation can issue a "fuzzy files" warning, and

can lead to an inconsistent database that you cannot open.

Caution: If you forget to take the tablespace out of backup mode,

then Oracle continues to write entire copies of data blocks in this

tablespace to the online redo logs, possibly causing performance

problems. Also, you will receive an ORA-01149 error if you

attempt to shut down the database with the tablespaces still in

backup mode.
Making User-Managed Backups 2-9

Making User-Managed Backups of Online Tablespaces and Datafiles
Backing Up Online Tablespaces in Parallel
You can simultaneously put all tablespaces requiring backups in backup mode.

Note that online redo logs can grow large if multiple users are updating these

tablespaces because the redo must contain a copy of each changed data block.

To back up online tablespaces in parallel:

1. Prepare all online tablespaces for backup by issuing all necessary ALTER
TABLESPACE statements at once. For example, put tablespaces ts1 , ts2 , and

ts3 in backup mode as follows:

SQL> ALTER TABLESPACE ts1 BEGIN BACKUP;
SQL> ALTER TABLESPACE ts2 BEGIN BACKUP;
SQL> ALTER TABLESPACE ts3 BEGIN BACKUP;

2. Back up all files of the online tablespaces. For example, a UNIX user might back

up datafiles with the tbs_ prefix as follows:

% cp /oracle/dbs/tbs_* /oracle/backup

3. Take the tablespaces out of backup mode as in the following example:

SQL> ALTER TABLESPACE ts1 END BACKUP;
SQL> ALTER TABLESPACE ts2 END BACKUP;
SQL> ALTER TABLESPACE ts3 END BACKUP;

4. Archive the unarchived redo logs so that the redo required to recover the

tablespace backups is archived. For example, enter:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Backing Up Online Tablespaces Serially
You can place all tablespaces requiring online backups in backup mode one at a

time. Oracle Corporation recommends the serial backup option because it

minimizes the time between ALTER TABLESPACE ... BEGIN/END BACKUP
statements. During online backups, more redo information is generated for the

tablespace because whole data blocks are copied into the redo log.

To back up online tablespaces serially:

1. Prepare a tablespace for online backup. For example, to put tablespace tbs_1
in backup mode enter the following:

SQL> ALTER TABLESPACE tbs_1 BEGIN BACKUP;

2. Back up the datafiles in the tablespace. For example, enter:

% cp /oracle/dbs/tbs_1.f /oracle/backup/tbs_1.bak
2-10 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups of Online Tablespaces and Datafiles
3. Take the tablespace out of backup mode. For example, enter:

SQL> ALTER TABLESPACE tbs_1 END BACKUP;

4. Repeat this procedure for each remaining tablespace until you have backed up

all the desired tablespaces.

5. Archive the unarchived redo logs so that the redo required to recover the

tablespace backups is archived. For example, enter:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Ending a Backup After an Instance Failure or SHUTDOWN ABORT
This section contains these topics:

■ About Instance Failures When Tablespaces are in Backup Mode

■ Ending Backup Mode with the ALTER DATABASE END BACKUP Statement

■ Ending Backup Mode with the RECOVER Command

About Instance Failures When Tablespaces are in Backup Mode
The following situations can cause a tablespace backup to fail and be incomplete:

■ The backup completed, but you did not indicate the end of the online

tablespace backup operation with the ALTER TABLESPACE ... END BACKUP
statement.

■ An instance failure or SHUTDOWN ABORT interrupted the backup before you

could complete it.

Whenever crash recovery is required (not instance recovery, because in this case the

datafiles are open already), if a datafile is in backup mode when an attempt is made

to open it, then the system assumes that the file is a restored backup. Oracle will not

open the database until either a recovery command is issued, or the datafile is taken

out of backup mode.

For example, Oracle may display a message such as the following when you run the

STARTUP statement:

ORA-01113: file 12 needs media recovery
ORA-01110: data file 12: '/oracle/dbs/tbs_41.f'

If Oracle indicates that the datafiles for multiple tablespaces require media recovery

because you forgot to end the online backups for these tablespaces, then so long as
Making User-Managed Backups 2-11

Making User-Managed Backups of Online Tablespaces and Datafiles
the database is mounted, running the ALTER DATABASE END BACKUP statement

takes all the datafiles out of backup mode simultaneously.

In high availability situations, and in situations when no DBA is monitoring the

database (for example, in the early morning hours), the requirement for user

intervention is intolerable. Hence, you can write a crash recovery script that does

the following:

1. Mounts the database

2. Runs the ALTER DATABASE END BACKUP statement

3. Runs ALTER DATABASE OPEN, allowing the system to come up automatically

An automated crash recovery script containing ALTER DATABASE END BACKUP is

especially useful in the following situations:

■ All nodes in an Oracle Real Application Clusters configuration fail.

■ One node fails in a cold failover cluster (that is, a cluster that is not an Oracle

Real Application Cluster in which the secondary node must mount and recover

the database when the first node fails).

Alternatively, you can take the following manual measures after the system fails

with tablespaces in backup mode:

■ Recover the database and avoid issuing END BACKUP statements altogether.

■ Mount the database, then run ALTER TABLESPACE ... END BACKUP for each

tablespace still in backup mode.

Ending Backup Mode with the ALTER DATABASE END BACKUP Statement
You can run the ALTER DATABASE END BACKUP statement when you have multiple

tablespaces still in backup mode. The primary purpose of this command is to allow

a crash recovery script to restart a failed system without DBA intervention. You can

also perform the following procedure manually.

To take tablespaces out of backup mode simultaneously:

1. Mount but do not open the database. For example, enter:

SQL> STARTUP MOUNT

2. If performing this procedure manually (that is, not as part of a crash recovery

script), query the V$BACKUP view to list the datafiles of the tablespaces that

were being backed up before the database was restarted:

SQL> SELECT * FROM V$BACKUP WHERE STATUS = 'ACTIVE';
2-12 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups of Online Tablespaces and Datafiles
FILE# STATUS CHANGE# TIME
---------- ------------------ ---------- ---------
 12 ACTIVE 20863 25-NOV-00
 13 ACTIVE 20863 25-NOV-00
 20 ACTIVE 20863 25-NOV-00
 3 rows selected.

3. Issue the ALTER DATABASE END BACKUP statement to take all datafiles

currently in backup mode out of backup mode. For example, enter:

SQL> ALTER DATABASE END BACKUP;

You can use this statement only when the database is mounted but not open. If

the database is open, use ALTER TABLESPACE ... END BACKUP or ALTER
DATABASE DATAFILE ... END BACKUP for each affected tablespace or datafile.

Ending Backup Mode with the RECOVER Command
The ALTER DATABASE END BACKUP statement is not the only way to respond to a

failed online backup: you can also run the RECOVER command. This method is

useful when you are not sure whether someone has restored a backup, because if

someone has indeed restored a backup, then the RECOVER command brings the

backup up to date. Only run the ALTER DATABASE END BACKUP or ALTER
TABLESPACE ... END BACKUP statement if you are sure that the files are current.

To take tablespaces out of backup mode with the RECOVER command:

1. Mount the database. For example, enter:

SQL> STARTUP MOUNT

2. Recover the database as normal. For example, enter:

SQL> RECOVER DATABASE

3. Use the V$BACKUP view to confirm that there are no active datafiles:

SQL> SELECT * FROM V$BACKUP WHERE STATUS = 'ACTIVE';

Caution: Do not use ALTER DATABASE END BACKUP if you have

restored any of the affected files from a backup.

Note: The RECOVER command method is slow because Oracle

must scan redo generated from the beginning of the online backup.
Making User-Managed Backups 2-13

Making User-Managed Backups of Online Tablespaces and Datafiles
FILE# STATUS CHANGE# TIME
---------- ------------------ ---------- ---------
0 rows selected.

Making User-Managed Backups of Read-Only Tablespaces
When backing up an online read-only tablespace, you can simply back up the

online datafiles. You do not have to place the tablespace in backup mode because

the system is permitting changes to the datafiles.

If the set of read-only tablespaces is self-contained, then in addition to backing up

the tablespaces with operating system commands, you can also export the

tablespace metadata by using the transportable tablespace functionality. In the

event of a media error or a user error (such as accidentally dropping a table in the

read-only tablespace), you can transport the tablespace back into the database.

To back up online read-only tablespaces in an open database:

1. Query the DBA_TABLESPACES view to determine which tablespaces are

read-only. For example, run this query:

SELECT TABLESPACE_NAME, STATUS
FROM DBA_TABLESPACES
WHERE STATUS = ’READ ONLY’;

2. Before beginning a backup of a read-only tablespace, identify all of the

tablespace's datafiles by querying the DBA_DATA_FILES data dictionary view.

For example, assume that you want to back up the history tablespace. Enter

the following:

SELECT TABLESPACE_NAME, FILE_NAME
FROM SYS.DBA_DATA_FILES
WHERE TABLESPACE_NAME = 'HISTORY';

TABLESPACE_NAME FILE_NAME
------------------------------- --------------------
HISTORY /oracle/dbs/tbs_hist1.f
HISTORY /oracle/dbs/tbs_hist2.f

See Also: Chapter 4, "Performing User-Managed Media

Recovery" for information on recovering a database

See Also: Oracle9i Database Administrator’s Guide to learn how to

transport tablespaces
2-14 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups of Online Tablespaces and Datafiles
In this example, /oracle/dbs/tbs_hist1.f and /oracle/dbs/tbs_
hist2.f are fully specified filenames corresponding to the datafiles of the

history tablespace.

3. Back up the online datafiles of the read-only tablespace with operating system

commands. You do not have to take the tablespace offline or put the tablespace

in backup mode because users are automatically prevented from making

changes to the read-only tablespace. For example, UNIX users can enter:

% cp /oracle/dbs/tbs_hist*.f /backup

4. Optionally, export the metadata in the read-only tablespace. By using the

transportable tablespace feature, you can quickly restore the datafiles and

import the metadata in case of media failure or user error. For example, export

the metadata for tablespace history as follows:

% exp TRANSPORT_TABLESPACE=y TABLESPACES=(history) FILE=/oracle/backup/tbs_hist.dmp

Making User-Managed Backups of Undo Tablespaces
In releases prior to Oracle9i, undo space management was based on rollback

segments. This method is called manual undo management mode. In Oracle9i, you

have the option of placing the database in automatic undo management mode.

With this design, you allocate undo space in a single undo tablespace instead of

distributing space into a set of statically allocated rollback segments.

The procedures for backing up undo tablespaces are exactly the same as for backing

up any other read/write tablespace. Because the automatic undo tablespace is so

important for recovery and for read consistency, you should back it up frequently as

you would for tablespaces containing rollback segments when running in manual

undo management mode.

If the datafiles in the undo tablespace were lost while the database was open, and

you did not have a backup, you could receive error messages when querying

Note: When restoring a backup of a read-only tablespace, take the

tablespace offline, restore the datafiles, then bring the tablespace

online. A backup of a read-only tablespace is still usable if the

read-only tablespace is made read/write after the backup, but the

restored backup will require recovery.

See Also: Oracle9i Database Reference for more information about

the DBA_DATA_FILES and DBA_TABLESPACES views
Making User-Managed Backups 2-15

Making User-Managed Backups in SUSPEND Mode
objects containing uncommitted changes. Also, if an instance failure occurred, you

would not be able to roll back uncommitted transactions to their original values.

Making User-Managed Backups in SUSPEND Mode
This section contains the following topics:

■ About the Suspend/Resume Feature

■ Making Backups in a Suspended Database

About the Suspend/Resume Feature
Some third-party tools allow you to mirror a set of disks or logical devices, that is,

maintain an exact duplicate of the primary data in another location, and then split
the mirror. Splitting the mirror involves separating the copies so that you can use

them independently.

With the SUSPEND/RESUME functionality, you can suspend I/O to the database,

then split the mirror and make a backup of the split mirror. By using this feature,

which complements the backup mode functionality, you can suspend database I/Os

so that no new I/O can be performed. You can then access the suspended database

to make backups without I/O interference.

You do not need to use SUSPEND/RESUME to make split mirror backups in most

cases, although it is necessary if your system requires the database cache to be free

of dirty buffers before a volume can be split.

The ALTER SYSTEM SUSPEND statement suspends the database by halting I/Os to

datafile headers, datafiles, and control files. When the database is suspended, all

pre-existing I/O operations can complete; however, any new database I/O access

attempts are queued.

The ALTER SYSTEM SUSPEND and ALTER SYSTEM RESUME statements operate on

the database and not just the instance. If the ALTER SYSTEM SUSPEND statement is

See Also: Oracle9i Database Administrator’s Guide to learn how to

manage undo space

Note: Some RAID devices benefit from suspending writes while

the split operation is occurring; your RAID vendor can advise you

on whether your system would benefit from this feature.
2-16 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups in SUSPEND Mode
entered on one system in an Oracle Real Application Clusters configuration, then

the internal locking mechanisms propagate the halt request across instances,

thereby suspending I/O operations for all active instances in a given cluster.

Making Backups in a Suspended Database
After a successful database suspension, you can back up the database to disk or

break the mirrors. Because suspending a database does not guarantee immediate

termination of I/O, Oracle recommends that you precede the ALTER SYSTEM
SUSPEND statement with a BEGIN BACKUP statement so that the tablespaces are

placed in backup mode.

You must use conventional user-managed backup methods to back up split mirrors.

RMAN cannot make database backups or copies because these operations require

reading the datafile headers. After the database backup is finished or the mirrors are

re-silvered, then you can resume normal database operations using the ALTER
SYSTEM RESUME statement.

Backing up a suspended database without splitting mirrors can cause an extended

database outage because the database is inaccessible during this time. If backups are

taken by splitting mirrors, however, then the outage is nominal. The outage time

depends on the size of cache to flush, the number of datafiles, and the time required

to break the mirror.

Note the following restrictions for the SUSPEND/RESUME feature:

■ In an Oracle Real Application Clusters configuration, you should not start a

new instance while the original nodes are suspended.

■ No checkpoint is initiated by the ALTER SYSTEM SUSPEND or ALTER SYSTEM
RESUME statements.

■ You cannot issue SHUTDOWN with IMMEDIATE or NORMAL options while the

database is suspended.

■ Issuing SHUTDOWN ABORTon a database that was already suspended reactivates

the database. This operation prevents media recovery or crash recovery from

hanging.

To make a split mirror backup in SUSPEND mode:

1. Place the database tablespaces in backup mode. For example, to place

tablespace users in backup mode enter:

ALTER TABLESPACE users BEGIN BACKUP;
Making User-Managed Backups 2-17

Making User-Managed Backups in SUSPEND Mode
2. If your mirror system has problems with splitting a mirror while disk writes are

occurring, then suspend the database. For example, issue the following:

ALTER SYSTEM SUSPEND;

3. Check to make sure that the database is suspended by querying V$INSTANCE.

For example:

SELECT DATABASE_STATUS FROM V$INSTANCE;

DATABASE_STATUS

SUSPENDED

4. Split the mirrors at the operating system or hardware level.

5. End the database suspension. For example, issue the following statement:

ALTER SYSTEM RESUME;

6. Check to make sure that the database is active by querying V$INSTANCE. For

example, enter:

SELECT DATABASE_STATUS FROM V$INSTANCE;

DATABASE_STATUS

ACTIVE

7. Take the specified tablespaces out of backup mode. For example, enter the

following to take tablespace users out of backup mode:

ALTER TABLESPACE users END BACKUP;

8. Copy the control file and archive the online redo logs as usual for a backup.

Caution: Do not use the ALTER SYSTEM SUSPEND statement as a

substitute for placing a tablespace in backup mode.

See Also: Oracle9i Database Administrator’s Guide for more

information about the SUSPEND/RESUME feature, and Oracle9i SQL
Reference for more information about the ALTER SYSTEM statement
2-18 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups of the Control File
Making User-Managed Backups of the Control File
Back up the control file of a database after making a structural modification to a

database operating in ARCHIVELOG mode. To back up a database's control file, you

must have the ALTER DATABASE system privilege.

You have these options when backing up the control file:

■ Backing Up the Control File to a Binary File

■ Backing Up the Control File to a Trace File

Backing Up the Control File to a Binary File
The primary method for backing up the control file is to use a SQL statement to

generate a binary file. A binary backup is preferable to a trace file backup because it

contains additional information such as the archived log history, offline range for

read-only and offline tablespaces, and backup sets and copies (if you use RMAN).

Note that binary control file backups do not include tempfile entries.

To back up the control file after a structural change:

1. Make the desired change to the database. For example, you may create a new

tablespace:

CREATE TABLESPACE tbs_1 DATAFILE ’file_1.f’ SIZE 10M;

2. Back up the database's control file, specifying a filename for the output binary

file. The following SQL statement backs up a database's control file to

/oracle/backup/cf.bak :

ALTER DATABASE BACKUP CONTROLFILE TO '/oracle/backup/cf.bak' REUSE;

You can specify the REUSE option to make the new control file overwrite a

control file that currently exists.

Backing Up the Control File to a Trace File
The TRACEoption of the ALTER DATABASE BACKUP CONTROLFILEstatement helps

you manage and recover the control file. The TRACEoption prompts Oracle to write

SQL statements to the database's trace file rather than generate a binary backup.

The statements in the trace file start the database, re-create the control file, and

recover and open the database appropriately.
Making User-Managed Backups 2-19

Making User-Managed Backups of the Control File
To back up the control file to a trace file, mount or open the database and issue the

following SQL statement:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

If you specify neither the RESETLOGS nor NORESETLOGS option in the SQL

statement, then the output is a trace file containing a CREATE CONTROLFILE ...
NORESETLOGS statement. As in the case of binary control file backups, tempfile

entries are not included in the trace output.

Backing Up the Control File to a Trace File: Example
Assume that you want to generate a script that re-creates the control file for the

sales database. The database has these characteristics:

■ Three threads are enabled, of which thread 2 is public and thread 3 is private.

■ The redo logs are multiplexed into three groups of two members each.

■ The database has the following datafiles:

– /diska/prod/sales/db/filea.dbf (offline datafile in online

tablespace)

– /diska/prod/sales/db/database1.dbf (online in SYSTEM
tablespace)

– /diska/prod/sales/db/fileb.dbf (only file in read-only tablespace)

You issue the following statement to create a trace file containing a CREATE
CONTROLFILE ... NORESETLOGS statement:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE NORESETLOGS;

You then edit the trace file to create a script that creates a new control file for the

sales database based on the control file that was current when you generated the

trace file. To avoid recovering offline normal or read-only tablespaces, edit them out

of the CREATE CONTROLFILE statement in the trace file. When you open the

database with the re-created control file, the dictionary check code will mark these

omitted files as MISSING. You can run an ALTER DATABASE RENAME FILE
statement renames them back to their original filenames.

See Also: "Recovery of Read-Only Files with a Re-Created

Control File" on page 4-36 for special issues relating to read-only,

offline normal, and temporary files included in CREATE
CONTROLFILE statements
2-20 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups of the Control File
For example, you can edit the CREATE CONTROLFILE ... NORESETLOGS script in

the trace file as follows, renaming files labeled MISSING:

The following statements will create a new control file and use it to open the database.
Log history and RMAN metadata will be lost. Additional logs may be required for media
recovery of offline datafiles. Use this only if the current version of all online logs
are available.

STARTUP NOMOUNT
CREATE CONTROLFILE REUSE DATABASE SALES NORESETLOGS ARCHIVELOG

MAXLOGFILES 32
MAXLOGMEMBERS 2
MAXDATAFILES 32
MAXINSTANCES 16
MAXLOGHISTORY 1600

LOGFILE
GROUP 1

'/diska/prod/sales/db/log1t1.dbf',
'/diskb/prod/sales/db/log1t2.dbf'

) SIZE 100K
GROUP 2

'/diska/prod/sales/db/log2t1.dbf',
'/diskb/prod/sales/db/log2t2.dbf'

) SIZE 100K,
GROUP 3

'/diska/prod/sales/db/log3t1.dbf',
'/diskb/prod/sales/db/log3t2.dbf'

) SIZE 100K
DATAFILE

'/diska/prod/sales/db/database1.dbf',
'/diskb/prod/sales/db/filea.dbf'

;

This datafile is offline, but its tablespace is online. Take the datafile offline
manually.
ALTER DATABASE DATAFILE '/diska/prod/sales/db/filea.dbf' OFFLINE;

Recovery is required if any datafiles are restored backups,
or if the most recent shutdown was not normal or immediate.
RECOVER DATABASE;

All redo logs need archiving and a log switch is needed.
ALTER SYSTEM ARCHIVE LOG ALL;

The database can now be opened normally.
ALTER DATABASE OPEN;

The backup control file does not list read-only and normal offline tablespaces so that
Oracle can avoid performing recovery on them. Oracle checks the data dictionary and
Making User-Managed Backups 2-21

Making User-Managed Backups of Archived Redo Logs
finds information on these absent files and marks them 'MISSING xxxx '. It then renames
the missing files to acknowledge them without having to recover them.
ALTER DATABASE RENAME FILE 'MISSING0002'
 TO '/diska/prod/sales/db/fileb.dbf';

Making User-Managed Backups of Archived Redo Logs
To save disk space in your primary archiving location, you may want to back up

archived logs to tape or to an alternative disk location. If you archive to multiple

locations, then only back up one copy of each log sequence number.

To back up archived redo logs:

1. To determine which archived redo log files that the database has generated,

query V$ARCHIVED_LOG. For example, run the following query:

SELECT THREAD#,SEQUENCE#,NAME
FROM V$ARCHIVED_LOG;

2. Back up one copy of each log sequence number by using an operating system

utility. This example backs up all logs in the primary archiving location to a

disk devoted to log backups:

% cp /oracle/dbs/arc_dest/* /disk7/log_backups

Making User-Managed Backups to Raw Devices
A raw device is a disk or partition that does not have a file system. In other words,

a raw device can contain only a single file. Backing up files on raw devices poses

operating system specific issues. The following sections discuss some of these issues

on two of the most common Oracle operating systems: UNIX and Windows NT.

Backing Up to Raw Devices on UNIX
When backing up to or from raw devices, the UNIX dd command is the most

common backup utility. See your operating system specific documentation for

complete details about this utility.

See Also: Oracle9i Database Reference for more information about

the data dictionary views

See Also: Oracle9i Real Application Clusters Setup and Configuration
for a general overview of raw devices as they related to Oracle Real

Application Clusters
2-22 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups to Raw Devices
The most important aspect of using dd is determining which options to specify. You

need to know the following information.

The information in the preceding table enables you to set the dd options specified in

Table 2–1.

Data Explanation

Block size You can specify the size of the buffer that dd uses to copy data. For
example, you can specify that dd should copy data in units of 8 KB
or 64 KB. Note that the block size for dd need not correspond to
either the Oracle block size or the operating system block size: it is
merely the size of the buffer used by dd when making the copy.

Raw offset On some systems, the beginning of the file on the raw device is
reserved for use by the operating system. This storage space is
called the raw offset. Oracle should not back up or restore these
bytes.

Size of Oracle block 0 At the beginning of every Oracle file, the operating system-specific
code places an Oracle block called block 0. The generic Oracle code
does not recognize this block, but the block is included in the size
of the file on the operating system. Typically, this block is the same
size as the other Oracle blocks in the file.

Table 2–1 Options for dd Command

This option ... Specifies ...

if The name of the input file, that is, the file that you are reading.

of The name of the output file, that is, the file to which you are writing.

bs The buffer size used by dd to copy data.

skip The number of dd buffers to skip on the input raw device if a raw offset
exists. For example, if you are backing up a file on a raw device with a 64
KB raw offset, and the dd buffer size is 8 KB, then you can specify
skip=8 so that the copy starts at offset 64 KB.

seek The number of dd buffers to skip on the output raw device if a raw offset
exists. For example, if you are backing up a file onto a raw device with a
64 KB raw offset, and the dd buffer size is 8 KB, then you can specify
skip=8 so that the copy starts at offset 64 KB.
Making User-Managed Backups 2-23

Making User-Managed Backups to Raw Devices
Because a raw device can be the input or output device for a backup, you have four

possible scenarios for the backup. The possible options for dd depend on which

scenario you choose, as illustrated in Table 2–2.

Backing Up with the dd utility on UNIX: Examples
For these examples of dd utility usage, assume the following:

■ You are backing up a 30720 KB datafile.

■ The beginning of the datafile has a block 0 of 8 KB.

■ The raw offset is 64 KB.

■ You set the dd block size to 8 KB when a raw device is involved in the copy.

In this example, you back up from one raw device to another raw device:

% dd if=/dev/rsd1b of=/dev/rsd2b bs=8k skip=8 seek=8 count=3841

In this example, you back up from a raw device to a file system:

% dd if=/dev/rsd1b of=/backup/df1.dbf bs=8k skip=8 count=3841

count The number of blocks on the input raw device for dd to copy. It is best to
specify the exact number of blocks to copy when copying from raw
device to file system, otherwise any extra space at the end of the raw
volume that is not used by the oracle datafile is copied to the file system.

Remember to include block 0 in the total size of the input file. For
example, if the dd block size is 8 KB, and you are backing up a 30720 KB
datafile, then you can set count=3841 . This value for count actually
backs up 30728 bytes: the extra 8 bytes are for Oracle block 0.

Table 2–2 Scenarios Involving dd Backups

Backing Up from ... Backing Up to ... Options Specified for dd Command

Raw device Raw device if, of, bs, skip , seek , count

Raw device File system if, of, bs, skip , count

File system Raw device if, of, bs, seek

File system File system if, of, bs

Table 2–1 Options for dd Command

This option ... Specifies ...
2-24 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups to Raw Devices
In this example, you back up from a file system to a raw device:

% dd if=/backup/df1.dbf of=/dev/rsd2b bs=8k seek=8

In this example, you back up from a file system to a file system, and so can set the

block size to a high value to boost I/O performance:

% dd if=/oracle/dbs/df1.dbf of=/backup/df1.dbf bs=1024k

Backing Up to Raw Devices on Windows NT
Like UNIX, Windows NT supports raw disk partitions in which Oracle can store

datafiles, online logs, and control files. Each raw partition is assigned either a drive

letter or physical drive number and does not contain a file system. As in UNIX, each

raw partition on NT is mapped to a single file.

NT differs from UNIX in the naming convention for Oracle files. On NT, raw

datafile names are formatted as follows:

\\.\ drive_letter :
\\.\PHYSICALDRIVE drive_number

For example, the following are possible raw filenames:

\\.\G:
\\.\PHYSICALDRIVE3

Note that you can also create aliases to raw filenames. The standard Oracle

installation provides a SETLINKS utility that can create aliases such as

\\.\Datafile12 that point to filenames such as \\.\PHYSICALDRIVE3 .

The procedure for making user-managed backups of raw datafiles is basically the

same as for copying files on an NT file system, except that you should use the

Oracle OCOPY utility rather than the NT-supplied copy.exe or ntbackup.exe
utilities. Alternatively, if you have MKS utilities, then you can use the dd utility.

OCOPY supports 64-bit file I/O, physical raw drives, and raw files. Note that OCOPY
cannot back up directly to tape.

To display online documentation for OCOPY, enter OCOPY by itself at the Windows

NT prompt. Sample output follows:

Usage of OCOPY:
 ocopy from_file [to_file [a | size_1 [size_n]]]
 ocopy -b from_file to_drive
 ocopy -r from_drive to_dir

Note the important OCOPY options described in the following table.
Making User-Managed Backups 2-25

Making User-Managed Backups to Raw Devices
Backing Up with OCOPY: Example
In this example, assume the following:

■ Datafile 12 is mounted on the \\.\G: raw partition.

■ The C: drive mounts a file system.

■ The database is open.

To back up the datafile on the raw partition \\.\G: to a local file system, you can

execute the following command at the NT prompt after placing datafile 12 in

backup mode:

OCOPY "\\.G:" C:\backup\datafile12.bak

Specifying the -b and -r Options for OCOPY: Example
In this example, assume the following:

■ \\.\G: is a raw partition containing datafile 7

■ The A: drive is a removable disk drive.

■ The database is open.

To back up the datafile onto drive A: , you can execute the following command at

the NT prompt after placing datafile 7 in backup mode:

first argument is filename, second argument is drive
OCOPY -b "\\.\G:" A:\

When drive A: fills up, you can use another disk. In this way, you can divide the

backup of datafile 1 into multiple files.

Similarly, to restore the backup, take the tablespace containing datafile 7 offline and

run this command:

first argument is drive, second argument is directory
OCOPY -r A:\ "\\.\G:"

This option ... Specifies ...

b Splits the input file into multiple output files. This option is useful for
backing up to devices that are smaller than the input file.

r Combines multiple input files and writes to a single output file. This
option is useful for restoring backups created with the -b option.
2-26 Oracle9i User-Managed Backup and Recovery Guide

Verifying User-Managed Backups
Verifying User-Managed Backups
You should periodically verify your backups to ensure that they are usable for

recovery. This section contains the following topics:

■ Testing the Restore of Backups

■ Using the DBVERIFY Utility

Testing the Restore of Backups
The best way to test the usability of backups is to restore them to a separate host

and attempt to open the database, performing media recovery if necessary. This

option requires that you have a separate host available for the restore procedure.

Using the DBVERIFY Utility
The DBVERIFY program is an external command-line utility that performs a

physical data structure integrity check on an offline datafile. Use DBVERIFY

primarily when you need to ensure that a user-managed backup of a datafile is

valid before it is restored or as a diagnostic aid when you have encountered data

corruption problems.

The name and location of DBVERIFY is dependent on your operating system. For

example, to perform an integrity check on datafile tbs_52.f on UNIX, you can run

the dbv command as follows:

% dbv file=tbs_52.f

Sample dbv output follows:

DBVERIFY: Release 9.2.0.0.0

See Also:

■ "Restoring Datafiles" on page 3-6 to learn how to restore

datafiles

■ "Restoring and Re-Creating Control Files" on page 3-8 to learn

how to restore datafiles

■ "Restoring Archived Redo Logs" on page 3-15 to learn how to

restore datafiles

■ "Performing Complete User-Managed Media Recovery" on

page 4-9 to learn how to recover files
Making User-Managed Backups 2-27

Making Logical Backups with Export
(c) Copyright 2000 Oracle Corporation. All rights reserved.

DBVERIFY - Verification starting : FILE = tbs_52.f

DBVERIFY - Verification complete

Total Pages Examined : 250
Total Pages Processed (Data) : 4
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 15
Total Pages Failing (Index): 0
Total Pages Processed (Other): 29
Total Pages Empty : 202
Total Pages Marked Corrupt : 0
Total Pages Influx : 0

Making Logical Backups with Export
Export and Import are utilities that move Oracle data in and out of Oracle

databases. Export writes data from an Oracle database to an operating system file in

a special binary format. Import reads Export files and restores the corresponding

information into an existing database. Although Export and Import are designed for

moving Oracle data, you can use them to supplement physical database backups.

This section describes the Import and Export utilities, and includes the following

topics:

■ Using Export

■ Using Import

Using Export
The Export utility can back up logical database objects while the database is open

and available for use. It writes a read-consistent view of the database's objects to an

operating system file. System audit options are not exported.

See Also: Oracle9i Database Utilities for information about

DBVERIFY

See Also: Oracle9i Database Utilities for complete documentation

describing the Export and Import utilities
2-28 Oracle9i User-Managed Backup and Recovery Guide

Making User-Managed Backups of Miscellaneous Oracle Files
Table 2–3 lists available export modes.

Using Import
The Import utility can restore the database information held in previously created

Export files. It is the complement utility to Export.

To recover a database using Export files and the Import utility:

1. Re-create the database structure, including all tablespaces and users. These

re-created structures should not have objects in them.

2. Import the appropriate Export files to restore the database to the most current

state possible. Depending on how your Export schedule is performed, imports

of varying degrees will be necessary to restore a database.

Making User-Managed Backups of Miscellaneous Oracle Files
You should always back up initialization parameter files, networking and

configuration files, and password files. If a media failure destroys these files, then

you may have difficulty re-creating your original environment. For example, if you

Caution: If you use Export to perform a logical backup, then you

must export all data in a logically consistent way so that the backup

reflects a single point in time. No one should make changes to the

database while the Export takes place. Ideally, you should run the

database in ALTER SYSTEM QUIESCE RESTRICTED mode while

you export the data, so no regular users can access the data.

Alternatively, you can quiesce the database before you export the

data, and unquiesce the database afterward.

Table 2–3 Export Modes

Mode Description

User (Owner) Exports all objects owned by a user.

Tablespace Exports all objects contained in the tablespace.

Table Exports all or specific tables owned by a user and objects
defined on these tables such as privileges, triggers, views, and
indexes.

Full Database Exports all objects of the database.
Making User-Managed Backups 2-29

Making User-Managed Backups of Miscellaneous Oracle Files
back up the database and server parameter file but do not back up the networking

files (for example, tnsnames.ora and listener.ora), then you can restore and

recover the database but will not be able to authenticate users through Oracle Net

until you re-create the networking files.

As a general rule, you should back up miscellaneous Oracle files after changing

them. For example, if you add or change the net service names that can be used to

access the database, then create a new backup of the tnsnames.ora file.

The easiest way to find configuration files is to start in the Oracle home directory

and do a recursive search for all files ending in the .ora extension. For example, on

UNIX you can run this command:

% find $ORACLE_HOME -name "*.ora" -print

You must use third-party utilities to back up the configuration files. For example,

you can use the UNIX cp command to back up the tnsnames.ora and

listener.ora files as follows:

% cp $ORACLE_HOME/network/admin/tnsnames.ora /disk2/bkups/tnsnames01-22-01.ora
% cp $ORACLE_HOME/network/adminlistener.ora /disk2/bkups/listener01-22-01.ora

You can also use an operating system utility to back up the server parameter file.

Although the database does not depend on the existence of a particular version of

the server parameter file to be started, you should keep relatively current backups

of this file so that you do not lose changes made to the file. Note that if you lose the

server parameter file, you can always create a new one or start the instance with a

client-side initialization parameter file (PFILE).

See Also: Oracle9i Database Administrator’s Guide to learn how to

manage and export server parameter files
2-30 Oracle9i User-Managed Backup and Recovery Guide

Performing User-Managed Restore Op
3

Performing User-Managed Restore

Operations

This chapter describes how to recover a database, and includes the following topics:

■ About User-Managed Restore Operations

■ Keeping Records For Use in a Restore Scenario

■ Determining Which Datafiles Require Recovery

■ Restoring Datafiles

■ Re-Creating Datafiles When Backups Are Unavailable

■ Restoring and Re-Creating Control Files

■ Restoring Archived Redo Logs
erations 3-1

About User-Managed Restore Operations
About User-Managed Restore Operations
To restore a file is to replace it with a backup file. Typically, you restore a file when a

media failure or user error has damaged or deleted the original file. The following

files are candidates for restore operations:

■ Datafiles

■ Control files

■ Archived redo logs

■ Server parameter file

In each case, the loss of a primary file and the restore of a backup has the following

implications for media recovery.

If you lose . . . Then . . .

One or more datafiles You must restore them from a backup and perform media
recovery. Recovery is required whenever the checkpoint SCN in
the datafile header does not match the checkpoint SCN for the
datafile that is recorded in the control file.

All copies of the current
control file

You must restore a backup control file and then open the
database with the RESETLOGS option.

If you do not have a backup, then you can attempt to re-create
the control file. If possible, use the script included in the ALTER
DATABASE BACKUP CONTROLFILE TO TRACE output.
Additional work may be required to match the control file
structure with the current database structure.

One copy of a
multiplexed control file

Copy one of the intact multiplexed control files into the location
of the damaged or missing control file and open the database. If
you cannot copy the control file to its original location (for
example, because the disk drive cannot be salvaged), then edit
the initialization parameter file to reflect a new location. Then,
open the database.

One or more archived
logs required for media
recovery

You must restore backups of these archived logs for media
recovery to proceed. You can restore either to the default or to a
nondefault location. If you do not have backups, then you must
performing incomplete recovery up to a point before the first
missing log and open RESETLOGS.

The server parameter file If you have a backup of the server parameter file, then restore it.
Alternatively, if you have a backup of the client-side
initialization parameter file, then you can restore a backup of
this file, start the instance, and then re-create the server
parameter file.
3-2 Oracle9i User-Managed Backup and Recovery Guide

Keeping Records For Use in a Restore Scenario
Keeping Records For Use in a Restore Scenario
One of the most important aspects of user-managed backup and recovery is keeping

records of all current database files as well as the backups of these files. For

example, you should have records for the location of the following files:

■ Datafiles

■ Control files

■ Online redo logs (note that online logs are never backed up)

■ Archived redo logs

■ Initialization parameter files

■ Password files

■ Networking-related files

Recording the Locations of Datafiles, Control Files, and Online Redo Logs
The following useful SQL script displays the location of all control files, datafiles,

and online redo log files for the database:

SELECT NAME FROM V$DATAFILE
UNION ALL
SELECT MEMBER FROM V$LOGFILE
UNION ALL
SELECT NAME FROM V$CONTROLFILE;

Sample output follows:

NAME
--
/oracle/dbs/tbs_01.f
/oracle/dbs/tbs_02.f
/oracle/dbs/tbs_11.f
/oracle/dbs/tbs_12.f
/oracle/dbs/t1_log1.f
/oracle/dbs/t1_log2.f
/oracle/dbs/cf1.f
/oracle/dbs/cf2.f

Note: Restore and recovery of Oracle-managed files is no different

from restore and recovery of user-named files.
Performing User-Managed Restore Operations 3-3

Keeping Records For Use in a Restore Scenario
Recording the Locations of Archived Redo Logs
You can determine the location of the default archived log destinations by executing

the following SQL script:

SELECT NAME, VALUE
FROM V$PARAMETER
WHERE NAME LIKE log_archive_dest%
AND VALUE IS NOT NULL
/

NAME VALUE
---------------------------------- ---
log_archive_dest_1 LOCATION=/oracle/work/arc_dest/arc
log_archive_dest_state_1 enable

Determine the format for archived logs by running SHOW as follows:

SHOW PARAMETER LOG_ARCHIVE_FORMAT

NAME TYPE VALUE
------------------------------------ ------- ------------------------------
log_archive_format string r_%t_%s.arc

To see a list of all the archived logs recorded in the control file, issue this query:

SELECT NAME FROM V$ARCHIVED_LOG;

NAME
--
/oracle/work/arc_dest/arcr_1_110.a
/oracle/work/arc_dest/arcr_1_111.a
/oracle/work/arc_dest/arcr_1_112.a
/oracle/work/arc_dest/arcr_1_113.a

Recording the Locations of Backup Files
It is not enough to merely record the location of backup files: you must correlate the

backups with the original files. If possible, name the backups with the same relative

filename as the primary file. Whatever naming system you use, keep a table

containing the relevant information. For example, you could keep the following

table as a record of database file locations in case of a restore emergency.

See Also: Oracle9i Database Reference for more information on the

V$ views
3-4 Oracle9i User-Managed Backup and Recovery Guide

Determining Which Datafiles Require Recovery
Determining Which Datafiles Require Recovery
You can use the dynamic performance view V$RECOVER_FILE to determine which

files to restore in preparation for media recovery. This view lists all files that need to

be recovered, and explains why they need to be recovered.

The following query displays the file ID numbers of datafiles that require media

recovery as well as the reason for recovery (if known) and the SCN and time when

recovery needs to begin:

SELECT * FROM V$RECOVER_FILE;

FILE# ONLINE ERROR CHANGE# TIME
---------- ------- ------------------ ---------- ---------
 14 ONLINE 0
 15 ONLINE FILE NOT FOUND 0
 21 OFFLINE OFFLINE NORMAL 0

Query V$DATAFILE and V$TABLESPACEto obtain filenames and tablespace names

for datafiles requiring recovery. For example, enter:

SELECT d.NAME, t.NAME AS tablespace_name
FROM V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND d.FILE# IN (14,15,21); # use values obtained from V$RECOVER_FILE query

NAME TABLESPACE_NAME
---------------------------------- ----------------
/oracle/dbs/tbs_14.f TBS_1

Datafile Number Tablespace Backup Filename

0 (control file) 0 (control file) /dsk3/backup/cf.f

1 SYSTEM /dsk3/backup/tbs_01.f

2 undo /dsk3/backup/tbs_02.f

3 temp /dsk3/backup/tbs_11.f

4 users /dsk3/backup/tbs_12.f

Note: The view is not useful if the control file currently in use is a

restored backup or a new control file created after the media failure

occurred. A restored or re-created control file does not contain the

information Oracle needs to fill V$RECOVER_FILE accurately.
Performing User-Managed Restore Operations 3-5

Restoring Datafiles
/oracle/dbs/tbs_15.f TBS_2
/oracle/dbs/tbs_21.f TBS_3

You can combine these queries in the following SQL*Plus script (sample output

show in the following example):

COL df# FORMAT 999
COL df_name FORMAT a20
COL tbsp_name FORMAT a10
COL status FORMAT a7
COL error FORMAT a10

SELECT r.FILE# AS df#, d.NAME AS df_name, t.NAME AS tbsp_name,
 d.STATUS, r.ERROR, r.CHANGE#, r.TIME
FROM V$RECOVER_FILE r, V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND d.FILE# = r.FILE#
/

Sample output follows:

 DF# DF_NAME TBSP_NAME STATUS ERROR CHANGE# TIME
---- -------------------- ---------- ------- ---------- ----------- ----------
 14 /oracle/dbs/tbs_14.f TBS_1 OFFLINE OFFLINE 0
 NORMAL

 15 /oracle/dbs/tbs_15.f TBS_2 OFFLINE OFFLINE 0
 NORMAL

 21 /oracle/dbs/tbs_21.f TBS_3 OFFLINE OFFLINE 0
 NORMAL

Restoring Datafiles
If a media failure permanently damages one or more datafiles of a database, then

you must restore backups of these datafiles before you can recover the damaged

files. If you cannot restore a damaged datafile to its original location (for example,

you must replace a disk, so you restore the files to an alternate disk), then you must

indicate the new locations of these files to the control file.

If you are restoring an Oracle file on a raw disk or partition, then the procedure is

basically the same as when restoring to a file on a file system. However, you must

be aware of the naming conventions for files on raw devices (which differ

depending on the operating system), and use an operating system utility that

supports raw devices.
3-6 Oracle9i User-Managed Backup and Recovery Guide

Re-Creating Datafiles When Backups Are Unavailable
To restore backup datafiles to their default location:

1. Determine which datafiles to recover by using the techniques described in

"Determining Which Datafiles Require Recovery" on page 3-5.

2. If the database is open, then take the tablespaces containing the inaccessible

datafiles offline. For example, enter:

ALTER TABLESPACE users OFFLINE IMMEDIATE;

3. Copy backups of the damaged datafiles to their default location using operating

system commands. For example, to restore tbs_24.f on UNIX you might

issue:

% cp /disk2/backup/tbs_24.bak /disk1/oracle/dbs/tbs_24.f

4. Recover the affected tablespace. For example, enter:

RECOVER TABLESPACE users

5. Bring the recovered tablespace online. For example, enter:

ALTER TABLESPACE users ONLINE;

Re-Creating Datafiles When Backups Are Unavailable
If a datafile is damaged and no backup of the file is available, then you can still

recover the datafile if:

■ All archived log files written after the creation of the original datafile are

available

■ The control file contains the name of the damaged file (that is, the control file is

current, or is a backup taken after the damaged datafile was added to the

database)

To re-create a datafile for recovery:

1. Create a new, empty datafile to replace a damaged datafile that has no

corresponding backup. For example, assume that the datafile

See Also: "Making User-Managed Backups to Raw Devices" on

page 2-22 for an overview of considerations when backing up and

restoring files on raw devices
Performing User-Managed Restore Operations 3-7

Restoring and Re-Creating Control Files
/disk1/users1.f has been damaged, and no backup is available. The

following statement re-creates the original datafile (same size) on disk2 :

ALTER DATABASE CREATE DATAFILE '/disk1/users1.f' AS '/disk2/users1.f';

This statement creates an empty file that is the same size as the lost file. Oracle

looks at information in the control file and the data dictionary to obtain size

information. The old datafile is renamed as the new datafile.

2. Perform media recovery on the empty datafile. For example, enter:

RECOVER DATAFILE '/disk2/users1.f'

3. All archived redo logs written after the original datafile was created must be

mounted and reapplied to the new, empty version of the lost datafile during

recovery.

Restoring and Re-Creating Control Files
If a media failure has affected the control files of a database (whether control files

are multiplexed or not), then the database continues to run until the first time that

an Oracle background process needs to access the control files. At this point, the

database and instance are automatically shut down.

If the media failure is temporary and the database has not yet shut down, avoid the

automatic shutdown of the database by immediately correcting the media failure. If

the database shuts down before you correct the temporary media failure, however,

then you can restart the database after fixing the problem and restoring access to the

control files.

The appropriate recovery procedure for media failures that permanently prevent

access to control files of a database depends on whether you have multiplexed the

control files. The following sections describe the appropriate procedures:

■ Losing a Member of a Multiplexed Control File

■ Losing All Members of a Multiplexed Control File When a Backup Is Available

■ Losing All Current and Backup Control Files

Note: You cannot re-create any of the datafiles for the SYSTEM
tablespace by using the CREATE DATAFILE clause of the ALTER
DATABASE statement because the necessary redo data is not

available.
3-8 Oracle9i User-Managed Backup and Recovery Guide

Restoring and Re-Creating Control Files
Losing a Member of a Multiplexed Control File
Use the following procedures to recover a database if a permanent media failure has

damaged one or more control files of a database and at least one control file has not
been damaged by the media failure.

Copying a Multiplexed Control File to a Default Location
Assuming that the disk and file system containing the lost control file are intact,

then you can simply copy one of the intact control files to the location of the missing

control file. In this case, you do not have to alter the CONTROL_FILES initialization

parameter setting.

To replace a damaged control file by copying a multiplexed control file:

1. If the instance is still running, then shut it down:

SHUTDOWN ABORT

2. Correct the hardware problem that caused the media failure. If you cannot

repair the hardware problem quickly, then you can proceed with database

recovery by restoring damaged control files to an alternative storage device, as

described in "Copying a Multiplexed Control File to a Nondefault Location" on

page 3-9.

3. Use an intact multiplexed copy of the database's current control file to copy

over the damaged control files. For example, to replace bad_cf.f with good_
cf.f , you might enter:

% cp /oracle/good_cf.f /oracle/dbs/bad_cf.f

4. Start a new instance and mount and open the database. For example, enter:

STARTUP

Copying a Multiplexed Control File to a Nondefault Location
Assuming that the disk and file system containing the lost control file are not intact,

then you cannot copy one of the "good" control files to the location of the missing

control file. In this case, you must alter the CONTROL_FILES initialization

parameter to indicate a new location for the missing control file.

To restore a control file to a nondefault location:

1. If the instance is still running, then shut it down:

SHUTDOWN ABORT
Performing User-Managed Restore Operations 3-9

Restoring and Re-Creating Control Files
2. If you cannot correct the hardware problem that caused the media failure, then

copy the intact control file to alternative locations. For example, to copy good_
cf.f to new_cf.f you might issue:

% cp /oracle/dbs/good_cf.f /oracle/dbs/new_cf.f

3. Edit the parameter file of the database so that the CONTROL_FILES parameter

reflects the current locations of all control files and excludes all control files that

were not restored. For example, assume the initialization parameter file

contains:

CONTROL_FILES = '/oracle/dbs/good_cf.f', '/oracle/dbs/bad_cf.f'

Then, you can edit it as follows:

CONTROL_FILES = '/oracle/dbs/good_cf.f', '/oracle/dbs/new_cf.f'

4. Start a new instance and mount and open the database. For example, enter the

following in SQL*Plus:

STARTUP

Losing All Members of a Multiplexed Control File When a Backup Is Available
Use the following procedures to restore a backup control file if a permanent media

failure has damaged all control files of a database and you have a backup of the

control file. When a control file is inaccessible, then you can start the instance, but

not mount the database. If you attempt to mount the database when the control file

is unavailable, you see this error message:

ORA-00205: error in identifying controlfile, check alert log for more info

You cannot mount and open the database until you make the control file accessible

again. If you restore a backup control file, then you must open the database with the

RESETLOGS option.

As indicated in Table 3–1, the procedure for restoring the control file depends on

whether the online redo logs are available.
3-10 Oracle9i User-Managed Backup and Recovery Guide

Restoring and Re-Creating Control Files
Restoring a Backup Control File to the Default Location
If possible, restore the control file to its original location. In this way, you avoid

having to specify new control file locations in the initialization parameter file.

To restore a backup control file to its default location:

1. If the instance is still running, shut it down:

SHUTDOWN ABORT

2. Correct the hardware problem that caused the media failure.

3. Restore the backup control file to all locations specified in the CONTROL_FILES
initialization parameter. For example, if /dsk1/oracle/dbs/cf1.f and

/dsk2/cf2.f are the control file locations listed in the server parameter file,

then use an operating system utility to restore the backup control file to these

locations:

% cp /backup/cf.bak /dsk1/oracle/dbs/cf1.f
% cp /backup/cf.bak /dsk2/cf2.f

4. Start a new instance and mount the database. For example, enter:

STARTUP MOUNT

Table 3–1 Scenarios When Control Files Are Lost

Status of
Online Logs

Status of
Datafiles Response

Available Current If the online logs contain redo necessary for recovery, then
restore a backup control file apply the logs during
recovery. Hence, you must specify the filename of the
online logs containing the changes in order to open the
database. After recovery, open RESETLOGS.

Unavailable Current If the online logs contain redo necessary for recovery, then
you must re-create the control file. Because the logs are
inaccessible, open RESETLOGS.

Available Backup Restore a backup control file, perform complete recovery,
and then open RESETLOGS.

Unavailable Backup Restore a backup control file, perform incomplete
recovery, and then open RESETLOGS.
Performing User-Managed Restore Operations 3-11

Restoring and Re-Creating Control Files
5. Begin recovery by executing the RECOVER command with the USING BACKUP
CONTROLFILEclause. Specify UNTIL CANCELif you are performing incomplete

recovery. For example, enter:

RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL

6. Apply the prompted archived logs. If you then receive another message saying

that the required archived log is missing, it probably means that a necessary

redo record is located in the online redo logs. This situation can occur when

unarchived changes were located in the online logs when the instance crashed.

For example, assume that you see the following:

ORA-00279: change 55636 generated at 06/08/2000 16:59:47 needed for thread 1
ORA-00289: suggestion : /oracle/work/arc_dest/arcr_1_111.arc
ORA-00280: change 55636 for thread 1 is in sequence #111
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

You can specify the name of an online redo log and press Enter (you may have

to try this a few times until you find the correct log):

/oracle/dbs/t1_log1.f
Log applied.
Media recovery complete.

If for some reason the online logs are not accessible, then you can cancel

recovery without applying the online logs. Note that if all datafiles are current,

and redo is located in the online logs that is required for recovery, then you

cannot open the database without applying the online logs. If the online logs

are inaccessible, then you must re-create the control file (refer to "Losing All

Current and Backup Control Files" on page 3-13).

7. Open the database with the RESETLOGS option after finishing recovery:

ALTER DATABASE OPEN RESETLOGS;

8. Immediately back up the database as a precautionary measure, as described in

"Making User-Managed Backups of the Whole Database" on page 2-4.

Restoring a Backup Control File to a Nondefault Location
If you cannot restore the control file to its original place because the media damage

is too severe, then you must specify new control file locations in the server

parameter file. A valid control file must be available in all locations specified by the

CONTROL_FILES initialization parameter. If not, then Oracle prevents you from the

mounting the database.
3-12 Oracle9i User-Managed Backup and Recovery Guide

Restoring and Re-Creating Control Files
To restore a control file to a nondefault location:

Follow the steps in "Restoring a Backup Control File to the Default Location" on

page 3-11, except after step 2 add the following step:

Edit all locations specified in the CONTROL_FILESinitialization parameter to reflect

the new control file locations. For example, if the control file locations listed in the

server parameter file are as follows:

CONTROL_FILES = ’/dsk1/oracle/dbs/cf1.f’, ’/dsk2/cf2.f’

You can change the initialization parameter to read:

CONTROL_FILES = ’/dsk3/tmp/cf1.f’, ’dsk3/tmp/cf2.f’

Losing All Current and Backup Control Files
If all control files have been lost or damaged by a permanent media failure, but all

online redo logfiles remain intact, then you can recover the database after creating a

new control file. Note that this procedure does not require you to open the database

with the RESETLOGS option.

Depending on the existence and currency of a control file backup, you have the

options listed in Table 3–2 for generating the text of the CREATE CONTROLFILE
statement. Note that changes to the database are recorded in the alert_ SID .log ,

so check this log when deciding which option to choose.

Table 3–2 Options for Creating the Control File (Page 1 of 2)

If you . . . Then . . .

Executed ALTER DATABASE BACKUP
CONTROLFILE TO TRACE NORESETLOGS
after you made the last structural change to
the database, and if you have saved the SQL
command trace output

Use the CREATE CONTROLFILE statement
from the trace output as-is.

Performed your most recent execution of
ALTER DATABASE BACKUP CONTROLFILE
TO TRACE before you made a structural
change to the database

Edit the output of ALTER DATABASE
BACKUP CONTROLFILE TO TRACE to reflect
the change. For example, if you recently
added a datafile to the database, then add
this datafile to the DATAFILE clause of the
CREATE CONTROLFILE statement.
Performing User-Managed Restore Operations 3-13

Restoring and Re-Creating Control Files
To create a new control file:

1. Start the database in NOMOUNT mode. For example, enter:

STARTUP NOMOUNT

2. Create the control file with the CREATE CONTROLFILEstatement, specifying the

NORESETLOGS option (refer to Table 3–2 for options). The following example

assumes that the character set is the default US7ASCII:

CREATE CONTROLFILE REUSE DATABASE SALES NORESETLOGS ARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 16
 MAXLOGHISTORY 1600
LOGFILE
 GROUP 1 (
 '/diska/prod/sales/db/log1t1.dbf',
 '/diskb/prod/sales/db/log1t2.dbf'
) SIZE 100K
 GROUP 2 (
 '/diska/prod/sales/db/log2t1.dbf',
 '/diskb/prod/sales/db/log2t2.dbf'

Backed up the control file with the ALTER
DATABASE BACKUP CONTROLFILE TO
filename statement (not the TO TRACE
option)

Use the control file copy to obtain SQL
output. Copy the backup control file and
execute STARTUP MOUNT before ALTER
DATABASE BACKUP CONTROLFILE TO
TRACE NORESETLOGS. If the control file
copy predated a recent structural change,
then edit the trace output to reflect the
structural change.

Do not have a control file backup in either
TO TRACE format or TOfilename format

Create the CREATE CONTROLFILE
statement manually (see Oracle9i SQL
Reference).

Note: If your character set is not the default US7ASCII, then you

must specify the character set as an argument to the CREATE
CONTROLFILE statement. The database character set is written to

the alert log at startup. The character set information is also

recorded in the BACKUP CONTROLFILE TO TRACE output.

Table 3–2 Options for Creating the Control File (Page 2 of 2)

If you . . . Then . . .
3-14 Oracle9i User-Managed Backup and Recovery Guide

Restoring Archived Redo Logs
) SIZE 100K,
DATAFILE
 '/diska/prod/sales/db/database1.dbf',
 '/diskb/prod/sales/db/filea.dbf';

After creating the control file, Oracle mounts the database.

3. Recover the database as normal (without specifying the USING BACKUP
CONTROLFILE clause):

RECOVER DATABASE

4. Open the database after media recovery completes:

ALTER DATABASE OPEN;

Note that a RESETLOGS is not necessary.

5. Immediately back up the control file. The following SQL statement backs up a

database's control file to ?/dbs/cf.bak :

ALTER DATABASE BACKUP CONTROLFILE TO '?/dbs/cf.bak' REUSE;

Restoring Archived Redo Logs
All archived redo log files generated between the time a restored backup was

created and the target recovery time are required for the pending media recovery.

The archived logs will eventually need to be on disk so that they are available to

Oracle during the recovery.

To restore necessary archived redo logs:

1. To determine which archived redo log files are needed, query V$ARCHIVED_
LOG and V$RECOVERY_LOG. If a datafile requires recovery, but not backup of

the datafile exists, then you need all redo generated starting from the time when

the datafile was added to the database.

See Also: "Backing Up the Control File to a Trace File" on

page 2-19.

View Description

V$ARCHIVED_LOG Lists all the filenames for all the archived logs.
Performing User-Managed Restore Operations 3-15

Restoring Archived Redo Logs
2. If space is available, then restore the required archived redo log files to the

location specified by LOG_ARCHIVE_DEST_1. Oracle locates the correct log

automatically when required during media recovery. For example, enter:

% cp /disk2/arc_backup/*.arc /disk1/oracle/dbs/arc_dest

3. If sufficient space is not available at the location indicated by the archiving

destination initialization parameter, restore some or all of the required archived

redo log files to an alternate location. Specify the location before or during

media recovery using the LOGSOURCE parameter of the SET statement in

SQL*Plus or the RECOVER ... FROM parameter of the ALTER DATABASE
statement in SQL. For example, enter:

SET LOGSOURCE /disk2/temp # set location using SET statement
DATABASE RECOVER FROM ’/disk2/temp’; # set location in RECOVER statement itself

4. After an archived log is applied, and after making sure that a copy of each

archived log group still exists in offline storage, delete the restored copy of the

archived redo log file to free disk space. For example, after making the log

directory your working directory, enter:

% rm *.arc

V$RECOVERY_LOG Lists only the archived redo logs that Oracle needs to perform
media recovery. It also includes the probable names of the files,
using LOG_ARCHIVE_FORMAT.

Note: This view is only populated when recovery is required for
a datafile. Hence, this view is not useful in the case of a planned
recovery such as a user error.

See Also: Oracle9i Database Reference for more information about

the data dictionary views, and "Performing User-Managed Media

Recovery: Overview" on page 4-2 for an overview of log application

during media recovery

View Description
3-16 Oracle9i User-Managed Backup and Recovery Guide

Performing User-Managed Media R
4

Performing User-Managed Media Recovery

This chapter describes how to recover a database, and includes the following topics:

■ Performing User-Managed Media Recovery: Overview

■ Performing Complete User-Managed Media Recovery

■ Performing Incomplete User-Managed Media Recovery

■ Recovering a Database in NOARCHIVELOG Mode

■ Performing Media Recovery in Parallel

■ Opening the Database After User-Managed Media Recovery

■ Interrupting User-Managed Media Recovery

■ User-Managed Media Recovery Restrictions
ecovery 4-1

Performing User-Managed Media Recovery: Overview
Performing User-Managed Media Recovery: Overview
During complete or incomplete media recovery, Oracle applies redo log files to the

datafiles during the roll forward phase of media recovery. Because changes to undo

segments are recorded in the online redo log, rolling forward regenerates the

corresponding undo segments. Rolling forward proceeds through as many redo log

files as necessary to bring the database forward in time.

If you do not use Recovery Manager (RMAN) to perform recovery, then you should

use the SQL*Plus RECOVER command. It is also possible to use the SQL statement

ALTER DATABASE RECOVER, but it is highly recommended that you use the

SQL*Plus RECOVER command instead.

This section contains these topics:

■ Preconditions of Performing User-Managed Recovery

■ Applying Logs Automatically with the RECOVER Command

■ Recovering When Archived Logs Are in the Default Location

■ Recovering When Archived Logs Are in a Nondefault Location

■ Resetting the Archived Log Destination

■ Overriding the Archived Log Destination

■ Responding to Unsuccessful Application of Redo Logs

Preconditions of Performing User-Managed Recovery
To start any type of media recovery, you must adhere to the following restrictions:

■ You must have administrator privileges.

■ All recovery sessions must be compatible.

■ One session cannot start complete media recovery while another performs

incomplete media recovery.

■ You cannot start media recovery if you are connected to the database through a

shared server process.

Applying Logs Automatically with the RECOVER Command
Oracle Corporation recommends that you use the SQL*Plus RECOVER command

rather than the ALTER DATABASE RECOVER statement to perform media recovery.

In almost all cases, the SQL*Plus method is easier.
4-2 Oracle9i User-Managed Backup and Recovery Guide

Performing User-Managed Media Recovery: Overview
When using SQL*Plus to perform media recovery, the easiest strategy is to perform

automatic recovery. Automatic recovery initiates recovery without manually

prompting SQL*Plus to apply each individual archived log.

When using SQL*Plus, you have two options for automating the application of the

default filenames of archived redo logs needed during recovery:

■ Issuing SET AUTORECOVERY ON before issuing the RECOVER command

■ Specifying the AUTOMATIC keyword as an option of the RECOVER command

In either case, no interaction is required when you issue the RECOVER command if

the necessary files are in the correct locations with the correct names.

The filenames used when you use automatic recovery are derived from the

concatenated values of LOG_ARCHIVE_FORMAT with LOG_ARCHIVE_DEST_n,

where n is the highest value among all enabled, local destinations.

For example, assume the following initialization parameter settings are in effect in

the database instance:

LOG_ARCHIVE_DEST_1 = "LOCATION=/arc_dest/loc1/"
LOG_ARCHIVE_DEST_2 = "LOCATION=/arc_dest/loc2/"
LOG_ARCHIVE_DEST_STATE_1 = DEFER
LOG_ARCHIVE_DEST_STATE_2 = ENABLE
LOG_ARCHIVE_FORMAT = arch_%t_%s.arc

In this case, SQL*Plus automatically suggests the filename /arc_
dest/loc2/arch_%t_%s.arc (where %t is the thread and %s is the sequence).

If you run SET AUTORECOVERY OFF, which is the default option, then you must

enter the filenames manually, or accept the suggested default filename by pressing

the Enter key.

Using SET AUTORECOVERY for Automatic Recovery
Run the SET AUTORECOVERY ON command to enable on automatic recovery.

To automate the recovery using SET AUTORECOVERY:

1. Restore a backup of the offline datafiles. This example restores an inconsistent

backup of all datafiles using an operating system utility:

% cp /fs2/BACKUP/tbs* /oracle/dbs

2. Ensure the database is mounted. For example, if the database is shut down, run:

STARTUP MOUNT
Performing User-Managed Media Recovery 4-3

Performing User-Managed Media Recovery: Overview
3. Enable automatic recovery. For example, in SQL*Plus run:

SET AUTORECOVERY ON

4. Recover the desired datafiles. This example recovers the whole database:

RECOVER DATABASE

Oracle automatically suggests and applies the necessary archived logs, as in this

sample output:

ORA-00279: change 53577 generated at 01/26/00 19:20:58 needed for thread 1
ORA-00289: suggestion : /oracle/work/arc_dest/arcr_1_802.arc
ORA-00280: change 53577 for thread 1 is in sequence #802
Log applied.
ORA-00279: change 53584 generated at 01/26/00 19:24:05 needed for thread 1
ORA-00289: suggestion : /oracle/work/arc_dest/arcr_1_803.arc
ORA-00280: change 53584 for thread 1 is in sequence #803
ORA-00278: log file "/oracle/work/arc_dest/arcr_1_802.arc" no longer needed for this
recovery
Log applied.
Media recovery complete.

5. Open the database. For example:

ALTER DATABASE OPEN;

Using RECOVERY AUTOMATIC for Automatic Recovery
Besides using SET AUTORECOVERY to turn on automatic recovery, you can also

simply specify the AUTOMATIC keyword in the RECOVER command.

To automate the recovery with the RECOVER AUTOMATIC command:

1. Restore a backup of the offline datafiles. This example restores a backup of all

datafiles:

% cp /oracle/work/BACKUP/tbs* /oracle/dbs

2. Ensure the database is mounted. For example, if the database is shut down, run:

STARTUP MOUNT

Note: After issuing the ALTER DATABASE RECOVER statement,

you can view all files that have been considered for recovery in the

V$RECOVERY_FILE_STATUS view. You can access status

information for each file in the V$RECOVERY_STATUS view. These

views are not accessible after you terminate the recovery session.
4-4 Oracle9i User-Managed Backup and Recovery Guide

Performing User-Managed Media Recovery: Overview
3. Recover the desired datafiles by specifying the AUTOMATIC keyword. This

example performs automatic recovery on the whole database:

RECOVER AUTOMATIC DATABASE

4. Oracle automatically suggests and applies the necessary archived logs as

illustrated in the following output:

ORA-00279: change 53577 generated at 01/26/00 19:20:58 needed for thread 1
ORA-00289: suggestion : /oracle/work/arc_dest/arcr_1_802.arc
ORA-00280: change 53577 for thread 1 is in sequence #802
Log applied.
ORA-00279: change 53584 generated at 01/26/00 19:24:05 needed for thread 1
ORA-00289: suggestion : /oracle/work/arc_dest/arcr_1_803.arc
ORA-00280: change 53584 for thread 1 is in sequence #803
ORA-00278: log file "/oracle/work/arc_dest/arcr_1_802.arc" no longer needed for this
recovery
Log applied.
Media recovery complete.

5. Open the database. For example:

ALTER DATABASE OPEN;

If you use an Oracle Real Application Clusters configuration, and if you are

performing incomplete recovery or using a backup control file, then Oracle can only

compute the name of the first archived redo log file from the first redo thread. You

may have to manually apply the first log file from the other redo threads. After the

first log file in a given thread has been supplied, Oracle can suggest the names of

the subsequent logs in this thread.

Recovering When Archived Logs Are in the Default Location
Recovering when the archived logs are in their default location is the simplest case.

As a log is needed, Oracle suggests the filename. If you are running nonautomatic

media recovery with SQL*Plus, then the output is displayed in this format:

ORA-00279: Change #### generated at DD/MM/YY HH:MM:SS needed for thread #
ORA-00289: Suggestion : logfile
ORA-00280: Change #### for thread # is in sequence #
Specify log: [<RET> for suggested | AUTO | FROM logsource | CANCEL]

See Also: Your operating system specific Oracle documentation

for examples of log file application
Performing User-Managed Media Recovery 4-5

Performing User-Managed Media Recovery: Overview
For example, SQL*Plus displays output similar to the following:

ORA-00279: change 53577 generated at 01/26/00 19:20:58 needed for thread 1
ORA-00289: suggestion : /oracle/arc_dest/arcr_1_802.arc
ORA-00280: change 53577 for thread 1 is in sequence #802
Specify log: [<RET> for suggested | AUTO | FROM logsource | CANCEL]

Similar messages are returned when you use an ALTER DATABASE ... RECOVER
statement. However, no prompt is displayed.

Oracle suggests archived redo log filenames by concatenating the current values of

the initialization parameters LOG_ARCHIVE_DEST_n (where n is the highest value

among all enabled, local destinations) and LOG_ARCHIVE_FORMAT and using log

history information from the control file. For example, the following are possible

settings for archived redo logs:

LOG_ARCHIVE_DEST_1 = 'LOCATION = /oracle/arc_dest/'
LOG_ARCHIVE_FORMAT = arcr_%t_%s.arc

SELECT NAME FROM V$ARCHIVED_LOG;

NAME

/oracle/arc_dest/arcr_1_467.arc
/oracle/arc_dest/arcr_1_468.arc
/oracle/arc_dest/arcr_1_469.arc

Thus, if all the required archived log files are mounted at the LOG_ARCHIVE_DEST_
1 destination, and if the value for LOG_ARCHIVE_FORMAT is never altered, then

Oracle can suggest and apply log files to complete media recovery automatically.

Recovering When Archived Logs Are in a Nondefault Location
Performing media recovery when archived logs are not in their default location

adds an extra step into the recovery procedure. You have the following mutually

exclusive options:

■ Edit the LOG_ARCHIVE_DEST_n parameter that specifies the location of the

archived redo logs, then recover as usual.

■ Use the SETstatement in SQL*Plus to specify the nondefault log location before

recovery, or the LOGFILE parameter of the RECOVER command
4-6 Oracle9i User-Managed Backup and Recovery Guide

Performing User-Managed Media Recovery: Overview
Resetting the Archived Log Destination
You can edit the initialization parameter file or issue ALTER SYSTEM statements to

change the default location of the archived redo logs.

To change the default archived log location before recovery:

1. Use an operating system utility to restore the archived logs to the nondefault

location. For example, enter:

% cp /disk3/arc_bak/* /disk2/tmp

2. Change the value for the archive log parameter to the desired nondefault

location. You can issue ALTER SYSTEM statements while the instance is started,

or edit the initialization parameter file and then start the database instance. For

example, while the instance is shut down edit the parameter file as follows:

LOG_ARCHIVE_DEST_1 = 'LOCATION=/disk2/tmp/arc'
LOG_ARCHIVE_FORMAT = r_%t_%s.arc

3. Using SQL*Plus, start a new instance by specifying the edited initialization

parameter file, and then mount the database. For example, enter:

STARTUP MOUNT

4. Begin media recovery as usual. For example, enter:

RECOVER DATABASE

Overriding the Archived Log Destination
In some cases, you may want to override the current setting for the archiving

destination parameter as a source for redo log files. For example, assume that a

database is open and an offline tablespace must be recovered, but not enough space

is available to mount the necessary redo log files at the location specified by the

archiving destination parameter. In this case, use one of the following procedures.

To recover using logs in a nondefault location with SET LOGSOURCE:

1. Using an operating system utility, move the archived redo logs to an alternative

location. For example, enter:

% cp /disk1/oracle/arc_dest/* /disk2/temp
Performing User-Managed Media Recovery 4-7

Performing User-Managed Media Recovery: Overview
2. Specify the alternative location within SQL*Plus for the recovery operation. Use

the LOGSOURCE parameter of the SET statement or the RECOVER ... FROM
clause of the ALTER DATABASE statement. For example, start SQL*Plus and run:

SET LOGSOURCE "/disk2/temp"

3. Recover the offline tablespace:

RECOVER AUTOMATIC TABLESPACE offline_tbsp

4. Alternatively, you can avoid running SET LOGSOURCE and simply run:

RECOVER AUTOMATIC TABLESPACE offline_tbsp FROM "/disk2/temp"

Responding to Unsuccessful Application of Redo Logs
If you are using SQL*Plus's recovery options (not SQL statements), then each time

Oracle successfully applies a redo log file, the following message is returned:

Log applied.

Oracle then prompts for the next log in the sequence or, if the most recently applied

log is the last required log, terminates recovery.

If the suggested file is incorrect or you provide an incorrect filename, then Oracle

returns an error message. For example, you may see something like:

ORA-00308: cannot open archived log "/oracle/work/arc_dest/arcr_1_811.arc"
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3

Recovery cannot continue until the required redo log file is applied. If Oracle

returns an error message after supplying a redo log filename, then the following

responses are possible.

Note: Overriding the redo log source does not affect the archive

redo log destination for online redo logs groups being archived.

Error Possible Cause Solution

ORA-27037 : unable to
obtain file status

Entered wrong filename.

Log is missing.

Reenter correct filename.

Restore backup archived redo log.
4-8 Oracle9i User-Managed Backup and Recovery Guide

Performing Complete User-Managed Media Recovery
Performing Complete User-Managed Media Recovery
When you perform complete recovery, you recover the backups to the current SCN.

You can either recover the whole database at once or recover individual tablespaces

or datafiles. Because you do not have to open the database with the RESETLOGS
option after complete recovery as you do after incomplete recovery, you have the

option of recovering some datafiles at one time and the remaining datafiles later.

This section describes the steps necessary to complete media recovery operations,

and includes the following topics:

■ Performing Closed Database Recovery

■ Performing Datafile Recovery in an Open Database

Performing Closed Database Recovery
This section describes steps to perform complete recovery while the database is not

open. You can recover either all damaged datafiles in one operation, or perform

individual recovery of each damaged datafile in separate operations.

Perform the media recovery in the following stages:

1. Prepare for closed database recovery as described in "Preparing for Closed

Database Recovery" on page 4-10.

2. Restore the necessary files as described in "Restoring Backups of the Damaged

or Missing Files" on page 4-10.

3. Recover the restored datafiles as described in "Recovering the Database" on

page 4-11.

ORA-27047: unable
to read the header
block of file

The log may have been
partially written or
become corrupted.

If you can locate an uncorrupted or
complete log copy, then apply the
intact copy and continue recovery.

If no copy of the log exists and you
know the time of the last valid redo
entry, then you must use incomplete
recovery. Restart recovery from the
beginning, including restoring
backups.

See Also: Oracle9i Backup and Recovery Concepts to familiarize

yourself with fundamental recovery concepts and strategies

Error Possible Cause Solution
Performing User-Managed Media Recovery 4-9

Performing Complete User-Managed Media Recovery
Preparing for Closed Database Recovery
In this stage, you shut down the instance and inspect the media device that is

causing the problem.

To prepare for closed database recovery:

1. If the database is open, then shut it down with the ABORT option:

SHUTDOWN ABORT

2. If you are recovering from a media error, then correct it if possible. If the

hardware problem that caused the media failure was temporary, and if the data

was undamaged (for example, a disk or controller power failure), then no

media recovery is required: simply start the database and resume normal

operations. If you cannot repair the problem, then proceed to the next step.

Restoring Backups of the Damaged or Missing Files
In this stage, you restore all necessary backups.

To restore the necessary files:

1. Determine which datafiles to recover by using the techniques described in

"Determining Which Datafiles Require Recovery" on page 3-5.

2. If the files are permanently damaged, then identify the most recent backups for

the damaged files. Restore only the datafiles damaged by the media failure: do

not restore any undamaged datafiles or any online redo log files.

For example, if /oracle/dbs/tbs_10.f is the only damaged file, then you

may consult your records and determine that /oracle/backup/tbs_
10.backup is the most recent backup of this file. If you do not have a backup

of a specific datafile, then you may be able to create an empty replacement file

that can be recovered.

3. Use an operating system utility to restore the files to their default location or to

a new location. Restore the necessary files as described in Chapter 3,

"Performing User-Managed Restore Operations". For example, a UNIX user

restoring /oracle/dbs/tbs_10.f to its default location might enter:

% cp /oracle/backup/tbs_10.backup /oracle/dbs/tbs_10.f
4-10 Oracle9i User-Managed Backup and Recovery Guide

Performing Complete User-Managed Media Recovery
Follow these guidelines when determining where to restore datafile backups:

Recovering the Database
In the final stage, you recover the datafiles that you have restored.

To recover the restored datafiles:

1. Connect to the database with administrator privileges, then start a new instance

and mount, but do not open, the database. For example, enter:

STARTUP MOUNT

2. Obtain the datafile names and statuses of all datafiles by checking the list of

datafiles that normally accompanies the current control file or querying the

V$DATAFILE view. For example, enter:

SELECT NAME,STATUS FROM V$DATAFILE;

3. Ensure that all datafiles of the database are online. All datafiles of the database

requiring recovery must be online unless an offline tablespace was taken offline

normally or is part of a read-only tablespace. For example, to guarantee that a

datafile named /oracle/dbs/tbs_10.f is online, enter the following:

ALTER DATABASE DATAFILE '/oracle/dbs/tbs_10.f' ONLINE;

If a specified datafile is already online, then Oracle ignores the statement. If you

prefer, create a script to bring all datafiles online at once as in the following:

SPOOL onlineall.sql
SELECT 'ALTER DATABASE DATAFILE '''||name||''' ONLINE;' FROM V$DATAFILE;
SPOOL OFF

SQL> @onlineall

If . . . Then . . .

The hardware problem is repaired
and you can restore the datafiles to
their default locations

Restore the datafiles to their default locations and
begin media recovery.

The hardware problem persists and
you cannot restore datafiles to their
original locations

Restore the datafiles to an alternative storage
device. Indicate the new location of these files in the
control file. Use the operation described in
"Renaming and Relocating Datafiles" in the Oracle9i
Database Administrator’s Guide, as necessary.
Performing User-Managed Media Recovery 4-11

Performing Complete User-Managed Media Recovery
4. Issue the statement to recover the database, tablespace, or datafile. For example,

enter one of the following RECOVER command:

RECOVER DATABASE # recovers whole database
RECOVER TABLESPACE users # recovers specific tablespace
RECOVER DATAFILE '/oracle/dbs/tbs_10'; # recovers specific datafile

Follow these guidelines when deciding which statement to execute:

5. If you choose not to automate the application of archived logs, then you must

accept or reject each required redo log that Oracle prompts you for. If you

automate recovery, then Oracle applies the necessary logs automatically. Oracle

continues until all required archived and online redo log files have been applied

to the restored datafiles.

6. Oracle notifies you when media recovery is complete:

Media recovery complete.

If no archived redo log files are required for complete media recovery, then

Oracle applies all necessary online redo log files and terminates recovery.

7. After recovery terminates, then open the database for use:

ALTER DATABASE OPEN;

Performing Datafile Recovery in an Open Database
It is possible for a media failure to occur while the database remains open, leaving

the undamaged datafiles online and available for use. Oracle automatically takes

the damaged datafiles offline—but not the tablespaces that contain them—if the

To . . . Then . . .

Recover all damaged files in one step Execute RECOVER DATABASE

Recover an individual tablespace Execute RECOVER TABLESPACE

Recover an individual damaged
datafile

Execute RECOVER DATAFILE

Parallelize recovery of the whole
database or an individual datafile

See "Performing Media Recovery in Parallel" on
page 4-25

See Also: "Performing User-Managed Media Recovery:

Overview" on page 4-2 for more information about applying redo

log files
4-12 Oracle9i User-Managed Backup and Recovery Guide

Performing Complete User-Managed Media Recovery
database writer is unable to write to them. Queries that cannot read damaged files

return errors, but Oracle does not take the files offline because of the failed queries.

For example, you may run a query and see output such as:

ERROR at line 1:
ORA-01116: error in opening database file 11
ORA-01110: data file 11: ’/oracle/dbs/tbs_32.f’
ORA-27041: unable to open file
SVR4 Error: 2: No such file or directory
Additional information: 3

The media recovery procedure in this section cannot be used to perform complete

media recovery on the datafiles of the SYSTEM tablespace. If the media failure

damages any datafiles of the SYSTEM tablespace, then Oracle automatically shuts

down the database.

Perform media recovery in these stages:

1. Prepare the database for recovery by making sure it is open and taking the

tablespaces requiring recovery offline, as described in "Preparing for Open

Database Recovery" on page 4-13.

2. Restore the necessary files in the affected tablespaces as described in "Restoring

Backups of the Damaged or Missing Files" on page 4-14.

3. Recover the affected tablespaces as described in "Recovering Offline

Tablespaces in an Open Database" on page 4-14.

Preparing for Open Database Recovery
In this stage, you take affected tablespaces offline and inspect the media device that

is causing the problem.

See Also:

■ "Determining Which Datafiles Require Recovery" on page 3-5

for more information about determining when recovery is

necessary

■ "Performing Closed Database Recovery" on page 4-9 for

procedures for proceeding with complete media recovery of

SYSTEM tablespaces datafiles
Performing User-Managed Media Recovery 4-13

Performing Complete User-Managed Media Recovery
To prepare for datafile recovery when the database is open:

1. If the database is open when you discover that recovery is required, take all

tablespaces containing damaged datafiles offline. For example, if tablespace

users contains damaged datafiles, enter:

ALTER TABLESPACE users OFFLINE TEMPORARY;

2. Correct the hardware problem that caused the media failure. If the hardware

problem cannot be repaired quickly, proceed with database recovery by

restoring damaged files to an alternative storage device.

Restoring Backups of the Damaged or Missing Files
In this stage, you restore all necessary backups in the offline tablespaces.

To restore datafiles in an open database:

1. If files are permanently damaged, then restore the most recent backup files of

only the datafiles damaged by the media failure. Do not restore undamaged

datafiles, online redo log files, or control files. If the hardware problem has been

repaired and the datafiles can be restored to their original locations, then do so.

If the hardware problem persists, then restore the datafiles to an alternative

storage device.

2. If you restored one or more damaged datafiles to alternative locations, rename

the datafiles in the control file of the database. For example, to change the

filename of the datafile in tablespace users you might enter:

ALTER DATABASE RENAME FILE '/d1/oracle/dbs/tbs1.f' TO '/d3/oracle/dbs/tbs1.f';

Recovering Offline Tablespaces in an Open Database
In the final stage, you recover the datafiles in the offline tablespaces.

Note: In some circumstances, if you do not have a backup of a

specific datafile, you can use ALTER DATABASE CREATE DATAFILE
to create an empty replacement file that is recoverable.

See Also: Oracle9i SQL Reference for more information about

ALTER DATABASE RENAME FILE
4-14 Oracle9i User-Managed Backup and Recovery Guide

Performing Complete User-Managed Media Recovery
To recover offline tablespaces in an open database:

1. Connect to the database with administrator privileges. For example, connect as

SYSTEM to database prod1 :

% sqlplus SYSTEM/manager@prod1

2. Start offline tablespace recovery of all damaged datafiles in one or more offline

tablespaces using one step. For example, recover the users and sales
tablespaces as follows:

RECOVER TABLESPACE users, sales # begins recovery on datafiles in users and sales

3. Oracle begins the roll forward phase of media recovery by applying the

necessary redo log files (archived and online) to reconstruct the restored

datafiles. Unless the applying of files is automated with RECOVER AUTOMATIC
or SET AUTORECOVERY ON, Oracle prompts for each required redo log file.

Oracle continues until all required archived redo log files have been applied to

the restored datafiles. The online redo log files are then automatically applied to

the restored datafiles to complete media recovery.

If no archived redo log files are required for complete media recovery, then

Oracle does not prompt for any. Instead, all necessary online redo log files are

applied, and media recovery is complete.

4. When the damaged tablespaces are recovered up to the moment that media

failure occurred, bring the offline tablespaces online. For example, to bring

tablespaces users and sales online, issue the following statements:

ALTER TABLESPACE users ONLINE;
ALTER TABLESPACE sales ONLINE;

Note: For maximum performance, use parallel recovery to recover

the datafiles. See "Performing Media Recovery in Parallel" on

page 4-25.

See Also: Oracle9i Database Administrator’s Guide for more

information about creating datafiles
Performing User-Managed Media Recovery 4-15

Performing Incomplete User-Managed Media Recovery
Performing Incomplete User-Managed Media Recovery
This section describes the steps necessary to complete the different types of

incomplete media recovery operations, and includes the following topics:

■ Preparing for Incomplete Recovery

■ Restoring Datafiles Before Performing Incomplete Recovery

■ Performing Cancel-Based Incomplete Recovery

■ Performing Time-Based Incomplete Recovery

■ Performing Change-Based Incomplete Recovery

Note that if your database is affected by seasonal time changes (for example,

daylight savings time), then you may experience a problem if a time appears twice

in the redo log and you want to recover to the second, or later time. To handle time

changes, perform cancel-based or change-based recovery.

Preparing for Incomplete Recovery
In this phase, you examine the source of the media problem.

To prepare for cancel-based recovery:

1. If you are uncertain about performing incomplete media recovery, then make a

whole backup of the database—all datafiles, a control file, and the parameter

files of the database—as a precautionary measure in case an error occurs during

the recovery procedure.

2. If the database is still open and incomplete media recovery is necessary, then

terminate the instance:

SHUTDOWN ABORT

3. If a media failure occurred, correct the hardware problem that caused the

failure. If the hardware problem cannot be repaired quickly, then proceed with

database recovery by restoring damaged files to an alternative storage device.

Restoring Datafiles Before Performing Incomplete Recovery
In this phase, you restore a whole database backup.

To restore the files necessary for cancel-based recovery and bring them online:

1. If the current control files do not match the physical structure of the database at

the intended time of recovery, then restore a backup control file as described in
4-16 Oracle9i User-Managed Backup and Recovery Guide

Performing Incomplete User-Managed Media Recovery
"Restoring and Re-Creating Control Files" on page 3-8. The restored control file

should reflect the database's physical file structure at the point at which

incomplete media recovery should finish. To determine which control file

backup to use:

■ Review the list of files that corresponds to the current control file and each

control file backup to determine the correct control file to use.

■ If necessary, replace all current control files of the database with the correct

control file backup.

■ Alternatively, create a new control file to replace the missing one.

2. Restore backups of all the datafiles of the database. All backups used to replace

existing datafiles must have been taken before the intended time of recovery.

For example, if you intend to recover to January 2 at 2:00 p.m., then restore all

datafiles with backups completed before this time. Follow these guidelines:

Note: If you are unable to restore a control file backup to one of

the CONTROL_FILES locations, then edit the initialization

parameter file so that this CONTROL_FILES location is removed.

If . . . Then . . .

You do not have a backup of a datafile Create an empty replacement file that can be
recovered as described in "Re-Creating
Datafiles When Backups Are Unavailable" on
page 3-7.

A datafile was added after the intended
time of recovery

Do not restore a backup of this file because it
will no longer be used for the database after
recovery completes.

The hardware problem causing the failure
has been solved and all datafiles can be
restored to their default locations

Restore the files as described in "Restoring

Datafiles" on page 3-6 and skip Step 5 of this
procedure.

A hardware problem persists Restore damaged datafiles to an alternative
storage device.

Note: Files in read-only tablespaces should be offline if you are

using a control file backup. Otherwise, the recovery will try to

update the headers of the read-only files.
Performing User-Managed Media Recovery 4-17

Performing Incomplete User-Managed Media Recovery
3. Start SQL*Plus and connect to Oracle with administrator privileges. For

example, enter:

% sqlplus SYS/change_on_install@prod1

4. Start a new instance and mount the database:

STARTUP MOUNT

5. If one or more damaged datafiles were restored to alternative locations in

Step 2, then indicate the new locations of these files to the control file of the

associated database. For example, enter:

ALTER DATABASE RENAME FILE '/oracle/dbs/df2.f' TO '/oracle/newloc/df2.f';

6. Obtain the datafile names and statuses of all datafiles by checking the list of

datafiles that normally accompanies the current control file or querying the

V$DATAFILE view. For example, enter:

SELECT NAME,STATUS FROM V$DATAFILE;

7. Ensure that all datafiles of the database are online. All datafiles of the database

requiring recovery must be online unless an offline tablespace was taken offline

normally or is part of a read-only tablespace. For example, to guarantee that a

datafile named /oracle/dbs/tbs_10.f is online, enter the following:

ALTER DATABASE DATAFILE '/oracle/dbs/tbs_10.f' ONLINE;

If a specified datafile is already online, Oracle ignores the statement. If you

prefer, create a script to bring all datafiles online at once as in the following:

SPOOL onlineall.sql
SELECT 'ALTER DATABASE DATAFILE '''||name||''' ONLINE;' FROM V$DATAFILE;
SPOOL OFF
SQL> @onlineall

Performing Cancel-Based Incomplete Recovery
In cancel-based recovery, recovery proceeds by prompting you with the suggested

filenames of archived redo log files. Recovery stops when you specify CANCEL
instead of a filename or when all redo has been applied to the datafiles.

Cancel-based recovery is better than change-based or time-based recovery if you

want to control which archived log terminates recovery. For example, you may

know that you have lost all logs past sequence 1234, so you want to cancel recovery

after log 1233 is applied.
4-18 Oracle9i User-Managed Backup and Recovery Guide

Performing Incomplete User-Managed Media Recovery
You should perform cancel-based media recovery in these stages:

1. Prepare for recovery by backing up the database and correct any media failures

as described in "Preparing for Incomplete Recovery" on page 4-16.

2. Restore backup datafiles as described in "Restoring Datafiles Before Performing

Incomplete Recovery" on page 4-16. If you have a current control file, then do

not restore a backup control file.

3. Perform media recovery on the restored database backup as described in the

following procedure.

To perform cancel-based recovery:

1. Start SQL*Plus and connect to Oracle with administrator privileges. For

example, enter:

% sqlplus ’/ AS SYSDBA’

2. Start a new instance and mount the database:

STARTUP MOUNT

3. Begin cancel-based recovery by issuing the following command:

RECOVER DATABASE UNTIL CANCEL

If you are using a backup control file with this incomplete recovery, then specify

the USING BACKUP CONTROLFILE option in the RECOVER command.

RECOVER DATABASE UNTIL CANCEL USING BACKUP CONTROLFILE

4. Oracle applies the necessary redo log files to reconstruct the restored datafiles.

Oracle supplies the name it expects to find from LOG_ARCHIVE_DEST_1 and

requests you to stop or proceed with applying the log file. Note that if the

control file is a backup, then you must supply the names of the online logs if

you want to apply the changes in these logs.

Note: If you fail to specify the UNTIL clause on the RECOVER
command, then you will not be able to open the database until a

complete recovery is done.
Performing User-Managed Media Recovery 4-19

Performing Incomplete User-Managed Media Recovery
5. Continue applying redo log files until the last log has been applied to the

restored datafiles, then cancel recovery by executing the following command:

CANCEL

Oracle returns a message indicating whether recovery is successful. Note that if

you cancel recovery before all the datafiles have been recovered to a consistent

SCN and then try to open the database, you will get an ORA-1113 error if more

recovery is necessary for the file. You can query V$RECOVER_FILE to
determine whether more recovery is needed, or if a backup of a datafile was not

restored prior to starting incomplete recovery.

6. Open the database in RESETLOGS mode. You must always reset the online logs

after incomplete recovery or recovery with a backup control file. For example,

enter:

ALTER DATABASE OPEN RESETLOGS;

Performing Time-Based Incomplete Recovery
This section describes how to perform the time-based media recovery procedure in

the following stages:

1. Prepare for recovery by backing up the database and correct any media failures

as described in "Preparing for Incomplete Recovery" on page 4-16.

2. Restore backup datafiles as described in "Restoring Datafiles Before Performing

Incomplete Recovery" on page 4-16. If you have a current control file, then do

not restore a backup control file.

3. Perform media recovery on the restored backup by using the following

procedure.

Note: If you use an Oracle Real Application Clusters

configuration, and you are performing incomplete recovery or

using a backup control file, then Oracle can only compute the name

of the first archived redo log file from the first thread. The first redo

log file from the other threads must be supplied by the user. After

the first log file in a given thread has been supplied, Oracle can

suggest the names of the subsequent log files in this thread.

See Also: "Opening the Database After User-Managed Media

Recovery" on page 4-26
4-20 Oracle9i User-Managed Backup and Recovery Guide

Performing Incomplete User-Managed Media Recovery
To perform time-based recovery:

1. Issue the RECOVER DATABASE UNTIL TIME statement to begin time-based

recovery. The time is always specified using the following format, delimited by

single quotation marks: 'YYYY-MM-DD:HH24:MI:SS' . The following

statement recovers the database up to a specified time:

RECOVER DATABASE UNTIL TIME '2000-12-31:12:47:30'

If a backup of the control file is being used with this incomplete recovery (that

is, a control file backup or re-created control file was restored), then indicate this

in the statement used to start recovery. The following statement recovers the

database up to a specified time using a control file backup:

RECOVER DATABASE UNTIL TIME '2000-12-31:12:47:30' USING BACKUP CONTROLFILE

2. Apply the necessary redo log files to recover the restored datafiles. Unless the

application of files is automated, Oracle supplies the name it expects to find

from LOG_ARCHIVE_DEST_1 and requests you to stop or proceed with

applying the log file. If the control file is a backup, then you after the archived

logs have been applied you must supply the names of the online logs in order

to apply their changes.

3. Apply redo logs until the last required redo log has been applied to the restored

datafiles. Oracle automatically terminates the recovery when it reaches the

correct time, and returns a message indicating whether recovery is successful.

4. Open the database in RESETLOGS mode. You must always reset the online logs

after incomplete recovery or recovery with a backup control file. For example,

enter:

ALTER DATABASE OPEN RESETLOGS;

Performing Change-Based Incomplete Recovery
This section describes how to perform recovery to a specified SCN in these stages:

1. Prepare for recovery by backing up the database and correct any media failures

as described in "Preparing for Incomplete Recovery" on page 4-16.

2. Restore backup datafiles as described in "Restoring Datafiles Before Performing

Incomplete Recovery" on page 4-16. If you have a current control file, then do

not restore a backup control file.

See Also: "Opening the Database After User-Managed Media

Recovery" on page 4-26
Performing User-Managed Media Recovery 4-21

Recovering a Database in NOARCHIVELOG Mode
3. Perform media recovery on the restored backup by using the following

procedure.

To perform change-based recovery:

1. Begin change-based recovery, specifying the SCN for recovery termination. The

SCN is specified as a decimal number without quotation marks. For example, to

recover through SCN 10034 issue:

RECOVER DATABASE UNTIL CHANGE 10034;

2. Oracle begins the roll forward phase of media recovery by applying the

necessary redo log files (archived and online) to reconstruct the restored

datafiles. Unless the application of files is automated, Oracle supplies the name

it expects to find from LOG_ARCHIVE_DEST_1 and requests you to stop or

proceed with applying the log file. If the control file is a backup, then you after

the archived logs have been applied you must supply the names of the online

logs in order to apply their changes.

3. Continue applying redo log files until the last required redo log file has been

applied to the restored datafiles. Oracle automatically terminates the recovery

when it reaches the correct SCN, and returns a message indicating whether

recovery is successful.

4. Open the database in RESETLOGS mode. You must always reset the online logs

after incomplete recovery or recovery with a backup control file. For example,

enter:

ALTER DATABASE OPEN RESETLOGS;

Recovering a Database in NOARCHIVELOG Mode
If a database is in NOARCHIVELOGmode and a media failure damages some or all of

the datafiles, then the only option for recovery is usually to restore the most recent

whole database backup. If you are using Export to supplement regular backups,

then you can also attempt to restore the database by importing an exported backup

of the database into a re-created database or a database restored from an old

backup.

The disadvantage of NOARCHIVELOG mode is that to recover the database from the

time of the most recent full backup up to the time of the media failure, you have to

reenter manually all of the changes executed in that interval. If the database was in

See Also: "Opening the Database After User-Managed Media

Recovery" on page 4-26
4-22 Oracle9i User-Managed Backup and Recovery Guide

Recovering a Database in NOARCHIVELOG Mode
ARCHIVELOG mode, however, the redo log covering this interval would have been

available as archived log files or online log files. Using archived redo logs would

have enabled you to use complete or incomplete recovery to reconstruct your

database, thereby minimizing the amount of lost work.

If you have a database damaged by media failure and operating in NOARCHIVELOG
mode, and if you want to restore from your most recent consistent whole database

backup (your only option at this point), then follow the procedures in this section.

Restoring the Database to its Default Location
In this scenario, the media failure is repaired so that you are able to restore all

database files to their original location.

To restore the most recent whole database backup to the default location:

1. If the database is open, then shut down the database. For example, enter:

SHUTDOWN IMMEDIATE

2. If possible, correct the media problem so that the backup database files can be

restored to their original locations.

3. Restore the most recent whole database backup with operating system

commands as described in "Restoring Datafiles" on page 3-6. Restore all of the

datafiles and control files of the whole database backup, not just the damaged

files. The following example restores a whole database backup:

% cp /oracle/work/BACKUP/tbs* /oracle/dbs # restores datafiles
% cp /oracle/work/BACKUP/cf.f /oracle/dbs # restores control file

4. Because online redo logs are not backed up, you cannot restore them with the

datafiles and control files. In order to allow Oracle to reset the online redo logs,

you must first mimic incomplete recovery:

RECOVER DATABASE UNTIL CANCEL
CANCEL

5. Open the database in RESETLOGS mode. This command resets the current redo

log sequence to 1:

ALTER DATABASE OPEN RESETLOGS;

A RESETLOGS operation invalidates all redo in the online logs. Restoring from

a whole database backup and then resetting the log discards all changes to the

database made from the time the backup was taken to the time of the failure.
Performing User-Managed Media Recovery 4-23

Recovering a Database in NOARCHIVELOG Mode
Restoring the Database to a New Location
In this scenario, you restore the database files to an alternative location because the

original location is damaged by a media failure.

To restore the most recent whole database backup to a new location:

1. If the database is open, then shut it down. For example, enter:

SHUTDOWN IMMEDIATE

2. Restore all of the datafiles and control files of the whole database backup, not

just the damaged files. If the hardware problem has not been corrected and

some or all of the database files must be restored to alternative locations, then

restore the whole database backup to a new location. For example, enter:

% cp /disk2/BACKUP/tbs* /disk3/oracle/dbs # default location
% cp /disk2/BACKUP/cf.f /disk3/oracle/dbs # new location
% cp /disk2/BACKUP/system01.dbf /disk4/temp # new location

3. If necessary, edit the restored parameter file to indicate the new location of the

control files. For example:

CONTROL_FILES = "/disk3/oracle/dbs/cf.f"

4. Start an instance using the restored and edited parameter file and mount, but

do not open, the database. For example:

STARTUP MOUNT

5. If the restored datafile filenames will be different, then rename the restored

datafiles in the control file. For example, you might enter:

ALTER DATABASE RENAME FILE '/disk1/oracle/dbs/system01.dbf' TO
 '/disk4/temp/system01.dbf';

6. If the online redo logs were located on a damaged disk, and the hardware

problem is not corrected, then specify a new location for each online log. For

example, enter:

ALTER DATABASE RENAME FILE '/disk1/oracle/dbs/log1.f' TO '/disk3/oracle/dbs/log1.f';
ALTER DATABASE RENAME FILE '/disk1/oracle/dbs/log2.f' TO '/disk3/oracle/dbs/log2.f';

7. Because online redo logs are not backed up, you cannot restore them with the

datafiles and control files. In order to allow Oracle to reset the online redo logs,

you must first mimic incomplete recovery:

RECOVER DATABASE UNTIL CANCEL;
CANCEL;
4-24 Oracle9i User-Managed Backup and Recovery Guide

Performing Media Recovery in Parallel
8. Open the database in RESETLOGS mode. This command resets the current redo

log sequence to 1:

ALTER DATABASE OPEN RESETLOGS;

A RESETLOGS operation invalidates all redo in the online logs. Restoring from

a whole database backup and then resetting the log discards all changes to the

database made from the time the backup was taken to the time of the failure.

Performing Media Recovery in Parallel
Use parallel media recovery to tune the roll forward phase of media recovery. In

parallel media recovery, Oracle uses a "division of labor" approach to allocate

different processes to different data blocks while rolling forward, thereby making

the procedure more efficient. For example, if parallel recovery is performed with

PARALLEL 4, and only one datafile is recovered, then four spawned processes read

blocks from the datafile and apply records instead of only one process.

The SQL*Plus RECOVER PARALLELcommand specifies parallel media recovery (the

default is NOPARALLEL). This command selects a degree of parallelism equal to the

number of CPUs available on all participating instances times the value of the

PARALLEL_THREADS_PER_CPU initialization parameter.

The format for the RECOVER PARALLEL command is the following:

RECOVER PARALLELinteger ;

The integer variable sets the number of recovery processes used for media

recovery. If you use a Real Application Clusters configuration, then Oracle decides

See Also: Oracle9i Database Administrator’s Guide for more

information about renaming and relocating datafiles, and Oracle9i
SQL Reference for more information about ALTER DATABASE
RENAME FILE

Note: Typically, recovery is I/O-bound on reads to data blocks.

Parallelism at the block level may only help recovery performance

if it increases total I/Os, for example, by bypassing operating

system restrictions on asynchronous I/Os. Systems with efficient

asynchronous I/O typical see little improvement from using

parallel media recovery.
Performing User-Managed Media Recovery 4-25

Opening the Database After User-Managed Media Recovery
how to distribute these recovery processes among the instances. If integer is not

specified, then Oracle picks a default number of recovery processes.

Opening the Database After User-Managed Media Recovery
Whenever you perform incomplete recovery or recovery with a backup control file,

you must reset the online logs when you open the database. The new version of the

reset database is called a new incarnation. All archived logs generated after the

point of the RESETLOGS on the old incarnation are invalid in the new incarnation.

If you perform complete recovery, then you do not have to open the database with

the RESETLOGS option. All previous backups and archived logs created during the

lifetime of this incarnation of the database are valid.

This section contains the following topics:

■ About RESETLOGS Operations

■ Determining Whether to Reset the Online Redo Logs

■ Following Up After a RESETLOGS Operation

■ Recovering a Backup Created Before a RESETLOGS

About RESETLOGS Operations
Whenever you open the database with the RESETLOGS option, all datafiles get a

new RESETLOGS SCN and time stamp, and the log sequence number is reset to 1.

Archived redo logs also have these two values in their file header. Because Oracle

will not apply an archived redo log to a datafile unless the RESETLOGS SCN and

time stamps match, the RESETLOGS operations prevents you from corrupting your

datafiles with old archived logs.

Note: The RECOVERY_PARALLELISM initialization parameter

specifies the number of concurrent recovery processes for instance

or crash recovery only. Media recovery is not affected.

See Also:

■ Oracle9i Database Performance Tuning Guide and Reference for

more information on parallel recovery

■ SQL*Plus User’s Guide and Reference for more information about

the SQL*Plus RECOVER ... PARALLEL statement
4-26 Oracle9i User-Managed Backup and Recovery Guide

Opening the Database After User-Managed Media Recovery
Figure 4–1 shows the case of a database that can only be recovered to log sequence

2500 because an archived redo log is missing. At log sequence 4000, the database

crashes. You restore the log sequence 1000 backup and prepare for complete

recovery. Unfortunately, one of your archived redo logs is corrupted. The log before

the missing log contains log sequence 2500, so you recover to this point and open

with the RESETLOGS option. The log sequence is now reset to 1.

As the diagram illustrates, you generate new changes in the new incarnation of the

database, eventually reaching log sequence 4000. The changes between log

sequence 2500 and log sequence 4000 for the new incarnation of the database are

completely different from the changes between log sequence 2500 and log sequence

4000 for the old incarnation. Oracle does not allow you to apply logs from an old

incarnation to the new incarnation. You cannot restore backups from before log

sequence 2500 in the old incarnation to the new incarnation.
Performing User-Managed Media Recovery 4-27

Opening the Database After User-Managed Media Recovery
Figure 4–1 Creating a New Database Incarnation

Determining Whether to Reset the Online Redo Logs
To open the database with the RESETLOGSoption, all datafiles must be recovered to

the same SCN. If a backup control file is restored, then the backup control file must

also be recovered to the same SCN.

The RESETLOGS option is always required after incomplete media recovery or

recovery using a backup control file. Resetting the redo log does the following:

■ Discards any redo information that was not applied during recovery, ensuring

that it will never be applied.

■ Reinitializes the control file metadata about online redo logs and redo threads.

■ Erases the contents of the online redo logs.

2
3

log sequence
1000

log sequence
2500

log sequence
4000

Restore
database

Database crashes

Recover database
to 2500 and then
OPEN RESETLOGS

Generate redo for
new incarnation

lo
g

se
qu

en
ce

10
00

lo
g

se
qu

en
ce

20
00

lo
g

se
qu

en
ce

30
00

4

log
 se

qu
en

ce
40

00

1

4-28 Oracle9i User-Managed Backup and Recovery Guide

Opening the Database After User-Managed Media Recovery
■ Creates the online redo log files if they do not currently exist.

■ Resets the log sequence number to 1.

.

Use the following rules when deciding whether to specify RESETLOGS or

NORESETLOGS:

■ Always specify the RESETLOGS option after incomplete recovery. For example,

you must have specified a previous time or SCN, not one in the future.

■ Always specify RESETLOGS if you used a backup of the control file in recovery,

regardless of whether you performed complete or incomplete recovery.

■ Specify either no option or the NORESETLOGSoption after performing complete

media recovery (unless you used a backup control file, in which case you must

open with the RESETLOGS option).

■ Avoid specifying the RESETLOGS option if you are using the archived logs of

the database for a standby database. If you must reset the online logs, then you

have to re-create the standby database.

Executing the ALTER DATABASE OPEN Statements
To preserve the log sequence number when opening a database after media

recovery, execute either of the following statements:

ALTER DATABASE OPEN NORESETLOGS;
ALTER DATABASE OPEN;

To reset the log sequence number when opening a database after recovery and

thereby create a new incarnation of the database, execute the following statement:

ALTER DATABASE OPEN RESETLOGS;

If you open with the RESETLOGS option, Oracle returns different messages

depending on whether recovery was complete or incomplete. If the recovery was

complete, then the following message appears in the alert_ SID .log file:

RESETLOGS after complete recovery through change scn

Caution: Resetting the redo log discards all changes to the

database contained in the online logs. Hence, after opening

RESETLOGS, you cannot perform recovery again to a point within

the reset logs.
Performing User-Managed Media Recovery 4-29

Opening the Database After User-Managed Media Recovery
If the recovery was incomplete, then this message is reported in the alert_
SID .log file, where scn refers to the end point of incomplete recovery:

RESETLOGS after incomplete recovery UNTIL CHANGE scn

If you attempt to OPEN RESETLOGS when you should not, or if you neglect to reset

the log when you should, then Oracle returns an error and does not open the

database. Correct the problem and try again.

Following Up After a RESETLOGS Operation
This section describes actions that you should perform after opening the database in

RESETLOGS mode.

Making a Whole Database Backup
Immediately shut down the database normally and make a full database backup.

Otherwise, you will not be able to recover changes made after you reset the logs.

Until you take a full backup, the only way to recover is to repeat the procedures you

just finished, up to resetting the logs. You do not need to make another backup of

the database if you did not reset the log sequence.

In general, backups made before a RESETLOGS operation are not allowed in the

new incarnation. There is, however, an exception to the rule: you can restore a

pre-RESETLOGS backup only if Oracle does not need to access archived redo logs

from before the RESETLOGS to perform recovery.

Checking the Alert Log
After opening the database using the RESETLOGS option, check the alert_
SID .log to see whether Oracle detected inconsistencies between the data

dictionary and the control file, for example, a datafile that the data dictionary

includes but does not list in the new control file.

If a datafile exists in the data dictionary but not in the new control file, then Oracle

creates a placeholder entry in the control file under MISSINGnnnn (where nnnn is

the file number in decimal). MISSINGnnnn is flagged in the control file as being

offline and requiring media recovery.

See Also: "About User-Managed Media Recovery Problems" on

page 5-2 for descriptions of situations that can cause ALTER
DATABASE OPEN RESETLOGS to fail

See Also: "Recovering a Backup Created Before a RESETLOGS"

on page 4-31
4-30 Oracle9i User-Managed Backup and Recovery Guide

Opening the Database After User-Managed Media Recovery
The datafile corresponding to MISSINGnnnn can be made accessible by renaming

MISSINGnnnn so that it points to the datafile only if the datafile was read-only or

offline normal between the time the backup was taken to the point where the

RESETLOGS is issued.On the other hand, if MISSINGnnnn corresponds to a datafile

that was not read-only or offline normal during the recovery period, then the

rename operation cannot be used to make the datafile accessible, because the

datafile requires media recovery that is precluded by the results of RESETLOGS. In
this case, you must drop the tablespace containing the datafile.

In contrast, if a datafile indicated in the control file is not in the data dictionary,

Oracle removes references to it from the new control file. In both cases, Oracle

includes an message in the alert_ SID .log file to let you know what was found.

Recovering a Backup Created Before a RESETLOGS
In releases prior to Oracle8, DBAs typically backed up online logs when performing

cold consistent backups to avoid opening the database with the RESETLOGS option

(if they were planning to restore immediately).

A classic example of this technique was disk maintenance, which required the

database to be backed up, deleted, the disks reconfigured, and the database

restored. DBAs realized that by not restarting in RESETLOGS mode, they would not

have to back up the database immediately after the restore. This backup was

required since it was impossible to perform recovery on a backup taken before the

RESETLOGS—especially if any errors occurred after resetting the logs.

Restoring Backups Created Before a RESETLOGS
You can restore the following backups made before a RESETLOGS in a new

incarnation:

■ Backups of a tablespace made after it was made read-only (only if it was not

made read/write again before the RESETLOGS)

■ Backups of a tablespace after it was taken offline-normal (only if it was not

brought online again before the RESETLOGS)

■ Consistent backups of read/write tablespaces made after recovery ends and

before you open RESETLOGS, that is, you do not perform further recovery or

alter the datafiles between the backup and the RESETLOGS—but only if you

have a control file that is valid after you open RESETLOGS

You are prevented from restoring backups of read/write tablespaces that were not
made immediately before the RESETLOGS. This restriction applies even if no

changes were made to the datafiles in the read/write tablespace between the
Performing User-Managed Media Recovery 4-31

Opening the Database After User-Managed Media Recovery
backup and the ALTER DATABASE OPEN RESETLOGS. Because the checkpoint in the

datafile header of a backup will be older than the checkpoint in the control file,

Oracle has to search the archived logs to determine whether changes need to be

applied—and the archived logs generated prior to the RESETLOGS are not valid in

the new incarnation.

Restoring a Backup Created Before a RESETLOGS: Scenario
The following scenario illustrates a situation when you can use a backup created

before a RESETLOGS. Suppose you wish to perform hardware striping

reconfiguration, which requires the database files to be backed up and deleted, the

hardware reconfigured, and the database restored.

On Friday night you perform the following actions:

1. Shut down the database consistently. For example:

SHUTDOWN IMMEDIATE

2. Perform a whole database backup. For example, enter

% cp /oracle/dbs/* /oracle/backup

3. Perform operating system maintenance.

4. Restore the datafiles and control files from the backup that you just made. For

example, enter:

% cp /oracle/backup/* /oracle/dbs

5. Mount the database. For example, enter:

STARTUP MOUNT

6. Initiate cancel-based recovery. For example, enter:

RECOVER DATABASE UNTIL CANCEL

7. Open the database with the RESETLOGS option. For example, enter:

ALTER DATABASE OPEN RESETLOGS;

On Saturday morning the scheduled jobs run, generating archived logs. If a

hardware error occurs Saturday night that requires you to restore the whole

Note: At this point you must not reopen the database.
4-32 Oracle9i User-Managed Backup and Recovery Guide

Interrupting User-Managed Media Recovery
database, then you can restore the backup taken immediately before opening with

the RESETLOGS option, and roll forward using the logs produced on Saturday.

On Saturday night you do the following:

1. Terminate the instance (if it still exists). For example, enter:

SHUTDOWN ABORT

2. Restore all damaged files from the backup made on Friday night. For example,

enter:

% cp /oracle/backup/* /oracle/dbs

3. Begin complete recovery, applying all the archived logs produced on Saturday.

Use SET AUTORECOVERY ON to automate the log application. For example,

enter:

SET AUTORECOVERY ON
RECOVER DATABASE

4. Open the database. For example, enter:

STARTUP

In this scenario, if you had opened the database after the Friday night backup and

before opening the database with RESETLOGS, or, if you did not have a control file

from after opening the database, then you would not be able to use the Friday night

backup to roll forward. You must have a backup after opening the database with the

RESETLOGS option in order to be able to recover.

Interrupting User-Managed Media Recovery
If you start media recovery and must then interrupt it, for example, because a

recovery operation must end for the night and resume the next morning, then take

either of the following actions:

■ Enter the word CANCEL when prompted for a redo log file.

■ Use your operating system’s interrupt signal if you must terminate when

recovering an individual datafile, or when automated recovery is in progress.

Note: If you have the current control file, do not restore it;

otherwise you must restore a control file that was valid after

opening the database with RESETLOGS.
Performing User-Managed Media Recovery 4-33

User-Managed Media Recovery Restrictions
After recovery is canceled, you can resume it later with the RECOVER command.

Recovery resumes where it left off when it was canceled.

Several factors may cause you to restart recovery. For example, if you want to

restart with a different backup or want to use the same backup but need to change

the end time to an earlier point in time than you initially specified, then the entire

operation must recommence by restoring a backup.

If you are recovering parts of database with RECOVER TABLESPACE or RECOVER
DATAFILE, then you will have to restart recovery and finish recovery in order to

make these parts of the database available.

If you are performing incomplete recovery of the whole database, then you may be

able to open the database read only or RESETLOGS after canceling media recovery.

This strategy can succeed if all datafiles have been recovered to a consistent SCN,

and also works even after interrupting media recovery. If not all datafiles have been

recovered to a consistent SCN, then the RESETLOGS may fail, requiring you to

perform more media recovery.

User-Managed Media Recovery Restrictions
Before performing media recovery, make sure that you understand the following

issues:

■ User-Managed Recovery of Unrecoverable Tables and Indexes

■ User-Managed Recovery of Read-Only Tablespaces with a Noncurrent Control

File

User-Managed Recovery of Unrecoverable Tables and Indexes
You can create tables and indexes with the CREATE TABLE AS SELECT statement.

You can also specify that Oracle create them as unrecoverable. When you create a

table or index as unrecoverable, Oracle does not generate redo log records for the

operation. Thus, you cannot recover objects created unrecoverable, even if you are

running in ARCHIVELOG mode.

Note: If you cannot afford to lose tables or indexes created

unrecoverable, then make a backup after the unrecoverable table or

index is created.
4-34 Oracle9i User-Managed Backup and Recovery Guide

User-Managed Media Recovery Restrictions
Be aware that when you perform media recovery, and some tables or indexes are

created as recoverable while others are unrecoverable, the unrecoverable objects are

marked logically corrupt by the RECOVER operation. Any attempt to access the

unrecoverable objects returns an ORA-01578 error message. Drop the

unrecoverable objects and re-create them if needed.

Because it is possible to create a table unrecoverable and then create a recoverable

index on that table, the index is not marked as logically corrupt after you perform

media recovery. The table was unrecoverable (and thus marked as corrupt after

recovery), however, so the index points to corrupt blocks. The index must be

dropped, and the table and index must be re-created if necessary.

User-Managed Recovery of Read-Only Tablespaces with a Noncurrent Control File
If you have a read-only tablespace on read-only or slow media, then you may

encounter errors or poor performance when performing media recovery with the

USING BACKUP CONTROLFILE option. This situation occurs when the backup

control file indicates that a tablespace was read/write when the control file was

backed up. In this case, media recovery may attempt to write to the files. For

read-only media, Oracle issues an error saying that it cannot write to the files. For

slow media, such as a hierarchical storage system backed up by tapes, performance

may suffer.

To avoid these recovery problems, use current control files rather than backups to

recover the database. If you need to use a backup control file, then you can also

avoid this problem if the read-only tablespace has not suffered a media failure.

Recovery of Read-Only or Slow Media with a Backup Control File
You have these alternatives for recovering read-only and slow media when using a

backup control file:

■ Take datafiles from read-only tablespaces offline before doing recovery with a

backup control file, and then bring the files online at the end of media recovery.

■ Use the correct version of the control file for the recovery. If the tablespace will

be read-only when recovery completes, then the control file must be from a time

when the tablespace was read-only. Similarly, if the tablespace will be

read/write at the end of recovery, then the control file must be from a time

when the tablespace was read/write.

See Also: Oracle9i Data Guard Concepts and Administration for

information about the impact of unrecoverable operations on a

standby database
Performing User-Managed Media Recovery 4-35

User-Managed Media Recovery Restrictions
Recovery of Read-Only Files with a Re-Created Control File
If a current or backup control file is unavailable for the recovery, then you can

execute a CREATE CONTROLFILEstatement as described in "Losing All Current and

Backup Control Files" on page 3-13. Read-only files should not be listed in the

CREATE CONTROLFILE statement so that recovery can skip these files. No recovery

is required for read-only files unless you restored backups of these files from a time

when they were read/write.

After you create a new control file and attempt to mount and open the database,

Oracle performs a data dictionary check against the files listed in the control file.

Any files that were not listed in the CREATE CONTROLFILE statement but are

present in the data dictionary have entries created for them in the control file.

Oracle names these files as MISSINGnnnnn , where nnnnn is a five digit number

starting with 0.

After the database is open, rename the read-only files to their correct filenames by

executing the ALTER DATABASE RENAME FILE statement for all the files whose

name is prefixed with MISSING.

To prepare for a scenario in which you might have to re-create the control file, run

the following statement when the database is mounted or open to obtain the

CREATE CONTROLFILE syntax:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

This SQL statement produces a trace file that you can edit and then use as a script to

re-create the control file in a recovery scenario. You can specify either the

RESETLOGS or NORESETLOGS (default) keywords to generate CREATE
CONTROLFILE ... RESETLOGS or CREATE CONTROLFILE ... NORESETLOGS
versions of the script.

Note that all the restrictions related to read-only files in CREATE CONTROLFILE
statements also apply to offline normal tablespaces, except that you need to bring

the tablespace online after the database is open. You should leave out tempfiles

from the CREATE CONTROLFILE statement and add them after database open.

See Also: "Backing Up the Control File to a Trace File" on

page 2-19 to learn about taking trace backups of the control file
4-36 Oracle9i User-Managed Backup and Recovery Guide

Troubleshooting User-Managed Media R
5

Troubleshooting User-Managed Media

Recovery

This chapter describes how to troubleshoot user-managed media recovery, and

includes the following topics:

■ About User-Managed Media Recovery Problems

■ Investigating the Media Recovery Problem: Phase 1

■ Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2

■ Deciding Whether to Allow Recovery to Corrupt Blocks: Phase 3

■ Allowing Recovery to Corrupt Blocks: Phase 4

■ Performing Trial Recovery
ecovery 5-1

About User-Managed Media Recovery Problems
About User-Managed Media Recovery Problems
Table 5–1 describes potential problems that can occur during media recovery.

Table 5–1 Media Recovery Problems

Problem Description

Missing or misnamed
archived log

Recovery stops because Oracle cannot find the archived log recorded in the
control file.

When you attempt to open
the database, error
ORA-1113 indicates that a
file needs media recovery

This error commonly occurs because:

■ You are performing incomplete recovery but failed to restore all needed
datafile backups.

■ Incomplete recovery stopped before datafiles reached a consistent SCN.

■ You are recovering datafiles from an online backup, but not enough redo
was applied to make the datafiles consistent.

■ You are performing recovery with a backup control file, and did not specify
the location of a needed online log.

■ A datafile is undergoing media recovery when you attempt to open the
database.

■ Datafiles needing recovery were not brought online before executing
RECOVER DATABASE, and so were not recovered.

Redo record problems Two possible cases are as follows:

■ Recovery stops because of failed consistency checks, a problem called stuck
recovery. Stuck recovery can occur when an underlying operating system or
storage system loses a write issued by Oracle during normal operation of
the database.

■ Oracle signals an internal error when applying the redo. This problem can
be caused by an Oracle bug. If checksums are not being used, it can also be
caused by corruptions to the redo or data blocks.

Corrupted archived logs Logs may be corrupted while they are stored on or copied between storage
systems. If DB_BLOCK_CHECKSUM is enabled, then Oracle usually signals
checksum errors. If checksumming is not on, then log corruption may appear as
a problem with redo.
5-2 Oracle9i User-Managed Backup and Recovery Guide

About User-Managed Media Recovery Problems
The symptoms of media recovery problems are usually external or internal errors

signaled during recovery. For example, an external error indicates that a redo block

or a data block has failed checksum verification checks. Internal errors can be

caused by either bugs in Oracle or errors arising from the underlying operating

system and hardware.

If media recovery encounters a problem while recovering a database backup,

whether it is a stuck recovery problem or a problem during redo application, Oracle

always stops and leaves the datafiles undergoing recovery in a consistent state, that

is, at an SCN preceding the failure. You can then do one of the following:

■ Open the database read-only to investigate the problem.

■ Open the database with the RESETLOGS option, as long as the requirements for

opening RESETLOGS have been met (as described in "Opening the Database

After User-Managed Media Recovery" on page 4-26). Note that the RESETLOGS
restrictions apply to opening the standby database as well, because a standby

database is updated by a form of media recovery.

In general, opening the database read-only or opening with the RESETLOGS option

require all online datafiles to be recovered to the same SCN. If this requirement is

not met, then Oracle may signal ORA-1113 or other errors when you attempt to

open. Some common causes of ORA-1113 are described in Table 5–1.

The basic methodology for responding to media recovery problems occurs in the

following phases:

1. Try to identify the cause of the problem. Run a trial recovery if needed.

Archived logs with
incompatible parallel redo
format

If you enable the parallel redo feature in Oracle9i Release 2 (9.2), then Oracle
generates redo logs in a new format. Prior releases of Oracle are unable to apply
parallel redo logs. However, Oracle9i Release 1 (9.0.1) can detect the parallel
redo format and indicate the inconsistency with the following error message:
External error 00303, 00000, "cannot process Parallel Redo" .

See Also: Oracle9i Database Performance Tuning Guide and Reference to learn about
the parallel redo feature

Corrupted data blocks A datafile backup may have contained a corrupted data block, or the data block
may become corrupted either during recovery or when it was copied to the
backup. If checksums are being used, then Oracle signals a checksum error.
Otherwise, the problem may also appear as a redo corruption.

Random problems Memory corruptions and other transient problems can occur during recovery.

Table 5–1 Media Recovery Problems (Cont.)

Problem Description
Troubleshooting User-Managed Media Recovery 5-3

Investigating the Media Recovery Problem: Phase 1
2. If the problem is related to missing logs or you suspect there is a log, memory,

or data block corruption, then try to resolve it using the methods described in

Table 5–2.

3. If you cannot resolve the problem using the methods described in Table 5–2,

then do one of the following:

– Open the database with the RESETLOGS option if you are recovering a

whole database backup. If you have performed serial media recovery, then

the database contains all the changes up to but not including the changes at

the SCN where the corruption occurred. No changes from this SCN onward

are in the recovered part of the database. If you have restored online

backups, opening RESETLOGSsucceeds only if you have recovered through

all the ALTER ... END BACKUP operations in the redo stream.

– Proceed with recovery by allowing media recovery to corrupt data blocks.

After media recovery completes, try performing block media recovery

using RMAN.

– Call Oracle Support Services as a last resort.

Investigating the Media Recovery Problem: Phase 1
If media recovery encounters a problem, then obtain as much information as

possible after recovery halts. You do not want to waste time fixing the wrong

problem, which may in fact make matters worse.

The goal of this initial investigation is to determine whether the problem is caused

by incorrect setup, corrupted logs, corrupted data blocks, memory corruption, or

other problems. If you see a checksum error on a data block, then the data block is

corrupted. If you see a checksum error on a redo log block, then the redo log is

corrupted.

Sometimes the cause of a recovery problem can be difficult to determine.

Nevertheless, the methods in this chapter allow you to quickly recover a database

sometimes even when you do not completely understand the cause of the problem.

To investigate media recovery problems:

1. Examine the alert.log to see whether the error messages give general

information about the nature of the problem. For example, does the alert_

See Also: Oracle9i Recovery Manager User’s Guide to learn about

block media recovery
5-4 Oracle9i User-Managed Backup and Recovery Guide

Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2
SID .log indicate any checksum failures? Does the alert_ SID .log indicate

that media recovery may have to corrupt data blocks in order to continue?

2. Check the trace file generated by the Oracle process during recovery. It may

contain additional error information.

Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2
Depending on the type of media recovery problem you suspect, you have different

solutions at your disposal. You can try one or a combination of the methods

described in Table 5–2. Note that these methods are fairly safe: in almost all cases,

they should not cause any damage to the database.

Table 5–2 Media Recovery Solutions

If you suspect . . . Then . . .

Missing/misnamed
archived logs

Determine whether you entered the correct filename. If you did, then check to see
whether the log is missing from the operating system. If it is missing, and you have a
backup, then restore the backup and apply the log. If you do not have a backup, then
if possible perform incomplete recovery up to the point of the missing log.

ORA-1113 for ALTER
DATABASE OPEN

Review the causes of this error in Table 5–1. Make sure that all read/write datafiles
requiring recovery are online. If you use a backup control file for recovery, then the
control file and datafiles must be at a consistent SCN for the database to be opened. If
you do not have the necessary redo, then you must re-create the control file.

Corrupt archived logs The log is corrupted if the checksum verification on the log redo block fails. If DB_
BLOCK_CHECKSUM is not enabled either during the recovery session or when the
database generated the redo, then recovery problems may be caused by corrupted
logs. If the log is corrupt and an alternate copy of the corrupt log is available, then try
to apply it and see whether this tactic fixes the problem.

The DB_BLOCK_CHECKSUM initialization parameter determines whether checksums
are computed for redo log and data blocks.
Troubleshooting User-Managed Media Recovery 5-5

Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2
If you cannot fix the problem with the methods described in Table 5–2, then there

may be no easy way to fix the problem without losing data. You have these options:

■ Open the database with the RESETLOGS option (for whole database recovery).

This solution discards all changes after the point where the redo problem

occurred, but guarantees a logically consistent database.

■ Allow media recovery to corrupt one or more data blocks and proceed with

media recovery. This option will only succeed if the alert_ SID .log indicates

that recovery can continue if it is allowed to corrupt a data block, which should

be the case for most recovery problems. This option is best if it is important to

bring up the database quickly and recover all changes. If you are contemplating

this option as a last resort, then proceed to "Deciding Whether to Allow

Recovery to Corrupt Blocks: Phase 3" on page 5-7.

Archived logs with
incompatible parallel
redo format

If you are running an Oracle release prior to Oracle9i Release 2, and if you are
attempting to apply redo logs created with the parallel redo format, then you must
do the following steps:

1. Upgrade the database to Oracle9i Release 2.

2. Perform media recovery.

3. Shut down the database consistently and back up the database.

4. Downgrade the database to the original release.

See Also: Oracle9i Database Performance Tuning Guide and Reference to learn about the
parallel redo feature

Memory corruption or
transient problems

Shut down the database and restart recovery. Sometimes this tactic fixes the problem.
Oracle should leave the database in a consistent state if the second attempt also fails.

Corrupt data blocks Restore and recover the datafile again with user-managed methods, or restore and
recover individual data blocks with the RMAN BLOCKRECOVER command. This
tactic may fix the problem.

Note that a data block is corrupted if the checksum verification on the data block
fails. If DB_BLOCK_CHECKING is not enabled, a corrupted data block problem may
appear as a redo problem. If you must proceed with recovery, then you may want to
corrupt the block now and continue recovery, and use RMAN to perform block
media recovery later.

See Also: Oracle9i Recovery Manager User’s Guide to learn how to

perform block media recovery with the BLOCKRECOVER command

Table 5–2 Media Recovery Solutions (Cont.)

If you suspect . . . Then . . .
5-6 Oracle9i User-Managed Backup and Recovery Guide

Deciding Whether to Allow Recovery to Corrupt Blocks: Phase 3
Deciding Whether to Allow Recovery to Corrupt Blocks: Phase 3
When media recovery encounters a problem, the alert_ SID .log may indicate

that recovery can continue if it is allowed to corrupt the data block causing the

problem. The alert_ SID .log always contains information about the block: its

block type, block address, the tablespace it belongs to, and so forth. For blocks

containing user data, the log may also report the data object number.

In this case, Oracle can proceed with recovery if it is allowed to mark the problem

block as corrupt. Nevertheless, this response is not always advisable. For example,

if the block is an important block in the SYSTEM tablespace, marking the block as

corrupt can eventually prevent you from opening the recovered database. Another

consideration is whether the recovery problem is isolated. If this problem is

followed immediately by many other problems in the redo stream, then you may

want to open the database with the RESETLOGS option.

For a block containing user data, you can usually query the database to find out

which object or table owns this block. If the database is not open, then you should

be able to open the database read-only, even if you are recovering a whole database

backup. The following example cancels recovery and opens read-only:

CANCEL
ALTER DATABASE OPEN READ ONLY;

Assume that the data object number reported in the alert_ SID .log is 8031 . You

can determine the owner, object name, and object type by issuing this query:

SELECT OWNER, OBJECT_NAME, SUBOBJECT_NAME, OBJECT_TYPE
FROM DBA_OBJECTS
WHERE DATA_OBJECT_ID = 8031;

To determine whether a recovery problem is isolated, you can run a diagnostic trial
recovery, which scans the redo stream for problems but does not actually make any

changes to the recovered database. If a trial recovery discovers any recovery

problems, it reports them in the alert_ SID .log . You can use the RECOVER ...
TEST statement to invoke trial recovery.

After you have done these investigations, you can follow the guidelines in Table 5–3

to decide whether to allow recovery to corrupt blocks.

See Also: "Performing Trial Recovery" on page 5-9
Troubleshooting User-Managed Media Recovery 5-7

Allowing Recovery to Corrupt Blocks: Phase 4
Allowing Recovery to Corrupt Blocks: Phase 4
If you decide to allow recovery to proceed in spite of block corruptions, then run

the RECOVER command with the ALLOWn CORRUPTION clause, where n is the

number of allowable corrupt blocks.

To allow recovery to corrupt blocks:

1. Ensure that all normal recovery preconditions are met. For example, if the

database is open, then take tablespaces offline before attempting recovery.

Table 5–3 Guidelines for Allowing Recovery to Permit Corruption

If the problem is . . . and the block is . . . Then . . .

not isolated n/a You should probably open the database with the RESETLOGS
option. This response is important for stuck recovery
problems, because stuck recovery can be caused by the
operating system or a storage system losing writes. If an
operating system or storage system suddenly fails, it can cause
stuck recovery problems on several blocks.

isolated in the SYSTEM
tablespace

Do not corrupt the block, because it may eventually prevent
you from opening the database. However, sometimes data in
the SYSTEM tablespace is unimportant. If you must corrupt a
SYSTEM block and recover all changes, contact Oracle Support.

isolated index data Consider corrupting index blocks because the index can be
rebuilt later after the database has been recovered.

isolated user data Decide based on the importance of the data. If you continue
with datafile recovery and corrupt a block, you lose data in the
block. However, you can use RMAN to perform block media
recovery later after datafile recovery completes. If you open
RESETLOGS, then the database is consistent but loses any
changes made after the point where recovery was stopped.

isolated rollback or undo data Consider corrupting the rollback or undo block because it
does not harm the database if the transactions that generated
the undo are never rolled back. However, if those transactions
are rolled back, then corrupting the undo block can cause
problems. If you are unsure, then call Oracle Support.

See Also: "Performing Trial Recovery" on page 5-9 to learn how

to perform trial recovery, and "Allowing Recovery to Corrupt

Blocks: Phase 4" on page 5-8 if you decide to corrupt blocks
5-8 Oracle9i User-Managed Backup and Recovery Guide

Performing Trial Recovery
2. Run the RECOVER command, allowing a single corruption, repeating as

necessary for each corruption to be made. The following statements shows a

valid example:

RECOVER DATABASE ALLOW 1 CORRUPTION

Performing Trial Recovery
This section contains these topics:

■ About Trial Recovery

■ How Trial Recovery Works

■ Executing the RECOVER ... TEST Statement

About Trial Recovery
When problems such as stuck recovery occur, you have a difficult choice. If the

block is relatively unimportant, and if the problem is isolated, then it is better to

corrupt the block. But if the problem is not isolated, then it may be better to open

the database with the RESETLOGS option.

Because of this situation, Oracle supports trial recovery. A trial recovery applies

redo in a way similar to normal media recovery, but it never writes its changes to

disk and it always rolls back its changes. Trial recovery occurs only in memory.

How Trial Recovery Works
By default, if a trial recovery encounters a stuck recovery or similar problem, then it

always marks the data block as corrupt in memory when this action can allow

recovery to proceed. Oracle writes errors generated during trial recovery to alert

files. Oracle clearly marks these errors as test run errors.

Like normal media recovery, trial recovery can prompt you for archived log

filenames and ask you to apply them. Trial recovery ends when:

■ Oracle runs out of the maximum number of buffers in memory that trial

recovery is permitted to use

■ An unrecoverable error is signaled, that is, an error that cannot be resolved by

corrupting a data block

See Also: "Allowing Recovery to Corrupt Blocks: Phase 4" on

page 5-8
Troubleshooting User-Managed Media Recovery 5-9

Performing Trial Recovery
■ You cancel or interrupt the recovery session

■ The next redo record in the redo stream changes the control file

■ All requested redo has been applied

When trial recovery ends, Oracles removes all effects of the test run from the

system—except the possible error messages in the alert files. If the instance fails

during trial recovery, then Oracle removes all effects of trial recovery from the

system because trial recovery never writes changes to disk.

Trial recovery lets you foresee what problems might occur if you were to continue

with normal recovery. For problems caused by ongoing memory corruption, trial

recovery and normal recovery can encounter different errors.

Executing the RECOVER ... TEST Statement
You can use the TEST option for any RECOVER command. For example, you can

start SQL*Plus and then issue any of the following commands:

RECOVER DATABASE TEST
RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL TEST
RECOVER TABLESPACE users TEST
RECOVER DATABASE UNTIL CANCEL TEST

By default, trial recovery always attempts to corrupt blocks in memory if this action

allows trial recovery to proceed. In other words, trial recovery by default can

corrupt an unlimited number of data blocks. You can specify the ALLOWn
CORRUPTION clause on the RECOVER ... TEST statement to limit the number of

data blocks trial recovery can corrupt in memory.

Note that a trial recovery command is usable in any scenario in which a normal

recovery command is usable. Nevertheless, you should only need to run trial

recovery when recovery runs into problems.
5-10 Oracle9i User-Managed Backup and Recovery Guide

User-Managed Media Recovery
6

User-Managed Media Recovery Scenarios

This chapter describes how to recover from common media failures, and includes

the following topics:

■ Recovering After the Loss of Datafiles: Scenarios

■ Recovering Through an Added Datafile: Scenario

■ Recovering Transportable Tablespaces: Scenario

■ Recovering After the Loss of Online Redo Log Files: Scenarios

■ Recovering After the Loss of Archived Redo Log Files: Scenario

■ Recovering from User Errors: Scenario

■ Performing Media Recovery in a Distributed Environment: Scenario
Scenarios 6-1

Recovering After the Loss of Datafiles: Scenarios
Recovering After the Loss of Datafiles: Scenarios
If a media failure affects datafiles, then the recovery procedure depends on:

■ The archiving mode of the database: ARCHIVELOG or NOARCHIVELOG

■ The type of media failure

■ The files affected by the media failure

The following sections explain the appropriate recovery strategies based on the

database archiving mode:

■ Losing Datafiles in NOARCHIVELOG Mode

■ Losing Datafiles in ARCHIVELOG Mode

Losing Datafiles in NOARCHIVELOG Mode
If either a permanent or temporary media failure affects any datafiles of a database

operating in NOARCHIVELOG mode, then Oracle automatically shuts down the

database. Depending on the type of failure, use one of the following recovery

methods:

Losing Datafiles in ARCHIVELOG Mode
If either a permanent or temporary media failure affects the datafiles of a database

operating in ARCHIVELOG mode, then the following scenarios can occur.

If the media failure is . . . Then . . .

Temporary Correct the hardware problem and restart the database.
Usually, crash recovery is possible, and all committed
transactions can be recovered using the online redo log.

Permanent Follow the procedure "Performing Complete User-Managed
Media Recovery" on page 4-9.
6-2 Oracle9i User-Managed Backup and Recovery Guide

Recovering Through an Added Datafile: Scenario
Recovering Through an Added Datafile: Scenario
If database recovery with a backup control file rolls forward through a CREATE
TABLESPACE or an ALTER TABLESPACE ADD DATAFILE operation, then Oracle

stops recovery when applying the redo record for the added files and lets you

confirm the filenames.

For example, suppose you make a whole database backup, and then later create a

new tablespace containing two datafiles: /oracle/dbs/db2.f and

/oracle/dbs/db3.f . If you later restore a backup control file and perform media

recovery through the CREATE TABLESPACE operation, then Oracle may signal the

following error when applying the CREATE TABLESPACE redo data:

ORA-00283: recovery session canceled due to errors
ORA-01244: unnamed datafile(s) added to controlfile by media recovery
ORA-01110: data file 3: '/oracle/dbs/db2.f'
ORA-01110: data file 2: '/oracle/dbs/db3.f'

To recover through an ADD DATAFILE operation:

1. View the files added by selecting from V$DATAFILE. For example:

SELECT FILE#,NAME
FROM V$DATAFILE;

FILE# NAME
--------------- ----------------------
1 /oracle/dbs/db1.f
2 /oracle/dbs/UNNAMED00002
3 /oracle/dbs/UNNAMED00003

Damaged Datafiles Database Status Solution

Datafiles in the SYSTEM
tablespace or datafiles with
active rollback or undo
segments.

Oracle shuts down. If the hardware problem is temporary, then fix it
and restart the database. Usually, crash recovery
recovers lost transactions. If the hardware
problem is permanent, then refer to "Performing
Closed Database Recovery" on page 4-9.

Datafiles not in the SYSTEM
tablespace or datafiles that
do not contain active
rollback or undo segments.

Oracle takes affected
datafiles offline, but the
database stays open.

If the unaffected portions of the database must
remain available, then do not shut down the
database. Take tablespaces containing problem
datafiles offline using the temporary option, then
follow the procedure in "Performing Datafile
Recovery in an Open Database" on page 4-12.
User-Managed Media Recovery Scenarios 6-3

Recovering Transportable Tablespaces: Scenario
2. If multiple unnamed files exist, then determine which unnamed file

corresponds to which datafile by using one of these methods:

■ Open the alert_ SID .log , which contains messages about the original file

location for each unnamed file.

■ Derive the original file location of each unnamed file from the error

message and V$DATAFILE: each unnamed file corresponds to the file in the

error message with the same file number.

3. Issue the ALTER DATABASE RENAME FILE statement to rename the datafiles.

For example, enter:

ALTER DATABASE RENAME FILE '/db/UNNAMED00002' TO '/oracle/dbs/db3.f';
ALTER DATABASE RENAME FILE '/db/UNNAMED00003' TO '/oracle/dbs/db2.f';

4. Continue recovery by issuing the previous recovery statement. For example:

RECOVER AUTOMATIC DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL

Recovering Transportable Tablespaces: Scenario
The transportable tablespace feature of Oracle allows a user to transport a set of

tablespaces from one database to another. Transporting a tablespace into a database

is like creating a tablespace with preloaded data. Using this feature is often an

advantage because:

■ It is faster than using the Export or SQL*Loader utilities because it involves

only copying datafiles and integrating metadata

■ You can use it to move index data, hence avoiding the necessity of rebuilding

indexes

Like normal tablespaces, transportable tablespaces are recoverable. While you can

recover normal tablespaces without a backup, you must have a version of the

transported datafiles in order to recover a transported tablespace.

To recover a transportable tablespace:

1. If the database is open, then take the transported tablespace offline. For

example, if you want to recover the users tablespace, then issue:

ALTER TABLESPACE users OFFLINE IMMEDIATE;
6-4 Oracle9i User-Managed Backup and Recovery Guide

Recovering After the Loss of Online Redo Log Files: Scenarios
2. Restore a backup of the transported datafiles using an operating system utility.

The backup can be the initial version of the transported datafiles or any backup

taken after the tablespace is transported. For example, enter:

% cp /backup/users.dbf /oracle/dbs/users.dbf

3. Recover the tablespace as normal. For example, enter:

RECOVER TABLESPACE users

Oracle may signal ORA-01244 when recovering through a transportable tablespace

operation just as when recovering through a CREATE TABLESPACE operation. In

this case, rename the unnamed files to the correct locations using the procedure in

"Recovering Through an Added Datafile: Scenario" on page 6-3.

Recovering After the Loss of Online Redo Log Files: Scenarios
If a media failure has affected the online redo logs of a database, then the

appropriate recovery procedure depends on the following:

■ The configuration of the online redo log: mirrored or non-mirrored

■ The type of media failure: temporary or permanent

■ The types of online redo log files affected by the media failure: current, active,

unarchived, or inactive

Table 6–1 displays V$LOG status information that can be crucial in a recovery

situation involving online redo logs.

See Also: Oracle9i Database Administrator’s Guide for detailed

information about using the transportable tablespace feature

Table 6–1 STATUS Column of V$LOG

Status Description

UNUSED The online redo log has never been written to.

CURRENT The log is active, that is, needed for instance recovery, and it is
the log to which Oracle is currently writing. The redo log can be
open or closed.

ACTIVE The log is active, that is, needed for instance recovery, but is not
the log to which Oracle is currently writing.It may be in use for
block recovery, and may or may not be archived.
User-Managed Media Recovery Scenarios 6-5

Recovering After the Loss of Online Redo Log Files: Scenarios
The following sections describe the appropriate recovery strategies for these

situations:

■ Recovering After Losing a Member of a Multiplexed Online Redo Log Group

■ Recovering After the Loss of All Members of an Online Redo Log Group

Recovering After Losing a Member of a Multiplexed Online Redo Log Group
If the online redo log of a database is multiplexed, and if at least one member of

each online redo log group is not affected by the media failure, then Oracle allows

the database to continue functioning as normal. Oracle writes error messages to the

LGWR trace file and the alert_ SID .log of the database.

Solve the problem by taking one of the following actions:

■ If the hardware problem is temporary, then correct it. LGWR accesses the

previously unavailable online redo log files as if the problem never existed.

■ If the hardware problem is permanent, then drop the damaged member and

add a new member by using the following procedure.

To replace a damaged member of a redo log group:

1. Locate the filename of the damaged member in V$LOGFILE. The status is

INVALID if the file is inaccessible:

SELECT GROUP#, STATUS, MEMBER

CLEARING The log is being re-created as an empty log after an ALTER
DATABASE CLEAR LOGFILE statement. After the log is cleared,
then the status changes to UNUSED.

CLEARING_CURRENT The current log is being cleared of a closed thread. The log can
stay in this status if there is some failure in the switch such as an
I/O error writing the new log header.

INACTIVE The log is no longer needed for instance recovery. It may be in
use for media recovery, and may or may not be archived.

Note: The newly added member provides no redundancy until

the log group is reused.

Table 6–1 STATUS Column of V$LOG (Cont.)

Status Description
6-6 Oracle9i User-Managed Backup and Recovery Guide

Recovering After the Loss of Online Redo Log Files: Scenarios
FROM V$LOGFILE
WHERE STATUS=’INVALID’;

GROUP# STATUS MEMBER
------- ----------- ---------------------
0002 INVALID /oracle/dbs/log2b.f

2. Drop the damaged member. For example, to drop member log2b.f from

group 2, issue:

ALTER DATABASE DROP LOGFILE MEMBER '/oracle/dbs/log2b.f';

3. Add a new member to the group. For example, to add log2c.f to group 2,

issue:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/dbs/log2c.f' TO GROUP 2;

If the file you want to add already exists, then it must be the same size as the

other group members, and you must specify REUSE. For example:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/dbs/log2b.f' REUSE TO GROUP 2;

Recovering After the Loss of All Members of an Online Redo Log Group
If a media failure damages all members of an online redo log group, then different

scenarios can occur depending on the type of online redo log group affected by the

failure and the archiving mode of the database.

If the damaged log group is inactive, then it is not needed for crash recovery; if it is

active, then it is needed for crash recovery.

Your first task is to determine whether the damaged group is active or inactive.

If the group is . . . Then . . . And you should . . .

Inactive It is not needed for
crash recovery

Clear the archived or unarchived group.

Active It is needed for
crash recovery

Attempt to issue a checkpoint and clear the
log; if impossible, then you must restore a
backup and perform incomplete recovery
up to the most recent available log.

Current It is the log that
Oracle is currently
writing to

Attempt to clear the log; if impossible, then
you must restore a backup and perform
incomplete recovery up to the most recent
available log.
User-Managed Media Recovery Scenarios 6-7

Recovering After the Loss of Online Redo Log Files: Scenarios
To determine whether the damaged groups are active:

1. Locate the filename of the lost redo log in V$LOGFILE and then look for the

group number corresponding to it. For example, enter:

SELECT GROUP#, STATUS, MEMBER FROM V$LOGFILE;

GROUP# STATUS MEMBER
------- ----------- ---------------------
0001 /oracle/dbs/log1a.f
0001 /oracle/dbs/log1b.f
0002 INVALID /oracle/dbs/log2a.f
0002 INVALID /oracle/dbs/log2b.f
0003 /oracle/dbs/log3a.f
0003 /oracle/dbs/log3b.f

2. Determine which groups are active. For example, enter:

SELECT GROUP#, MEMBERS, STATUS, ARCHIVED FROM V$LOG;

GROUP# MEMBERS STATUS ARCHIVED
------ ------- --------- -----------
 0001 2 INACTIVE YES
 0002 2 ACTIVE NO
 0003 2 CURRENT NO

3. If the affected group is inactive, follow the procedure in "Losing an Inactive

Online Redo Log Group" on page 6-8. If the affected group is active (as in the

preceding example), then follow the procedure in "Losing an Active Online

Redo Log Group" on page 6-10.

Losing an Inactive Online Redo Log Group
If all members of an online redo log group with INACTIVE status are damaged,

then the procedure depends on whether you can fix the media problem that

damaged the inactive redo log group.

If the failure is . . . Then . . .

Temporary Fix the problem. LGWR can reuse the redo log group when
required.

Permanent The damaged inactive online redo log group eventually halts
normal database operation. Reinitialize the damaged group
manually by issuing the ALTER DATABASE CLEAR LOGFILE
statement as described in this section.
6-8 Oracle9i User-Managed Backup and Recovery Guide

Recovering After the Loss of Online Redo Log Files: Scenarios
You can clear an active redo log group when the database is open or closed. The

procedure depends on whether the damaged group has been archived.

To clear an inactive, online redo log group that has been archived:

1. If the database is shut down, then start a new instance and mount the database:

STARTUP MOUNT

2. Reinitialize the damaged log group. For example, to clear redo log group 2,

issue the following statement:

ALTER DATABASE CLEAR LOGFILE GROUP 2;

To clear an inactive, online redo log group that has not been archived:

Clearing an unarchived log allows it to be reused without archiving it. This action

makes backups unusable if they were started before the last change in the log,

unless the file was taken offline prior to the first change in the log. Hence, if you

need the cleared log file for recovery of a backup, then you cannot recover that

backup. Also, it prevents complete recovery from backups due to the missing log.

1. If the database is shut down, then start a new instance and mount the database:

STARTUP MOUNT

2. Clear the log using the UNARCHIVED keyword. For example, to clear log group

2, issue:

ALTER DATABASE CLEAR LOGFILE UNARCHIVED GROUP 2;

If there is an offline datafile that requires the cleared unarchived log to bring it

online, then the keywords UNRECOVERABLE DATAFILE are required. The

datafile and its entire tablespace have to be dropped because the redo necessary

to bring it online is being cleared, and there is no copy of it. For example, enter:

ALTER DATABASE CLEAR LOGFILE UNARCHIVED GROUP 2 UNRECOVERABLE DATAFILE;

3. Immediately back up the database with an operating system utility as described

in "Making User-Managed Backups of the Whole Database" on page 2-4. Now

you can use this backup for complete recovery without relying on the cleared

log group. For example, enter:

% cp /disk1/oracle/dbs/*.f /disk2/backup
User-Managed Media Recovery Scenarios 6-9

Recovering After the Loss of Online Redo Log Files: Scenarios
4. Back up the database's control file using the ALTER DATABASE statement as

described in "Backing Up the Control File to a Binary File" on page 2-19. For

example, enter:

ALTER DATABASE BACKUP CONTROLFILE TO '/oracle/dbs/cf_backup.f';

Failure of CLEAR LOGFILE Operation The ALTER DATABASE CLEAR LOGFILE
statement can fail with an I/O error due to media failure when it is not possible to:

■ Relocate the redo log file onto alternative media by re-creating it under the

currently configured redo log filename

■ Reuse the currently configured log filename to re-create the redo log file

because the name itself is invalid or unusable (for example, due to media

failure)

In these cases, the ALTER DATABASE CLEAR LOGFILE statement (before receiving

the I/O error) would have successfully informed the control file that the log was

being cleared and did not require archiving. The I/O error occurred at the step in

which the CLEAR LOGFILE statement attempts to create the new redo log file and

write zeros to it. This fact is reflected in V$LOG.CLEARING_CURRENT.

Losing an Active Online Redo Log Group
If the database is still running and the lost active log is not the current log, then

issue the ALTER SYSTEM CHECKPOINT statement. If successful, then the active log

is rendered inactive, and you can follow the procedure in "Losing an Inactive

Online Redo Log Group" on page 6-8. If unsuccessful, or if your database has

halted, then perform one of procedures in this section, depending on the archiving

mode.

Note that the current log is the one LGWR is currently writing to. If a LGWR I/O

fails, then LGWR terminates and the instance crashes. In this case, you must restore

a backup, perform incomplete recovery, and open the database with the

RESETLOGS option.

To recover from loss of an active online redo log group in NOARCHIVELOG
mode:

1. If the media failure is temporary, then correct the problem so that Oracle can

reuse the group when required.
6-10 Oracle9i User-Managed Backup and Recovery Guide

Recovering After the Loss of Online Redo Log Files: Scenarios
2. Restore the database from a consistent, whole database backup (datafiles and

control files) as described in "Restoring Datafiles" on page 3-6. For example,

enter:

% cp /disk2/backup/*.f /disk1/oracle/dbs

3. Mount the database:

STARTUP MOUNT

4. Because online redo logs are not backed up, you cannot restore them with the

datafiles and control files. In order to allow Oracle to reset the online redo logs,

you must first mimic incomplete recovery:

RECOVER DATABASE UNTIL CANCEL
CANCEL

5. Open the database using the RESETLOGS option:

ALTER DATABASE OPEN RESETLOGS;

6. Shut down the database consistently. For example, enter:

SHUTDOWN IMMEDIATE

7. Make a whole database backup as described in "Making User-Managed

Backups of the Whole Database" on page 2-4. For example, enter:

% cp /disk1/oracle/dbs/*.f /disk2/backup

To recover from loss of an active online redo log group in ARCHIVELOG mode:

If the media failure is temporary, then correct the problem so that Oracle can reuse

the group when required. If the media failure is not temporary, then use the

following procedure.

1. Begin incomplete media recovery. Use the procedure given in "Performing

Incomplete User-Managed Media Recovery" on page 4-16, recovering up

through the log before the damaged log.

2. Ensure that the current name of the lost redo log can be used for a newly

created file. If not, then rename the members of the damaged online redo log

group to a new location. For example, enter:

ALTER DATABASE RENAME FILE "/oracle/dbs/log_1.rdo" TO "/temp/log_1.rdo";
ALTER DATABASE RENAME FILE "/oracle/dbs/log_2.rdo" TO "/temp/log_2.rdo";
User-Managed Media Recovery Scenarios 6-11

Recovering After the Loss of Archived Redo Log Files: Scenario
3. Open the database using the RESETLOGS option:

ALTER DATABASE OPEN RESETLOGS;

Loss of Multiple Redo Log Groups
If you have lost multiple groups of the online redo log, then use the recovery

method for the most difficult log to recover. The order of difficulty, from most

difficult to least difficult, follows:

1. The current online redo log

2. An active online redo log

3. An unarchived online redo log

4. An inactive online redo log

Recovering After the Loss of Archived Redo Log Files: Scenario
If the database is operating in ARCHIVELOG mode, and if the only copy of an

archived redo log file is damaged, then the damaged file does not affect the present

operation of the database. The following situations can arise, however, depending

on when the redo log was written and when you backed up the datafile.

Note: All updates executed from the endpoint of the incomplete

recovery to the present must be re-executed.

If you backed up . . . Then . . .

All datafiles after the filled online redo
log group (which is now archived) was
written

The archived version of the filled online redo log
group is not required for complete media
recovery operation.

A specific datafile before the filled
online redo log group was written

If the corresponding datafile is damaged by a
permanent media failure, use the most recent
backup of the damaged datafile and perform
incomplete recovery up to the damaged log.

Caution: If you know that an archived redo log group has been

damaged, immediately back up all datafiles so that you will have a

whole database backup that does not require the damaged archived

redo log.
6-12 Oracle9i User-Managed Backup and Recovery Guide

Performing Media Recovery in a Distributed Environment: Scenario
Recovering from User Errors: Scenario
An accidental operational or programmatic change to the database can cause loss or

corruption of data. Recovery may require a return to a state prior to the error.

To recover a table that has been accidentally dropped:

1. If possible, keep the database that experienced the user error online and

available for use. Back up all datafiles of the existing database in case an error is

made during the remaining steps of this procedure.

2. Restore a database backup to an alternative location, then perform incomplete

recovery of this backup using a restored backup control file, to the point just

before the table was dropped (as described in "Performing Incomplete

User-Managed Media Recovery" on page 4-16).

3. Export the lost data from the temporary, restored version of the database using

the Oracle utility Export. In this case, export the accidentally dropped table.

4. Use the Import utility to import the data back into the production database.

5. Delete the files of the temporary copy of the database to conserve space.

Performing Media Recovery in a Distributed Environment: Scenario
The manner in which you perform media recovery depends on whether your

database participates in a distributed database system. The Oracle distributed

database architecture is autonomous. Therefore, depending on the type of recovery

operation selected for a single, damaged database, you may have to coordinate

recovery operations globally among all databases in the distributed system.

Note: If you have granted powerful privileges (such as DROP ANY
TABLE) to only selected, appropriate users, you can minimize user

errors that require database recovery.

Note: System audit options are exported.

See Also: Oracle9i Database Utilities for more information about

the Import and Export utilities
User-Managed Media Recovery Scenarios 6-13

Performing Media Recovery in a Distributed Environment: Scenario
Table 6–2 summarizes different types of recovery operations and whether

coordination among nodes of a distributed database system is required.

Coordinating Time-Based and Change-Based Distributed Database Recovery
In special circumstances, one node in a distributed database may require recovery

to a past time. To preserve global data consistency, it is often necessary to recover all

other nodes in the system to the same point in time. This operation is called

coordinated, time-based, distributed database recovery. The following tasks

should be performed with the standard procedures of time-based and change-based

recovery described in this chapter.

1. Recover the database that requires the recovery operation using time-based

recovery, as described in "Performing Time-Based Incomplete Recovery" on

page 4-20. For example, if a database needs to be recovered because of a user

error (such as an accidental table drop), then recover this database first using

time-based recovery. Do not recover the other databases at this point.

2. After you have recovered the database and opened it with the RESETLOGS
option, search the alert_ SID .log of the database for the RESETLOGS
message.

If the message is, "RESETLOGS after complete recovery through change xxx",

then you have applied all the changes in the database and performed complete

recovery. Do not recover any of the other databases in the distributed system, or

you will unnecessarily remove changes in them. Recovery is complete.

Table 6–2 Recovery Operations in a Distributed Database Environment

If you are . . . Then . . .

Restoring a whole backup for a database that was
never accessed from a remote node

Use non-coordinated, autonomous database recovery.

Restoring a whole backup for a database that was
accessed by a remote node for a database in
NOARCHIVELOG mode

Shut down all databases and restore them using the
same coordinated full backup.

Performing complete media recovery of one or
more databases in a distributed database

Use non-coordinated, autonomous database recovery.

Performing incomplete media recovery of a
database that was never accessed by a remote node

Use non-coordinated, autonomous database recovery.

Performing incomplete media recovery of a
database that was accessed by a remote node

Use coordinated, incomplete recovery to the same global
point in time for all databases in the distributed system.
6-14 Oracle9i User-Managed Backup and Recovery Guide

Performing Media Recovery in a Distributed Environment: Scenario
If the message is, "RESETLOGS after incomplete recovery UNTIL CHANGE

xxx", then you have successfully performed an incomplete recovery. Record the

change number from the message and proceed to the next step.

3. Recover all other databases in the distributed database system using

change-based recovery, specifying the change number (SCN) from Step 2.
User-Managed Media Recovery Scenarios 6-15

Performing Media Recovery in a Distributed Environment: Scenario
6-16 Oracle9i User-Managed Backup and Recovery Guide

Performing User-Managed TS
7

Performing User-Managed TSPITR

This chapter describes how to perform user-managed tablespace point-in-time

recovery (TSPITR) with the transportable tablespace feature.

This chapter includes the following topics:

■ Introduction to User-Managed Tablespace Point-in-Time Recovery

■ Preparing for Tablespace Point-in-Time Recovery: Basic Steps

■ Restoring and Recovering the Auxiliary Database: Basic Steps

■ Performing TSPITR with Transportable Tablespaces

■ Performing Partial TSPITR of Partitioned Tables

■ Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped

■ Performing TSPITR of Partitioned Tables When a Partition Has Split
PITR 7-1

Introduction to User-Managed Tablespace Point-in-Time Recovery
Introduction to User-Managed Tablespace Point-in-Time Recovery
Tablespace point-in-time recovery (TSPITR) with the transportable tablespace

feature enables you to quickly recover one or more tablespaces (other than the

SYSTEM tablespace) to a time that is prior to the rest of the database.

User-managed TSPITR is most useful for recovering the following:

■ An erroneous DROP TABLE or TRUNCATE TABLE operation

■ An erroneous DROP TABLESPACE operation

■ A table that is logically corrupted

■ An incorrect batch job or other DML statement that has affected only a subset of

the database

■ A logical schema to a point different from the rest of the physical database

when multiple schemas exist in separate tablespaces of one physical database

■ A tablespace in a VLDB (very large database) when TSPITR is more efficient

than restoring the whole database from a backup and rolling it forward (refer to

"Preparing for Tablespace Point-in-Time Recovery: Basic Steps" on page 7-4

before making any decisions)

TSPITR Terminology
Familiarize yourself with the following terms and abbreviations, which are used

throughout this chapter:

TSPITR
Tablespace point-in-time recovery

Primary Database
The database containing the tablespace or tablespaces that you want to recover to a

prior point in time.

Auxiliary Database
A copy of the current database that is restored from a backup. It includes restored

backups of the following:

■ Datafiles belonging to the SYSTEM tablespace

■ Datafiles in the set of tablespaces to be recovered

■ Datafiles belonging to a system managed undo tablespace (when you run the

database in automatic undo management mode) or tablespace that contains
7-2 Oracle9i User-Managed Backup and Recovery Guide

Introduction to User-Managed Tablespace Point-in-Time Recovery
rollback segments (when you run the database in manual undo management

mode)

All backups must be from a point in time prior to the desired recovery time.

Recovery Set
All the tablespaces that require point-in-time recovery to be performed on them.

Recovery Set Self-Containment Check
All objects that are part of the recovery set must be self-contained: there can be no

dependencies on objects outside the recovery set. For example, if a table is part of

the recovery set and its indexes are in a separate tablespace, then the recovery set

must include the tablespace containing the index. Alternatively, the index can be

dropped. The recovery set tablespaces can be checked for self-containment with the

procedure DBMS_TTS.TRANSPORT_SET_CHECK.

Auxiliary Set
Any other items required for restoring the auxiliary database, including:

■ Backup control file

■ Datafiles from the SYSTEM tablespace

■ Datafiles in an undo tablespace or datafiles containing rollback segments

Transportable Tablespace
A rapid method of transporting tablespaces across databases by unplugging them

from a source database and plugging them into a target database. The unplugging

and plugging is done with the Export and Import utilities. Note that there is no

actual export and import of the table data, but simply an export and import of

internal metadata. During the procedure, the datafiles of the transported

tablespaces are made part of the target database.

TSPITR Methods
In releases prior to Oracle9i, you had the following two methods for performing

user-managed TSPITR:

■ Traditional user-managed TSPITR, which required you to create a special type

of database called a clone database

■ User-managed TSPITR with the transportable tablespace feature
Performing User-Managed TSPITR 7-3

Preparing for Tablespace Point-in-Time Recovery: Basic Steps
Oracle9i TSPITR should be performed by using the transportable tablespace feature.

This procedure is relatively easy to use and is less error prone than the traditional

method, which is currently deprecated (although not yet unsupported).

Conceptually, TSPITR is performed by dropping the tablespaces to be recovered

from the primary database, restoring a copy of the database called an auxiliary
database and recovering it to the desired point in time, then transporting the

relevant tablespaces from the auxiliary database to the current version of the

primary database.

For ease of use, it is highly recommended that you place the auxiliary and primary

databases on different hosts. Nevertheless, you can also perform TSPITR when the

databases are located on the same host.

The basic procedure for performing user-managed TSPITR is as follows:

1. Take the tablespaces requiring TSPITR offline

2. Plan the setup of the auxiliary database.

3. Create the auxiliary database and recover it to the desired point in time.

4. Drop the tablespaces requiring TSPITR from the primary database.

5. Use the transportable tablespace feature to transport the set of tablespaces from

the auxiliary database to the primary database.

Preparing for Tablespace Point-in-Time Recovery: Basic Steps
TSPITR requires careful planning. Before proceeding you should read this chapter

thoroughly.

This section contains the following topics:

■ Step 1: Review TSPITR Requirements

■ Step 2: Identify All of the Files in the Recovery and Auxiliary Set Tablespaces

■ Step 3: Determine Whether Objects Will Be Lost

■ Step 4: Choose a Method for Connecting to the Auxiliary Instance

■ Step 5: Create an Oracle Password File for the Auxiliary Instance

■ Step 6: Create the Initialization Parameter File for the Auxiliary Instance

See Also: Oracle9i Database Administrator’s Guide for a complete

account of how to use the transportable tablespace feature
7-4 Oracle9i User-Managed Backup and Recovery Guide

Preparing for Tablespace Point-in-Time Recovery: Basic Steps
Step 1: Review TSPITR Requirements
Satisfy the following requirements before performing TSPITR:

■ Ensure that you have backups of all datafiles in the recovery and auxiliary set

tablespaces. The datafile backups must have been created before the desired

TSPITR time.

■ Ensure that you have a control file backup that is usable on the auxiliary

database. To be usable, the control file must meet these requirements:

– The control file must have been backed up before the desired TSPITR time.

– The control file must have been backed up with the following SQL

statement, where cf_name refers to the fully specified filename:

ALTER DATABASE BACKUP CONTROLFILE TO 'cf_name ';

■ Ensure that all files constituting the recovery set tablespaces are in the recovery

set on the auxiliary database; otherwise, the export phase during tablespace

transport fails.

■ Allocate enough disk space on the auxiliary host to accommodate the auxiliary

database.

■ Provide enough real memory to start the auxiliary instance.

Step 2: Identify All of the Files in the Recovery and Auxiliary Set Tablespaces
Before you create the auxiliary database, make sure that you connect to the primary

database with administrator privileges and obtain all of the following information

about the primary database:

■ The filenames of the datafiles in the recovery set tablespaces

■ The filenames of the datafiles in the SYSTEM tablespace

■ The filenames of the datafiles in an undo tablespace or datafiles containing

rollback segments

Caution: You should not perform TSPITR for the first time on a

production system, or when there is a time constraint.

See Also: "Step 6: Create the Initialization Parameter File for the

Auxiliary Instance" on page 7-7
Performing User-Managed TSPITR 7-5

Preparing for Tablespace Point-in-Time Recovery: Basic Steps
■ The filenames of the control files

The following useful query displays the filenames of all datafiles, control files, and

online redo logs in the database:

SELECT NAME FROM V$DATAFILE
UNION ALL
SELECT MEMBER FROM V$LOGFILE
UNION ALL
SELECT NAME FROM V$CONTROLFILE;

To determine the filenames of the datafiles in the SYSTEM and recovery set

tablespaces, execute the following query and replace RECO_TBS_1, RECO_TBS_2,
and so forth with the names of the recovery set tablespaces:

SELECT t.NAME AS "reco_tbs", d.NAME AS "dbf_name"
 FROM V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND t.NAME IN ('SYSTEM', ’ RECO_TBS_1’, ’ RECO_TBS_2’);

If you run the database in manual undo management mode, then the following

query displays the names of the tablespaces containing rollback segments as well as

the names of the datafiles in the tablespaces:

SELECT r.TABLESPACE_NAME AS "rbs_tbs", d.FILE_NAME AS "dbf_name"
 FROM DBA_ROLLBACK_SEGS r, DBA_DATA_FILES d
WHERE r.TABLESPACE_NAME=d.TABLESPACE_NAME;

If you run the database in automatic undo management mode, then the following

query displays the names of the undo tablespaces as well as the names of the

datafiles in the tablespaces:

SELECT u.TABLESPACE_NAME AS "undo_tbs", d.FILE_NAME AS "dbf_name"
 FROM DBA_UNDO_EXTENTS u, DBA_DATA_FILES d
WHERE u.TABLESPACE_NAME=d.TABLESPACE_NAME;

Step 3: Determine Whether Objects Will Be Lost
When TSPITR is performed on a tablespace, any objects created after the recovery

time are lost. To determine which objects will be lost, query the TS_PITR_
OBJECTS_TO_BE_DROPPED view on the primary database. The contents of the

view are described in Table 7–1.

Table 7–1 TS_PITR_OBJECTS_TO_BE_DROPPED View

Column Name Meaning

OWNER Owner of the object to be dropped.
7-6 Oracle9i User-Managed Backup and Recovery Guide

Preparing for Tablespace Point-in-Time Recovery: Basic Steps
When querying this view, supply all the elements of the date field, otherwise the

default setting is used. Also, use the TO_CHAR and TO_DATE functions. For

example, with a recovery set consisting of sales_1 and sales_2 , and a recovery

point in time of '2000-06-02:07:03:11' , execute the following SQL script:

SELECT OWNER, NAME, TABLESPACE_NAME, TO_CHAR(CREATION_TIME, 'YYYY-MM-DD:HH24:MI:SS')
 FROM SYS.TS_PITR_OBJECTS_TO_BE_DROPPED
WHERE TABLESPACE_NAME IN ('SALES_1','SALES_2')
AND CREATION_TIME > TO_DATE('00-JUN-02:07:03:11','YY-MON-DD:HH24:MI:SS')
ORDER BY TABLESPACE_NAME, CREATION_TIME;

Step 4: Choose a Method for Connecting to the Auxiliary Instance
You must be able to connect to the auxiliary instance. You can either use Oracle Net

or operating system authentication. To learn how to configure networking files,

refer to Oracle9i Net Services Administrator’s Guide.

Step 5: Create an Oracle Password File for the Auxiliary Instance
For information about creating and maintaining Oracle password files, refer to the

Oracle9i Database Administrator’s Guide. If you do not use a password file, then you

can skip this step.

Step 6: Create the Initialization Parameter File for the Auxiliary Instance
Create a new initialization parameter file rather than copying and then editing the

production database initialization parameter file. Save memory by using low

settings for parameters such as the following:

■ DB_CACHE_SIZE

■ SHARED_POOL_SIZE

NAME The name of the object that will be lost as a result of TSPITR

CREATION_TIME Creation time stamp for the object.

TABLESPACE_NAME Name of the tablespace containing the object.

See Also: Oracle9i Database Reference for more information about

the TS_PITR_OBJECTS_TO_BE_DROPPED view

Table 7–1 TS_PITR_OBJECTS_TO_BE_DROPPED View (Cont.)

Column Name Meaning
Performing User-Managed TSPITR 7-7

Preparing for Tablespace Point-in-Time Recovery: Basic Steps
■ LARGE_POOL_SIZE

Note that reducing the preceding parameter settings can prevent the auxiliary

database from starting when other dependent parameters are set too high—for

example, the initialization parameter ENQUEUE_RESOURCES, which allocates

memory from within the shared pool.

The auxiliary database can be either on the same host as the primary database or on

a different host. Because the auxiliary database filenames are identical to the

primary database filenames in the auxiliary control file, you must rename them in

this control file so that they point to the restored locations. If the auxiliary database

is on the same machine as the primary database, or if the auxiliary database is on a

different machine that uses different path names, then you must rename the control

files, datafiles, and online redo logs. If the auxiliary database is on a different

machine with the same path names, then you can rename just the online redo logs.

Set the parameters shown in Table 7–2 in the auxiliary initialization parameter file.

Caution: If the auxiliary and primary database are on the same

machine, then failing to rename the online redo log files may cause

primary database corruption.

Table 7–2 Auxiliary Initialization Parameters

Parameter Purpose

DB_NAME Names the auxiliary database. Leave the name of the
auxiliary database the same as the primary database.

CONTROL_FILES Identifies auxiliary control files. Set to the filename of the
auxiliary control file. Make sure the control file name is
different from the primary database control file name.

LOCK_NAME_SPACE Allows the auxiliary database to start even though it has
the same name as the primary database. Set to any unique
value, for example, = AUX. This parameter is only needed if
the auxiliary and primary database are on the same host.

DB_FILE_NAME_CONVERT Uses patterns to convert filenames for the datafiles of the
auxiliary database. This parameter is only necessary if you
are either restoring the auxiliary database on the same host
as the primary host, or on a different host that uses
different path names from the primary host.

LOG_FILE_NAME_CONVERT Uses patterns to convert filenames for the online redo logs
of the auxiliary database. This parameter is mandatory.
7-8 Oracle9i User-Managed Backup and Recovery Guide

Restoring and Recovering the Auxiliary Database: Basic Steps
Set other parameters as needed, including the parameters that allow you to connect

as SYSDBA through Oracle Net.

For example, the auxiliary parameter file for a database on the same host as the

primary could look like the following:

DB_NAME = prod1
CONTROL_FILES = /oracle/aux/cf1.f
LOCK_NAME_SPACE = aux
DB_FILE_NAME_CONVERT=("/oracle/dbs/","/oracle/aux/")
LOG_FILE_NAME_CONVERT=("/oracle/dbs/","/oracle/aux/")
LOG_ARCHIVE_DEST_1 = ’LOCATION=/oracle/work/arc_dest/arc’
LOG_ARCHIVE_FORMAT = r_%t_%s.arc

The auxiliary parameter file for a database on a different host with the same path

names as the primary could look like the following:

DB_NAME = prod1
CONTROL_FILES = /oracle/aux/cf1.f
LOG_FILE_NAME_CONVERT=("/oracle/dbs/","/oracle/aux/")
LOG_ARCHIVE_DEST_1 = ’LOCATION=/oracle/work/arc_dest/arc’
LOG_ARCHIVE_FORMAT = r_%t_%s.arc

Restoring and Recovering the Auxiliary Database: Basic Steps
The procedure for restore and recovery of the auxiliary database differs depending

on whether the auxiliary database is on the same host as the primary database. The

examples in this section assume:

■ You are performing TSPITR on production database called prod1 located on

host prim_host .

LOG_ARCHIVE_DEST_1 Specifies the default directory containing the archived redo
logs required for recovery.This parameter specifies the
location on the auxiliary host in which the archived logs
will be located.

LOG_ARCHIVE_FORMAT Specifies the format of the archived logs. You should use
the same format setting used in the primary initialization
parameter file.

Table 7–2 Auxiliary Initialization Parameters (Cont.)

Parameter Purpose
Performing User-Managed TSPITR 7-9

Restoring and Recovering the Auxiliary Database: Basic Steps
■ The recovery set tablespaces are sales_1 and sales_2 . Tablespace sales_1
contains datafile /oracle/dbs/sales_1.f and tablespace sales_2 contains

datafile /fs2/sales_2.f .

■ The auxiliary set contains the SYSTEM tablespace datafile

/oracle/dbs/system.f , the undo tablespace datafile

/oracle/dbs/undo.f , and the control file /oracle/dbs/cf1.f .

■ The online redo logs are named /oracle/dbs/log1.f and

/oracle/dbs/log2.f .

■ All the primary database files are contained in /oracle/dbs

The different cases are described in the following sections:

■ Restoring and Recovering the Auxiliary Database on the Same Host

■ Restoring the Auxiliary Database on a Different Host with the Same Path

Names

■ Restoring the Auxiliary Database on a Different Host with Different Path

Names

Restoring and Recovering the Auxiliary Database on the Same Host
The following examples assume the case in which you restore the auxiliary

database to the same host as the primary database. In this scenario, all of the

primary database files are contained in /oracle/dbs , and you want to restore the

auxiliary database to /oracle/dbs/aux . So, you set DB_FILE_NAME_CONVERT
and LOG_FILE_NAME_CONVERT to convert the filenames from /oracle/dbs to

/oracle/dbs/aux .

Perform the following tasks to restore and recover the auxiliary database:

1. Restore the auxiliary set and the recovery set to a location different from that of

the primary database. For example, assume that the auxiliary set consists of the

following files:

/oracle/dbs/cf1.f # control file
/oracle/dbs/undo.f # datafile in undo tablespace
/oracle/dbs/system.f # datafile in SYSTEM tablespace

And the recovery set consists of the following datafiles:

/oracle/dbs/sales_1.f # datafile in sales_1 tablespace
/oracle/dbs/sales_2.f # datafile in sales_2 tablespace
7-10 Oracle9i User-Managed Backup and Recovery Guide

Restoring and Recovering the Auxiliary Database: Basic Steps
You can restore backups of the auxiliary set files and recovery set files to a new

location as follows:

cp /backup/cf1.f /aux/cf1.f
cp /backup/undo.f /aux/undo.f
cp /backup/system.f /aux/system.f
cp /backup/sales_1.f /aux/sales_1.f
cp /backup/sales_2.f /aux/sales_2.f

2. Start the auxiliary database without mounting it, specifying the initialization

parameter file if necessary. For example, enter:

STARTUP NOMOUNT PFILE=/aux/initAUX.ora

3. Mount the auxiliary database, specifying the CLONE keyword:

ALTER DATABASE MOUNT CLONE DATABASE;

The CLONE keyword causes Oracle to take all datafiles offline automatically.

4. Manually rename all auxiliary database files to reflect their new locations only if
these files are not renamed by DB_FILE_NAME_CONVERT and LOG_FILE_
NAME_CONVERT. In our scenario, all datafiles and online redo logs are renamed

by initialization parameters, so no manual renaming is necessary.

5. Run the following SQL script to ensure that all datafiles are named correctly:

SELECT NAME FROM V$DATAFILE
UNION ALL
SELECT MEMBER FROM V$LOGFILE
UNION ALL
SELECT NAME FROM V$CONTROLFILE
/

If not, then rename the files manually as in the previous step.

6. Bring only the datafiles in the auxiliary and recovery set tablespaces online. For

example, bring the four datafiles in the recovery and auxiliary sets online:

ALTER DATABASE DATAFILE /oracle/dbs/aux/system.f ONLINE;
ALTER DATABASE DATAFILE /oracle/dbs/aux/sales_1.f ONLINE;
ALTER DATABASE DATAFILE /oracle/dbs/aux/sales_2.f ONLINE;
ALTER DATABASE DATAFILE /oracle/dbs/aux/undo.f ONLINE;

Note: The export phase of TSPITR will not work if all the files of

each recovery set tablespace are not online.
Performing User-Managed TSPITR 7-11

Restoring and Recovering the Auxiliary Database: Basic Steps
At this point, the auxiliary database is mounted and ready for media recovery.

7. Recover the auxiliary database to the specified point in time with the USING
BACKUP CONTROLFILE option. Use any form of incomplete recovery as

described in "Performing Incomplete User-Managed Media Recovery" on

page 4-16. The following example uses cancel-based incomplete recovery:

RECOVER DATABASE UNTIL CANCEL USING BACKUP CONTROLFILE

8. Open the auxiliary database with the RESETLOGS option using the following

statement:

ALTER DATABASE OPEN RESETLOGS;

Restoring the Auxiliary Database on a Different Host with the Same Path Names
The following example assumes that you create the auxiliary database on a different

host called aux_host . The auxiliary host has the same path names as the primary

host. Hence, you do not need to rename the auxiliary database datafiles. So, you do

not need to set DB_FILE_NAME_CONVERT, although you should set LOG_FILE_
NAME_CONVERT.

To restore and recover the auxiliary database:

1. Restore the auxiliary set and the recovery set to the auxiliary host. For example,

assume that the auxiliary set consists of the following files:

/oracle/dbs/cf1.f # control file
/oracle/dbs/undo.f # datafile in undo tablespace
/oracle/dbs/system.f # datafile in SYSTEM tablespace

And the recovery set consists of the following datafiles:

/oracle/dbs/sales_1.f # 1st datafile in sales_1 tablespace
/oracle/dbs/sales_2.f # 2nd datafile in sales_2 tablespace

These files will occupy the same locations in the auxiliary host.

2. Start the auxiliary database without mounting it, specifying the initialization

parameter file if necessary. For example, enter:

STARTUP NOMOUNT PFILE=/aux/initAUX.ora

3. Mount the auxiliary database, specifying the CLONE keyword:

ALTER DATABASE MOUNT CLONE DATABASE;

The CLONE keyword causes Oracle to take all datafiles offline automatically.
7-12 Oracle9i User-Managed Backup and Recovery Guide

Restoring and Recovering the Auxiliary Database: Basic Steps
4. Rename all auxiliary database files to reflect their new locations only if these

files are not renamed by DB_FILE_NAME_CONVERT and LOG_FILE_NAME_
CONVERT. In our scenario, the datafiles do not require renaming, and the logs

are converted with LOG_FILE_NAME_CONVERT. So, no manual renaming is

necessary.

5. Run the following script in SQL*Plus to ensure that all datafiles are named

correctly.

SELECT NAME FROM V$DATAFILE
UNION ALL
SELECT MEMBER FROM V$LOGFILE
UNION ALL
SELECT NAME FROM V$CONTROLFILE
/

If not, then rename them manually as in the previous step.

6. Bring all datafiles in the auxiliary and recovery set tablespaces online. For

example, bring the four datafiles in the recovery and auxiliary sets online:

ALTER DATABASE DATAFILE /oracle/dbs/system.f ONLINE;
ALTER DATABASE DATAFILE /oracle/dbs/sales_1.f ONLINE;
ALTER DATABASE DATAFILE /oracle/dbs/sales_2.f ONLINE;
ALTER DATABASE DATAFILE /oracle/dbs/undo.f ONLINE;

At this point, the auxiliary database is mounted and ready for media recovery.

7. Recover the auxiliary database to the specified point in time with the USING
BACKUP CONTROLFILE option. Use any form of incomplete recovery as

described in "Performing Incomplete User-Managed Media Recovery" on

page 4-16. The following example uses cancel-based incomplete recovery:

RECOVER DATABASE UNTIL CANCEL USING BACKUP CONTROLFILE

8. Open the auxiliary database with the RESETLOGS option using the following

statement:

ALTER DATABASE OPEN RESETLOGS;

Note: The export phase of TSPITR will not work if all the files of

each recovery set tablespace are not online.
Performing User-Managed TSPITR 7-13

Performing TSPITR with Transportable Tablespaces
Restoring the Auxiliary Database on a Different Host with Different Path Names
This case should be treated exactly like "Restoring and Recovering the Auxiliary

Database on the Same Host" on page 7-10. The same guidelines for renaming files

apply in both cases.

Performing TSPITR with Transportable Tablespaces
After you have completed the preparation stage, begin the actual TSPITR procedure

as described in Oracle9i Database Administrator’s Guide. The procedure occurs in the

following steps:

■ Step 1: Unplugging the Tablespaces from the Auxiliary Database

■ Step 2: Transporting the Tablespaces into the Primary Database

Step 1: Unplugging the Tablespaces from the Auxiliary Database
In this step, you recover the auxiliary database to the desired noncurrent time, then

unplug the desired tablespaces.

To unplug the auxiliary database tablespaces:

1. Make the tablespaces in the recovery set read-only by running the ALTER
TABLESPACE ... READ ONLY statement. For example, make sales_1 and

sales_2 read-only as follows:

ALTER TABLESPACE sales_1 READ ONLY;
ALTER TABLESPACE sales_2 READ ONLY;

2. Ensure that the recovery set is self-contained. For example:

EXECUTE SYS.DBMS_TTS.TRANSPORT_SET_CHECK(’sales_1,sales_2’,TRUE,TRUE);

3. Query the transportable tablespace violations table to manage any

dependencies. For example:

SELECT * FROM SYS.TRANSPORT_SET_VIOLATIONS;

This query should return no rows after all dependencies are managed. Refer to

Oracle9i Database Administrator’s Guide for more information about this table.

4. Generate the transportable set by running the Export utility as described in

Oracle9i Database Administrator’s Guide. Include all tablespaces in the recovery

set, as in the following example:

% exp SYS/pwd TRANSPORT_TABLESPACE=y TABLESPACES=(sales_1,sales_2) TTS_FULL_CHECK=y
7-14 Oracle9i User-Managed Backup and Recovery Guide

Performing TSPITR with Transportable Tablespaces
This command generates an export file named expdat.dmp .

Step 2: Transporting the Tablespaces into the Primary Database
In this step, you transport the recovery set tablespaces into the primary database.

To plug the recovery set tablespaces into the primary database:

1. In the primary database (not the auxiliary database), drop the tablespaces in the

recovery set through the DROP TABLESPACE statement. For example:

DROP TABLESPACE sales_1 INCLUDING CONTENTS;
DROP TABLESPACE sales_2 INCLUDING CONTENTS;

2. Restore the recovery set datafiles from the auxiliary database to the recovery set

file locations in the primary database. For example:

% cp /net/aux_host/aux/sales_1.f /net/primary_host/oracle/dbs/sales_1.f
% cp /net/aux_host/aux/sales_2.f /net/primary_host/oracle/dbs/sales_2.f

3. Move the export file expdat.dmp to the primary host. For example, enter:

% cp /net/aux_host/aux/expdat.dmp /net/primary_host/oracle/dbs/expdat.dmp

4. Plug in the transportable set into the primary database by running Import as

described in Oracle9i Database Administrator’s Guide. For example:

% imp TRANSPORT_TABLESPACE=y FILE=expat.dmp
 DATAFILES=(’/oracle/dbs/sales_1.f’,’/oracle/dbs/sales_2.f’)

5. Make the recovered tablespaces read write by issuing the ALTER TABLESPACE
READ WRITE statement. For example:

ALTER TABLESPACE sales_1 READ WRITE;
ALTER TABLESPACE sales_2 READ WRITE;

6. Back up the recovered tablespaces with an operating system utility as described

in "Making User-Managed Backups of Online Tablespaces and Datafiles" on

page 2-7.

Caution: You must back up the tablespace because otherwise you

might lose it. For example, a media failure occurs, but the archived

logs from the last backup of the database do not logically link to the

recovered tablespaces. If you attempt to recover any recovery set

tablespaces from a backup taken before TSPITR, then recovery fails.
Performing User-Managed TSPITR 7-15

Performing Partial TSPITR of Partitioned Tables
Performing Partial TSPITR of Partitioned Tables
Partitioned tables can span multiple tablespaces. Follow this procedure only if the

recovery set does not fully contain all of the partitions.

This section describes how to perform partial TSPITR of partitioned tables that have

a range that has not changed or expanded, and includes the following steps:

■ Step 1: Create a Table on the Primary Database for Each Partition Being

Recovered

■ Step 2: Drop the Indexes on the Partition Being Recovered

■ Step 3: Exchange Partitions with Standalone Tables

■ Step 4: Drop the Recovery Set Tablespace

■ Step 5: Create Tables at Auxiliary Database

■ Step 6: Drop Indexes on Partitions Being Recovered

■ Step 7: Exchange Partitions with Standalone Tables on the Auxiliary Database

■ Step 8: Transport the Recovery Set Tablespaces

■ Step 9: Exchange Partitions with Standalone Tables on the Primary Database

■ Step 10: Back Up the Recovered Tablespaces in the Primary Database

Step 1: Create a Table on the Primary Database for Each Partition Being Recovered
This table should have the exact same column names and column datatypes as the

partitioned table you are recovering. Create the table using the following template:

CREATE TABLEnew_table AS
 SELECT * FROM partitioned_table
 WHERE 1=2;

These tables are used to swap each recovery set partition (see "Step 3: Exchange

Partitions with Standalone Tables" on page 7-17).

Note: Often you have to recover the dropped partition along with

recovering a partition whose range has expanded. Refer to

"Performing TSPITR of Partitioned Tables When a Partition Has

Been Dropped" on page 7-18.
7-16 Oracle9i User-Managed Backup and Recovery Guide

Performing Partial TSPITR of Partitioned Tables
Step 2: Drop the Indexes on the Partition Being Recovered
Drop the indexes on the partition you wish to recover, or create identical,

non-partitioned indexes that exist on the partition you wish to recover. If you drop

the indexes on the partition being recovered, then you need to drop them on the

auxiliary database (see "Step 6: Drop Indexes on Partitions Being Recovered" on

page 7-18). Rebuild the indexes after TSPITR is complete.

Step 3: Exchange Partitions with Standalone Tables
Exchange each partition in the recovery set with its associated standalone table

(created in Step 1) by issuing the following statement, replacing the variables with

the names of the appropriate objects:

ALTER TABLE table_name EXCHANGE PARTITION partition_name WITH TABLE table_name ;

Step 4: Drop the Recovery Set Tablespace
On the primary database, drop each tablespace in the recovery set. For example,

enter the following, replacing tablespace_name with the name of the tablespace:

DROP TABLESPACEtablespace_name INCLUDING CONTENTS;

Step 5: Create Tables at Auxiliary Database
After recovering the auxiliary database and opening it with the RESETLOGS option,

create a table in the SYSTEM tablespace that has the same column names and

column data types as the partitioned table you are recovering. You must create the

table in the SYSTEM tablespace: otherwise, Oracle issues the ORA-01552 error.

Create a table for each partition you wish to recover. These tables are used later to

swap each recovery set partition.

Note: The table and the partition must belong to the same schema.

Note: The table and the partition must belong to the same schema.
Performing User-Managed TSPITR 7-17

Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped
Step 6: Drop Indexes on Partitions Being Recovered
Drop the indexes on the partition you wish to recover, or create identical,

non-partitioned indexes that exist on the partition you wish to recover (on the table

created in Step 1).

Step 7: Exchange Partitions with Standalone Tables on the Auxiliary Database
For each partition in the auxiliary database recovery set, exchange the partitions

with the standalone tables (created in Step 5) by executing the following SQL script,

replacing the variables with the appropriate object names:

ALTER TABLE partitioned_table_name
EXCHANGE PARTITIONpartition_name
WITH TABLE table_name ;

Step 8: Transport the Recovery Set Tablespaces
Export the recovery set tablespaces from the auxiliary database and then import

them into the primary database as described in "Performing TSPITR with

Transportable Tablespaces" on page 7-14.

Step 9: Exchange Partitions with Standalone Tables on the Primary Database
For each recovered partition on the primary database, swap its associated

standalone table using the following statement, replacing the variables with the

appropriate object names:

ALTER TABLE table_name EXCHANGE PARTITION partition_name WITH TABLE table_name ;

If the associated indexes have been dropped, then re-create them.

Step 10: Back Up the Recovered Tablespaces in the Primary Database
Back up the recovered tablespaces on the primary database. Failure to do so results

in loss of data in the event of media failure.

Performing TSPITR of Partitioned Tables When a Partition Has Been
7-18 Oracle9i User-Managed Backup and Recovery Guide

Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped
Dropped
This section describes how to perform TSPITR on partitioned tables when a

partition has been dropped, and includes the following steps:

■ Step 1: Find the Low and High Range of the Partition that Was Dropped

■ Step 2: Create a Temporary Table

■ Step 3: Delete Records From the Partitioned Table

■ Step 4: Drop the Recovery Set Tablespace

■ Step 5: Create Tables at the Auxiliary Database

■ Step 6: Drop Indexes on Partitions Being Recovered

■ Step 7: Exchange Partitions with Standalone Tables

■ Step 8: Transport the Recovery Set Tablespaces

■ Step 9: Insert Standalone Tables into Partitioned Tables

■ Step 10: Back Up the Recovered Tablespaces in the Primary Database

Step 1: Find the Low and High Range of the Partition that Was Dropped
When a partition is dropped, the range of the partition preceding it expands

downwards. Therefore, there may be records in the preceding partition that should

actually be in the dropped partition after it has been recovered. To ascertain this,

run the following SQL script at the primary database, replacing the variables with

the appropriate values:

SELECT * FROM partitioned_table
 WHERE relevant_key
 BETWEEN low_range_of_partition_that_was_dropped
 AND high_range_of_partition_that_was_dropped ;

Step 2: Create a Temporary Table
If any records are returned, then create a temporary table in which to store these

records so that if necessary they can be inserted into the recovered partition later.

Step 3: Delete Records From the Partitioned Table
Delete all the records stored in the temporary table from the partitioned table.
Performing User-Managed TSPITR 7-19

Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped
Step 4: Drop the Recovery Set Tablespace
On the primary database, drop each tablespace in the recovery set. For example,

enter the following, replacing tablespace_name with the name of the tablespace:

DROP TABLESPACEtablespace_name INCLUDING CONTENTS;

Step 5: Create Tables at the Auxiliary Database
After opening the auxiliary database with the RESETLOGS option, create a table in

the SYSTEM tablespace that has the same column names and column data types as

the partitioned table you are recovering. You must create the table in the SYSTEM
tablespace: otherwise, Oracle issues the ORA-01552 error. Create a table for each

partition that you want to recover. These tables will be used later to swap each

recovery set partition.

Step 6: Drop Indexes on Partitions Being Recovered
Drop the indexes on the partition you wish to recover, or create identical,

nonpartitioned indexes that exist on the partition you wish to recover.

Step 7: Exchange Partitions with Standalone Tables
For each partition in the auxiliary recovery set, exchange the partitions into the

standalone tables created in Step 5 by issuing the following statement, replacing the

variables with the appropriate values:

ALTER TABLE partitioned_table_name
EXCHANGE PARTITIONpartition_name
WITH TABLE table_name ;

Step 8: Transport the Recovery Set Tablespaces
Export the recovery set tablespaces from the auxiliary database and then import

them into the primary database as described in "Performing TSPITR with

Transportable Tablespaces" on page 7-14.

Step 9: Insert Standalone Tables into Partitioned Tables
At this point you must insert the standalone tables into the partitioned tables; you

can do this by first issuing the following statement, replacing the variables with the

appropriate values:

ALTER TABLE table_name SPLIT PARTITION partition_name AT (key_value) INTO
7-20 Oracle9i User-Managed Backup and Recovery Guide

Performing TSPITR of Partitioned Tables When a Partition Has Split
(PARTITION partition_1_name TABLESPACE tablespace_name ,
PARTITION partition_2_name TABLESPACE tablespace_name);

Note that at this point, partition 2 is empty because keys in that range have already

been deleted from the table.

Issue the following statement to swap the standalone table into the partition,

replacing the variables with the appropriate values:

ALTER TABLE EXCHANGE PARTITION partition_name WITH TABLE table_name ;

Now insert the records saved in Step 2 into the recovered partition (if desired).

Step 10: Back Up the Recovered Tablespaces in the Primary Database
Back up the recovered tablespaces in the primary database. Failure to do so results

in loss of data in the event of media failure.

Performing TSPITR of Partitioned Tables When a Partition Has Split
This section describes how to recover partitioned tables when a partition has been

split, and includes the following sections:

■ Step 1: Drop the Lower of the Two Partitions at the Primary Database

■ Steps 2: Follow Same Procedure as for Partial TSPITR of Partitioned Tablespaces

Step 1: Drop the Lower of the Two Partitions at the Primary Database
For each partition you wish to recover whose range has been split, drop the lower

of the two partitions so that the higher expands downwards. In other words, the

higher partition has the same range as before the split. For example, if P1 was split

into partitions P1A and P1B, then P1B must be dropped, meaning that partition P1A
now has the same range as P1.

For each partition that you wish to recover whose range has split, create a table that

has exactly the same column names and column datatypes as the partitioned table

you are recovering. For example, execute the following, replacing the variables with

the appropriate values:

Note: If the partition that has been dropped is the last partition in

the table, then add it with the ALTER TABLE ADD PARTITION
statement.
Performing User-Managed TSPITR 7-21

Performing TSPITR of Partitioned Tables When a Partition Has Split
CREATE TABLEnew_table
AS SELECT * FROM partitioned_table
WHERE 1=2;

These tables will be used to exchange each recovery set partition in Step 3.

Steps 2: Follow Same Procedure as for Partial TSPITR of Partitioned Tablespaces
Follow the same procedure as for "Performing Partial TSPITR of Partitioned Tables"

on page 7-16, but skip the first step of this procedure. In other words, start with

"Step 2: Drop the Indexes on the Partition Being Recovered" and follow all

subsequent steps.
7-22 Oracle9i User-Managed Backup and Recovery Guide

Index

A
ABORT option

SHUTDOWN statement, 3-9, 4-16, 4-23, 4-24

active online redo log

loss of group, 6-10, 6-11

alert log, 6-14

checking after RESETLOGS, 4-30

ALLOW ... CORRUPTION clause

RECOVER command, 5-8

ALTER DATABASE statement

BACKUP CONTROLFILE clause, 2-19

TO TRACE option, 2-19

CLEAR LOGFILE clause, 6-10

END BACKUP clause, 2-12

NORESETLOGS option, 4-29

RECOVER clause, 3-16, 4-8

RESETLOGS option, 4-23, 4-25, 4-29

ALTER SYSTEM statement

RESUME clause, 2-18

SUSPEND clause, 2-18

ALTER TABLESPACE statement

BEGIN BACKUP clause, 2-8, 2-10

END BACKUP option, 2-10

archived redo logs

applying during media recovery, 4-2

automating application, 4-3, 4-4

changing default location, 4-7

corrupted, 5-2

deleting after recovery, 3-16

errors during recovery, 4-8

incompatible format, 5-3

location during recovery, 4-2

loss of, 6-12

restoring, 3-15

using for recovery

in default location, 4-5

in nondefault location, 4-7

ARCHIVELOG mode

datafile loss in, 6-2

AS SELECT clause

CREATE TABLE statement, 4-34

automatic undo management

tablespace backups, 2-15

AUTORECOVERY option

SET statement, 4-3

B
BACKUP CONTROLFILE clause

of ALTER DATABASE, 2-2

BACKUP CONTROLFILE TO TRACE clause

of ALTER DATABASE, 2-2, 2-19

backup mode

ending with ALTER DATABASE END

BACKUP, 2-12

for online user-managed backups, 2-9

instance failure, 2-11

backups

after RESETLOGS, 4-30

closed, 2-4

consistent, 2-4

control files, 2-19

binary, 2-19

trace files, 2-19

DBVERIFY utility, 2-27

determining datafile status, 2-3

inconsistent, 2-4
Index-1

keeping records, 3-3

listing files needed, 2-2

logical, 2-28

offline datafiles, 2-6

offline tablespaces, 2-6

read-only tablespaces, 2-14

restoring user-managed, 3-2

restoring whole database, 4-23

tablespace, 2-9

user-managed

overview, 1-3

restoring, 3-6

verifying, 2-27

whole database

preparing for, 2-4

BEGIN BACKUP clause

ALTER TABLESPACE statement, 2-8

C
cancel-based media recovery

procedures, 4-13, 4-20

change-based media recovery, 4-21

coordinated in distributed databases, 6-14

CLEAR LOGFILE clause

of ALTER DATABASE, 6-10

clone databases

preparing for TSPITR, 7-10, 7-12

preparing parameter files for, 7-7

cold failover cluster

definition, 2-12

commands, SQL

ALTER DATABASE, 3-16, 4-8

commands, SQL*Plus

RECOVER

UNTIL TIME option, 4-21

SET, 3-16, 4-3, 4-8

complete recovery

procedures, 4-9

consistent backups

whole database, 2-4

control files

backing up to trace file, 2-20

backups, 2-2, 2-19

binary, 2-19

trace files, 2-19

creating, 3-14

finding filenames, 2-2

loss of, 3-8

all copies, 3-13

multiplexed

loss of, 3-9

restoring

to default location, 3-9

to nondefault location, 3-9

time-based recovery, 4-16

CONTROL_FILES initialization parameter, 3-10

coordinated time-based recovery

distributed databases, 6-14

CREATE DATAFILE clause

of ALTER DATABASE, 3-7

CREATE TABLE statement

AS SELECT clause, 4-34

CREATE TABLESPACE statement, 6-3

D
data blocks

corrupted, 5-3

data dictionary views, 2-6, 2-8, 2-14

database incarnation, 4-26

database point-in-time recovery (DBPITR)

user-managed, 4-16

databases

listing for backups, 2-2

media recovery procedures, 4-1 to 4-22

media recovery scenarios, 6-1

recovery

after control file damage, 3-9

after OPEN RESETLOGS option, 4-31

suspending, 1-5, 2-16

datafiles

backing up

offline, 2-6

determining status, 2-3

listing

for backup, 2-2

losing, 6-2

in ARCHIVELOG mode, 6-2

in NOARCHIVELOG mode, 6-2
Index-2

recovery

without backup, 3-7

re-creating, 3-7

renaming

after recovery, 6-4

restoring, 3-6

to default location, 3-7

DB_FILE_NAME_CONVERT initialization

parameter, 7-8

DBA_DATA_FILES view, 2-6, 2-8, 2-14

DBVERIFY utility, 2-27

distributed databases

change-based recovery, 6-14

coordinated time-based recovery, 6-14

recovery, 6-13

E
Export utility, 2-28

backups, 2-28

read consistency, 2-28

exports

modes, 2-29

F
features, new, xxi to xxv

filenames

listing for backup, 2-2

G
groups

archived redo log, 6-6, 6-8

online redo log, 6-6, 6-8

H
hot backup mode

for online user-managed backups, 2-9

hot backups

failed, 2-11

ending with ALTER DATABASE END

BACKUP, 2-12

I
Import utility, 2-28

database recovery, 2-29

procedure for using, 2-29

inactive online redo log

loss of, 6-8

incomplete media recovery, 4-16

change-based, 4-21

in Oracle Real Application Clusters

configuration, 4-5

time-based, 4-20 to 4-21

with backup control file, 4-5

initialization parameters

CONTROL_FILES, 3-10

LOG_ARCHIVE_DEST_n, 4-6

LOG_ARCHIVE_FORMAT, 4-6

RECOVERY_PARALLELISM, 4-26

instance failures

in backup mode, 2-11

interrupting media recovery, 4-33

L
log sequence numbers

requested during recovery, 4-2

LOG_ARCHIVE_DEST_n initialization

parameter, 4-6, 7-9

LOG_ARCHIVE_FORMAT initialization

parameter, 4-6, 7-9

LOG_FILE_NAME_CONVERT initialization

parameter, 7-8

logical backups, 2-28

LOGSOURCE variable

SET statement, 3-16, 4-8

loss of

inactive log group, 6-8

M
media failures

archived redo log file loss, 6-12

complete recovery, 4-9 to 4-15, 4-15

control file loss, 3-8, 3-13

datafile loss, 6-2

NOARCHIVELOG mode, 4-22
Index-3

online redo log group loss, 6-7

online redo log loss, 6-6

online redo log member loss, 6-6

recovery, 4-9 to 4-22

distributed databases, 6-13

recovery procedures

examples, 6-2

media recovery, 4-1 to 4-33

ADD DATAFILE operation, 6-3

after control file damage, 3-9

after OPEN RESETLOGS operation, 4-31

applying archived redo logs, 4-2

cancel-based, 4-13, 4-16, 4-20

change-based, 4-16, 4-21

complete, 4-9 to 4-15, 4-15

closed database, 4-9

completion of, 4-12, 4-15

corruption

allowing to occur, 5-7

datafiles

without backup, 3-7

distributed databases, 6-13

coordinated time-based, 6-14

errors, 4-8, 5-3

incomplete, 4-16

interrupting, 4-33

lost files

lost archived redo log files, 6-12

lost control files, 3-8

lost datafiles, 6-2

lost mirrored control files, 3-9

NOARCHIVELOG mode, 4-22

offline tablespaces in open database, 4-12

online redo log files, 6-5

opening database after, 4-26, 4-29

parallel, 4-25

preconditions, 4-34

problems, 5-2, 5-3

fixing, 5-5

investigating, 5-4

restarting, 4-33

restoring

archived redo log files, 3-15

whole database backups, 4-22

restrictions, 4-34

resuming after interruption, 4-33

roll forward phase, 4-2

scenarios, 6-1

time-based, 4-16

transportable tablespaces, 6-4

trial, 5-9

explanation, 5-9

overview, 5-9

troubleshooting, 5-2

basic methodology, 5-3

types

distributed databases, 6-13

undamaged tablespaces online, 4-12

unsuccessfully applied redo logs, 4-8

using Import utility, 2-29

mirrored files

online redo log

loss of, 6-6

splitting, 1-5, 2-16

suspend/resume mode, 1-5, 2-16

modes

NOARCHIVELOG

recovery from failure, 4-22

MOUNT option

STARTUP statement, 4-18, 4-19

multiplexed files

control files

loss of, 3-9

N
new features, xxi to xxv

NOARCHIVELOG mode

datafile loss in, 6-2

disadvantages, 4-22

recovery, 4-22

O
online redo logs, 6-8

active group, 6-6, 6-8

applying during media recovery, 4-2

archived group, 6-6, 6-8

clearing

failure, 6-10
Index-4

clearing inactive logs

archived, 6-9

unarchived, 6-9

current group, 6-6, 6-8

determining active logs, 6-8

inactive group, 6-6, 6-8

listing log files for backup, 2-2

loss of

active group, 6-10, 6-11

all members, 6-7

group, 6-7

mirrored members, 6-6

recovery, 6-5

multiple group loss, 6-12

replacing damaged member, 6-6

status of members, 6-6, 6-8

ORA-01578 error message, 4-35

Oracle Managed Files, 1-3

P
parallel block recovery

definition, 4-25

parallel recovery, 4-26

partitioned tables

dropped partitions, 7-19

performing partial TSPITR, 7-16

split partitions, 7-21

point-in-time recovery, 4-16

tablespace, 7-1 to 7-15

R
raw devices

backing up to, 2-22

restoring to, 3-6

UNIX backups, 2-22

Windows backups, 2-25

read consistency

Export utility, 2-28

read-only tablespaces

backups, 2-14

RECOVER clause

of ALTER DATABASE, 3-16, 4-8

RECOVER command

PARALLEL option, 4-25

unrecoverable objects and standby

databases, 4-35

UNTIL TIME option, 4-21

USING BACKUP CONTROLFILE clause, 4-35

recovery

ADD DATAFILE operation, 6-3

automatically applying archived logs, 4-3

cancel-based, 4-13, 4-20

change-based, 4-21

complete, 4-9 to 4-15

closed database, 4-9

offline tablespaces, 4-12

control files, 3-8

corruption

intentionally allowing, 5-7

datafiles, 6-2

ARCHIVELOG mode, 6-2

NOARCHIVELOG mode, 6-2

determining files needing recovery, 3-5

dropped table, 6-13

errors, 5-3

Import utility, 2-29

interrupting, 4-33

media, 3-1, 4-1, 5-1, 6-1

multiple redo threads, 4-5

online redo logs, 6-5

losing member, 6-6

loss of group, 6-7

opening database after, 4-26

parallel, 4-25

parallel processes for, 4-26

preconditions, 4-34

problems, 5-2

fixing, 5-5

investigating, 5-4

responding to unsuccessful, 4-8

restrictions, 4-34

setting number of processes to use, 4-26

stuck, 5-2

time-based, 4-20 to 4-21

transportable tablespaces, 6-4

trial, 5-9

explanation, 5-9

overview, 5-9
Index-5

troubleshooting, 5-2

user errors, 6-13

user-managed, 1-6, 3-1, 4-1, 5-1, 6-1

using logs in a nondefault location, 4-7

using logs in default location, 4-5

using logs in nondefault location, 4-7

RECOVERY_PARALLELISM initialization

parameter, 4-26

redo logs

incompatible format, 5-3

listing files for backup, 2-2

naming, 4-6

parallel redo, 5-3

redo records

problems when applying, 5-2

RESETLOGS operation

backup after, 4-30

following up, 4-30

when necessary, 4-26

RESETLOGS option

of ALTER DATABASE, 4-23, 4-25, 4-26, 4-29

recovery of database after using, 4-31

restoring

archived redo logs, 3-15

control files, 3-8

to default location, 3-9

to nondefault location, 3-9

database

to default location, 4-23

to new location, 4-24

datafiles

to default location, 3-7

to raw devices, 3-6

user-managed backups, 1-6, 3-2

keeping records, 3-3

whole database backups, 4-23

RESUME clause

ALTER SYSTEM statement, 2-18

resuming recovery after interruption, 4-33

S
SCN (system change number)

use in distributed recovery, 6-15

SET statement

AUTORECOVERY option, 4-3

LOGSOURCE variable, 3-16, 4-8

SHUTDOWN statement

ABORT option, 3-9, 4-16, 4-23, 4-24

splitting mirrors

suspend/resume mode, 1-5, 2-16

STARTUP statement

MOUNT option, 4-18, 4-19

stuck recovery

definition, 5-2

SUSPEND clause

ALTER SYSTEM statement, 2-18

suspending a database, 1-5, 2-16

suspend/resume mode, 1-5, 2-16

system time

changing

effect on recovery, 4-16

T
tables

recovery of dropped, 6-13

tablespace point-in-time recovery

clone database, 7-2

introduction, 1-7, 7-2

methods, 7-3

performing, 7-1 to 7-15

planning for, 7-4

procedures for using transportable tablespace

feature, 7-14, 7-15

requirements, 7-5

terminology, 7-2

transportable tablespace method, 7-3

user-managed, 7-3

tablespaces

backups, 2-9

offline, 2-6

online, 2-9

read-only

backing up, 2-14

read/write

backing up, 2-8

recovering offline in open database, 4-12

time format

RECOVER DATABASE UNTIL TIME
Index-6

statement, 4-21

time-based recovery, 4-20 to 4-21

coordinated in distributed databases, 6-14

trace files

backing up control file, 2-20

control file backups to, 2-19

transportable tablespaces

recovery, 6-4

TSPITR and, 7-3

trial recovery

explanation, 5-9

overview, 5-9

U
undo tablespaces

backups, 2-15

unrecoverable objects

and RECOVER operation, 4-35

recovery

unrecoverable objects and, 4-34

UNTIL TIME option

RECOVER command, 4-21

user errors

recovery from, 6-13

user-managed backup and recovery

definition, 1-2

reasons, 1-2

user-managed backups, 2-4

backup mode, 2-11

basic methodology, 1-4

control files, 2-19

binary, 2-19

trace files, 2-19

definition, 1-3

determining datafile status, 2-3

hot backups, 2-12

listing files before, 2-2

offline datafiles, 2-6

offline tablespaces, 2-6

read-only tablespaces, 2-14

restoring, 3-6

restoring whole database, 4-23

tablespace, 2-9

verifying, 2-27

whole database, 2-4

user-managed recovery, 4-16

ADD DATAFILE operation, 6-3

applying archived redo logs, 4-2

complete, 4-9

incomplete, 4-16

interrupting, 4-33

opening database after, 4-26

scenarios, 6-1

user-managed restore and recovery

overview, 1-6

user-managed restore operations, 3-2

USING BACKUP CONTROLFILE option

RECOVER command, 4-19

V
V$ARCHIVED_LOG view

listing all archived logs, 2-22

V$BACKUP view, 2-3

V$DATAFILE view, 2-2

listing files for backups, 2-2

V$LOG_HISTORY view

listing all archived logs, 3-15

V$LOGFILE view, 6-6, 6-8

listing files for backups, 2-2

listing online redo logs, 2-2

V$RECOVER_FILE view, 3-5

V$RECOVERY_LOG view

listing logs needed for recovery, 3-15

V$TABLESPACE view, 2-2

W
warning

consistency and Export backups, 2-29

whole database backups

ARCHIVELOG mode, 2-4

inconsistent, 2-4

NOARCHIVELOG mode, 2-4

preparing for, 2-4

restoring from, 4-23
Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	What’s New in User-Managed Backup and Recovery?
	1 Introduction to User-Managed Backup and Recovery
	About User-Managed Backup and Recovery
	Why Use User-Managed Backup and Recovery Methods?
	Overview of User-Managed Backup and Recovery
	About User-Managed Backups
	About User-Managed Restore and Recovery

	2 Making User-Managed Backups
	Querying V$ Views to Obtain Backup Information
	Listing Database Files Before a Backup
	Determining Datafile Status for Online Tablespace Backups

	Making User-Managed Backups of the Whole Database
	Making Consistent Whole Database Backups

	Making User-Managed Backups of Offline Tablespaces and Datafiles
	Making User-Managed Backups of Online Tablespaces and Datafiles
	Making User-Managed Backups of Online Read/Write Tablespaces
	Making Multiple User-Managed Backups of Online Read/Write Tablespaces
	Ending a Backup After an Instance Failure or SHUTDOWN ABORT
	Making User-Managed Backups of Read-Only Tablespaces
	Making User-Managed Backups of Undo Tablespaces

	Making User-Managed Backups in SUSPEND Mode
	About the Suspend/Resume Feature
	Making Backups in a Suspended Database

	Making User-Managed Backups of the Control File
	Backing Up the Control File to a Binary File
	Backing Up the Control File to a Trace File

	Making User-Managed Backups of Archived Redo Logs
	Making User-Managed Backups to Raw Devices
	Backing Up to Raw Devices on UNIX
	Backing Up to Raw Devices on Windows NT

	Verifying User-Managed Backups
	Testing the Restore of Backups
	Using the DBVERIFY Utility

	Making Logical Backups with Export
	Using Export
	Using Import

	Making User-Managed Backups of Miscellaneous Oracle Files

	3 Performing User-Managed Restore Operations
	About User-Managed Restore Operations
	Keeping Records For Use in a Restore Scenario
	Recording the Locations of Datafiles, Control Files, and Online Redo Logs
	Recording the Locations of Archived Redo Logs
	Recording the Locations of Backup Files

	Determining Which Datafiles Require Recovery
	Restoring Datafiles
	Re-Creating Datafiles When Backups Are Unavailable
	Restoring and Re-Creating Control Files
	Losing a Member of a Multiplexed Control File
	Losing All Members of a Multiplexed Control File When a Backup Is Available
	Losing All Current and Backup Control Files

	Restoring Archived Redo Logs

	4 Performing User-Managed Media Recovery
	Performing User-Managed Media Recovery: Overview
	Preconditions of Performing User-Managed Recovery
	Applying Logs Automatically with the RECOVER Command
	Recovering When Archived Logs Are in the Default Location
	Recovering When Archived Logs Are in a Nondefault Location
	Resetting the Archived Log Destination
	Overriding the Archived Log Destination
	Responding to Unsuccessful Application of Redo Logs

	Performing Complete User-Managed Media Recovery
	Performing Closed Database Recovery
	Performing Datafile Recovery in an Open Database

	Performing Incomplete User-Managed Media Recovery
	Preparing for Incomplete Recovery
	Restoring Datafiles Before Performing Incomplete Recovery
	Performing Cancel-Based Incomplete Recovery
	Performing Time-Based Incomplete Recovery
	Performing Change-Based Incomplete Recovery

	Recovering a Database in NOARCHIVELOG Mode
	Restoring the Database to its Default Location
	Restoring the Database to a New Location

	Performing Media Recovery in Parallel
	Opening the Database After User-Managed Media Recovery
	About RESETLOGS Operations
	Determining Whether to Reset the Online Redo Logs
	Following Up After a RESETLOGS Operation
	Recovering a Backup Created Before a RESETLOGS

	Interrupting User-Managed Media Recovery
	User-Managed Media Recovery Restrictions
	User-Managed Recovery of Unrecoverable Tables and Indexes
	User-Managed Recovery of Read-Only Tablespaces with a Noncurrent Control File

	5 Troubleshooting User-Managed Media Recovery
	About User-Managed Media Recovery Problems
	Investigating the Media Recovery Problem: Phase 1
	Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2
	Deciding Whether to Allow Recovery to Corrupt Blocks: Phase 3
	Allowing Recovery to Corrupt Blocks: Phase 4
	Performing Trial Recovery
	About Trial Recovery
	How Trial Recovery Works
	Executing the RECOVER ... TEST Statement

	6 User-Managed Media Recovery Scenarios
	Recovering After the Loss of Datafiles: Scenarios
	Losing Datafiles in NOARCHIVELOG Mode
	Losing Datafiles in ARCHIVELOG Mode

	Recovering Through an Added Datafile: Scenario
	Recovering Transportable Tablespaces: Scenario
	Recovering After the Loss of Online Redo Log Files: Scenarios
	Recovering After Losing a Member of a Multiplexed Online Redo Log Group
	Recovering After the Loss of All Members of an Online Redo Log Group

	Recovering After the Loss of Archived Redo Log Files: Scenario
	Recovering from User Errors: Scenario
	Performing Media Recovery in a Distributed Environment: Scenario
	Coordinating Time-Based and Change-Based Distributed Database Recovery

	7 Performing User-Managed TSPITR
	Introduction to User-Managed Tablespace Point-in-Time Recovery
	TSPITR Terminology
	TSPITR Methods

	Preparing for Tablespace Point-in-Time Recovery: Basic Steps
	Step 1: Review TSPITR Requirements
	Step 2: Identify All of the Files in the Recovery and Auxiliary Set Tablespaces
	Step 3: Determine Whether Objects Will Be Lost
	Step 4: Choose a Method for Connecting to the Auxiliary Instance
	Step 5: Create an Oracle Password File for the Auxiliary Instance
	Step 6: Create the Initialization Parameter File for the Auxiliary Instance

	Restoring and Recovering the Auxiliary Database: Basic Steps
	Restoring and Recovering the Auxiliary Database on the Same Host
	Restoring the Auxiliary Database on a Different Host with the Same Path Names
	Restoring the Auxiliary Database on a Different Host with Different Path Names

	Performing TSPITR with Transportable Tablespaces
	Step 1: Unplugging the Tablespaces from the Auxiliary Database
	Step 2: Transporting the Tablespaces into the Primary Database

	Performing Partial TSPITR of Partitioned Tables
	Step 1: Create a Table on the Primary Database for Each Partition Being Recovered
	Step 2: Drop the Indexes on the Partition Being Recovered
	Step 3: Exchange Partitions with Standalone Tables
	Step 4: Drop the Recovery Set Tablespace
	Step 5: Create Tables at Auxiliary Database
	Step 6: Drop Indexes on Partitions Being Recovered
	Step 7: Exchange Partitions with Standalone Tables on the Auxiliary Database
	Step 8: Transport the Recovery Set Tablespaces
	Step 9: Exchange Partitions with Standalone Tables on the Primary Database
	Step 10: Back Up the Recovered Tablespaces in the Primary Database

	Performing TSPITR of Partitioned Tables When a Partition Has Been Dropped
	Step 1: Find the Low and High Range of the Partition that Was Dropped
	Step 2: Create a Temporary Table
	Step 3: Delete Records From the Partitioned Table
	Step 4: Drop the Recovery Set Tablespace
	Step 5: Create Tables at the Auxiliary Database
	Step 6: Drop Indexes on Partitions Being Recovered
	Step 7: Exchange Partitions with Standalone Tables
	Step 8: Transport the Recovery Set Tablespaces
	Step 9: Insert Standalone Tables into Partitioned Tables
	Step 10: Back Up the Recovered Tablespaces in the Primary Database

	Performing TSPITR of Partitioned Tables When a Partition Has Split
	Step 1: Drop the Lower of the Two Partitions at the Primary Database
	Steps 2: Follow Same Procedure as for Partial TSPITR of Partitioned Tablespaces

	Index

