
Oracle Migration Workbench

Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Release 9.2.0 for Microsoft Windows 98/2000 and Microsoft Windows NT

March 2002

Part Number: A97248-01

This reference guide describes how to migrate from Microsoft SQL Server 6.5,
Microsoft SQL Server 7.0, Microsoft SQL Server 2000, Sybase Adaptive Server
11, and Sybase Adaptive Server 12 to Oracle9i or Oracle8i.

Oracle Migration Workbench Reference Guide for Microsoft SQL Server and Sybase Adaptive Server
Migrations, Release 9.2.0 for Microsoft Windows 98/2000 and Microsoft Windows NT.

Part Number: A97248-01

Copyright © 1998, 2002 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8, Oracle8i, Oracle9i, SQL*Plus, PL/SQL, and Pro*C are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments ... ix

Preface.. xi

Audience .. xii
What You Should Already Know... xii
How this Reference Guide is Organized ... xii
Using This Reference Guide.. xiii
Documentation Accessibility .. xiii
Accessibility of Code Examples in Documentation... xiii
Related Documentation ... xiii
Conventions.. xiv

1 Overview

Introduction ... 1-1
Product Description.. 1-1
Features ... 1-2
Glossary .. 1-3

2 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared

Schema Migration... 2-1
Schema Object Similarities .. 2-1
Schema Object Names.. 2-3
Table Design Considerations .. 2-3

Data Types.. 2-3

iv

Entity Integrity Constraints ... 2-6
Referential Integrity Constraints ... 2-7
Unique Key Constraints ... 2-7
Check Constraints.. 2-7

Data Types .. 2-8
Data Types Table ... 2-9

Data Storage Concepts ... 2-20
Data Storage Concepts Table .. 2-20

Data Manipulation Language... 2-25
Connecting to the Database... 2-26
SELECT Statement .. 2-27
SELECT with GROUP BY Statement ... 2-34
INSERT Statement .. 2-35
UPDATE Statement .. 2-36
DELETE Statement ... 2-38
Operators ... 2-39

Comparison Operators ... 2-39
Arithmetic Operators .. 2-43
String Operators... 2-43
Set Operators .. 2-44
Bit Operators .. 2-44

Built-In Functions ... 2-45
Character Functions .. 2-45
Miscellaneous Functions .. 2-47
Date Functions ... 2-48
Mathematical Functions ... 2-50

Locking Concepts and Data Concurrency Issues... 2-51
Locking.. 2-51
Row-Level Versus Page-Level Locking.. 2-54
Read Consistency... 2-55
Logical Transaction Handling ... 2-56

3 Triggers and Stored Procedures

Introduction ... 3-1
Triggers .. 3-1

v

Stored Procedures... 3-3
Methods Used to Send Data to Clients .. 3-4
Individual SQL Statements .. 3-13
Logical Transaction Handling ... 3-14
Error Handling within the Stored Procedure.. 3-15

Data Types .. 3-16
Local Variable.. 3-17
Server Data Types... 3-17
Composite Data Types... 3-17

Schema Objects ... 3-17
Procedure... 3-18
Function ... 3-24
Package... 3-28
Package Body .. 3-32

T/SQL Versus PL/SQL Constructs ... 3-36
CREATE PROCEDURE Statement ... 3-38
Parameter Passing ... 3-39
DECLARE Statement .. 3-40
IF Statement.. 3-41
RETURN Statement .. 3-45
RAISERROR Statement .. 3-46
EXECUTE Statement... 3-47
WHILE Statement.. 3-48
GOTO Statement ... 3-53
@@Rowcount and @@Error Variables .. 3-54
ASSIGNMENT Statement .. 3-55
SELECT Statement .. 3-56
SELECT Statement as Part of the SELECT List ... 3-59
SELECT Statement with GROUP BY Clause... 3-61
Column Aliases.. 3-62
UPDATE with FROM Statement... 3-63
DELETE with FROM Statement .. 3-65
Temporary Tables.. 3-67
Result Set (Converted Using a Cursor Variable) .. 3-68
Cursor Handling.. 3-70

vi

Transaction Handling Statements ... 3-72
T/SQL and PL/SQL Language Elements... 3-73

Transaction Handling Semantics.. 3-73
Conversion Preparation Recommendations.. 3-76

Exception-Handling and Error-Handling Semantics .. 3-77
Special Global Variables .. 3-79
Operators ... 3-80
Built-in Functions.. 3-80
Sending Data to the Client: Result Sets ... 3-80

Single Result Set... 3-80
Multiple Result Sets... 3-81
About Converting a T/SQL Procedure with a Result Set ... 3-82

DDL Constructs within Microsoft SQL Server and Sybase Adaptive Server Stored
Procedures 3-84

4 Distributed Environments

Distributed Environments .. 4-1
Accessing Remote Databases in a Distributed Environment ... 4-1

Oracle and Remote Objects .. 4-2
Microsoft SQL Server and Sybase Adaptive Server and Remote Objects 4-2
Replication ... 4-3

Application Development Tools .. 4-4

5 Migrating Temporary Tables to Oracle

Temporary Table Usage... 5-1
Simplify Coding... 5-2
Simulate Cursors when Processing Data from Multiple Tables 5-4
Improve Performance In a Situation Where Multi-Table Joins are Needed................. 5-4
Associate Rows from Multiple Queries in One Result Set (UNION) 5-5
Eliminate Re-Querying Data Needed for Joins ... 5-6
Consolidate the Data for Decision Support Data Requirements 5-7

Replace Temporary Tables .. 5-7
Emulate Temporary Tables ... 5-7

Implementation as PL/SQL Tables... 5-7
Implications of Creating Temporary Tables Dynamically .. 5-7

vii

Implications of Creating Permanent Tables .. 5-8
Implementation of Temporary Tables as Permanent Tables .. 5-8
Maintenance of Temporary Tables ... 5-10

Definition of t_table_catalog ... 5-11
Package Body t_table ... 5-11

6 Disconnected Source Model Loading

Generating Database Metadata Flat Files .. 6-1
Flat File Generation Scripts ... 6-1

Running the Scripts... 6-2

Index

viii

ix

Send Us Your Comments

Oracle Migration Workbench Reference Guide for Microsoft SQL Server and Sybase Adaptive
Server Migrations, Release 9.2.0 for Microsoft Windows 98/2000 and Microsoft Windows NT.

Part Number: A97248-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail: gpe_techpubs_ie@ORACLE.COM
■ Tel: +353-1-8031000, Fax: +353-1- 8033321
■ Attn: Oracle Migration Workbench
■ Postal service:

Oracle Migration Workbench Documentation
Oracle Corporation
Block P5
East Point Business Park
Clontarf, Dublin 3
Ireland

x

 xi

Preface

The Oracle Migration Workbench Reference Guide for SQL Server and Sybase Adaptive
Server Migrations provides detailed information about migrating a database from
Microsoft SQL Server 6.5, Microsoft SQL Server 7.0, Microsoft SQL Server 2000,
Sybase Adaptive Server 11, and Sybase Adaptive Server 12 to Oracle9i or Oracle8i.
It is a useful guide regardless of the conversion tool you are using to perform the
migration, but the recommended tool for such migrations is Oracle Migration
Workbench (Migration Workbench). This reference guide describes several
differences between Microsoft SQL Server and Sybase Adaptive Server and Oracle
and outlines how those differences are handled by the Migration Workbench during
the conversion process.

This chapter contains the following sections:

■ Audience

■ What You Should Already Know

■ How this Reference Guide is Organized

■ Using This Reference Guide

■ Documentation Accessibility

■ Accessibility of Code Examples in Documentation

■ Related Documentation

■ Conventions

xii

Audience
This guide is intended for anyone who is involved in converting a Microsoft SQL
Server and Sybase Adaptive Server database to Oracle using the Migration
Workbench.

What You Should Already Know
You should be familiar with relational database concepts and with the operating
system environments under which you are running Oracle and Microsoft SQL
Server and Sybase Adaptive Server.

How this Reference Guide is Organized
This reference guide is organized as follows:

Chapter 1, "Overview"

Introduces the Migration Workbench and outlines features of this tool.

Chapter 2, "Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared"

Contains detailed information about the differences between data types, data
storage concepts, schema objects, and the data manipulation language in Microsoft
SQL Server and Sybase Adaptive Server and Oracle.

Chapter 3, "Triggers and Stored Procedures"

Introduces triggers and stored procedures, and compares T-SQL and PL/SQL
language elements and constructs in Microsoft SQL Server and Sybase Adaptive
Server and Oracle.

Chapter 4, "Distributed Environments"

Describes when and why distributed environments are used, and discusses
application development tools.

Chapter 5, "Migrating Temporary Tables to Oracle"

Describes how to emulate temporary tables in Oracle9i and Oracle8i.

Chapter 6, "Disconnected Source Model Loading"

Describes how to perform a disconnected source model load, using delimited flat
files containing schema metadata.

 xiii

Using This Reference Guide
Every reader of this reference guide should read Chapter 1, "Overview" as that
chapter provides an introduction to the concept and terminology of the Migration
Workbench.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Related Documentation
For more information, see these Oracle Migration Workbench resources:

■ Oracle Migration Workbench Frequently Asked Questions (FAQ)

■ Oracle Migration Workbench Release Notes

■ Oracle Migration Workbench Online Help

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and you can do it at:

http://otn.oracle.com/membership/index.htm

http://www.oracle.com/accessibility/
http://otn.oracle.com/membership/index.htm

xiv

If you already have a user name and password for OTN, then you can go directly to
the Migration Workbench documentation section of the OTN Web site at:

http://otn.oracle.com/tech/migration/workbench

Conventions
This section describes the conventions used in the text and code examples of the this
documentation. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold type indicates GUI options. It also
indicates terms that are defined in the text
or terms that appear in a glossary, or both.

The C datatypes such as ub4, sword, or
OCINumber are valid.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles,
emphasis, syntax clauses, or placeholders.

Reference Guide

Run Uold_release.SQL where old_release
refers to the release you installed prior to
upgrading.

UPPERCASE
monospace
(fixed-width font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database using the
BACKUP command.

http://otn.oracle.com/tech/migration/workbench

 xv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width font)

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

Enter sqlplus to open SQL*Plus.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Convention Meaning Example

Square Brackets [] Indicates that the enclosed arguments are
optional. Do not enter the brackets.

DECIMAL (digits [, precision])

Curly Braces { } Indicates that one of the enclosed
arguments is required. Do not enter the
braces.

{ENABLE | DISABLE}

Vertical Line | Separates alternative items that may be
optional or required. Do not type the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Ellipses ... Indicates that the preceding item can be
repeated. You can enter an arbitrary
number of similar items. In code
fragments, an ellipsis means that code not
relevant to the discussion has been
omitted. Do not type the ellipsis

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Italics Indicates variables that you must supply
particular values.

CONNECT SYSTEM/system_password

Convention Meaning Example

xvi

UPPERCASE Uppercase text indicates case-insensitive
filenames or directory names, commands,
command keywords, initializing
parameters, data types, table names, or
object names. Enter text exactly as
spelled; it need not be in uppercase

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase words in example statements
indicate words supplied only for the
context of the example. For example,
lowercase words may indicate the name
of a table, column, or file.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

Convention Meaning Example

 Overview 1-1

1
Overview

This chapter introduces the Oracle Migration Workbench (Migration Workbench)
under the following headings:

■ Introduction

■ Product Description

■ Features

■ Glossary

Introduction
The Migration Workbench is a tool that simplifies the process of migrating data and
applications from an Microsoft SQL Server and Sybase Adaptive Server
environment to an Oracle9i or Oracle8i destination database. The Migration
Workbench allows you to quickly and easily migrate an entire application system,
that is the database schema including triggers and stored procedures, in an
integrated, visual environment.

Product Description
The Migration Workbench allows you to migrate a Microsoft SQL Server and
Sybase Adaptive Server database to an Oracle9i or Oracle8i database. The Migration
Workbench employs an intuitive and informative User Interface and a series of

Note: Microsoft SQL Server is used in this document to refer to
both Microsoft SQL Server 6.5, Microsoft SQL Server 7.0, and
Microsoft SQL Server 2000 unless otherwise stated.

Features

1-2 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

wizards to simplify the migration process. To ensure portability, all components of
the Migration Workbench are written in Java.

The Migration Workbench uses a repository to store migration information. This
allows you to query the initial state of the application before migration. By initially
loading the migratable components of the application system into a repository, you
can work independently of the production application.

Furthermore, the Migration Workbench saves useful dependency information about
the components you are converting. For example, the Migration Workbench keeps a
record of all the tables accessed by a stored procedure. You can then use this
information to understand the impact of modifying a given table.

Features
The Migration Workbench release 9.2.0 is a wizard-driven tool. It is composed of
core features and Microsoft SQL Server and Sybase Adaptive Server migration
specific features. The Migration Workbench allows you to:

■ Migrate a complete Microsoft SQL Server and Sybase Adaptive Server database
to an Oracle9i or Oracle8i database.

■ Migrate groups, users, tables, primary keys, foreign keys, unique constraints,
indexes, rules, check constraints, views, triggers, stored procedures,
user-defined types, and privileges to Oracle.

■ Migrate multiple Microsoft SQL Server and Sybase Adaptive Server source
databases to a single Oracle database.

■ Customize the parser for stored procedures, triggers, or views.

■ Generate the Oracle SQL*Loader and SQL Server BCP scripts for offline data
loading.

■ Display a representation of the source database and its Oracle equivalent.

■ Generate and view a summary report of the migration.

■ Customize users, tables, indexes, and tablespaces.

■ Customize the default data type mapping rules.

■ Create ANSI-compliant names.

■ Automatically resolve conflicts such as Oracle reserved words.

■ Remove and rename objects in the Oracle Model.

Glossary

 Overview 1-3

Glossary
The following terms are used to describe the Migration Workbench:

Application System is the database schema and application files that have been
developed for a database environment other than Oracle, for example, Microsoft
SQL Server and Sybase Adaptive Server.

Capture Wizard is an intuitive wizard that takes a snapshot of the data dictionary of
the source database, loads it into the Source Model, and creates the Oracle Model.

Dependency is used to define a relationship between two migration entities. For
example, a database view is dependent upon the table it references.

Destination Database is the Oracle database to which the Migration Workbench
migrates the data dictionary of the source database.

Migration Component is part of an application system that can be migrated to an
Oracle database. Examples of migration components are tables and stored
procedures.

Migration Entity is an instance of a migration component. The table EMP would be a
migration entity belonging to the table MIGRATION COMPONENT.

Migration Wizard is an intuitive wizard that helps you migrate the source database
to Oracle.

Migration Workbench is the graphical tool that allows migration of an application
system to an Oracle database environment.

Navigator Pane is the part of the Migration Workbench User Interface that contains
the tree views representing the Source Model and the Oracle Model.

Oracle Model is a a series of Oracle tables that is created from the information in the
Source Model. It is a visual representation of how the source database looks when
generated in an Oracle environment.

Properties Pane is the part of the Migration Workbench User Interface that displays
the properties of a migration entity that has been selected in one of the tree views in
the Navigator Pane.

Progress Window is the part of the Migration Workbench User Interface that contains
informational, error, or warning messages describing the progress of the migration
process.

Software Development Kit (SDK) is a set of well-defined application programming
interfaces (APIs) that provide services that a software developer can use.

Glossary

1-4 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Source Database is the database containing the data dictionary of the application
system being migrated by the Migration Workbench. The source database is a
database other than Oracle, for example, Microsoft SQL Server and Sybase
Adaptive Server.

Source Model is a replica of the data dictionary of the source database. It is stored in
the Oracle Migration Workbench Repository and is loaded by the Migration Work-
bench with the contents of the data dictionary of the source database.

Workbench Repository is the area in an Oracle database used to store the persistent
information necessary for the Migration Workbench to migrate an application
system.

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-1

2
Microsoft SQL Server, Sybase Adaptive

Server, and Oracle Compared

This chapter contains information comparing the Microsoft SQL Server and Sybase
Adaptive Server database and the Oracle database. It includes the following
sections:

■ Schema Migration

■ Data Types

■ Data Storage Concepts

■ Data Manipulation Language

Schema Migration
The schema contains the definitions of the tables, views, indexes, users, constraints,
stored procedures, triggers, and other database-specific objects. Most relational
databases work with similar objects.

The schema migration topics discussed here include the following:

■ Schema Object Similarities

■ Schema Object Names

■ Table Design Considerations

Schema Object Similarities
There are many similarities between schema objects in Oracle and schema objects in
Microsoft SQL Server and Sybase Adaptive Server. However, some schema objects
differ between these databases, as shown in the following table:

Schema Migration

2-2 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Table 2–1 Schema Objects in Oracle and Microsoft SQL Server and Sybase Adaptive
Server

Oracle Microsoft SQL Server and Sybase Adaptive Server

Database Database

Schema Database and database owner (DBO)

Tablespace Database

User User

Role Group/Role

Table Table

Temporary tables Temporary tables

Cluster N/A

Column-level check
constraint

Column-level check constraint

Column default Column default

Unique key Unique key or identity property for a column

Primary key Primary key

Foreign key Foreign key

Index Non-unique index

PL/SQL Procedure Transact-SQL (T-SQL) stored procedure

PL/SQL Function T-SQL stored procedure

Packages N/A

AFTER triggers Triggers

BEFORE triggers Complex rules

Triggers for each row N/A

Synonyms N/A

Sequences Identity property for a column

Snapshot N/A

View View

Schema Migration

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-3

Schema Object Names
Reserved words differ between Oracle and Microsoft SQL Server and Sybase
Adaptive Server. Many Oracle reserved words are valid object or column names in
Microsoft SQL Server and Sybase Adaptive Server. For example, DATE is a reserved
word in Oracle, but it is not a reserved word in Microsoft SQL Server and Sybase
Adaptive Server. Therefore, no column is allowed to have the name DATE in
Oracle, but a column can be named DATE in Microsoft SQL Server and Sybase
Adaptive Server. Use of reserved words as schema object names makes it
impossible to use the same names across databases.

You should choose a schema object name that is unique by case and by at least one
other characteristic, and ensure that the object name is not a reserved word from
either database.

For a list of reserved words in Oracle, see the Oracle9i SQL Reference, Release 1 (9.0.1).

Table Design Considerations
This section discusses the many table design issues that you need to consider when
converting Microsoft SQL Server and Sybase Adaptive Server databases to Oracle.
These issues are discussed under the following headings:

■ Data Types

■ Entity Integrity Constraints

■ Referential Integrity Constraints

■ Unique Key Constraints

■ Check Constraints

Data Types
This section outlines conversion considerations for the following data types:

■ DATETIME Data Types

■ IMAGE and TEXT Data Types (Binary Large Objects)

■ Microsoft SQL Server and Sybase Adaptive Server User-Defined Data Types

DATETIME Data Types

The date/time precision in Microsoft SQL Server and Sybase Adaptive Server is
1/300th of a second. Oracle9i has a new data type TIMESTAMP which has a

Schema Migration

2-4 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

precision of 1/100000000th of a second. Oracle also has a DATE data type that
stores date and time values accurate to one second. The Migration Workbench has a
default mapping to the DATE data type.

For applications that require finer date/time precision than seconds, the
TIMESTAMP data type should be selected for the datatype mapping of date data
types in Microsoft SQL Server and Sybase Adaptive Server. The databases store
point-in-time values for DATE and TIME data types.

As an alternative, if an Microsoft SQL Server and Sybase Adaptive Server
application uses the DATETIME column to provide unique IDs instead of
point-in-time values, replace the DATETIME column with a SEQUENCE in the
Oracle schema definition.

In the following examples, the original design does not allow the DATETIME
precision to exceed seconds in the Oracle table. This example assumes that the
DATETIME column is used to provide unique IDs. If millisecond precision is not
required, the table design outlined in the following example is sufficient:

Original Table Design

Microsoft SQL Server and Sybase Adaptive Server:

CREATE TABLE example_table
(datetime_column datetime not null,
text_column text null,
varchar_column varchar(10) null)

Oracle:

CREATE TABLE example_table
(datetime_column date not null,
text_column long null,
varchar_column varchar2(10) null)

The following design allows the value of the sequence to be inserted into the
integer_column. This allows you to order the rows in the table beyond the allowed
precision of one second for DATE data type fields in Oracle. If you include this
column in the Microsoft SQL Server and Sybase Adaptive Server table, you can
keep the same table design for the Oracle database.

Revised Table Design

Microsoft SQL Server and Sybase Adaptive Server:

CREATE TABLE example_table

Schema Migration

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-5

(datetime_column datetime not null,
integer_column int null,
text_column text null,
varchar_column varchar(10) null)

Oracle:

CREATE TABLE example_table
(datetime_column date not null,
integer_column number null,
text_column long null,
varchar_column varchar2(10) null)

For the Microsoft SQL Server and Sybase Adaptive Server database, the value in the
integer_column is always NULL. For Oracle, the value for the field integer_column
is updated with the next value of the sequence.

Create the sequence by issuing the following command:

CREATE SEQUENCE datetime_seq

Values generated for this sequence start at 1 and are incremented by 1.

Many applications do not use DATETIME values as UNIQUE IDs, but still require
the date/time precision to be higher than secondS. For example, the timestamp of a
scientific application may have to be expressed in milliseconds, microseconds, and
nanoseconds. The precision of the Microsoft SQL Server and Sybase Adaptive
Server DATETIME data type is 1/300th of a second; the precision of the Oracle
DATE data type is one second. The Oracle TIMESTAMP data type has a precision to
1/100000000th of a second. However, the precision recorded is dependent on the
operating system.

Schema Migration

2-6 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

IMAGE and TEXT Data Types (Binary Large Objects)

The physical and logical storage methods for IMAGE and TEXT data differ from
Oracle to Microsoft SQL Server and Sybase Adaptive Server. In Microsoft SQL
Server and Sybase Adaptive Server, a pointer to the IMAGE or TEXT data is stored
with the rows in the table while the IMAGE or TEXT data is stored separately. This
arrangement allows multiple columns of IMAGE or TEXT data per table. In Oracle,
IMAGE data may be stored in a BLOB type field and TEXT data may be stored in a
CLOB type field. Oracle allows multiple BLOB and CLOB columns per table. BLOBS
and CLOBS may or may not be stored in the row depending on their size.

If the Microsoft SQL Server and Sybase Adaptive Server TEXT column is such that
the data never exceeds 4000 bytes, convert the column to an Oracle VARCHAR2
data type column instead of a CLOB column. An Oracle table can define multiple
VARCHAR2 columns. This size of TEXT data is suitable for most applications.

Microsoft SQL Server and Sybase Adaptive Server User-Defined Data Types

This Microsoft SQL Server and Sybase Adaptive Server T-SQL-specific
enhancement to SQL allows users to define and name their own data types to
supplement the system data types. A user-defined data type can be used as the data
type for any column in the database. Defaults and rules (check constraints) can be
bound to these user-defined data types, which are applied automatically to the
individual columns of these user-defined data types.

While migrating to Oracle PL/SQL, you must determine the base data type for each
user-defined data type, to find the equivalent PL/SQL data type.

Entity Integrity Constraints
You can define a primary key for a table in Microsoft SQL Server and Sybase
Adaptive Server. Primary keys can be defined in a CREATE TABLE statement or an
ALTER TABLE statement.

Oracle provides declarative referential integrity. A primary key can be defined as
part of a CREATE TABLE or an ALTER TABLE statement. Oracle internally creates a
unique index to enforce the integrity.

Note: User-defined data types make the data definition language
code and procedural SQL code less portable across different
database servers.

Schema Migration

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-7

Referential Integrity Constraints
You can define a foreign key for a table in Microsoft SQL Server and Sybase
Adaptive Server. Foreign keys can be defined in a CREATE TABLE statement or an
ALTER TABLE statement.

Oracle provides declarative referential integrity. A CREATE TABLE or ALTER
TABLE statement can add foreign keys to the table definition. For information about
referential integrity constraints, see the Oracle9i Database Concepts, Release 1 (9.0.1).

Unique Key Constraints
You can define a unique key for a table in Microsoft SQL Server and Sybase
Adaptive Server. Unique keys can be defined in a CREATE TABLE statement or an
ALTER TABLE statement.

Oracle defines unique keys as part of CREATE TABLE or ALTER TABLE statements.
Oracle internally creates unique indexes to enforce these constraints.

Unique keys map one-to-one from Microsoft SQL Server and Sybase Adaptive
Server to Oracle.

Check Constraints
Check constraints can be defined in a CREATE TABLE statement or an ALTER
TABLE statement in Microsoft SQL Server and Sybase Adaptive Server. Multiple
check constraints can be defined on a table. A table-level check constraint can
reference any column in the constrained table. A column can have only one check
constraint. A column-level check constraint can reference only the constrained
column. These check constraints support complex regular expressions.

Oracle defines check constraints as part of the CREATE TABLE or ALTER TABLE
statements. A check constraint is defined at the TABLE level and not at the
COLUMN level. Therefore, it can reference any column in the table. Oracle,
however, does not support complex regular expressions.

SQL Server Rule:

create rule phone_rule
as
@phone_number like
"([0-9][0-9][0-9])[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]"

This rule passes all the phone numbers that resemble the following:
(650)506-7000

Data Types

2-8 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

This rule failes all the phone numbers that resemble the following:

650-506-7000
650-GET-HELP

There are a few ways to implement this INTEGRITY constraint in Oracle:

■ Simulate the behavior of phone-rule in a check constraint using a combination
of SUBSTR, TRANSLATE, and LIKE clauses

■ Write a trigger and use PL/SQL

Table-level check constraints from Microsoft SQL Server and Sybase Adaptive
Server databases map one-to-one with Oracle check constraints. You can implement
the column-level check constraints from the Microsoft SQL Server and Sybase
Adaptive Server database to Oracle table-level check constraints. While converting
the regular expressions, convert all simple regular expressions to check constraints
in Oracle. Microsoft SQL Server and Sybase Adaptive Server check constraints with
complex regular expressions can be either reworked as check constraints including
a combination of simple regular expressions, or you can write Oracle database
triggers to achieve the same functionality.

Data Types
This chapter provides detailed descriptions of the differences in data types used by
Microsoft SQL Server and Sybase Adaptive Server and Oracle databases.
Specifically, this chapter contains the following information:

■ A table showing the base Microsoft SQL Server and Sybase Adaptive Server
data types available and how they are mapped to Oracle data types

■ Recommendations based on the information listed in the table

Data Types

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-9

Data Types Table

Table 2–2 Data Types in Oracle and Microsoft SQL Server and
Sybase Adaptive Server

Microsoft SQL
Server and
Sybase
Adaptive
Server Description Oracle Comments

INTEGER Four-byte integer, 31
bits, and a sign. May be
abbreviated as "INT"
(this abbreviation was
required prior to
version 5).

NUMBER(10) It is possible to place a table
constraint on columns of
this type (as an option) to
force values between -2^31
and2^31. Or, place
appropriate constraints such
as: STATE_NO between 1
and 50

SMALLINT Two-byte integer, 15 bits,
and a sign.

NUMBER(6) It is possible to place a table
constraint on columns of
this type (optionally) to
force values between -2^15
and 2^15. Or, place
appropriate constraints such
as: STATE_NO between 1
and 50

TINYINT One byte integer, 8 bits
and no sign. Holds
whole numbers between
0 and 255.

NUMBER(3) You may add a check
constraint of (x between 0
and 255) where x is column
name.

Data Types

2-10 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

REAL Floating point number.
Storage is four bytes and
has a binary precision of
24 bits, a 7-digit
precision.

Data can range from
–3.40E+38 to 3.40E+38.

In Sybase the range of
values and the actual
representation is
platform dependent. This
can result in incorrect
interpretation if data is
moved between
platforms. REAL
numbers are stored in 4
bytes and
can represent about 6
decimal digits with
reasonable accuracy.
Sybase REALs are
mapped to the ANSI
equivalent in Oracle.

FLOAT The ANSI data type
conversion to Oracle for
REAL is FLOAT(63). By
default, the Oracle
Migration Workbench maps
REAL to FLOAT(24) that
stores up to 8 significant
decimal digits in Oracle.

The Oracle NUMBER data
type is used to store both
fixed and floating-point
numbers in a format that is
compatible with decimal
arithmetic. You may want to
add a check constraint to
constrain range of values.
Also, you get different
answers when performing
operations on this data type
as the Oracle NUMBER type
is more precise and portable
than REAL. Floating-point
numbers can be specified in
Oracle in the following
format: FLOAT[(b)]. Where
[(b)] is the binary precision
b and can range from 1 to
126. [(b)] defaults to 126. To
check what a particular
binary precision is in terms
of decimal precision,
multiply [(b)] by 0.30103
and round up to the next
whole number.

Table 2–2 Data Types in Oracle and Microsoft SQL Server and
Sybase Adaptive Server(Cont.)

Microsoft SQL
Server and
Sybase
Adaptive
Server Description Oracle Comments

Data Types

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-11

FLOAT A floating point number.
This column has 15-digit
precision.

FLOAT The ANSI data type
conversion to Oracle for
FLOAT(p) is FLOAT(p). The
ANSI data type conversion
to Oracle for DOUBLE
PRECISION is FLOAT(126).
By default, the Oracle
Migration Workbench maps
FLOAT to FLOAT(53), that
stores up to 16 significant
decimal digits in Oracle.

The Oracle NUMBER data
type is used to store both
fixed and floating-point
numbers in a format
compatible with decimal
arithmetic.You get different
answers when performing
operations on this type due
to the fact that the Oracle
NUMBER type is much
more precise and portable
than FLOAT, but it does not
have the same range. The
NUMBER data type data
can range from
-9.99.99E+125 to
9.99.99E+125 (38 nines
followed by 88 zeros).

NOTE: If you try to migrate
floating point data greater
than or equal to 1.0E+126
then Migration Workbench
will fail to insert this data in
the Oracle database and1
will return an error.This
also applies to negative
values less than or equal to
-1.0E+126.

Table 2–2 Data Types in Oracle and Microsoft SQL Server and
Sybase Adaptive Server(Cont.)

Microsoft SQL
Server and
Sybase
Adaptive
Server Description Oracle Comments

Data Types

2-12 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Floating-point numbers can
be specified in Oracle using
FLOAT[(b)], where [(b)] is
the binary precision [(b)]
and can range from 1 to 126.
[(b)] defaults to 126.To
check what a particular
binary precision is in terms
of decimal precision
multiply [(b)] by 0.30103
and round up to the next
whole number.

If they are outside of the
range, large floating-point
numbers will overflow, and
small floating-point
numbers will underflow.

BIT A Boolean 0 or 1 stored
as one bit of a byte. Up to
8-bit columns from a
table may be stored in a
single byte, even if not
contiguous. Bit data
cannot be NULL, except
for Microsoft SQL Server
7.0, where null is allowed
by the BIT data type.

NUMBER(1) In Oracle, a bit is stored in a
number(1) (or char). In
Oracle, it is possible to
store bits in a char or
varchar field (packed) and
supply PL/SQL functions to
set / unset / retrieve /
query on them.

 CHAR(n) Fixed-length string of
exactly n 8-bit characters,
blank padded. Synonym
for CHARACTER.
0 < n < 256 for Microsoft
SQL Server and Sybase
Adaptive Server.
0 < n < 8000 for Microsoft
SQL Server 7.0.

CHAR(n) Pro*C client programs must
use mode=ansi to have
characters interpreted
correctly for string
comparison, mode=oracle
otherwise.

Table 2–2 Data Types in Oracle and Microsoft SQL Server and
Sybase Adaptive Server(Cont.)

Microsoft SQL
Server and
Sybase
Adaptive
Server Description Oracle Comments

Data Types

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-13

 VARCHAR(n) Varying-length character
string. 0 < n < 256 for
Microsoft SQL Server
and Sybase Adaptive
Server.
0 < n < 8000 for Microsoft
SQL Server 7.0.

VARCHAR2(n)

TEXT Character string of 8-bit
bytes allocated in
increments of 2k pages.
"TEXT" is stored as a
linked-list of 2024-byte
pages, blank padded.
TEXT columns can hold
up to (231-1) characters.

CLOB The CLOB field can hold up
to 4GB.

IMAGE Binary string of 8-bit
bytes. Holds up to
(231-1) bytes of binary
data.

BLOB The BLOB field can hold up
to 4GB.

BINARY(n) Fixed length binary
string of exactly n 8-bit
bytes.
0 < n < 256 for Microsoft
SQL Server and Sybase
Adaptive Server.
0 < n < 8000 for Microsoft
SQL Server 7.0.

RAW(n)/BLOB

VARBINARY(n) Varying length binary
string of up to n 8-bit
bytes.
0 < n < 256 for Microsoft
SQL Server and Sybase
Adaptive Server.
0 < n < 8000 for Microsoft
SQL Server 7.0.

RAW(n)/BLOB

Table 2–2 Data Types in Oracle and Microsoft SQL Server and
Sybase Adaptive Server(Cont.)

Microsoft SQL
Server and
Sybase
Adaptive
Server Description Oracle Comments

Data Types

2-14 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

DATETIME Date and time are stored
as two 4-byte integers.
The date portion is
represented as a count of
the number of days offset
from a baseline date
(1/1/1900) and is stored
in the first integer.
Permitted values are
legal dates between 1st
January, 1753 AD and
31st December, 9999 AD.
Permitted values in the
time portion are legal
times in the range 0 to
25920000. Accuracy is to
the nearest 3.33
milliseconds with
rounding downward.
Columns of type
DATETIME have a
default value of
1/1/1900.

DATE The precision of DATE in
Oracle and DATETIME in
Microsoft SQL Server
and Sybase Adaptive
Server is different. The
DATETIME data type has
higher precision than the
DATE data type. This may
have some implications if
the DATETIME column is
supposed to be UNIQUE. In
Microsoft SQL Server
and Sybase Adaptive
Server, the column of type
DATETIME can contain
UNIQUE values because the
DATETIME precision in
Microsoft SQL Server
and Sybase Adaptive
Server is to the hundredth
of a second. In Oracle,
however, these values may
not be UNIQUE as the date
precision is to the second.
You can replace a
DATETIME column with
two columns, one with data
type DATE and another
with a sequence, in order to
get the UNIQUE
combination. It is preferable
to store hundredths of
seconds in the second
column.

The Oracle TIMESTAMP
data type can also be used.
It has a precision of
1/10000000th of a second.

Table 2–2 Data Types in Oracle and Microsoft SQL Server and
Sybase Adaptive Server(Cont.)

Microsoft SQL
Server and
Sybase
Adaptive
Server Description Oracle Comments

Data Types

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-15

SMALL-DATET
IME

Date and time stored as
two 2-byte integers. Date
ranges from 1/1/1900 to
6/6/2079. Time is the
count of the number of
minutes since midnight.

DATE With optional check
constraint to validate the
smaller range.

MONEY A monetary value
represented as an integer
portion and a decimal
fraction, and stored as
two 4-byte integers.
Accuracy is to the nearest
1/10,000. When
inputting Data of this
type it should be
preceded by a dollar sign
($). In the absence of the
"$" sign, Microsoft SQL
Server and Sybase
Adaptive Server create
the value as a float.

Monetary data values
can range from
-922,337,203,685,477.5808
to
922,337,203,685,477.5807,
with accuracy to a
ten-thousandth of a
monetary unit. Storage
size is 8 bytes.

NUMBER(19,4) Microsoft SQL Server
and Sybase Adaptive
Server input MONEY data
types as a numeric data type
with a preceding dollar sign
($) as in the following
example, select * from
table_x where y > $5.00
You must remove the "$"
sign from queries. Oracle is
more general and works in
international environments
where the use of the "$" sign
cannot be assumed. Support
for other currency symbols
and ISO standards through
NLS is available in Oracle.

Table 2–2 Data Types in Oracle and Microsoft SQL Server and
Sybase Adaptive Server(Cont.)

Microsoft SQL
Server and
Sybase
Adaptive
Server Description Oracle Comments

Data Types

2-16 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

NCHAR(n) Fixed-length character
data type which uses the
UNICODE UCS-2
character set. n must be a
value in the range 1 to
4000. SQL Server storage
size is two times n.

Note: Microsoft SQL
Server storage size is two
times n. The Oracle
Migration Workbench
maps columns sizes
using byte semantics,
and the size of Microsoft
SQL Server NCHAR data
types appear in the
Oracle Migration
Workbench Source
Model with "Size"
specifying the number of
bytes, as opposed to the
number of Unicode
characters. Thus, a SQL
Server column
NCHAR(1000) will
appear in the Source
Model as NCHAR(2000).

CHAR(n*2)

Table 2–2 Data Types in Oracle and Microsoft SQL Server and
Sybase Adaptive Server(Cont.)

Microsoft SQL
Server and
Sybase
Adaptive
Server Description Oracle Comments

Data Types

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-17

NVARCHAR(n) Fixed-length character
data type which uses the
UNICODE UCS-2
character set. n must be a
value in the range 1 to
4000. SQL Server storage
size is two times n.

Note: Microsoft SQL
Server storage size is two
times n. The Oracle
Migration Workbench
maps columns sizes
using byte semantics,
and the size of Microsoft
SQL Server NCHAR data
types appear in the
Oracle Migration
Workbench Source
Model with "Size"
specifying the number of
bytes, as opposed to the
number of Unicode
characters. Thus, a SQL
Server column
NCHAR(1000) will
appear in the Source
Model as NCHAR(2000).

VARCHAR(n*2)

SMALLMONEY Same as MONEY above
except monetary data
values from
-214,748.3648 to
+214,748.3647, with
accuracy to one
ten-thousandth of a
monetary unit. Storage
size is 4 bytes.

NUMBER(10,4) Since the range is
-214,748.3648 to 214,748.364,
NUMBER(10,4) suffices for
this field.

Table 2–2 Data Types in Oracle and Microsoft SQL Server and
Sybase Adaptive Server(Cont.)

Microsoft SQL
Server and
Sybase
Adaptive
Server Description Oracle Comments

Data Types

2-18 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

TEXT and IMAGE data types in Microsoft SQL Server and Sybase Adaptive Server
follow the rules listed below:

■ The column of these data types cannot be indexed.

■ The column cannot be a primary key.

■ The column cannot be used in the GROUP BY, ORDER BY, HAVING, and
DISTINCT clauses.

■ IMAGE and TEXT data types can be referred to in the WHERE clause with the
LIKE construct.

■ IMAGE and TEXT data types can also be used with the SUBSTR and LENGTH
functions.

In Microsoft SQL Server and Sybase Adaptive Server only columns with
variable-length data types can store NULL values. When you create a column that
allows NULLs with a fixed-length data type, the column is automatically converted

TIMESTAMP TIMESTAMP is defined
as VARBINARY(8) with
NULL allowed. Every
time a row containing a
TIMESTAMP column is
updated or inserted, the
TIMESTAMP column is
automatically
incremented by the
system. A TIMESTAMP
column may not be
updated by users.

NUMBER You must place triggers on
columns of this type to
maintain them. In Oracle
you can have multiple
triggers of the same type
without having to integrate
them all into one big trigger.
You may want to supply
triggers to prevent updates
of this column to enforce
full compatibility.

SYSNAME VARCHAR(30) in
Microsoft SQL Server
and Sybase Adaptive
Server.

NVARCHAR(128) in
Microsoft SQL Server 7.0.

VARCHAR2(30)
and
VARCHAR2(12
8) respectively.

Table 2–2 Data Types in Oracle and Microsoft SQL Server and
Sybase Adaptive Server(Cont.)

Microsoft SQL
Server and
Sybase
Adaptive
Server Description Oracle Comments

Data Types

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-19

to a system variable-length data type, as illustrated in Table 2–3. These
variable-length data types are reserved system data types, and users cannot use
them to create columns

Recommendations

In addition to the data types listed in Table 2-2, users can define their own data
types in Microsoft SQL Server and Sybase Adaptive Server databases. These
user-defined data types translate to the base data types that are provided by the
server. They do not allow users to store additional types of data, but can be useful in
implementing standard data types for an entire application.

You can map data types from Microsoft SQL Server and Sybase Adaptive Server to
Oracle with the equivalent data types listed in the above table. The Migration
Workbench converts user-defined data types to their base type. You can defined
how the base type is mapped to an Oracle type in the Data Type Mappings page in
the Options dialog.

Table 2–3 Data Type Conversion for NULL Values

Fixed-Length Data Type Variable-Length Data Type

CHAR VARCHAR

NCHAR NVARCHAR

BINARY VARBINARY

DATETIME,
SMALLDATETIME

DATETIMN

FLOAT FLOATN

INT, SMALLINT,
TINYINT

INTN

DECIMAL DECIMALN

NUMERIC NUMERICN

MONEY, SMALLMONEY MONEYN

Note: The Oracle Migration Workbench Source Model will
display table system data types for each column.

Data Storage Concepts

2-20 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Data Storage Concepts
This section provides a detailed description of the conceptual differences in data
storage for the Microsoft SQL Server and Sybase Adaptive Server and Oracle
databases.

Specifically, it contains the following information:

■ A table comparing the data storage concepts of Microsoft SQL Server and
Sybase Adaptive Server, and Oracle databases

■ Recommendations based on the information listed in the table

Data Storage Concepts Table

Table 2–4 Data Storage Concepts in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Microsoft SQL Server and Sybase Adaptive
Server Oracle

Database Devices:

A database device is mapped to the specified
physical disk files.

Datafiles:

One or more datafiles are created for each
tablespace to physically store the data of all
logical structures in a tablespace. The
combined size of the datafiles in a
tablespace is the total storage capacity of
the tablespace. The combined storage
capacity of a the tablespaces in a database
is the total storage capacity of the database.
Once created, a datafile cannot change in
size. This limitation does not exist in
Oracle.

Page:

Many pages constitute a database device. Each
page contains a certain number of bytes.

Data Block:

One data block corresponds to a specific
number of bytes, of physical database
space, on the disk. The size of the data
block can be specified when creating the
database. A database uses and allocates
free database space in Oracle data blocks.

Extent:

Eight pages make one extent. Space is
allocated to all the databases in increments of
one extent at a time.

Extent:

An extent is a specific number of
contiguous data blocks, obtained in a single
allocation.

Data Storage Concepts

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-21

N/A Segments:

A segment is a set of extents allocated for a
certain logical structure. The extents of a
segment may or may not be contiguous on
disk, and may or may not span the
datafiles.

Segments (corresponds to Oracle
Tablespace):

A segment is the name given to one or more
database devices. Segment names are used in
CREATE TABLE and CREATE INDEX
constructs to place these objects on specific
database devices. Segments can be extended
to include additional devices as and when
needed by using the SP_EXTENDSEGMENT
system procedure.

The following segments are created along with
the database:

■ System segment
Stores the system tables.

■ Log segment
Stores the transaction log.

■ Default segment
All other database objects are stored on
this segment unless specified otherwise.

Segments are subsets of database devices.

Tablespace (corresponds to Microsoft
SQL Server and Sybase Adaptive
Server Segments):

A database is divided into logical storage
units called tablespaces. A tablespace is
used to group related logical structures
together. A database typically has one
system tablespace and one or more user
tablespaces.

Tablespace Extent:

An extent is a specific number of
contiguous data blocks within the same
tablespace.

Tablespace Segments:

A segment is a set of extents allocated for a
certain logical database object. All the
segments assigned to one object must be in
the same tablespace. The segments get the
extents allocated to them as and when
needed.

There are four different types of segments
as follows:

■ Data segment
Each table has a data segment. All of
the table’s data is stored in the extents
of its data segments. The tables in
Oracle can be stored as clusters as
well. A cluster is a group of two or
more tables that are stored together.
Each cluster has a data segment. The
data of every table in the cluster is
stored in the cluster’s data segment.

Table 2–4 Data Storage Concepts in Oracle and Microsoft SQL Server and Sybase
Adaptive Server (Cont.)

Microsoft SQL Server and Sybase Adaptive
Server Oracle

Data Storage Concepts

2-22 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Tablespace Segments (Cont):

■ Index segment
Each index has an index segment that
stores all of its data.

■ Rollback segment
One or more rollback segments are
created by the DBA for a database to
temporarily store "undo" information.
This is the information about all the
transactions that are not yet
committed. This information is used to
generate read-consistent database
information during database recovery
to rollback uncommitted transactions
for users.

■ Temporary segment
Temporary segments are created by
Oracle when a SQL statement needs a
temporary work area to complete
execution. When the statement finishes
execution, the extents in the temporary
segment are returned to the system for
future use.

Log Devices:

These are logical devices assigned to store the
log. The database device to store the logs can
be specified while creating the database.

Redo Log Files:

Each database has a set of two or more redo
log files. All changes made to the database
are recorded in the redo log. Redo log files
are critical in protecting a database against
failures. Oracle allows mirrored redo log
files so that two or more copies of these
files can be maintained. This protects the
redo log files against failure of the
hardware the log file reside on.

Table 2–4 Data Storage Concepts in Oracle and Microsoft SQL Server and Sybase
Adaptive Server (Cont.)

Microsoft SQL Server and Sybase Adaptive
Server Oracle

Data Storage Concepts

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-23

Database Devices:

A database device contains the database
objects. A logical device does not necessarily
refer to any particular physical disk or file in
the file system.

The database and logs are stored on database
devices. Each database device must be
initialized before being used for database
storage. Initialization of the database device
initializes the device for storage and registers
the device with the server. After initialization,
the device can be:

■ Allocated to the free space available to a
database

■ Allocated to store specific user objects

■ Used to store the transaction log of a
database

■ Labeled as default device to create and
alter database objects

The SP_HELPDEVICES system procedure
displays all the devices that are registered
with the server. Use the DROP DEVICE
DEVICE_NAME command to drop the device.
The system administrator (SA) should restart
the server after dropping the device.

A device can be labeled as a default device so
that the new databases need not specify the
device at the time of creation. Use the SP_
DISKDEFAULT system procedure to label the
device as a default device.

N/A

Dump Devices

These are logical devices. A database dump is
stored on these devices. The DUMP
DATABASE command uses the dump device
to dump the database.

N/A

Table 2–4 Data Storage Concepts in Oracle and Microsoft SQL Server and Sybase
Adaptive Server (Cont.)

Microsoft SQL Server and Sybase Adaptive
Server Oracle

Data Storage Concepts

2-24 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Recommendations:

The conceptual differences in the storage structures do not affect the conversion
process directly. However, the physical storage structures need to be in place before
conversion of the database begins.

Oracle, Microsoft SQL Server and Sybase Adaptive Server all have a way to control the
physical placement of a database object. In Microsoft SQL Server and Sybase
Adaptive Server, you use the ON SEGMENT clause and in Oracle you use the
TABLESPACE clause.

An attempt should be made to preserve as much of the storage information as
possible when converting from Microsoft SQL Server and Sybase Adaptive Server
to Oracle. The decisions that were made when defining the storage of the database
objects for Microsoft SQL Server and Sybase Adaptive Server should also apply for
Oracle. Especially important are initial object sizes and physical object placement.

N/A Control Files:

Each database has a control file. This file
records the physical structure of the
database. It contains the following
information:

■ database name

■ names and locations of a database’s
datafiles and redo log files

■ time stamp of database creation

 It is possible to have mirrored control files.
Each time an instance of an Oracle database
is started, its control file is used to identify
the database, the physical structure of the
data, and the redo log files that must be
opened for the database operation to
proceed. The control file is also used for
recovery if necessary. The control files hold
information similar to the master database
in Microsoft SQL Server and Sybase
Adaptive Server.

Table 2–4 Data Storage Concepts in Oracle and Microsoft SQL Server and Sybase
Adaptive Server (Cont.)

Microsoft SQL Server and Sybase Adaptive
Server Oracle

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-25

Data Manipulation Language
This section uses tables to compare the syntax and description of Data Manipulation
Language (DML) elements in the Microsoft SQL Server and Sybase Adaptive
Server, and Oracle databases. Each table is followed by a recommendations section
based on the information in the tables. The following topics are presented in this
section:

■ Connecting to the Database

■ SELECT Statement

■ SELECT with GROUP BY Statement

■ INSERT Statement

■ UPDATE Statement

■ DELETE Statement

■ Operators

■ Comparison Operators

■ Arithmetic Operatorss

■ String Operators

■ Set Operators

■ Bit Operators

■ Built-In Functions

■ Character Functions

■ Date Functions

■ Mathematical Functions

■ Locking Concepts and Data Concurrency Issues

■ Locking

■ Row-Level Versus Page-Level Locking

■ Read Consistency

■ Logical Transaction Handling

Data Manipulation Language

2-26 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Connecting to the Database
The statement illustrated in the following table connects a user to a database.

Recommendations:

This concept of connecting to a database is conceptually different in the Microsoft
SQL Server and Sybase Adaptive Server, and Oracle databases. An Microsoft SQL
Server and Sybase Adaptive Server user can log on to the server and switch to
another database residing on the server, provided the user has privileges to access
that database. An Oracle Server controls only one database, so here the concept of a
user switching databases on a server does not exist. Instead, in Oracle a user
executes the SET ROLE command to change roles or re-issues a CONNECT
command using a different user_name.

Table 2–5 Connecting to the Database in Oracle and Microsoft SQL Server and
Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

 Syntax:

USE database_name

 Syntax:

 CONNECT user_name/password
 SET role

Description:

A default database is assigned to each
user. This database is made current
when the user logs on to the server. A
user executes the USE DATABASE_
NAME command to switch to another
database.

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-27

SELECT Statement
The statement in the following table retrieves rows from one or more tables or
views.

Data Manipulation Language

2-28 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Table 2–6 SELECT Statements in Oracle and Microsoft SQL Server
and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

 Syntax:

SELECT [ALL | DISTINCT]
{select_list}
 [INTO [owner.]table]
 [FROM [owner.]{table |
view}[alias] [HOLDLOCK]
 [,[owner.]{table | view
}[alias]
 [HOLDLOCK]]...]
 [WHERE condition]
 [GROUP BY [ALL] aggregate_
free_expression [, aggregate_
free_expression]...]
 [HAVING search_condition]
 [UNION [ALL] SELECT...]
 [ORDER BY {[[owner.]{table |
view }.]column | select_list_
number | expression}
 [ASC | DESC]
 [,{[[owner.]{table | view
}.]column | select_list_
number | expression}
 [ASC | DESC]...]
 [COMPUTE row_
aggregate(column)
 [,row_aggregate(column)...]
 [BY column [, column...]]]
 [FOR BROWSE]
 The individual element in
the select list is as
follows:
 [alias =]
 {* | [owner.]{table |
view}.* | SELECT ... |
{[owner.]table.column |
constant_literal |
expression}
 [alias]}

 Syntax:

SELECT [ALL | DISTINCT] {select_list}
FROM [user.]{table | view } [@dblink]
[alias]
[, [user.] {table | view3} [@dblink]
[alias]...
 [WHERE condition]
 [CONNECT BY condition [START WITH
condition]]
 [GROUP BY aggregate_free_
expression
 [,aggregate_free_
expression]...]
 [HAVING search_
condition]
 [{UNION [ALL] | INTERSECT | MINUS}
SELECT ...]
 [ORDER BY {expression | position} [ASC
| DESC]...]
 [FOR UPDATE [OF [[user.]{table |
view}.]column
 [,[[user.]{table |
view}.]column...]
 [noWAIT]]
The individual element in the select
list is as follows:
{ * | [owner.]{table | view | snapshot |
synonym}.* | {[owner.]table.column |
constant_literal | expression }
alias]}

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-29

Description:

DISTINCT eliminates the duplicate
rows.

The INTO clause and the items that
follow it in the command syntax are
optional, because Microsoft SQL
Server and Sybase Adaptive Server
allow SELECT statements without
FROM clauses as can be seen in the
following example:

SELECT getdate()

SELECT...INTO allows you to insert
the results of the SELECT statement
into a table.

SELECT_LIST can contain a SELECT
statement in the place of a column
specification as follows:

SELECT d.empno, d.deptname,
empname = (SELECT ename FROM emp
 WHERE enum = d.empno)
FROM dept d
WHERE deptid = 10

The above example also shows the
format for the column alias.

 ALIAS = selected_column

COMPUTE attaches computed values
at the end of the query. These are
called row_aggregates.

Outer joins are implemented as
follows:

 WHERE tab1.col1 *= tab2.col1;

Description:

DISTINCT eliminates the duplicate rows.

The INSERT INTO <table> SELECT FROM....
construct allows you to insert the results of the
SELECT statement into a table.

COLUMN ALIAS is defined by putting the alias
directly after the selected COLUMN.

If you use TABLE ALIAS, the TABLE must always
be referenced using the ALIAS.

You can also retrieve data from SYNONYMS.

EXPRESSION could be a column name, a literal, a
mathematical computation, a function, several
functions combined, or one of several
PSEUDO-COLUMNS.

Outer joins are implemented as follows:

 WHERE tab1.col1 = tab2.col1 (+);

Where all values from TAB1 are returned even if
TAB2 does not have a match or

 WHERE tab1.col1 (+) = tab2.col1;

where all values from TAB2 are returned even if
TAB1 does not have a match.

If a GROUP BY clause is used, all non-aggregate
select columns must be in a GROUP BY clause.

The FOR UPDATE clause locks the rows selected
by the query. Other users cannot lock these row
until you end the transaction. This clause is not a
direct equivalent of the FOR BROWSE mode in
Microsoft SQL Server and Sybase Adaptive
Server.

Table 2–6 SELECT Statements in Oracle and Microsoft SQL Server
and Sybase Adaptive Server(Cont.) (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Data Manipulation Language

2-30 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

SELECT Statements without FROM Clauses:

Microsoft SQL Server and Sybase Adaptive Server support SELECT statements that
do not have a FROM clause. This can be seen in the following example

SELECT getdate()

Oracle does not support SELECTs without FROM clauses. However, Oracle
provides the DUAL table which always contains one row. Use the DUAL table to
convert constructs such as the one above.

Translate the above query to:

SELECT sysdate FROM dual;

where all values from TAB1 are
returned even if TAB2 does not have a
match or

 WHERE tab1.col1 =* tab2.col1;

where all values from TAB2 are
returned even if TAB1 does not have a
match.

If a GROUP BY clause is used, all
non-aggregate select columns are
needed.

FOR BROWSE keywords are used to
get into browse mode. This mode
supports the ability to perform
updates while viewing data in an
OLTP environment. It is used in
front-end applications using
DB-Library and a host programming
language. Data consistency is
maintained using the TIMESTAMP
field in a multi-user environment. The
selected rows are not locked; other
users can view the same rows during
the transaction. A user can update a
row if the TIMESTAMP for the row is
unchanged since the time of selection.

Table 2–6 SELECT Statements in Oracle and Microsoft SQL Server
and Sybase Adaptive Server(Cont.) (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-31

SELECT INTO Statement:

The Microsoft SQL Server and Sybase Adaptive Server SELECT INTO statement can
insert rows into a table. This construct, which is part SELECT and part INSERT, is
not supported by ANSI. Replace these statements with INSERT...SELECT
statements in Oracle.

If the Microsoft SQL Server and Sybase Adaptive Server construct is similar to the
following:

SELECT col1, col2, col3
INTO target_table
FROM source_table
WHERE where_clause

you should convert it to the following for Oracle:

INSERT into target_table
SELECT col1, col2, col3
FROM source_table
WHERE where_clause

Subqueries in Place of Columns:

In Microsoft SQL Server and Sybase Adaptive Server, a SELECT statement may
appear anywhere that a column specification appears. Oracle does not support this
non-ANSI extension to ANSI SQL. Change the subquery in the SELECT list either
by using a DECODE statement or by dividing the query into two different queries.

Use the following sales table as a basis for the examples below:

Year Quantity Amount

1993 1 1.3

1993 2 1.4

1993 3 3

1993 4 2.3

Data Manipulation Language

2-32 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Microsoft SQL Server and Sybase Adaptive Server:

If you want to select the year, q1 amount, q2 amount, q3 amount, and q4 as a row,
Microsoft SQL Server and Sybase Adaptive Server accept the following query:

SELECT distinct year,
 q1 = (SELECT amt FROM sales
 WHERE qtr=1 AND year = s.year),
 q2 = (SELECT amt FROM sales
 WHERE qtr=2 AND year = s.year),
 q3 = (SELECT amt FROM sales
 WHERE qtr=3 AND year = s.year),
 q4 = (SELECT amt FROM sales
 WHERE qtr=4 AND year = s.year)
FROM sales s

Oracle:

In this example, replace the SELECT statements with DECODE so that the query
functions as normal. The DECODE function is much faster than Microsoft SQL
Server and Sybase Adaptive Server subqueries. Translate the above query to the
following for Oracle:

SELECT year,
DECODE(qtr, 1, amt, 0) q1,
DECODE(qtr, 2, amt, 0) q2,
DECODE(qtr, 3, amt, 0) q3,
DECODE(qtr, 4, amt, 0) q4
FROM sales s;

If you cannot convert the query using the above method, create views and base the
query on the views rather than on the original tables.

For example, consider the following query in Microsoft SQL Server and Sybase
Adaptive Server:

SELECT name,
sumlength = (SELECT sum(length) FROM syscolumns WHERE id = t.id),
count_indexes = (SELECT count(*) FROM sysindexes WHERE id = t.id)
FROM sysobjects t

This query returns the sum of the lengths of the columns of a table and the number
of indexes on that table. This is best handled in Oracle by using some views.

Convert this to the following in Oracle:

CREATE view V1 (sumlength, oid) as
SELECT sum(length), id FROM syscolumns

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-33

GROUP BY id

CREATE view V2 (count_indexes, oid) AS
SELECT count(*), id FROM sysindexes
GROUP BY id

SELECT name, sumlength, count_indexes
FROM sysobjects t, v1, v2
WHERE t.id = v1.oid
AND t.id = v2.oid

Comparing Subqueries to Subqueries:

Microsoft SQL Server and Sybase Adaptive Server also allow a SELECT statement
in the WHERE clause. For example, consider the following statement from
Microsoft SQL Server and Sybase Adaptive Server:

SELECT empname, deptname
FROM emp, dept
WHERE emp.empno = 100
 AND(SELECT security_code
 FROM employee_security
 WHERE empno = emp.empno) =
 (SELECT security_code
 FROM security_master
 WHERE sec_level = dept.sec_level)

Convert this to the ANSI-standard statement below for Oracle:

SELECT empname, deptname
FROM emp, dept
WHERE emp.empno = 100
 AND EXISTS (SELECT security_code
 FROM employee_security es
 WHERE es.empno = emp.empno
 AND es.security_code =
 (SELECT security_code
 FROM security_master
 WHERE sec_level =
 dept.sec_level));

Data Manipulation Language

2-34 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Column Aliases:

Convert column aliases from the following Microsoft SQL Server and Sybase
Adaptive Server syntax:

SELECT employees=col1 FROM tab1e

to the following Oracle syntax:

SELECT col1 employees FROM tab1e

Table Aliases:

Remove table aliases (also known as correlation names) unless they are used
everywhere.

Compute:

Replace the COMPUTE clause with another SELECT. Attach the two sets of results
using the UNION clause.

Outer JOIN Syntax:

Convert the outer JOIN syntax from the Microsoft SQL Server and Sybase Adaptive
Server syntax to the Oracle syntax.

In addition to these, there are many implications due to the differences in the
implementation of the special clauses such as GROUP BY, functions, joins. These are
discussed later in this chapter.

SELECT with GROUP BY Statement
Table 2–7 compares the SELECT with GROUP BY statement in Oracle to the same
statement in Microsoft SQL Server and Sybase Adaptive Server.

Note: Microsoft SQL Server and Sybase Adaptive Server also
support Oracle-style column aliases.

Table 2–7 SELECT with GROUP BY Statement in Oracle and Microsoft SQL Server
and Sybase Adaptive Server

Microsoft SQL Server/Server Oracle

Syntax:

See the SELECT Statement section.

Syntax:

See the SELECT Statement section.

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-35

INSERT Statement
The statements illustrated in the following table add one or more rows to the table
or view.

Recommendations:

INSERT statements in Microsoft SQL Server and Sybase Adaptive Server must be
changed to include an INTO clause if it is not specified in the original statement.

The values supplied in the VALUES clause in either database may contain
functions. The Microsoft SQL Server-specific functions must be replaced with the
equivalent Oracle constructs.

Description:

Non-aggregate SELECT columns must
be in a GROUP BY clause.

 Description:

All non-aggregate SELECT columns must be in a
GROUP BY clause.

Table 2–8 INSERT Statement in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

 INSERT [INTO]
[[database.]owner.] {table |
view}[(column [,
column]...)]{VALUES
(expression [,expression]...)
| query}

Syntax:

INSERT INTO [user.]{table |
view}[@dblink][(column [,
column]...)]{VALUES (expression [,
expression]...) | query...};

Description:

INTO is optional.

Inserts are allowed in a view provided
only one of the base tables is
undergoing change.

 Description:

INTO is required.

Inserts can only be done on single table views.

Table 2–7 SELECT with GROUP BY Statement in Oracle and Microsoft SQL Server
and Sybase Adaptive Server (Cont.)

Microsoft SQL Server/Server Oracle

Data Manipulation Language

2-36 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Convert inserts that are inserting into multi-table views in Microsoft SQL Server
and Sybase Adaptive Server to insert directly into the underlying tables in Oracle.

UPDATE Statement
The statement illustrated in the following table updates the data in a table or the
data in a table referenced by a view.

Note: Oracle lets you create functions that directly match most
Microsoft SQL Server and Sybase Adaptive Server functions.

Table 2–9 UPDATE Statement in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Microsoft SQL Server Oracle

Syntax:

UPDATE [[database.]owner.] {table |
view}
SET [[[database.]owner.] {table. |
view.}]
column = expression | NULL |
(select_statement)
[, column = expression | NULL |
(select_statement)]...
[FROM [[database.]owner.]table |
view
[, [[database.]owner.]table |
view]...
[WHERE condition]

Syntax:

UPDATE [user.]{table | view} [@dblink]
SET [[user.] {table. | view.}]
{ column = expression | NULL | (select_
statement)
[, column = expression | NULL |
(select_statement)...] |
(column [, column]...) = (select_statement)}
[WHERE {condition | CURRENT OF cursor}]

Description:

The FROM clause is used to get the
data from one or more tables into the
table that is being updated or to
qualify the rows that are being
updated.

Updates through multi-table views can
modify only columns in one of the
underlying tables.

Description:

A single subquery may be used to update a set of
columns. This subquery must select the same
number of columns (with compatible data types)
as are used in the list of columns in the SET clause.

The CURRENT OF cursor clause causes the
UPDATE statement to effect only the single row
currently in the cursor as a result of the last
FETCH. The cursor SELECT statement must have
included in the FOR UPDATE clause.

Updates can only be done on single table views.

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-37

Recommendations:

There are two ways to convert UPDATE statements with FROM clauses as indicated
below.

Method 1 - Convert UPDATE statements with FROM clauses:

Use the subquery in the SET clause if columns are being updated to values coming
from a different table.

Convert the following in Microsoft SQL Server and Sybase Adaptive Server:

update titles
SET pub_id = publishers.pub_id
FROM titles, publishers
WHERE titles.title LIKE ’C%’
AND publishers.pub_name = ’new age’

to the following in Oracle:

UPDATE titles

SET pub_id =
(SELECT a.pub_id
 FROM publishers a
 WHERE publishers.pub_name = ’new age’
)
WHERE titles.title like ’C%’

Method 2 - Convert UPDATE statements with FROM clauses:

Use the subquery in the WHERE clause for all other UPDATE...FROM statements.

Convert the following in Microsoft SQL Server and Sybase Adaptive Server:

UPDATE shipping_parts
SET qty = 0
FROM shipping_parts sp, suppliers s
WHERE sp.supplier_num = s.supplier_num
 AND s.location = "USA"

to the following in Oracle:

UPDATE shipping_parts
SET qty = 0
WHERE supplier_num IN (
SELECT supplier_num
FROM suppliers WHERE location = ’USA’)

Data Manipulation Language

2-38 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

DELETE Statement
The statement illustrated in the following table removes rows from tables and rows
from tables referenced in views.

Remove Second FROM Clause:

Remove the second FROM clause from the DELETE statements.

Convert the following Microsoft SQL Server and Sybase Adaptive Server query:

DELETE
FROM sales
FROM sales, titles
WHERE sales.title_id = titles.title_id
AND titles.type = ’business’

Table 2–10 DELETE Statement in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

DELETE [FROM]
[[database.]owner.]{table |
view}
[FROM
[[database.]owner.]{table |
view}
[, [[database.]owner.]{table
| view}]...]
[WHERE where_clause]

 Syntax:

DELETE [FROM] [user.]{table | view}
[@dblink]
[alias]

[WHERE where_clause]

Description:

The first FROM in DELETE FROM is
optional.

The second FROM clause is an
Microsoft SQL Server and Sybase
Adaptive Server extension that
allows the user to make deletions
based on the data in other tables. A
subquery in the WHERE clause serves
the same purpose.

Deletes can only be performed through
single table views.

Description:

FROM is optional.

ALIAS can be specified for the table name as a
correlation name, which can be used in the
condition.

Deletes can only be performed through single table
views

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-39

to the following in Oracle:

DELETE
FROM sales
WHERE title_id in
(SELECT title_id
 FROM titles
 WHERE type = ’business’
)

Remove the second FROM even if the WHERE contains a multi-column JOIN.

Convert the following Microsoft SQL Server and Sybase Adaptive Server query:

DELETE
FROM sales
FROM sales, table_x
WHERE sales.a = table_x.a
 AND sales.b = table_x.b
 AND table_x.c = ’d’

to the following in Oracle:

DELETE
FROM sales
WHERE (a, b) in
 (SELECT a, b
 FROM table_x
 WHERE c = ’d’)

Operators

Comparison Operators
The following table compares the operators used in the Microsoft SQL Server and
Sybase Adaptive Server, and Oracle databases. Comparison operators are used in
WHERE clauses and COLUMN check constraints/rules to compare values

Data Manipulation Language

2-40 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Table 2–11 Comparison Operators in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Operator

Same in All
Three
Databases

Microsoft SQL
Server and Sybase
Adaptive Server
Only Oracle Only

Equal to =

Not equal to !=

<>

^=

Less than <

Greater than >

Less than or equal to <= !>

Greater than or equal to >= !<

Greater than or equal to x and
less than or equal to y

BETWEEN x
AND y

Less than x or greater than y NOT BETWEEN
x AND y

Pattern Matches

a followed by 0 or more
characters
a followed by exactly 1 character
a followed by any character
between x and z

a followed by any character
except those between x and z

a followed by %

LIKE ’a%’

LIKE ’a_’

LIKE’a[x-z]’

LIKE’a[^x-z]’

LIKE ’a\%’

ESCAPE ’\’

Does not match pattern NOT LIKE

No value exists IS NULL

A value exists IS NOT NULL

At least one row returned by
query

EXISTS
(query)

No rows returned by query NOT EXISTS
(query)

Equal to a member of set IN
=ANY

 = SOME

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-41

Recommendations:

1. Convert all !< and !> to >= and <=

Convert the following in Microsoft SQL Server and Sybase Adaptive Server:

WHERE col1 !< 100

to this for Oracle:

WHERE col1 >= 100

2. Convert like comparisons which use [] and [^]

SELECT title
FROM titles
WHERE title like "[A-F]%"

Not equal to a member of set NOT IN
!= ANY
<> ANY

!= SOME <>
SOME

Less than a member of set < ANY < SOME

Greater than a member of set > ANY > SOME

Less than or equal to a member of
set

 <= ANY !> ANY <= SOME

Greater than or equal to a
member of set

>= ANY !< ANY >= SOME

Equal to every member of set =ALL

Not equal to every member of set != ALL
<> ALL

Less than every member of set < ALL

Greater than every member of set > ALL

Less than or equal to every
member of set

<= ALL !> ALL

Greater than or equal to every
member of set

 >= ALL !< ALL

Table 2–11 Comparison Operators in Oracle and Microsoft SQL Server and Sybase
Adaptive Server (Cont.)

Operator

Same in All
Three
Databases

Microsoft SQL
Server and Sybase
Adaptive Server
Only Oracle Only

Data Manipulation Language

2-42 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Method 1 - Eliminating use of []:

Use this method with the SUBSTR () function if possible.

SELECT title
from titles
where substr (titles,1,1) in
 (’A’, ’B’, ’C’, ’D’, ’E’, ’F’)

Method 2 - Eliminating use of []:

The second method uses the % construct.

SELECT title
FROM titles
WHERE (title like ’A%’
 OR title like ’B%’
 OR title like ’C%’
 OR title like ’D%’
 OR title like ’E%’
 OR title like ’F%’)

3. Change NULL constructs:

The following table shows that in Oracle, NULL is never equal to NULL.
Change the all = NULL constructs to IS NULL to retain the same functionality.

If you have the following in Microsoft SQL Server and Sybase Adaptive Server:

WHERE col1 = NULL

Convert it as follows for Oracle:

Table 2–12 Changing NULL Constructs

NULL Construct
Microsoft SQL Server and
Sybase Adaptive Server Oracle

where col1 = NULL depends on the data FALSE

where col1 != NULL depends on the data TRUE

where col1 IS NULL depends on the data depends on the data

where col1 IS NOT
NULL

depends on the data depends on the data

where NULL = NULL TRUE FALSE

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-43

WHERE col1 IS NULL

Arithmetic Operators

Recommendations:

Replace any Modulo functions in Microsoft SQL Server and Sybase Adaptive Server
with the mod() function in Oracle.

String Operators

Recommendations:

Replace all addition of strings with the || construct.

Replace all double quotes string identifiers with single quote identifiers.

Table 2–13 Arithmetic Operators in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Operator
Same in All Three
Databases

Microsoft SQL
Server and Sybase
Adaptive Server
Only Oracle Only

Add +

Subtract -

Multiply *

Divide /

Modulo v % mod(x, y)

Table 2–14 String Operators in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Operator
Same in All Three
Databases

Microsoft SQL
Server and Sybase
Adaptive Server
Only Oracle Only

Concatenate s + ||

Identify Literal ’this is a string’ "this is also a string"

Data Manipulation Language

2-44 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

In Microsoft SQL Server and Sybase Adaptive Server, an empty string (’’) is
interpreted as a single space in INSERT or assignment statements on VARCHAR
data. In concatenating VARCHAR, CHAR, or TEXT data, the empty string is
interpreted as a single space. The empty string is never evaluated as NULL. You
must bear this in mind when converting the application.

Set Operators

Bit Operators

Recommendations:

Oracle enables you to write the procedures to perform bitwise operations.

Table 2–15 Set Operators in Oracle and Microsoft SQL Server and Sybase Adaptive
Server

Operator
Same in All
Three Databases

Microsoft SQL
Server and Sybase
Adaptive Server
Only Oracle Only

Distinct row from either query UNION

All rows from both queries UNION ALL

All distinct rows in both
queries

d INTERSECT

All distinct rows in the first
query but not in the second
query

d MINUS

Table 2–16 Bit Operators in Oracle and Microsoft SQL Server and Sybase Adaptive
Server

Operator
Same in All
Three Databases

Microsoft SQL Server
and Sybase Adaptive
Server Only Oracle Only

bit and &

bit or |

bit exclusive or ^

bit not ~

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-45

If you have the following Microsoft SQL Server and Sybase Adaptive Server
construct:

X | Y :(Bitwise OR)

You could write a procedure called dbms_bits.or (x,y) and convert the above
construct to the following in Oracle:

dbms_bits.or(x,y)

Built-In Functions

Character Functions

Table 2–17 Character Functions in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Microsoft SQL Server and
Sybase Adaptive Server Oracle Description

ascii(char) ascii(char) Returns the ASCII equivalent
of the character.

char(integer_expression) chr(integer_expression) Converts the decimal code for
an ASCII character to the
corresponding character.

charindex(specified_exp,
char_string)

instr(specified_exp, char_
string, 1, 1)

Returns the position where the
specified_exp first occurs in the
char_string.

convert(data type, expression,
[format])

to_char, to_number, to_
date, to_label,
chartorowid, rowtochar,
hextochar, chartohex

Converts one data type to
another using the optional
format. The majority of the
functionality can be matched.
Refer to Oracle9i SQL
Reference, Release 1 (9.0.1) for
more information.

datalength(expression) g Computes the length allocated
to an expression, giving the
result in bytes.

difference(character_exp,
character_exp)

d Returns the numeric difference
of the SOUNDEX values of the
two strings.

isnull(variable, new_value) nvl(variable, new_value) If the value of the variable is
NULL, the new_value is
returned.

Data Manipulation Language

2-46 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

lower(char_exp) lower(char_exp) Converts uppercase characters
to lowercase characters.

ltrim(char_exp) ltrim(char_exp) Truncates trailing spaces from
the left end of char_exp.

patindex(pattern, column_name) Returns the position of the
pattern in the column value.
The pattern can have wild
characters. This function also
works on TEXT and BINARY
data types.

replicate(char_exp, n) rpad(char_exp,
length(char_exp)*n, ’’)

Produces a string with char_
exp repeated n times.

reverse(char_string) Reverses the given char_string.

 right(char_exp, n) substr(char_exp,
(length(char_exp)

Returns the part of the string
starting at the position given
by n from the right and
extending up to the end of the
string.

rtrim(char_exp) rtrim(char_exp) Truncates the trailing spaces
from the right end of char_exp.

soundex(exp) soundex(exp) Returns phonetically similar
expressions to the specified
exp.

space(int_exp) rpad(’ ’, int_exp-1, ’’) Generates a string with int_exp
spaces.

str(float_exp, length) to_char(float_
exp)stuff(char_exp, start,
length, replace_
str)substr(char_exp, 1,
start) ||replace_str
||substr(char_exp,
start+length)

Replaces a substring within
char_exp with replace_str.

Table 2–17 Character Functions in Oracle and Microsoft SQL Server and Sybase
Adaptive Server (Cont.)

Microsoft SQL Server and
Sybase Adaptive Server Oracle Description

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-47

Miscellaneous Functions

substring(char_exp, start,
length)

Works on IMAGE and TEXT
data types

substr(char_exp, start,
length)

Does not work with
LONG and LONG_RAW
data types

 Replaces a substring within
char_exp with replace_str.

textptr(column_name) d Returns a pointer as a
varbinary(16) data type for a
named IMAGE or TEXT
column.

textvalid("column_name",
text_pointer)

h Returns 1 if the specified text_
pointer is valid for the
specified column_name. The
column must be of type TEXT
or IMAGE.

upper(char_exp) upper(char_exp) Converts lowercase characters to
uppercase characters.

Table 2–18 Comparison Operators in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Microsoft SQL Server and
Sybase Adaptive Server Oracle Description

datalength(expression) lengthb Computes the length allocated
to an expression, giving the
result in bytes.

isnull(variable, new_value) nvl(variable, new_value) If the value of the variable is
NULL, the new_value is returned.

Note: The above functions tables list all the Microsoft SQL Server
and Sybase Adaptive Server character manipulation functions.
They do not list all the Oracle functions. There are many more
Oracle character manipulation functions that you can use.

Table 2–17 Character Functions in Oracle and Microsoft SQL Server and Sybase
Adaptive Server (Cont.)

Microsoft SQL Server and
Sybase Adaptive Server Oracle Description

Data Manipulation Language

2-48 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Defining Functions in Oracle:

Oracle adds the ability to define functions. With this feature you can create Oracle
functions that match the name and function of Microsoft SQL Server and Sybase
Adaptive Server functions.

Date Functions

Table 2–19 Date Functions in Oracle and Microsoft SQL Server and Sybase Adaptive
Server

Microsoft SQL Server and
Sybase Adaptive Server Oracle Description

dateadd(dd, int_
exp,datetime_var)

date+int_exp
requires conversion of
int_exp to a number of
days

Adds the int_exp number of days to the
date contained in datetime_var.

dateadd(mm, int_
exp,datetime_var)

add_months(date, int_
exp)
or
date+int_exp requires
conversion of int_exp to
a number of days

 Adds the int_exp number of months to
the date contained in datetime_var.

dateadd(yy, int_
exp,datetime_var)

date+int_exp
requires conversion of
int_exp to a number of
days

Adds the int_exp number of years to the
date contained in datetime_var.

datediff(dd,
datetime1,datetime2)

date2-date1 Returns the difference between the dates
specified by the datetime1 and
datetime2 variables. This difference is
calculated in the number of days.

datediff(mm,
datetime1,datetime2)

months_between
(date2, date1)

Returns the difference between the dates
specified by the datetime1 and
datetime2 variables. This difference is
calculated in the number of months.

datediff(yy,
datetime1,datetime2)

(date2-date1) /365.254 Returns the difference between the dates
specified by the datetime1 and
datetime2 variables. This difference is
calculated in the number of years.

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-49

Recommendations:

The above table lists all the Microsoft SQL Server and Sybase Adaptive Server date
manipulation functions. It does not list all the Oracle date functions. There are many
more Oracle date manipulation functions that you can use.

It is recommended that you convert most date manipulation functions to "+" or "-"
in Oracle.

Oracle adds the ability to define functions. With this feature you can create Oracle
functions that match the name and functionality of all Microsoft SQL Server and
Sybase Adaptive Server functions. This is a useful feature, where users can call a
PL/SQL function from a SQL statement’s SELECT LIST, WHERE clause, ORDER BY
clause, and HAVING clause. With the parallel query option, Oracle executes the
PL/SQL function in parallel with the SQL statement. Hence, users create parallel
logic.

datename (datepart, date) to_char(date, format) Returns the specified part of the date as
an integer. The Microsoft SQL Server
and Sybase Adaptive Server DATETIME
has a higher precision than Oracle
DATE. For this reason, it is not always
possible to find an equivalent format
string in Oracle to match the datepart in
Microsoft SQL Server and Sybase
Adaptive Server. See the Data Types
section of this chapter for more
information about conversion of the
DATETIME data type.

datepart(datepart, date) to_char(date, format) Returns the specified part of the date as
a character string (name). The Microsoft
SQL Server and Sybase Adaptive Server
DATETIME has a higher precision than
Oracle DATE’. For this reason, it is not
always possible to find an equivalent
format string in Oracle to match the
datepart in Microsoft SQL Server and
Sybase Adaptive Server.

getdate() sysdate Returns the system date.

Table 2–19 Date Functions in Oracle and Microsoft SQL Server and Sybase Adaptive
Server (Cont.)

Microsoft SQL Server and
Sybase Adaptive Server Oracle Description

Data Manipulation Language

2-50 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Mathematical Functions

Recommendations:

Table 2–20 Mathematical Functions in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

abs(n) abs(n)

acos(n) acos(n)

asin(n)

atan(n) atan(n)

atn2(n,m)

ceiling(n) ceil(n)

cos(n) cos(n)

cot(n)

degrees(n)

exp(n) exp(n)

floor(n) floor(n)

log(n) ln(n)

log10(n) log(base,number)

pi()

power(m,n) power(m,n)

radians(n)

rand(n)

round(n[,m]) round(n[,m])

sign(n) sign(n)

sin(n) sin(n)

sqrt(n) sqrt(n)

tan(n) tan(n)

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-51

The above table lists all the Microsoft SQL Server and Sybase Adaptive Server
number manipulation functions. It does not list all the Oracle mathematical
functions. There are many more Oracle number manipulation functions that you
can use.

Oracle adds the ability to define functions. With this feature you can create Oracle
functions that match the name and functionality of all Microsoft SQL Server and
Sybase Adaptive Server functions. This is the most flexible approach. Users can
write their own functions and execute them seamlessly from a SQL statement.

Oracle functions listed in the table work in SQL as well as PL/SQL.

Locking Concepts and Data Concurrency Issues

Locking
Locking serves as a control mechanism for concurrency. Locking is a necessity in a
multi-user environment because more than one user at a time may be working with
the same data.

Data Manipulation Language

2-52 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Table 2–21 Locking in Oracle and Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Microsoft SQL Server and Sybase Adaptive
Server locking is fully automatic and does
not require intervention by users.

Microsoft SQL Server and Sybase Adaptive
Server apply exclusive locks for INSERT,
UPDATE, and DELETE operations. When
an exclusive lock is set, no other transaction
can obtain any type of lock on those objects
until the original lock is in place.

For non-update or read operations, a
shared lock is applied. If a shared lock is
applied to a table or a page, other
transactions can also obtain a shared lock
on that table or page. However, no
transaction can obtain an exclusive lock.
Therefore, Microsoft SQL Server and
Sybase Adaptive Server reads block the
modifications to the data.

Update locks:

Update locks are held at the page level.
They are placed during the initial stages of
an update operation when the pages are
being read. Update locks can co-exist with
shared locks. If the pages are changed later,
the update locks are escalated to exclusive
locks.

Oracle locking is fully automatic and does not
require intervention by users. Oracle features
the following categories of locks:

Data locks (DML locks) to protect data.The
"table locks" lock the entire table and "row
locks" lock individual rows.

Dictionary locks (DDL locks) to protect the
structure of objects.

Internal locks to protect internal structures,
such as files.

DML operations can acquire data locks at two
different levels; one for specific rows and one
for entire tables.

Row-level locks:

An exclusive lock is acquired for an individual
row on behalf of a transaction when the row is
modified by a DML statement. If a transaction
obtains a row level lock, it also acquires a table
(dictionary) lock for the corresponding table.
This prevents conflicting DDL (DROP TABLE,
ALTER TABLE) operations that would
override data modifications in an on-going
transaction.

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-53

Recommendations:

In Microsoft SQL Server and Sybase Adaptive Server, SELECT statements obtain
shared locks on pages/rows. This prevents other statements from obtaining an
exclusive lock on those pages/rows. All statements that update the data need an
exclusive lock. This means that the SELECT statement in Microsoft SQL Server and
Sybase Adaptive Server blocks the UPDATE statements as long as the transaction
that includes the SELECT statement does not commit or rollback. This also means
that two transactions are physically serialized whenever one transaction selects the
data and the other transaction wants to change the data first and then select the data
again. In Oracle, however, SELECT statements do not block UPDATE statements,

Intent locks:

Microsoft SQL Server and Sybase Adaptive
Server locking is fully automatic and does
not require intervention by users. Microsoft
SQL Server and Sybase Adaptive Server
apply exclusive locks for INSERT,
UPDATE, and DELETE operations. When
an exclusive lock is set, no other transaction
can obtain any type of lock on those objects
until the original lock is in place. For
non-update or read operations, a shared
lock is applied. If a shared lock is applied
to a table or a page, other transactions can
also obtain a shared lock on that table or
page. However, no transaction can obtain
an exclusive lock. Therefore, Microsoft SQL
Server and Sybase Adaptive Server reads
block the modifications to the data.

Extent locks:

Extent locks lock a group of eight database
pages while they are being allocated or
freed. These locks are held during a
CREATE or DROP statement, or during an
INSERT that requires new data or index
pages.

A list of active locks for the current server
can be seen with SP_LOCK system
procedure.

Table-level data locks can be held in any of the
following modes:

Row share table lock (RW):

This indicates that the transaction holding the
lock on the table has locked rows in the table
and intends to update them. This prevents
other transactions from obtaining exclusive
write access to the same table by using the
LOCK TABLE table IN EXCLUSIVE MODE
statement. Apart from that, all the queries,
inserts, deletes, and updates are allowed in
that table.

Row exclusive table lock (RX):

This generally indicates that the transaction
holding the lock has made one or more
updates to the rows in the table. Queries,
inserts, deletes, updates are allowed in that
table.

Share lock (SL):

Share row exclusive lock(SRX)

Exclusive lock (X):

The dynamic performance table V$LOCK
keeps the information about locks.

Table 2–21 Locking in Oracle and Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Data Manipulation Language

2-54 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

since the rollback segments are used to store the changed data before it is updated
in the actual tables. Also, the reader of the data is never blocked in Oracle. This
allows Oracle transactions to be executed simultaneously.

If Microsoft SQL Server and Sybase Adaptive Server logical transactions are
automatically translated to Oracle logical transactions, the transactions explained
above that execute properly in Microsoft SQL Server and Sybase Adaptive Server as
they are serialized causes a deadlock in Oracle. These transactions should be
identified and serialized to avoid the deadlock. These transactions are serialized in
Microsoft SQL Server and Sybase Adaptive Server as INSERT, UPDATE, and
DELETE statements block other statements.

Row-Level Versus Page-Level Locking

Table 2–22 Row-Level Versus Page-Level Locking in Oracle and Microsoft SQL
Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Microsoft SQL Server and Sybase
Adaptive Server do not have a
row-level locking feature.

Microsoft SQL Server and Sybase
Adaptive Server apply a page-level
lock, which effectively locks all rows
on the page, whenever any row in the
page is being updated. This is an
exclusive lock whenever the data is
being changed by DML statements.

Microsoft SQL Server 7.0 implements a
form of row-level locking.

Microsoft SQL Server 7.0 escalates
locks at row level to page level
automatically.

SELECT statements are blocked by
exclusive locks that lock an entire
page.

Oracle has a row-locking feature. Only one row is
locked when a DML statement is changing the row.

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-55

Recommendations:

No changes are required to take advantage of the row-level locking feature of
Oracle.

Read Consistency

Table 2–23 Read Consistency in Oracle and Microsoft SQL Server
and Sybase Adaptive Server

Microsoft SQL Server Oracle

Microsoft SQL Server and Sybase
Adaptive Server provide the
HOLDLOCK function for
transaction-level read consistency.
Specifying a SELECT with
HOLDLOCK puts a shared lock on the
data. More than one user can execute a
SELECT with HOLDLOCK at the same
time without blocking each other.

 When one of the users tries to update
the selected data, HOLDLOCK blocks
the update until the other users
commit, rollback, or attempt an update
and a deadlock occurs. This means that
HOLDLOCK prevents other
transactions from updating the same
data until the current transaction is in
effect.

Read consistency as supported by Oracle does the
following:

■ Ensures that the set of data seen by a
statement is consistent at a single
point-in-time and does not change during
statement execution

■ Ensures that reads of database data do not
wait for other reads or writes of the same data

■ Ensures that writes of database data do not
wait for reads of the same data

■ Ensures that writes wait for other writes only
if they attempt to update identical rows in
concurrent transactions

To provide read consistency, Oracle creates a
read-consistent set of data when a table is being
read and simultaneously updated.

Read consistency functions as follows:

1. When an update occurs, the original
datavalues changed by the update are recorde
in rollback segments.

2. While the update remains part of an
uncommitted transaction, any user that reads
the modified data views the original data
values. Only statements that start afteranother
user’s transaction is committed reflect the
changes made by the transaction.

You can specify that a transaction be read only
using the following command:

 SET TRANSACTION READ ONLY

Data Manipulation Language

2-56 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Logical Transaction Handling

Table 2–24 Logical Transaction Handling in Oracle and Microsoft SQL Server and
Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

After completion, any statement not within a
transaction is automatically committed.A
statement can be a batch containing multiple
T-SQL statements that are sent to the server
as one stream. The changes to the database
are automatically committed after the batch
executes. A ROLLBACK TRAN statement
subsequently executed has no effect. In
Microsoft SQL Server and Sybase
Adaptive Server, transactions are not
implicit. Start logical transaction with a
BEGIN TRANSACTION clause. Logical
transactions can be committed or rolled back
as follows.

BEGIN TRANSACTION [transaction_
name]

Use COMMIT TRAN to commit the
transaction to the database. You have the
option to specify the transaction name. Use
ROLLBACK TRAN to roll back the
transaction. You can set savepoints to roll
back to a certain point in the logical
transaction using the following command:

 SAVE TRANSACTION savepoint_name

Roll back to the specified SAVEPOINT with
the following command:

ROLLBACK TRAN <savepoint_name>

Statements are not automatically committed
to the database. The COMMIT WORK
statement is required to commit the pending
changes to the database.

Oracle transactions are implicit. This means
that the logical transaction starts as soon as
data changes in the database.

COMMIT WORK commits the pending
changes to the database.

ROLLBACK undoes all the transactions after
the last COMMIT WORK statement.

Savepoints can be set in transactions with the
following command:

 SET SAVEPOINT savepoint_name

The following command rolls back to the
specified SAVEPOINT:

 ROLLBACK <savepoint_name>

Two-phase commit is automatic and
transparent in Oracle. Two-phase commit
operations are needed only for transactions
which modify data on two or more
databases.

Data Manipulation Language

 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared 2-57

Recommendations:

Transactions are not implicit in Microsoft SQL Server and Sybase Adaptive Server.
Therefore, applications expect that every statement they issue is automatically
committed it is executed.

Oracle transactions are always implicit, which means that individual statements are
not committed automatically. When converting an Microsoft SQL Server and
Sybase Adaptive Server application to an Oracle application, care needs to be taken
to determine what constitutes a transaction in that application. In general, a
COMMIT work statement needs to be issued after every "batch" of statements,
single statement, or stored procedure call to replicate the behavior of Microsoft SQL
Server and Sybase Adaptive Server for the application.

Microsoft SQL Server and Sybase
Adaptive Server allow you to nest BEGIN
TRAN/COMMIT TRAN statements. When
nested, the outermost pair of transactions
creates and commits the transaction. The
inner pairs keep track of the nesting levels. A
ROLLBACK command in the nested
transactions rolls back to the outermost
BEGIN TRAN level, if it does not include the
name of the SAVEPOINT. Most Microsoft
SQL Server and Sybase Adaptive Server
applications require two-phase commit, even
on a single server. To see if the server is
prepared to commit the transaction, use
PREPARE TRAN in two-phase commit
applications.

Completed transactions are written to the
database device at CHECKPOINT. A
CHECKPOINT writes all dirty pages to the
disk devices since the last CHECKPOINT.

Calls to remote procedures are executed
independently of any transaction in which
they are included.

When a CHECKPOINT occurs, the
completed transactions are written to the
database device. A CHECKPOINT writes all
dirty pages to the disk devices that have
been modified since last checkpoint

Table 2–24 Logical Transaction Handling in Oracle and Microsoft SQL Server and
Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Data Manipulation Language

2-58 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

In Microsoft SQL Server and Sybase Adaptive Server, transactions may also be
explicitly begun by a client application by issuing a BEGIN TRAN statement during
the conversion process.

 Triggers and Stored Procedures 3-1

3
Triggers and Stored Procedures

This chapter includes the following sections:

■ Introduction

■ Data Types

■ Schema Objects

■ T/SQL Versus PL/SQL Constructs

■ T/SQL and PL/SQL Language Elements

Introduction
Microsoft SQL Server and Sybase Adaptive Server store triggers and stored
procedures with the server. Oracle stores triggers and stored subprograms with the
server. Oracle has three different kinds of stored subprograms, namely functions,
stored procedures, and packages. For detailed discussion on all these objects, see the
PL/SQL User’s Guide and Reference, Release 1 (9.0.1).

The following topics are discussed in this section:

■ Triggers

■ Stored Procedures

Triggers
Microsoft SQL Server and Sybase Adaptive Server database triggers are AFTER
triggers. This means that triggers are fired after the specific operation is performed.
For example, the INSERT trigger fires after the rows are inserted into the database.
If the trigger fails, the operation is rolled back.

Introduction

3-2 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Microsoft SQL Server and Sybase Adaptive Server allow INSERT, UPDATE, and
DELETE triggers. Triggers typically need access to the before image and after image
of the data that is being changed. Microsoft SQL Server and Sybase Adaptive Server
achieve this with two temporary tables called INSERTED and DELETED. These two
tables exist during the execution of the trigger. These tables and the table for which
the trigger is written have the exact same structure. The DELETED table holds the
before image of the rows that are undergoing change because of the
INSERT/UPDATE/DELETE operation, and the INSERTED table holds the after
image of these rows. If there is an error, the triggers can issue a rollback statement.

Most of the Microsoft SQL Server and Sybase Adaptive Server trigger code is
written to enforce referential integrity. Microsoft SQL Server and Sybase Adaptive
Server triggers are executed once per triggering SQL statement (such as INSERT,
UPDATE, or DELETE). If you want some actions to be performed for each row that
the SQL statement affects, you must code the actions using the INSERTED and
DELETED tables.

Oracle has a rich set of triggers. Oracle also provides triggers that fire for events
such as INSERT, UPDATE, and DELETE. You can also specify the number of times
that the trigger action is to be executed. For example, once for every row affected by
the triggering event (such as might be fired by an UPDATE statement that updates
many rows), or once for the triggering statement (regardless of how many rows it
affects).

A ROW trigger is fired each time that the table is affected by the triggering event.
For example, if an UPDATE statement updates multiple rows of a table, a row
trigger is fired once for each row affected by the UPDATE statement. A
STATEMENT trigger is fired once on behalf of the triggering statement, regardless
of the number of rows in the table that the triggering statement affects.

Oracle triggers can be defined as either BEFORE triggers or AFTER triggers.
BEFORE triggers are used when the trigger action should determine whether the
triggering statement should be allowed to complete. By using a BEFORE trigger,
you can avoid unnecessary processing of the triggering statement and its eventual
rollback in cases where an exception is raised.

As combinations, there are four different types of triggers in Oracle:

■ BEFORE STATEMENT trigger

■ BEFORE ROW trigger

■ AFTER STATEMENT trigger

■ AFTER ROW trigger

Introduction

 Triggers and Stored Procedures 3-3

It is sometimes necessary to create a ROW trigger or a STATEMENT trigger to
achieve the same functionality as the Microsoft SQL Server and Sybase Adaptive
Server trigger. This occurs in the following cases:

■ The triggering code reads from its own table (mutating).

■ The triggering code contains group functions.

In the following example, the group function AVG is used to calculate the average
salary:

SELECT AVG(inserted.salary)
FROM inserted a, deleted b
WHERE a.id = b.id;

This would be converted to Oracle by creating an AFTER ROW trigger to insert all
the updated values into a package, and an AFTER STATEMENT trigger to read
from the package and calculate the average.

For examples of Oracle triggers, see the Oracle9i Application Developer’s Guide -
Fundamentals, Release 1 (9.0.1).

Stored Procedures
Stored procedures provide a powerful way to code the application logic that can be
stored with the server. Microsoft SQL Server and Sybase Adaptive Server and
Oracle all provide stored procedures.

The language used to code these objects is a database-specific procedural extension
to SQL. In Oracle it is PL/SQL and in Microsoft SQL Server and Sybase Adaptive
Server it is Transact SQL (T/SQL). These languages differ to a considerable extent.
The individual SQL statements and the procedural constructs, such as
if-then-else, are similar in both versions of the procedural SQL. Considerable
differences can be found in the following areas discussed in this section:

■ Methods Used to Send Data to Clients

■ Individual SQL Statements

■ Logical Transaction Handling

■ Error Handling within the Stored Procedure

This section also considers various components of typical Microsoft SQL Server and
Sybase Adaptive Server stored procedures and suggests ways to design them in
order to avoid conversion problems. By applying the standards described below to

Introduction

3-4 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

the coding, you can convert your stored procedures from Microsoft SQL Server and
Sybase Adaptive Server to Oracle.

Methods Used to Send Data to Clients
Different relational database management systems (RDBMSs) use different methods
to send data to clients. For example, in Microsoft SQL Server and Sybase Adaptive
Server the server sends data to the client in the form of a byte-stream. The client is
responsible for retrieving all the data from the communication channel before
sending another request to the server. In Oracle, the client can issue one or more
SQL statements on the same network connection, and the system global area (SGA)
stores all the data retrieved from the database. The server sends the data to the
client as requested and the client sends a FETCH request on the connection
whenever it is ready for the next set of results. This section discusses the different
methods used to send data to clients under the following headings:

■ Output Variables

■ Results Sets: Microsoft SQL Server and Sybase Adaptive Server Method of
Sending Data to the Client

■ Oracle: Cursor Variables for Returning Query Results

■ Microsoft SQL Server and Sybase Adaptive Server: Multiple Results Sets

■ Microsoft SQL Server and Sybase Adaptive Server: Cursors

Output Variables

Microsoft SQL Server and Sybase Adaptive Server and Oracle can all send data to
clients by means of output variables.

Results Sets: Microsoft SQL Server and Sybase Adaptive Server Method of Sending Data to the
Client

Many Microsoft SQL Server and Sybase Adaptive Server applications rely on the
SQL Server-specific stream-based data return method called "result sets". Oracle is
optimized to return data more efficiently when the data is requested using an
ANSI-standard SQL SELECT statement, as compared to any proprietary stored
procedure method. Therefore, the best design decision is to use stored procedures
for data processing and SELECT statements for queries.

In Oracle, the use of cursor variables allows client programs to retrieve
well-structured result sets.

Introduction

 Triggers and Stored Procedures 3-5

To send even a single row back to the client from the stored procedure, Microsoft
SQL Server and Sybase Adaptive Server can use result sets instead of an
ANSI-standard method.

For example:

CREATE PROCEDURE get_emp_rec @empid INT
AS
 SELECT fname, lname, loginid, addr, title, dept, mgrid
 FROM employee
 WHERE empid = @empid

The above procedure can be converted to an Oracle PL/SQL procedure as follows:

CREATE OR REPLACE PROCEDURE get_emp_rec
(empid IN NUMBER,
 fname OUT VARCHAR2,
 lname OUT VARCHAR2,
 loginid OUT VARCHAR2,
 addr OUT VARCHAR2,
 title OUT VARCHAR2,
 dept OUT NUMBER,
 mgrid OUT NUMBER)
AS
BEGIN
 SELECT fname, lname, loginid, addr, title, dept, mgrid
 INTO fname, lname, loginid, addr, title, dept, mgrid
 FROM employee
 WHERE empid = empid;
END;

Output variables are a structured way of sending data from server to client. Output
variables allow the caller to see the results in a predictable manner, as the structure
of the output variable is predefined. This method also allows encapsulation of
behavior of the stored procedures.

Output variables offer the following benefits:

■ Facilitate better structuring of code

■ Allow the caller to see the results in a structured and predictable way, as the
structure of the output variables is well defined

■ Allow encapsulation of behavior of the called routine

If a third-party user interface product uses the result set capability of Microsoft SQL
Server and Sybase Adaptive Server, make sure that the same functionality can be

Introduction

3-6 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

made available to the Oracle database. For example, PowerBuilder can use result
sets to populate the data windows.

Although many client programs, such as Oracle Call Interface (OCI), precompilers,
SQL*Module, and SQL*Plus, recognize cursor variables, most Open Database
Connectivity (ODBC) drivers cannot recognize cursor variables. One solution when
using ODBC drivers is to identify the code that produces the result set, and move
this code online in the client program. The Oracle9i and Oracle8i ODBC Driver
release 8.1.5.4.0 and later releases support result sets.

In the following example, an Microsoft SQL Server and Sybase Adaptive Server
stored procedure returns a result set with multiple rows:

CREATE PROCEDURE make_loginid
BEGIN
 update employee
 set loginid = substring(fname,1,1) + convert(varchar(7),empid)
 select fname, lname, loginid from employee
END

This procedure sends all the qualifying rows to the client as a continuous data
stream. To further process the rows, the client program must retrieve the rows one
after another from the communication channel.

The following piece of the DB-Library/C code executes the above procedure and
prints each row to the screen.

main()
{

/* Data structure dbproc is conceptually very similar
 to CDA data structure used in Oracle’s OCI/C programs */
 dbcmd(dbproc, "exec make_loginid");
 /* The above command sets the command buffer with the
 transact-sql command that needs to be executed. */

 dbsqlexec(dbproc);
 /* This command causes the parsing and execution of the
 SQL command on the server side. */

 dbresults(dbproc);
 /* This command puts the result rows onto the
 communications channel. */

 /*The following while loop retrieves the result rows one after the other
 by calling the function dbnextrow repeatedly. This

Introduction

 Triggers and Stored Procedures 3-7

 implementation is cursor implementation through DB-Library functions.
*/
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 dbprrow(dbproc);
 /* This function prints the retrieved row to the standard output.
*/
 }

You can migrate Microsoft SQL Server and Sybase Adaptive Server stored
procedures to the Oracle PL/SQL stored procedures or packages in different ways,
as follows:

1. Place the final SELECT statement, which should return the result rows, in
the client program. The Oracle client can fetch the result rows from the
server as a multi-row array, and the entire process is very efficient.

2. Make use of PL/SQL tables. The SELECT statement in this case is part of
the stored procedure code and the columns in the result rows are stored in
PL/SQL tables. These tables are available to the client program as output
variables from the stored procedures.

3. This method is the default method used by the Migration Workbench. This
method is applicable only when it is extremely necessary to simulate the
looping mechanism of the Microsoft SQL Server and Sybase Adaptive
Server client to retrieve the result rows. This process is not recommended in
Oracle because for each row that has to be retrieved, a FETCH request must
be sent to the server from the client, thus creating more network traffic. In
this case, an Microsoft SQL Server and Sybase Adaptive Server stored
procedure is converted to a package and a member procedure. A cursor is
defined with the package body; this cursor is equivalent to the SELECT
statement associated with the result set. The first call to the procedure
opens the cursor. Subsequent calls fetch and send the next row back to the
client in the form of output parameters. Once the last row has been fetched,
the cursor is closed.

Examples of these different Oracle solutions to the result set problem are presented
below:

1. If the SELECT statement is made part of the client code, the PL/SQL code for
the make_loginid procedure is as follows:

CREATE OR REPLACE PROCEDURE make_loginid
AS
BEGIN

Introduction

3-8 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

 update employee
 set loginid = substr(lname,1,1)
 ||
 substr(to_char(empid),1,7);
END;

The following SELECT statement becomes part of the client code:

 select fname, lname, loginid from employee

The following PL/SQL code shows how to migrate the make_loginid
procedure to Oracle by using PL/SQL tables as output parameters:

CREATE OR REPLACE PACKAGE make_loginid_pkg
IS
BEGIN
 DECLARE EmpFnameTabType IS TABLE OF
 employee.fname %TYPE
 INDEX BY BINARY_INTEGER;
 DECLARE EmpLnameTabType IS TABLE OF
 employee.lname %TYPE
 INDEX BY BINARY_INTEGER;
 DECLARE EmpLoginidTabType IS TABLE OF
 employee.loginid %TYPE
 INDEX BY BINARY_INTEGER;
 emp_fname_tab EmpFnameTabType;
 emp_lname_tab EmpLnameTabType;
 emp_loginid_tab EmpLoginidTabType;
 PROCEDURE make_loginid
 (emp_fname_tab OUT EmpFnameTabType,
 emp_lname_tab OUT EmpLnameTabType,
 emp_loginid_tab OUT EmpLoginidTabType);
END make_loginid_pkg;

The package body definition is as follows:

CREATE OR REPLACE PACKAGE BODY make_loginid_pkg
IS
BEGIN
 PROCEDURE make_loginid
 (emp_fname_tab OUT EmpFnameTabType,

 emp_lname_tab OUT EmpLnameTabType,
 emp_loginid_tab OUT EmpLoginidTabType)
 AS
 DECLARE i BINARY_INTEGER := 0;

Introduction

 Triggers and Stored Procedures 3-9

 BEGIN
 update employee
 set loginid = substr(fname,1,1)
 ||
 substr(to_char(empid),1,7);
 FOR emprec IN (select fname,lname,loginid
 from employee) LOOP
 i := i + 1;
 emp_fname_tab[i] = emprec.fname;
 emp_lname_tab[i] = emprec.lname;
 emp_loginid_tab[i] = emprec.loginid;
 END LOOP;
 END make_loginid;
END make_loginid_pkg;

This procedure updates the PL/SQL tables with the data. This data is then
available to the client after the execution of this packaged procedure.

2. The following packaged procedure sends the rows one after the other to the
client upon each call to the packaged procedure. The make_loginid_
pkg.update_loginid procedure must be executed once and the make_
loginid_pkg.fetch_emprec procedure must be executed in a loop to fetch
the rows one after another from the client program.

The package definition is as follows:

CREATE OR REPLACE PACKAGE make_loginid_pkg
IS
BEGIN
PROCEDURE update_loginid;
PROCEDURE fetch_emprec
 done_flag IN OUT INTEGER,
 nrows IN OUT INTEGER,
 fname OUT VARCHAR2,
 lname OUT VARCHAR2,
 loginid OUT VARCHAR2);
END make_loginid_pkg;

The package body definition is as follows:

CREATE OR REPLACE PACKAGE BODY make_loginid_pkg
IS
BEGIN
CURSOR emprec IS
 select fname, lname, loginid
 from employee;

Introduction

3-10 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

PROCEDURE update_loginid
IS
BEGIN
 update employee
 set loginid = substr(fname,1,1) ||
 substr(to_char(loginid),1,7);
END update_loginid;

PROCEDURE fetch_emprec
 done_flag IN OUT INTEGER,
 nrows IN OUT INTEGER,
 fname OUT VARCHAR2,
 lname OUT VARCHAR2,
 loginid OUT VARCHAR2)
IS
BEGIN
 IF NOT emprec%ISOPEN THEN
 OPEN emprec;
 nrows := 0;
 END IF;
 done_flag := 0;
 FETCH emprec INTO fname, lname, loginid;
 IF emprec%NOTFOUND THEN
 CLOSE emprec;
 done_flag := 1;
 ELSE
 nrows := nrows + 1;
 ENDIF;
END fetch_emprec;

END make_loginid_pkg;

Oracle: Cursor Variables for Returning Query Results

Oracle allows you to define a cursor variable to return query results. This cursor
variable is similar to the user-defined record type and array type. The cursor stored
in the cursor variable is like any other cursor. It is a reference to a work area
associated with a multi-row query. It denotes both the set of rows and a current row
in that set. The cursor referred to in the cursor variable can be opened, fetched from,
and closed just like any other cursor.

There is a difference; since it is a PL/SQL variable, it can be passed into and out of
procedures like any other PL/SQL variable. As a result, procedures that use cursor
variables are reusable. You can see what the output of the procedure is by looking at
the procedure definition. You can use the same procedure to return the results of a

Introduction

 Triggers and Stored Procedures 3-11

SELECT statement to a calling client program. Cursor variables can even be the
return value of a function. The cursor variables preserve well-structured
programming concepts while allowing the client routine to retrieve result sets.

Typically, the cursor would be declared in a client program (for example, OCI,
precompilers, SQL*Module, or SQL*Plus) and then passed as an IN OUT parameter
to the PL/SQL procedure. The procedure then opens the cursor based on a SELECT
statement. The calling program performs the FETCHs from the cursor, including the
possibility of using ARRAY FETCH to retrieve multiple rows in one network
message, and closes the cursor when it is done.

Pro*C Client:

...
struct emp_record {
 char ename[11];
 float sal;
}emp_record;
SQL_CURSOR c;

EXEC SQL EXECUTE
 BEGIN
 emp_package.open_emp(:c,1);
 END;
END-EXEC;
...
/* fetch loop until done */
EXEC SQL FETCH :c INTO :emp_record;
...
CLOSE :c;
...

Oracle Server:

CREATE OR REPLACE PACKAGE emp_package IS
 TYPE emp_part_rec IS RECORD
 (ename emp.ename%type, sal emp.sal%type);
 TYPE emp_cursor IS REF CURSOR
 RETURN emp_part_rec;
 PROCEDURE open_emp (c_emp IN OUT emp_cursor,
 select_type IN NUMBER);
END emp_package;

CREATE OR REPLACE PACKAGE BODY emp_package IS
PROCEDURE open_emp (c_emp IN OUT emp_cursor,

Introduction

3-12 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

 select_type IN NUMBER) IS
 BEGIN
 IF select_type=1 THEN
 OPEN c_emp FOR SELECT ename, sal FROM EMP
 WHERE COMM IS NOT NULL;
 ELSE
 OPEN c_emp FOR SELECT ename, sal FROM EMP;
 END IF;
 END open_emp;
END emp_package;

Microsoft SQL Server and Sybase Adaptive Server: Multiple Results Sets

Microsoft SQL Server and Sybase Adaptive Server stored procedures can return
multiple different result sets to the calling routine.

For example, consider the following procedure:

CREATE PROCEDURE example_proc
AS
BEGIN

SELECT empno, empname, empaddr FROM emp
WHERE empno BETWEEN 1000 and 2000

SELECT empno, deptno, deptname FROM emp, dept
WHERE emp.empno = dept.empno
AND emp.empno BETWEEN 1000 and 2000

END

This procedure returns two different result sets. The client is responsible for
processing the results. To convert Microsoft SQL Server and Sybase Adaptive Server
multiple result sets to Oracle, pass one more cursor variable to the stored procedure
to open a second cursor; the client program then looks at both cursor variables for
data. However, it can be difficult to track all the result sets in a single procedure. It
is recommended that you just use one result set, that is, one cursor variable per
procedure, if possible.

Microsoft SQL Server and Sybase Adaptive Server: Cursors

Cursors allow row-by-row operations on a given result set. Microsoft SQL Server
and Sybase Adaptive Server provide ANSI-standard SQL syntax to handle cursors.
The additional DECLARE CURSOR, OPEN, FETCH, CLOSE, and DEALLOCATE
CURSOR clauses are included in T/SQL. Using these statements you can achieve

Introduction

 Triggers and Stored Procedures 3-13

cursor manipulation in a stored procedure. After FETCHing the individual row of a
result set, this current row can be modified with extensions provided with UPDATE
and DELETE statements.

The UPDATE statement syntax is as follows:

update <table_name>
set <column_name> = <expression>
from <table1>, <table_name>
where current of <cursor name>
The DELETE statement syntax is as follows:
delete from <table_name>
where current of <cursor name>
Microsoft SQL Server and Sybase Adaptive Server cursors map one-to-one with
Oracle cursors.

Individual SQL Statements
In individual SQL statements, you should try to follow ANSI-standard SQL
whenever possible. However, there are cases where you need to use
database-specific SQL constructs, mostly for ease of use, simplicity of coding, and
performance enhancement. For example, Microsoft SQL Server and Sybase
Adaptive Server constructs such as the following are SQL Server-specific, and
cannot be converted to Oracle without manual intervention:

update <table_name>
set ...
from <table1>, <table_name>
where...

The manual intervention required to convert statements such as this can be seen in
the following examples:

Microsoft SQL Server and Sybase Adaptive Server:

DELETE sales
FROM sales, titles
WHERE sales.title_id = titles.title_id
AND titles.type = ’business’

Oracle:

DELETE
FROM sales
WHERE title_id IN
 (SELECT title_id

Introduction

3-14 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

 FROM titles
 WHERE type = ’business’
)

Microsoft SQL Server and Sybase Adaptive Server:

UPDATE titles
SET price = price + author_royalty
FROM titles, title_author
WHERE titles.title.id = title_author.title_id

Oracle:

UPDATE titles O
SET price = (SELECT (O.price + I.author_royalty)
 FROM title_author I
 WHERE I.title_id = O.title_id)
WHERE EXISTS (SELECT 1
 FROM title_author
 WHERE title_author.title_id = O.title_id) ;

All the ANSI-standard SQL statements can be converted from one database to
another using automatic conversion utilities.

Logical Transaction Handling
In Microsoft SQL Server and Sybase Adaptive Server, transactions are explicit by
definition. This implies that an individual SQL statement is not part of a logical
transaction by default. A SQL statement belongs to a logical transaction if the
transaction explicitly initiated by the user with a BEGIN TRANSACTION (or
BEGIN TRAN) statement is still in effect. The logical transaction ends with a
corresponding COMMIT TRANSACTION (or COMMIT TRAN) or ROLLBACK
TRANSACTION (or ROLLBACK TRAN) statement. Each SQL statement that is not
part of a logical transaction is committed on completion.

In Oracle, transactions are implicit as set by the ANSI standard. The implicit
transaction model requires that each SQL statement is part of a logical transaction.
A new logical transaction is automatically initiated when a COMMIT or
ROLLBACK command is executed. This also implies that data changes from an
individual SQL statement are not committed to the database after execution. The
changes are committed to the database only when a COMMIT statement is run. The
differences in the transaction models impact the coding of application procedures.

Transaction-Handling Statements

Introduction

 Triggers and Stored Procedures 3-15

For client/server applications, it is recommended that you make the
transaction-handling constructs part of the client procedures. The logical transaction
is always defined by client users, and they should control it. This strategy is also
more suitable for distributed transactions, where the two-phase commit operations
are necessary. Making the transaction-handling statements a part of the client code
serves a two-fold purpose; the server code is more portable, and the distributed
transactions can be independent of the server code. Try to avoid using the BEGIN
TRAN, ROLLBACK TRAN, and COMMIT TRAN statements in the stored
procedures. In Microsoft SQL Server and Sybase Adaptive Server, transactions are
explicit. In Oracle, transactions are implicit. If the transactions are handled by the
client, the application code residing on the server can be independent of the
transaction model.

Error Handling within the Stored Procedure
Oracle PL/SQL checks each SQL statement for errors before proceeding with the
next statement. If an error occurs, control immediately jumps to an exception
handler. This avoids you having to check the status of every SQL statement. For
example, if a SELECT statement does not find any rows in the database, an
exception is raised, and the code to deal with this error is executed.

In Microsoft SQL Server and Sybase Adaptive Server, you need not check for errors
after each SQL statement. Control is passed to the next statement, irrespective of the
error conditions generated by the previous statement. It is your responsibility to
check for errors after the execution of each SQL statement. Failure to do so may
result in erroneous results.

In Oracle, to simulate the behavior of Microsoft SQL Server and Sybase Adaptive
Server and to pass the control to the next statement regardless of the status of
execution of the previous SQL statement, you must enclose each SQL statement in
an equivalent PL/SQL block. This block must deal with all possible exceptions for
that SQL statement. This coding style is required only to simulate Microsoft SQL
Server and Sybase Adaptive Server behavior. An Oracle PL/SQL procedure ideally
has only one exception block, and all error conditions are handled in that block.

Consider the following code in an Microsoft SQL Server and Sybase Adaptive
Server stored procedure:

begin

 select @x = col1 from table1 where col2 = @y
 select @z = col3 from table2 where col4 = @x

end

Data Types

3-16 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

In this code example, if the first SELECT statement does not return any rows, the
value of @x could be UNDEFINED. If the control is passed on to the next statement
without raising an exception, the second statement returns incorrect results because
it requires the value of @x to be set by an earlier statement. In a similar situation,
Oracle PL/SQL raises a NO_DATA_FOUND exception if the first statement fails.

RAISERROR Statement

The Microsoft SQL Server and Sybase Adaptive Server RAISERROR statement does
not return to the calling routine. The error code and message is passed to the client,
and the execution of the stored procedure continues further. The Oracle RAISE_
APPLICATION_ERROR statement returns to the calling routine. As a standard, a
RETURN statement must appear after the RAISERROR statement in Microsoft SQL
Server and Sybase Adaptive Server, so that it can be converted to the Oracle RAISE_
APPLICATION_ERROR statement.

Customized Error Messages

Microsoft SQL Server and Sybase Adaptive Server allow you to customize the error
messages using a system table. The system procedures allow the user to add error
messages to the system. Adding error messages to the Microsoft SQL Server and
Sybase Adaptive Server system table is not desirable because there is no equivalent
on the Oracle system. This can be avoided by maintaining a user-defined error
messages table, located in the centralized database. Standard routines can be
written to add the error message to the table and retrieve it whenever necessary.
This method serves a two-fold purpose: it ensures that the system is more portable
across different types of database servers, and it gives the administrator centralized
control over the error messages.

Data Types
This section provides information about data types under the following headings:

■ Local Variable

■ Server Data Types

■ Composite Data Types

Schema Objects

 Triggers and Stored Procedures 3-17

Local Variable
T/SQL local variables can be any server data type except TEXT and IMAGE.
PL/SQL local variables can be any server data type including the following:

■ BINARY_INTEGER

■ BOOLEAN

PL/SQL local variables can also be either of the following composite data types
allowed by PL/SQL:

■ RECORD

■ TABLE

Server Data Types
See the Data Types section in Chapter 2 for a list of Microsoft SQL Server and
Sybase Adaptive Server data types and their equivalent Oracle data types.

Composite Data Types
Microsoft SQL Server and Sybase Adaptive Server do not have composite data
types

Schema Objects
This section compares the following Microsoft SQL Server and Sybase Adaptive
Server and Oracle schema objects:

■ Procedure

■ Function

Table 3–1 Composite Data Types in Oracle
Oracle Comments

RECORD You can declare a variable to be of type RECORD. Records
have uniquely named fields. Logically related data that is
dissimilar in type can be held together in a record as a logical
unit.

TABLE PL/SQL tables can have one column and a primary key,
neither of which can be named. The column can belong to any
scalar data type. The primary key must belong to type
BINARY_INTEGER.

Schema Objects

3-18 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

■ Package

■ Package Body

Each schema object is compared in separate tables based on create, drop, execute
and alter, where applicable. The tables are divided into the following four sections

■ Syntax

■ Description

■ Permissions

■ Examples

Some tables are followed by a recommendations section that contains important
information about conversion implications.

Procedure
This section provides the following tables for the schema object Procedure :

■ Create

■ Drop

■ Execute

■ Alter

Create
Table 3–2 Comparison of Creating the Procedure Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

CREATE PROCEDURE procedure [@formal_
parameter formal_parameter_data type
[OUTPUT] [=
default_value] [,@formal_
parameter formal_parameter_data
type [OUTPUT] [=
default_value]] ...

AS [BEGIN]
procedural_statements [END]

Syntax:

CREATE [OR REPLACE] PROCEDURE
[schema.]procedure [(]
[formal_parameter [IN | OUT
| IN OUT] formal_parameter_data
type] [DEFAULT default_value] [,formal_
parameter [IN | OUT | IN OUT]
formal_parameter_data type] [DEFAULT
default_value]] ... [)]
IS | AS [local_variable
data type;]... BEGIN
PL/SQL statements | PL/SQL blocks
END;

Schema Objects

 Triggers and Stored Procedures 3-19

Description:

The CREATE PROCEDURE statement
creates the named stored procedure in the
database.

You can optionally specify the parameters
passed to the procedure as OUTPUT.
Values of OUTPUT variables are available
to the calling routine after the procedure
is executed. The parameters specified
without the OUTPUT keyword are
considered as input parameters.

The keyword AS indicates the start of the
body of the procedure.

The BEGIN and END keywords that
enclose the stored procedure body are
optional; all the procedural statements
contained in the file after AS are
considered part of the stored procedure if
BEGIN and END are not used to mark
blocks.

See the T/SQL and PL/SQL Language
Elements section of this chapter for more
information about the constructs allowed
in T/SQL procedures.

Description:

The OR REPLACE keywords replace the
procedure by the new definition if it already
exists.

The parameters passed to the PL/SQL
procedure can be specified as IN (input), OUT
(output only), or IN OUT (input and output). In
the absence of these keywords, the parameter is
assumed to be the "IN" parameter.

The keyword IS or AS indicates the start of the
procedure. The local variables are declared after
the keyword IS or AS and before the keyword
BEGIN.

The BEGIN and END keywords enclose the
body of the procedure.

Permissions:

You must have the CREATE
PROCEDURE system privilege to create
the stored procedures

Permissions:

To create a procedure in your own schema, you
must have the CREATE PROCEDURE system
privilege. To create a procedure in another
user’s schema, you must have the CREATE
ANY PROCEDURE system privilege.

Table 3–2 Comparison of Creating the Procedure Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Schema Objects

3-20 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Recommendations:

Functionally identical parts can be identified in the T/SQL procedure and PL/SQL
procedure structure. Therefore, you can automate the conversion of most of the
constructs from Microsoft SQL Server and Sybase Adaptive Server to Oracle.

OR REPLACE keywords in an Oracle CREATE PROCEDURE statement provide an
elegant way of recreating the procedure. In Microsoft SQL Server and Sybase
Adaptive Server, the procedure must be dropped explicitly before replacing it.

Drop

Example:

CREATE PROCEDURE myproc @cust
char(30)= space(30), @cust_id int
OUTPUT, @param3 datetime OUTPUTAS
BEGIN DECLARE @local_var1 int,
@local_var2 datetime SELECT @local_
var2 = getdate() SELECT @param3 =
@local_var2 SELECT @local_var1 =
customer_id FROM customer WHERE
customer = @cust SELECT @cust_id =

@local_var1 END

Example:

CREATE OR REPLACE PROCEDURE sam.credit (
acc_no IN NUMBER DEFAULT 0, acc IN
VARCHAR2, amount IN NUMBER, return_status
OUT NUMBER) AS BEGIN UPDATE accounts SET
balance = balance + amount WHERE account_
id = acc_no; EXCEPTION WHEN SQL%NOTFOUND
THEN RAISE_APPLICATION_ERROR (-20101,
‘Error updating accounts table’); END

Table 3–3 Comparison of Dropping the Procedure Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

DROP PROCEDURE procedure

Syntax:

DROP PROCEDURE [schema.]procedure

Description:

The procedure definition is deleted from
the data dictionary. All the objects that
reference this procedure must have
references to this procedure removed

Description:

When a procedure is dropped, Oracle
invalidates all the local objects that reference the
dropped procedure

Table 3–2 Comparison of Creating the Procedure Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Schema Objects

 Triggers and Stored Procedures 3-21

Recommendations:

The above statement does not have any effect on the conversion process. This
information is provided for reference only.

Execute

Permissions:

Procedure owners can drop their own
procedures. A DBO can drop any
procedure.

Permissions:

The procedure must be in the schema of the
user or the user must have the DROP ANY
PROCEDURE system privilege to execute this
command

Example:

DROP PROCEDURE myproc

Example:

DROP PROCEDURE sam.credit;

Table 3–4 Comparison of Executing the Procedure Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

EXEC [@return_value =] procedure
[[@formal_parameter =] {@actual_
parameter | constant_literal} [OUT]]
[,[[@formal_parameter =] {@actual_
parameter | constant_literal} [OUT]]]
...

Syntax:

procedure
 [([{actual_parameter |
 constant_literal |
 formal_parameter =>
 {actual_parameter |
 constant_literal}
 }]
 [,{actual_parameter |
 constant_literal |
 formal_parameter =>
 {actual_parameter |
 constant_literal}
 }]
)]

Table 3–3 Comparison of Dropping the Procedure Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Schema Objects

3-22 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Description:

Microsoft SQL Server and Sybase
Adaptive Server stored procedures can
only return integer values to the calling
routine using the RETURN statement. In
the absence of a RETURN statement, the
stored procedure still returns a return
status to the calling routine. This value can
be captured in the "return_value" variable.

The formal_parameter is the parameter in
the procedure definition. The actual_
parameter is defined in the local block
which calls the procedure supplying the
value of the actual parameter for the
respective formal parameter. The
association between an actual parameter
and formal parameter can be indicated
using either positional or named notation.

Description:

Oracle PL/SQL procedures send data back to
the calling routine by means of OUT
parameters. Oracle offers FUNCTIONS that
are a different type of schema objects.
Functions can return an atomic value to the
calling routine using the RETURN statement.
The RETURN statement can return value of
any data type.

The formal_parameter is the parameter in
the procedure definition. The actual_
parameter is defined in the local block which
calls the procedure supplying the value of the
actual parameter for the respective formal
parameter. The association between an actual
parameter and formal parameter can be
indicated using either positional or named
notation.

Positional notation:
The actual parameters are supplied to the
procedure in the same order as the formal
parameters in the procedure definition.

Named notation:
The actual parameters are supplied to the
procedure in an order different than that of
the formal parameters in the procedure
definition by using the name of the formal
parameter as:

 @formal_parameter = @actual_
parameter

A constant literal can be specified in the
place of the following:

 ’@actual_parameter ’ as:
 @formal_parameter = 10

The keyword OUT should be specified if
the procedure has to return the value of
that parameter to the calling routine as
OUTPUT.

Positional notation:
The actual parameters are supplied to the
procedure in the same order as the formal
parameters in the procedure definition.

Named notation:
The actual parameters are supplied to the
procedure in an order different than that of the
formal parameters in the procedure definition
by using the name of the formal parameter as:

 formal_parameter => actual_parameter

A constant literal can be specified in the place
of the following:

 ’actual_parameter’ as:
 formal_parameter => 10

If the formal_parameter is specified as OUT or
IN OUT in the procedure definition, the value
is made available to the calling routine after
the execution of the procedure.

Table 3–4 Comparison of Executing the Procedure Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Schema Objects

 Triggers and Stored Procedures 3-23

Permissions:

The user should have the EXECUTE
permission on the stored procedure. The
user need not have explicit privileges to
access the underlying objects referred to
within the stored procedure.

Permissions

The user should have the EXECUTE privilege
on the named procedure. The user need not
have explicit privileges to access the
underlying objects referred to within the
PL/SQL procedure

Example:

Positional notation:

 EXEC GetEmplName @EmpID
 EXEC @status = GetAllDeptCodes
 EXEC @status = UpdateEmpSalary
@EmpID,
 @EmpName
 EXEC UpdateEmpSalary 13000,’Joe
Richards’

Named notation:

 EXEC UpdateEmpSalary
@Employee = @EmpName,
 @Employee_Id = @EmpID

Mixed notation:

 EXEC UpdateEmpSalary
@EmpName, @Employee_Id = @EmpID
 EXEC UpdateEmpSalary
@Employee = @EmpName, @EmpID

Example:

Positional notation:

 credit (accno, accname, amt, retstat);

Named notation:

 credit (acc_no => accno, acc =>
accname, amount => amt,
 return_status => retstat)

Mixed notation (where positional notation
must precede named notation):

 credit (accno, accname, amount => amt,
return_status => retstat)

Table 3–4 Comparison of Executing the Procedure Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Schema Objects

3-24 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Alter

Function
This section provides the following tables for the schema object Function:

■ Create

■ Drop

■ Execute

■ Alter

Table 3–5 Comparison of Altering the Procedure Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

The system procedure SP_RECOMPILE
recompiles the named stored procedure.
For example:

ALTER PROCEDURE <procedure name>
|RECOMPILE
|ENCRYPT
|RECOMPILE, ENCRYPT

Syntax:

ALTER PROCEDURE [schema.]procedure COMPILE

Description:

This command causes the recompilation
of the procedure. Procedures that become
invalid for some reason should be
recompiled explicitly using this
command.

Description:

This command causes the recompilation of the
procedure. Procedures that become invalid for
some reason should be recompiled explicitly
using this command. Explicit recompilation
eliminates the need for implicit recompilation
and prevents associated runtime compilation
errors and performance overhead

Permissions:

The owner of the procedure can issue this
command

Permissions:

The procedure must be in the user’s schema or
the user must have the ALTER ANY
PROCEDURE privilege to use this command

Example:

sp_recompile my_proc

Example:

ALTER PROCEDURE sam.credit COMPILE;

Schema Objects

 Triggers and Stored Procedures 3-25

Create
Table 3–6 Comparison of Creating the Function Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

In Microsoft SQL Server and Sybase
Adaptive Server, you can convert a
stored procedure to a function in Oracle
because the stored procedure in
Microsoft SQL Server and Sybase
Adaptive Server can RETURN an
integer value to the calling routine using a
RETURN statement. A stored procedure
returns a status value to the calling
routine even in the absence of a RETURN
statement. The returned status is equal to
ZERO if the procedure execution is
successful or NON-ZERO if the
procedure fails for some reason. The
RETURN statement can return only
integer values

Syntax:

CREATE [OR REPLACE] FUNCTION
[user.]function [(parameter [OUT] data

type[,(parameter [IN OUT] data type]...)]
RETURN data type { IS | AS } block

N/A Description:

The OR REPLACE keywords replace the
function with the new definition if it already
exists.

Parameters passed to the PL/SQL function can
be specified as "IN" (input), "OUT" (output), or
"IN OUT" (input and output). In the absence of
these keywords the parameter is assumed to be
IN.

RETURN data type specifies the data type of
the function’s return value. The data type can be
any data type supported by PL/SQL. See the
Data Types section in Chatper 2, Database for
more information about data types.

N/A Permissions:

To create a function in your own schema, you
must have the CREATE PROCEDURE system
privilege. To create a function in another user’s
schema, you must have the CREATE ANY
PROCEDURE system privilege.

Schema Objects

3-26 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Drop

N/A Example:

 CREATE FUNCTION get_bal
(acc_no IN NUMBER)
 RETURN NUMBER
 IS
 acc_bal NUMBER(11,12);
 BEGIN
 SELECT balance
 INTO acc_bal
 FROM accounts
 WHERE account_id = acc_no;
 RETURN(acc_bal);
 END;

Table 3–7 Comparison of Dropping the Function Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

N/A Syntax:

DROP FUNCTION [schema.]function

N/A Description:

When a function is dropped, Oracle invalidates
all the local objects that reference the dropped
function.

N/A Permissions:

The function must be in the schema of the user
or the user must have the DROP ANY
PROCEDURE system privilege to execute this
command

N/A Example:

DROP FUNCTION sam.credit;

Table 3–6 Comparison of Creating the Function Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Schema Objects

 Triggers and Stored Procedures 3-27

Execute
Table 3–8 Comparison of Executing the Function Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

N/A Syntax:

function [({actual_parameter | constant_
literal}...)]

N/A Description:

Functions can return an atomic value to the
calling routine using the RETURN statement.

A function can be called as part of an
expression. This is a very powerful concept. All
the Microsoft SQL Server and Sybase
Adaptive Server built-in functions can be
coded using PL/SQL, and these functions can
be called like any other built-in functions in an
expression, starting with Oracle.

N/A Permissions:

You should have the EXECUTE privilege on the
function to execute the named function. You
need not have explicit privileges to access the
underlying objects that are referred to within
the PL/SQL function.

N/A

Example:

 1) IF sal_ok (new_sal, new_title) THEN

 END IF;

2) promotable:=
 sal_ok(new_sal, new_title) AND
 (rating>3);

where sal_ok is a function that returns a
BOOLEAN value.

Schema Objects

3-28 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Alter

Package
This section provides the following tables for the schema object Package:

■ Create

■ Drop

■ Alter

Table 3–9 Comparison of Altering the Function Schema Object in Oracle and
Microsoft SQL Server 7.0

Microsoft SQL Server Oracle

N/A Syntax:

ALTER FUNCTION [schema.]function COMPILE

N/A Description:

This command causes the recompilation of a
function. Functions become invalid if the objects
that are referenced from within the function are
dropped or altered. Functions that become
invalid for some reason should be recompiled
explicitly using this command. Explicit
recompilation eliminates the need for implicit
recompilation and prevents associated runtime
compilation errors and performance overhead.

N/A Permissions:

The function must be in the user’s schema or the
user must have the ALTER ANY PROCEDURE
privilege to use this command

N/A Example:

 ALTER FUNCTION sam.credit COMPILE

Schema Objects

 Triggers and Stored Procedures 3-29

Create
Table 3–10 Comparison of Creating the Package Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server
and Sybase Adaptive
Server Oracle

Syntax:

Microsoft SQL Server
and Sybase Adaptive
Server do not support this
concept.

Syntax:

CREATE [OR REPLACE] PACKAGE [user.]package {IS | AS}
{variable_declaration | cursor_specification |
exception_declaration | record_declaration | plsql_
table_declaration | procedure_specification | function_
specification | [{variable_declaration | cursor_
specification | exception_declaration | record_
declaration | plsql_table_declaration | procedure_

specification | function_specification};]...}
END [package]

N/A

Description:

This is the external or public part of the package.

CREATE PACKAGE sets up the specification for a PL/SQL
package which can be a group of procedures, functions,
exception, variables, constants, and cursors.

Functions and procedures of the package can share data
through variables, constants, and cursors.

The OR REPLACE keywords replace the package by the new
definition if it already exists. This requires recompilation of the
package and any objects that depend on its specification.

N/A Permissions:

To create a package in the user’s own schema, the user must
have the CREATE PROCEDURE system privilege. To create a
package in another user’s schema, the user must have the
CREATE ANY PROCEDURE system privilege.

Schema Objects

3-30 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Drop

N/A Example:

CREATE PACKAGE emp_actions AS
 -- specification
 TYPE EmpRecTyp IS RECORD (emp_id INTEGER, salary
REAL);
 CURSOR desc_salary (emp_id NUMBER) RETURN EmpRecTyp;

 PROCEDURE hire_employee
 (ename CHAR,
 job CHAR,
 mgr NUMBER,
 sal NUMBER,
 comm NUMBER,
 deptno NUMBER);
 PROCEDURE fire-employee (emp_id NUMBER);
END emp_actions;

Table 3–11 Comparison of Dropping the Package Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

Microsoft SQL Server and Sybase
Adaptive Server do not support this
concept.

 Syntax:

DROP PACKAGE [BODY] [schema.]package

Table 3–10 Comparison of Creating the Package Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server
and Sybase Adaptive
Server Oracle

Schema Objects

 Triggers and Stored Procedures 3-31

Alter

N/A Description:

 The BODY option drops only the body of the
package. If you omit BODY, Oracle drops both
the body and specification of the package. If you
drop the body and specification of the package,
Oracle invalidates any local objects that depend
on the package specification.

schema. is the schema containing the package. If
you omit schema, Oracle assumes the package is
in your own schema.

When a package is dropped, Oracle invalidates
all the local objects that reference the dropped
package.

N/A Permissions:

The package must be in the schema of the user or
the user must have the DROP ANY
PROCEDURE system privilege to execute this
command.

N/A Example:

DROP PACKAGE emp_actions;

Table 3–12 Comparison of Altering the Package Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

Microsoft SQL Server and Sybase
Adaptive Server do not support this
concept.

Syntax:

ALTER PACKAGE [user.]package COMPILE
[PACKAGE | BODY]

Table 3–11 Comparison of Dropping the Package Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Schema Objects

3-32 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Package Body
This section provides the following tables for the schema object Package Body:

■ Create

■ Drop

■ Alter

N/A Description:

Packages that become invalid for some reason
should be recompiled explicitly using this
command.

This command causes the recompilation of all
package objects together. You cannot use the
ALTER PROCEDURE or ALTER FUNCTION
commands to individually recompile a
procedure or function that is part of a package.

PACKAGE, the default option, recompiles the
package body and specification.

BODY recompiles only the package body.

Explicit recompilation eliminates the need for
implicit recompilation and prevents associated
runtime compilation errors and performance
overhead.

N/A Permissions:

The package must be in the user’s schema or the
user must have the ALTER ANY PROCEDURE
privilege to use this command.

N/A Example:

 ALTER PACKAGE emp_actions COMPILE PACKAGE

Table 3–12 Comparison of Altering the Package Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Schema Objects

 Triggers and Stored Procedures 3-33

Create
Table 3–13 Comparison of Creating the Package Body Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

Microsoft SQL Server and Sybase
Adaptive Server do not support this
concept.

Syntax:

CREATE [OR REPLACE] PACKAGE BODY
[schema.]package
{IS | AS} pl/sql_package_body

N/A Description:

 This is the internal or private part of the
package.

CREATE PACKAGE creates the body of a
stored package.

OR REPLACE recreates the package body if it
already exists. If you change a package body,
Oracle recompiles it.

schema. is the schema to contain the package. If
omitted, the package is created in your current
schema.

package is the of the package to be created.

pl/sql_package_body is the package body
which can declare and define program objects.
For more information on writing package
bodies, see the PL/SQL User’s Guide and
Reference, Release 1 (9.0.1).

N/A Permissions:

To create a package in your own schema, you
must have the CREATE PROCEDURE privilege.
To create a package in another user’s schema,
you must have the CREATE ANY PROCEDURE
privilege.

Schema Objects

3-34 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

N/A Example:

CREATE PACKAGE BODY emp_actions AS
-- body
 CURSOR desc_salary (emp_id NUMBER)
 RETURN EmpRecTyp IS
 SELECT empno, sal FROM emp
 ORDER BY sal DESC;
 PROCEDURE hire_employee
 (ename CHAR,
 job CHAR,
 mgr NUMBER,
 sal NUMBER,
 comm NUMBER,
 deptno NUMBER) IS
 BEGIN
 INSERT INTO emp VALUES
 (empno_seq.NEXTVAL, ename,
 job, mgr, SYSDATE, sal,
 comm, deptno);
 END hire_employee;

 PROCEDURE fire_employee
 (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp
 WHERE empno = emp_id;
 END fire_employee;

END emp_actions;

Table 3–13 Comparison of Creating the Package Body Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Schema Objects

 Triggers and Stored Procedures 3-35

Drop

Alter

Table 3–14 Comparison of Dropping the Package Body Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server
and Sybase Adaptive
Server Oracle

Syntax:

Microsoft SQL Server
and Sybase Adaptive
Server do not support this
concept.

 Syntax:

DROP PACKAGE [BODY] [schema.]package

N/A Description:

The BODY option drops only the body of the package. If you
omit BODY, Oracle drops both the body and specification of the
package. If you drop the body and specification of the package,
Oracle invalidates any local objects that depend on the package
specification.

schema. is the schema containing the package. If you omit
schema., Oracle assumes the package is in your own schema.

When a package is dropped, Oracle invalidates all the local
objects that reference the dropped package.

N/A Permissions:

The package must be in the your own schema or you must
have the DROP ANY PROCEDURE system privilege to
execute this command.

N/A Example:

DROP PACKAGE BODY emp_actions;

Table 3–15 Comparison of Altering the Package Body Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Syntax:

Microsoft SQL Server and Sybase
Adaptive Server do not support this
concept.

 Syntax:

ALTER PACKAGE [user.]package COMPILE
[PACKAGE | BODY]

T/SQL Versus PL/SQL Constructs

3-36 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

T/SQL Versus PL/SQL Constructs
This section provides information about the Microsoft SQL Server and Sybase
Adaptive Server constructs and equivalent Oracle constructs generated by the
Migration Workbench. The conversions of the following constructs are discussed in
detail:

■ CREATE PROCEDURE Statement

■ Parameter Passing

■ DECLARE Statement

■ IF Statement

N/A Description:

Packages that become invalid for some reason
should be recompiled explicitly using this
command.

This command causes the recompilation of all
package objects together. You cannot use the
ALTER PROCEDURE or ALTER FUNCTION
commands to individually recompile a
procedure or function that is part of a package.

PACKAGE, the default option, recompiles the
package body and specification.

BODY recompiles only the package body.

Explicit recompilation eliminates the need for
implicit recompilation and prevents associated
runtime compilation errors and performance
overhead.

N/A Permissions:

The package must be your own schema or you
must have the ALTER ANY PROCEDURE
privilege to use this command.

N/A Example:

ALTER PACKAGE emp_actions COMPILE
BODY

Table 3–15 Comparison of Altering the Package Body Schema Object in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-37

■ RETURN Statement

■ RAISERROR Statement

■ EXECUTE Statement

■ WHILE Statement

■ GOTO Statement

■ @@Rowcount and @@Error Variables

■ ASSIGNMENT Statement

■ SELECT Statement

■ SELECT Statement as Part of the SELECT List

■ SELECT Statement with GROUP BY Clause

■ Column Aliases

■ UPDATE with FROM Statement

■ DELETE with FROM Statement

■ Temporary Tables

■ Result Set (Converted Using a Cursor Variable)

■ Cursor Handling

■ Transaction Handling Statements

Listed is the syntax for the Microsoft SQL Server and Sybase Adaptive Server
constructs and their Oracle equivalents, as well as comments about conversion
considerations.

The procedures in the Oracle column are the direct output of the Migration
Workbench. These PL/SQL procedures have more lines of code compared to the
source Microsoft SQL Server and Sybase Adaptive Server procedures because these
PL/SQL procedures are converted to emulate Microsoft SQL Server and Sybase
Adaptive Server functionality. The PL/SQL procedures written from scratch for the
same functionality in Oracle would be much more compact. The PL/SQL
procedures generated by the Migration Workbench indicate the manual conversion
required by adding appropriate commands. In general, the Migration Workbench
deals with the Microsoft SQL Server and Sybase Adaptive Server T/SQL constructs
in one of the following ways:

■ The ANSI-standard SQL statements are converted to PL/SQL because it
supports ANSI-standard SQL.

T/SQL Versus PL/SQL Constructs

3-38 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

■ Microsoft SQL Server-specific constructs are converted into PL/SQL
constructs if the equivalent constructs are available in PL/SQL.

■ Some Microsoft SQL Server-specific constructs are ignored and appropriate
comments are incorporated in the output file.

■ Constructs that require manual conversion are wrapped around with
proper comments in the output file.

■ For Microsoft SQL Server-specific constructs that result in syntax errors, an
appropriate error message is displayed including the line number.

CREATE PROCEDURE Statement

Comments

An Microsoft SQL Server and Sybase Adaptive Server stored procedure can be
converted to a stored procedure, a function, or a package in Oracle. The output
depends upon the option used when running the Migration Workbench.

The Migration Workbench automatically adds what is necessary to simulate
Microsoft SQL Server and Sybase Adaptive Server functionality. In the example in
Table 3-16 above, the Migration Workbench added the following three variables:

StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;

Table 3–16 Comparison of CREATE PROCEDURE Statement in Oracle and Microsoft
SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
AS
RETURN 0

CREATE OR REPLACE FUNCTION PROC1
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN
 RETURN 0;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-39

These variables are needed in the EXCEPTION clause in the PL/SQL procedures
that must be added for each SQL statement to emulate Microsoft SQL Server and
Sybase Adaptive Server functionality. See the SELECT Statement topic in this
section for clarification of the purpose of these variables.

Parameter Passing

Comments

Parameter passing is almost the same in Microsoft SQL Server and Sybase Adaptive
Server and Oracle. By default, all the parameters are INPUT parameters, if not
specified otherwise.

The value of the INPUT parameter cannot be changed from within the PL/SQL
procedure. Thus, an INPUT parameter cannot be assigned any values nor can it be

Note: The REPLACE keyword is added to replace procedure,
function, or package if it already exists.

Table 3–17 Comparison of Parameter Passing in Oracle and Microsoft SQL Server
and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
@x int=-1,
@y money,
@z bit OUT,
@a char(20) = ’TEST’
AS
 RETURN 0

CREATE OR REPLACE FUNCTION PROC1(
x INTEGER DEFAULT -1,
y NUMBER ,
z IN OUT NUMBER,
a CHAR DEFAULT ’TEST’)
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN
 RETURN 0;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

3-40 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

passed to another procedure as an OUT parameter. In Oracle, only IN parameters
can be assigned a default value.

The @ sign in a parameter name declaration is removed in Oracle.

In Oracle, the parameter data type definition does not include length/size.

Microsoft SQL Server and Sybase Adaptive Server data types are converted to
Oracle base data types. For example, all Microsoft SQL Server and Sybase Adaptive
Server numeric data types are converted to NUMBER and all alphanumeric data
types are converted to VARCHAR2 and CHAR in Oracle.

DECLARE Statement

Comments

Microsoft SQL Server and Sybase Adaptive Server and Oracle follow similar rules
for declaring local variables.

The Migration Workbench overrides the scope rule for variable declarations. As a
result, all the local variables are defined at the top of the procedure body in Oracle.

Table 3–18 Comparison of DECLARE Statement in Oracle and Microsoft SQL Server
and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
AS
DECLARE
 @x int,
 @y money,
 @z bit,
 @a char(20)
 RETURN 0
GO

CREATE OR REPLACE FUNCTION PROC1
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
y NUMBER;
z NUMBER;
a CHAR(20);
BEGIN
 RETURN 0;
END PROC1;

/

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-41

IF Statement

Table 3–19 Comparison of IF Statement in Oracle and Microsoft SQL Server and
Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

Example 1:

CREATE PROC proc1 @Flag int =
0
AS
BEGIN
DECLARE @x int
IF (@Flag=0)
 SELECT @x = -1
ELSE
 SELECT @x = 10
END

Example 1:

CREATE OR REPLACE PROCEDURE PROC1(
Flag INTEGER DEFAULT 0)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
BEGIN
 IF (PROC1.Flag = 0) THEN
 PROC1.x := -1;
 ELSE
 PROC1.x := 10;
 END IF;
END;
/

T/SQL Versus PL/SQL Constructs

3-42 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Example 2:

CREATE PROC proc1 @Flag
char(2) = ’’
AS
BEGIN
DECLARE @x int
IF (@Flag=’’)
 SELECT @x = -1
ELSE IF (@Flag = ’a’)
 SELECT @x = 10
ELSE IF (@Flag = ’b’)
 SELECT @x = 20
END

 Example 2:

CREATE OR REPLACE PROCEDURE PROC1(
Flag CHAR DEFAULT ’ ’)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;

StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
BEGIN
 IF (PROC1.Flag = ’ ’) THEN
 PROC1.x := -1;
 ELSE
 IF (PROC1.Flag = ’a’) THEN
 PROC1.x := 10;
 ELSE
 IF (PROC1.Flag = ’b’) THEN
 PROC1.x := 20;
 END IF;
 END IF;
 END IF;
END;
/

Table 3–19 Comparison of IF Statement in Oracle and Microsoft SQL Server and
Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-43

Example 3:

CREATE PROC proc1
AS
BEGIN
DECLARE @x int
IF EXISTS (SELECT * FROM
table2)
 SELECT @x = -1
END

 Example 3:

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
BEGIN

 BEGIN
 StoO_selcnt := 0;
 StoO_error := 0;
 StoO_rowcnt := 0;
 SELECT 1 INTO StoO_selcnt
 FROM DUAL
 WHERE EXISTS (
 SELECT *
 FROM TABLE2);
 StoO_rowcnt := SQL%ROWCOUNT;
 EXCEPTION
 WHEN OTHERS THEN
 StoO_selcnt := 0;
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
 IF StoO_selcnt != 0 THEN
 PROC1.x := -1;
 END IF;
END;
/

Table 3–19 Comparison of IF Statement in Oracle and Microsoft SQL Server and
Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

T/SQL Versus PL/SQL Constructs

3-44 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Example 4:

CREATE PROC proc1 @basesal
money, @empid int
AS
BEGIN

IF (select sal from emp where
empid = @empid) < @basesal
 UPDATE emp
 SET sal_flag = -1
 WHERE empid = @empid
END

Example 4:

CREATE OR REPLACE PROCEDURE PROC1(
basesal NUMBER ,
empid INTEGER)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN
 BEGIN
 StoO_selcnt := 0;
 StoO_error := 0;
 StoO_rowcnt := 0;
 SELECT 1 INTO StoO_selcnt
 FROM DUAL
 WHERE (
 SELECT SAL
 FROM EMP
 WHERE EMPID =
PROC1.empid)<PROC1.basesal;
 StoO_rowcnt := SQL%ROWCOUNT;
 EXCEPTION
 WHEN OTHERS THEN
 StoO_selcnt := 0;
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
 IF StoO_selcnt != 0 THEN
 BEGIN
 StoO_error := 0;
 StoO_rowcnt := 0;
 UPDATE EMP
 SET SAL_FLAG = -1

 WHERE EMPID = PROC1.empid;
 StoO_rowcnt := SQL%ROWCOUNT;
 EXCEPTION
 WHEN OTHERS THEN
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
 END IF;
END;
/

Table 3–19 Comparison of IF Statement in Oracle and Microsoft SQL Server and
Sybase Adaptive Server (Cont.)

Microsoft SQL Server and Sybase
Adaptive Server Oracle

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-45

Comments

IF statements in Microsoft SQL Server and Sybase Adaptive Server and Oracle are
nearly the same except in the following two cases:

If EXISTS(...) in Microsoft SQL Server and Sybase Adaptive Server does not have an
equivalent PL/SQL construct. Therefore, it is converted to a SELECT INTO
WHERE EXISTS clause and an IF statement as shown in Example 3 above.

IF (SELECT...) with comparison does not have an equivalent PL/SQL construct.
Therefore, it is converted to a SELECT INTO...WHERE... clause, as shown in
Example 4 above.

RETURN Statement

Comments

A RETURN statement is used to return a single value back to the calling program
and works the same in both databases. Microsoft SQL Server and Sybase Adaptive
Server can return only the numeric data type, while Oracle can return any of the
server data types or the PL/SQL data types.

Table 3–20 Comparison of RETURN Statement in Oracle and Microsoft SQL Server
and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
@x int
AS
IF @x = -1
 RETURN 25022
ELSE
 RETURN 25011

CREATE OR REPLACE FUNCTION PROC1(
x INTEGER)
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN
 IF PROC1.x = -1 THEN
 RETURN 25022;
 ELSE
 RETURN 25011;
 END IF;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

3-46 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

In a PL/SQL procedure, a RETURN statement can only return the control back to
the calling program without returning any data. For this reason, the value is
commented out if the Microsoft SQL Server and Sybase Adaptive Server procedure
is converted to a PL/SQL procedure, but not commented out if converted to a
PL/SQL function. The Migration Workbench does this automatically.

RAISERROR Statement

Comments

Microsoft SQL Server and Sybase Adaptive Server use RAISERROR to notify the
client program of any error that occurred. This statement does not end the execution
of the procedure, and the control is passed to the next statement.

PL/SQL provides similar functionality with RAISE_APPLICATION_ERROR
statements.However, it ends the execution of the stored subprogram and returns the
control to the calling program. It is equivalent to a combination of RAISERROR and
a RETURN statement.

The Migration Workbench copies the error code and error message from a
RAISERROR statement and places them in the RAISE_APPLICATION_ERROR
statement appended to the error message.

Table 3–21 Comparison of RAISERROR Statement in Oracle and Microsoft SQL
Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

 CREATE PROC proc1
 AS
 RAISERROR 12345 "No Employees
found"

CREATE OR REPLACE PROCEDURE PROC1
 AS
 StoO_selcnt INTEGER;
 StoO_error INTEGER;
 StoO_rowcnt INTEGER;
 StoO_errmsg VARCHAR2(255);
 StoO_sqlstatus INTEGER;

BEGIN

raise_application_error(-20999, 12345 ||
’-’ || "No Employees Found");
 END PROC1;
 /

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-47

EXECUTE Statement

Table 3–22 Comparison of EXECUTE Statement in Oracle and Microsoft SQL Server
and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

 CREATE PROC proc1
 AS
EXEC SetExistFlag
EXEC SetExistFlag yes=@yes, @Status
OUT
EXEC @Status = RecordExists
EXEC SetExistFlag @yes

CREATE OR REPLACE PROCEDURE PROC1
 AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
 BEGIN
 BEGIN
 SETEXISTFLAG;
 EXCEPTION
 WHEN OTHERS THEN
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
END;
 BEGIN
 SETEXISTFLAG(=>PROC1.yes,
 PROC1.Status);
 EXCEPTION
 WHEN OTHERS THEN
 StoO_error :=
SQLCODE;
 StoO_errmsg :=
SQLERRM;
END;
 BEGIN
 PROC1.Status:=RECORDEXISTS;
 EXCEPTION
 WHEN OTHERS THEN
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
END;
 BEGIN
 SETEXISTFLAG(PROC1.yes);
 EXCEPTION
 WHEN OTHERS THEN
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
END;
END PROC1;
 /

T/SQL Versus PL/SQL Constructs

3-48 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Comments

The EXECUTE statement is used to execute another stored procedure from within a
procedure. In PL/SQL, the procedure is called by its name within the PL/SQL
block. If a procedure is converted to a PL/SQL function, make sure to assign the
RETURN value to a variable when calling it (see the call to RecordExists in Table
3-22 above).

The Migration Workbench converts the parameter-calling convention to be either
positional, named, or mixed. For information on parameter-calling conventions, see
the Schema Objects section in this chapter.

WHILE Statement

Table 3–23 Comparison of WHILE Statement in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and
Sybase Adaptive Server Oracle

Example 1:

CREATE PROC proc1
 @i int
 AS
 WHILE @i > 0

 BEGIN
 print ’Looping
inside WHILE....’
 SELECT @i = @i
+ 1
 END

Example 1:

 CREATE OR REPLACE PROCEDURE PROC1(
in_i IN INTEGER)
 AS
 StoO_selcnt
INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
i INTEGER;
BEGIN
 PROC1.i := PROC1.in_i;
 <<i_loop1>>
 WHILE PROC1.i > 0 LOOP
BEGIN
DBMS_OUTPUT.PUT_LINE(’Looping inside while.....’) ;
 PROC1.i := PROC1.i + 1;
 END;
END LOOP;
END PROC1;
 /

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-49

Example 2:

CREATE PROC proc1
 @i int,
 @y int
 AS
 WHILE @i > 0
 BEGIN
 print
’Looping inside
WHILE....’
 SELECT @i =
@i + 1
 END

Example 2:

CREATE OR REPLACE PROCEDURE PROC1(
 in_i IN INTEGER ,
 y INTEGER)
 AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
 i INTEGER;
BEGIN
PROC1.i := PROC1.in_i;
 <<i_loop1>>
 WHILE PROC1.i > 0 LOOP
BEGIN
DBMS_OUTPUT.PUT_LINE(’Looping inside
while.....’) ;
PROC1.i := PROC1.i + 1;
END;
END LOOP;
END PROC1;
/

Table 3–23 Comparison of WHILE Statement in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and
Sybase Adaptive Server Oracle

T/SQL Versus PL/SQL Constructs

3-50 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Example 3:

CREATE PROC proc1
 AS
 DECLARE @sal money
 SELECT @sal = 0
 WHILE EXISTS(SELECT *
FROM emp where sal <
@sal)
 BEGIN
 SELECT @sal = @sal +
99

 DELETE emp
 WHERE sal < @sal
 END
 GO

Example 3:

 CREATE OR REPLACE PROCEDURE PROC1
 AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
sal NUMBER;
 BEGIN
 PROC1.sal := 0;
 <<i_loop1>>
 WHILE 1 = 1 LOOP
 BEGIN
BEGIN
StoO_selcnt := 0;
StoO_error := 0;
SELECT 1 INTO StoO_selcnt FROM DUAL
WHERE (EXISTS (
SELECT *
FROM EMP
WHERE SAL < PROC1.sal));
EXCEPTION
 WHEN OTHERS THEN
StoO_selcnt := 0;
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;
 END;
 IF StoO_selcnt != 1 THEN
 EXIT;
 END IF;
 PROC1.sal := PROC1.sal + 99;
 BEGIN
 StoO_error := 0;
 StoO_rowcnt := 0;
 DELETE EMP
 WHERE SAL < PROC1.sal;
 StoO_rowcnt := SQL%ROWCOUNT;
 EXCEPTION
 WHEN OTHERS THEN
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
 END;
 END LOOP;
 END PROC1;
/

Table 3–23 Comparison of WHILE Statement in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and
Sybase Adaptive Server Oracle

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-51

Example 4:

CREATE PROC proc1
 AS

 DECLARE @sal money

 WHILE (SELECT count (*)
FROM emp) > 0
 BEGIN
 SELECT @sal = max(sal)
from emp
 WHERE stat = 1

 DELETE emp
 WHERE sal < @sal
 END
 GO

 Example 4:

CREATE OR REPLACE PROCEDURE PROC1
 AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
 sal NUMBER;
BEGIN
 <<i_loop1>>
WHILE 1 = 1 LOOP
BEGIN
 BEGIN
StoO_selcnt := 0;
StoO_error := 0;
SELECT 1 INTO StoO_selcnt FROM DUAL
WHERE ((
SELECT COUNT(*)
FROM EMP)>0);
EXCEPTION
WHEN OTHERS THEN
StoO_selcnt := 0;
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;
END;
IF StoO_selcnt != 1 THEN
EXIT;
END IF;
BEGIN
StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := 0;
 SELECT MAX(SAL)
INTO PROC1.sal FROM EMP
WHERE STAT = 1;
 StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 StoO_rowcnt := 2;
 WHEN OTHERS THEN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
 BEGIN
 StoO_error := 0;
 StoO_rowcnt := 0;
DELETE EMP
 WHERE SAL < PROC1.sal;

Table 3–23 Comparison of WHILE Statement in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and
Sybase Adaptive Server Oracle

T/SQL Versus PL/SQL Constructs

3-52 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Comments

The Migration Workbench can convert most WHILE constructs. However, the
CONTINUE within a WHILE loop in Microsoft SQL Server and Sybase Adaptive
Server does not have a direct equivalent in PL/SQL. It is simulated using the GOTO
statement with a label. Because the Migration Workbench is a single-pass parser, it
adds a label statement at the very beginning of every WHILE loop (see Example 2 in
Table 3-23 above).

 StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION
 WHEN OTHERS THEN
 StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;
END;
END;
END LOOP;
END PROC1;

/

Table 3–23 Comparison of WHILE Statement in Oracle and
Microsoft SQL Server and Sybase Adaptive Server (Cont.)

Microsoft SQL Server and
Sybase Adaptive Server Oracle

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-53

GOTO Statement

Comments

The GOTO <label> statement is converted automatically. No manual changes are
required.

Table 3–24 Comparison of GOTO Statement in Oracle and Microsoft SQL Server and
Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

 CREATE PROC proc1 @Status int
 AS
 DECLARE @j int
 IF @Status = -1
 GOTO Error

 SELECT @j = -1
 Error:
 SELECT @j = -99

 CREATE OR REPLACE PROCEDURE PROC1(
 Status INTEGER)
 AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
 j INTEGER;
 BEGIN
IF PROC1.Status = -1 THEN
GOTO ERROR;
END IF;
PROC1.j := -1;
 <<ERROR>>
 PROC1.j := 99;
 END PROC1;
/

T/SQL Versus PL/SQL Constructs

3-54 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

@@Rowcount and @@Error Variables

Comments

@@rowcount is converted to StoO_rowcnt, which takes its value from the PL/SQL
cursor attribute SQL%ROWCOUNT.

@@error is converted to StoO_error, which contains the value returned by the
SQLCODE function. The value returned by SQLCODE should only be assigned
within an exception block; otherwise, it returns a value of zero. This requires that
the Migration Workbench add a local exception block around every SQL statement

Table 3–25 Comparison of @@Rowcount and @@Error Variables in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
 AS
 DECLARE @x int
 SELECT @x=count(*) FROM emp
 IF @@rowcount = 0
 print ’No rows found.’
 IF @@error = 0
 print ’No errors.’

 CREATE OR REPLACE PROCEDURE proc1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
 i_x INTEGER;
BEGIN
BEGIN
 SELECT count(*)
 INTO i_x
 FROM emp;
StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION
WHEN TOO_MANY_ROWS THEN
StoO_rowcnt := 2;
WHEN OTHERS THEN
StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := SQLCODE;
END;
IF StoO_rowcnt = 0 THEN
DBMS_OUTPUT.PUT_LINE
(’No rows found.’) ;
END IF;
IF StoO_error = 0 THEN
DBMS_OUTPUT.PUT_LINE(’No errors.’) ;
END IF;
END;
/

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-55

and a few PL/SQL statements. Other global variables are converted with a warning
message. These may need to be converted manually.

ASSIGNMENT Statement

Table 3–26 Comparison of ASSIGNMENT Statement in Oracle and Microsoft SQL
Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
AS
DECLARE @x int
 SELECT @x = -1
 SELECT @x=sum(salary) FROM
employee

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
BEGIN
 PROC1.x := -1;
 BEGIN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := 0;

 SELECT SUM(SALARY)
 INTO PROC1.x FROM
EMPLOYEE;
 StoO_rowcnt :=
SQL%ROWCOUNT;

 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 StoO_rowcnt := 2;
 WHEN OTHERS THEN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

3-56 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Comments

Assignment in Microsoft SQL Server and Sybase Adaptive Server is done using the
SELECT statement as illustrated in Table 3-26.

PL/SQL assigns values to a variable as follows:

It uses the assignment statement to assign the value of a variable or an expression to
a local variable. It assigns a value from a database using the SELECT..INTO clause.
This requires that the SQL returns only one row, or a NULL value is assigned to the
variable as can be seen in the following example:

 SELECT empno INTO empno
 FROM employee
 WHERE ename = ’JOE RICHARDS’

SELECT Statement

Table 3–27 Comparison of SELECT Statement in Oracle and Microsoft SQL Server
and Sybase Adaptive Server

Microsoft SQL Server Oracle

Example 1:

CREATE PROC proc1
AS
SELECT ename FROM employee

Example 1:

CREATE OR REPLACE PACKAGE PROC1Pkg AS
TYPE RT1 IS RECORD (
 ENAME
EMPLOYEE.ENAME%TYPE
);
TYPE RCT1 IS REF CURSOR RETURN RT1;
END;
/
CREATE OR REPLACE PROCEDURE PROC1(
RC1 IN OUT PROC1Pkg.RCT1)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN
 OPEN RC1 FOR
 SELECT ENAME FROM EMPLOYEE;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-57

Comments

Because of the differences in their architectures, Microsoft SQL Server and Sybase
Adaptive Server stored procedures return data to the client program in a different
way than Oracle.

Example 2:

CREATE PROC proc1
AS
DECLARE @name char(20)
SELECT @name = ename FROM
employee
IF @@rowcount = 0
 RETURN 25022

 Example 2

CREATE OR REPLACE FUNCTION PROC1
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
name CHAR(20);
BEGIN
 BEGIN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := 0;

 SELECT ENAME
 INTO PROC1.name FROM EMPLOYEE;
 StoO_rowcnt := SQL%ROWCOUNT;

 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 StoO_rowcnt := 2;
 WHEN OTHERS THEN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
 IF StoO_rowcnt = 0 THEN
 RETURN 25022;
 END IF;
END PROC1;
/

Table 3–27 Comparison of SELECT Statement in Oracle and Microsoft SQL Server
and Sybase Adaptive Server (Cont.)

Microsoft SQL Server Oracle

T/SQL Versus PL/SQL Constructs

3-58 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Microsoft SQL Server and Sybase Adaptive Server and Oracle can all pass data to
the client using output parameters in the stored procedures. Microsoft SQL Server
and Sybase Adaptive Server use another method known as result sets to transfer the
data from the server to client. The examples discussed here do not return multiple
rows to the client.

In Example 1, the procedure returns a single row result set to the client which is
converted to a PL/SQL procedure that returns a single row using the output
parameters.

Example 1:

A SELECT statement is converted into a SELECT...INTO clause and the extra
parameter "i_oval1" is added to the procedure definition. Since the Migration
Workbench does not currently look up the data types on the Oracle server, it sets the
default data type to VAR1CHAR2.

In Microsoft SQL Server and Sybase Adaptive Server, if the SELECT statement that
assigns value to a variable returns more than one value, the last value that is
returned is assigned to the variable.

Example 2:

The second example illustrates fetching data into a local variable. Since this is
straightforward, the Migration Workbench handles it successfully.

Note: In Oracle, the query should return only one row or the
TOO_MANY_ROWS exception is raised and the data value is not
assigned to the variables. To return more than one row, refer to the
example on RESULT SETS later in this section.

Note: Microsoft SQL Server-specific SQL statements should be
converted manually. The Migration Workbench handles
ANSI-standard SQL statements only.

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-59

SELECT Statement as Part of the SELECT List

Table 3–28 Comparison of SELECT Statement as Part of the SELECT List in Oracle
and Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
AS
DECLARE @x int
DECLARE @y char(20)
SELECT @x = col1, @y = (select name
from emp)
FROM table1

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
y CHAR(20);
t_var1 VARCHAR2(255);
BEGIN
/****** Subqueries in select list is not supported in
Oracle. *******/
/****** MANUAL CONVERSION MIGHT BE REQUIRED *******/
 BEGIN
 StoO_error := 0;
 StoO_rowcnt := 0;
 SELECT NAME
 INTO t_var1
 FROM EMP;
 StoO_rowcnt := SQL%ROWCOUNT;
 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 StoO_StoO_rowcnt := 2;
 WHEN OTHERS THEN
 StoO_StoO_rowcnt := 0;
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
 BEGIN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := 0;
 SELECT COL1, t_var1
 INTO PROC1.x, PROC1.y FROM TABLE1;
 StoO_rowcnt := SQL%ROWCOUNT;
 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 StoO_rowcnt := 2;
 WHEN OTHERS THEN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

3-60 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Comments

The Microsoft SQL Server and Sybase Adaptive Server SELECT statement with a
subquery as part of the SELECT list cannot be converted to PL/SQL using the
Migration Workbench. Manual changes are needed to convert this type of SELECT
statement.

The Migration Workbench writes appropriate comments in the output PL/SQL
procedures and the subqueries are omitted.

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-61

SELECT Statement with GROUP BY Clause

Table 3–29 Comparison of SELECT Statement with GROUP BY Clause in Oracle and
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
AS
DECLARE @ename char(20)
DECLARE @salary int
SELECT @ename=ename,
@salary=salary FROM emp
WHERE salary > 100000
GROUP BY deptno

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
ename CHAR(20);
salary INTEGER;
BEGIN
 BEGIN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := 0;

 SELECT ENAME, SALARY
 INTO PROC1.ename,
PROC1.salary FROM EMP
 WHERE SALARY > 100000
 GROUP BY DEPTNO;
 StoO_rowcnt := SQL%ROWCOUNT;

 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 StoO_rowcnt := 2;
 WHEN OTHERS THEN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

3-62 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Comments

T/SQL allows GROUP BY statements where the column used in the GROUP BY
clause does not need to be part of the SELECT list. PL/SQL does not allow this type
of GROUP BY clause.

The Migration Workbench converts this type of SELECT statement to PL/SQL.
However, the equivalent PL/SQL statement returns an error in Oracle.

Column Aliases

Comments

The Migration Workbench can convert Microsoft SQL Server-specific column aliases
to the equivalent Oracle format. No manual changes are required.

Table 3–30 Comparison of Column Aliases in Oracle and Microsoft SQL Server and
Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
@Status int=0
AS
 SELECT x=sum(salary)
FROM employee

 CREATE OR REPLACE PROCEDURE PROC1(
Status INTEGER DEFAULT 0,
RC1 IN OUT PROC1Pkg.RCT1)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN
 OPEN RC1 FOR
 SELECT SUM(SALARY) "X" FROM
EMPLOYEE;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-63

UPDATE with FROM Statement

Comments

An UPDATE with a FROM clause cannot be converted. Instead, the Migration
Workbench provides a comment indicating that manual conversion is required.

There are two ways to convert UPDATE with a FROM statements, and these are
illustrated below.

Method 1:

Use the subquery in the SET clause if columns are being updated to values coming
from a different table. For example, consider the following T/SQL statement:

UPDATE titles
SET pub_id = publishers.pub_id
FROM titles, publishers
WHERE titles.title like ’C%’
AND publishers.pub_name = ’new age’

Table 3–31 Comparison of UPDATE with FROM Statement in Oracle and Microsoft
SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
AS
 UPDATE table1
 SET col1 = 1
 FROM table1, table2
 WHERE table1.id =
table2.id

CREATE OR REPLACE PROCEDURE proc1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
BEGIN
 BEGIN
 UPDATE table1
 SET
 col1 = 1 /* FROM table1,table2 --
 MANUAL CONVERSION */
 WHERE table1.id = table2.id;
 StoO_rowcnt := SQL%ROWCOUNT;
 EXCEPTION
 WHEN OTHERS THEN
 StoO_error := SQLCODE;
 END;
END;

T/SQL Versus PL/SQL Constructs

3-64 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Convert this statement to the following PL/SQL statement in Oracle :

UPDATE titles
SET pub_id
(SELECT a.pub_id
 FROM publishers a
 WHERE publishers.pub_name = ’new age’
)
WHERE titles.title like ’C%’

Method 2:

Use the subquery in the WHERE clause for all other UPDATE…FROM statements.
For example, consider the following T/SQL statement:

UPDATE shippint_parts
SET qty = 0
FROM shipping_parts sp, suppliers s
WHERE sp.supplier_num = s.supplier_num
AND s.location = "USA"

Convert this statement to the following PL/SQL statement in Oracle:

UPDATE shipping_parts
SET qty = 0
WHERE supplier_num IN (
SELECT supplier_num
FROM suppliers
WHERE location = ’USA’)

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-65

DELETE with FROM Statement

Table 3–32 Comparison of DELETE with FROM Statement in Oracle and Microsoft
SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
AS
 DELETE FROM table1
 FROM table1, table2
 WHERE table1.id = table2.id

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
UF1_rowid ROWID;
UF1_oval1 TABLE1.COL1%TYPE;

CURSOR UF1_cursor IS
 SELECT TABLE1.ROWID, 1 FROM
TABLE1, TABLE2

 WHERE TABLE1.ID = TABLE2.ID
 FOR UPDATE OF TABLE1.COL1;
BEGIN

 OPEN UF1_cursor;
 LOOP
FETCH UF1_cursor INTO UF1_rowid, UF1_
oval1;
 EXIT WHEN UF1_cursor%NOTFOUND;
 BEGIN
 StoO_error := 0;
 StoO_rowcnt := 0;
 UPDATE TABLE1 SET COL1 = UF1_oval1
 WHERE ROWID = UF1_rowid;
 StoO_rowcnt := SQL%ROWCOUNT;
 EXCEPTION
 WHEN OTHERS THEN
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
 END LOOP;
 CLOSE UF1_cursor;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

3-66 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Comments

A DELETE with FROM..FROM clause must be converted manually.

While converting DELETE with FROM..FROM clause, remove the second FROM
clause. For example consider the following T/SQL statement:

DELETE
FROM sales
FROM sales,titles
WHERE sales.title_id = titles.title_id
AND titles.type = ’business’

Convert the above statement to the following PL/SQL statement in Oracle:

DELETE
FROM sales
WHERE title_id IN
(SELECT title_id
 FROM titles
 WHERE type = ’business’
)

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-67

Temporary Tables

Comments

Temporary tables are supported by Oracle9i and Oracle8i. The Migration
Workbench utilizes this feature in Oracle9i and Oracle8i.

Table 3–33 Comparison of Temporary Tables in Oracle and Microsoft SQL Server and
Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
AS
 SELECT col1, col2
 INTO #Tab
 FROM table1
 WHERE table1.id = 100

 CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN
 /*CONVERTING SELECT INTO t_Tab*/
 /*TO INSERT INTO t_Tab*/
 BEGIN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := 0;

 INSERT INTO t_Tab
 SELECT
USERENV(’SESSIONID’), COL1, COL2 FROM
TABLE1
 WHERE TABLE1.ID = 100;
 StoO_rowcnt := SQL%ROWCOUNT;

 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 StoO_rowcnt := 2;
 WHEN OTHERS THEN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

3-68 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Also, SELECT..INTO..#TEMPTAB is converted to an INSERT statement. You must
make manual changes to ensure that rows are unique to a particular session and all
the rows for that session are deleted at the end of the operation. This requires that
you add an extra column to the table definition and the value of
USERENV(’session_id’) for all the rows inserted. At the end, delete all rows for
that session_id. If many procedures use the same temp table in the same session,
SEQUENCE can be used to make sure that the rows are unique to a particular
session_id/SEQUENCE combination.

Result Set (Converted Using a Cursor Variable)
Command Option -M

Table 3–34 Comparison of Result Set in Oracle and Microsoft SQL Server and Sybase
Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
AS
 SELECT col1, col2
 FROM table1

 CREATE OR REPLACE PACKAGE PROC1Pkg
AS
TYPE RT1 IS RECORD (
 COL1
TABLE1.COL1%TYPE,
 COL2
TABLE1.COL2%TYPE
);
TYPE RCT1 IS REF CURSOR RETURN RT1;
END;
/

CREATE OR REPLACE PROCEDURE PROC1(
RC1 IN OUT PROC1Pkg.RCT1)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN
 OPEN RC1 FOR
 SELECT COL1, COL2 FROM
TABLE1;
END PROC1;
/

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-69

Comments

Convert an Microsoft SQL Server and Sybase Adaptive Server procedure that
returns a multi-row result set to a PL/SQL packaged function by selecting the
appropriate parse option in the property sheet for a stored procedure.

The T/SQL SELECT statement is converted to a cursor and a cursor variable is
added as an OUT parameter to return the data back to the calling program. Use the
cursor referenced by the cursor variable to fetch the result rows.

For more details on how Result Sets are handled by the Migration Workbench, see
T/SQL and PL/SQL Language Elements section in this chapter.

Note: The conversion to a packaged function does not work in all
cases. Carefully check the input source and decide whether it can
be converted to a packaged function. Also check the output for
accuracy.

T/SQL Versus PL/SQL Constructs

3-70 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Cursor Handling

Table 3–35 Comparison of Cursor Handling Result Set in Oracle and Microsoft SQL
Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC cursor_demo
AS
DECLARE @empno INT
DECLARE @ename CHAR(100)
DECLARE @sal FLOAT
DECLARE cursor_1 CURSOR
FOR SELECT empno, ename, sal
FROM emp

OPEN cursor_1

FETCH cursor_1 INTO @empno,
@ename, @sal

CLOSE cursor_1

DEALLOCATE CURSOR cursor_1

CREATE OR REPLACE PROCEDURE CURSOR_
DEMO
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
empno INTEGER;
ename CHAR(100);
sal NUMBER;
CURSOR CURSOR_1 IS
 SELECT EMPNO, ENAME, SAL
 FROM EMP;

BEGIN
 OPEN CURSOR_1;

 CURSOR_1 INTO
 cursor_demo.empno, cursor_
demo.ename, cursor_demo.sal;

 IF CURSOR_1%NOTFOUND THEN
 StoO_sqlstatus := 2;
 ELSE
 StoO_sqlstatus := 0;
 END IF;
 CLOSE CURSOR_1;

/*[SPCONV-ERR(xxx)]:Deallocate Cursor
is not supported*/

 NULL;

END CURSOR_DEMO;
/

T/SQL Versus PL/SQL Constructs

 Triggers and Stored Procedures 3-71

Comments

Microsoft SQL Server and Sybase Adaptive Server introduced cursors in T/SQL.
Syntactical conversion of cursors from Microsoft SQL Server and Sybase Adaptive
Server to Oracle is very straightforward.

Note: In PL/SQL, deallocation of cursors is not required as it
happens transparently.

T/SQL Versus PL/SQL Constructs

3-72 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Transaction Handling Statements

 Comments

Table 3–36 Comparison of Transaction-Handling Statements in Oracle and Microsoft
SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

CREATE PROC proc1
AS
 BEGIN TRAN tran1

 UPDATE table1
 SET id = id + 1
 WHERE name = ’Event’

 IF @@Rowcount != 1
 BEGIN
 ROLLBACK TRAN tran1
 RETURN 25700
 END

 COMMIT TRAN tran1
 RETURN 0

CREATE OR REPLACE FUNCTION PROC1
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN
 SAVEPOINT TRAN1;
 BEGIN
 StoO_error := 0;
 StoO_rowcnt := 0;
 UPDATE TABLE1
 SET ID = ID + 1

 WHERE NAME = ’Event’;
 StoO_rowcnt := SQL%ROWCOUNT;
 EXCEPTION
 WHEN OTHERS THEN
 StoO_error := SQLCODE;
 StoO_errmsg := SQLERRM;
 END;
 IF StoO_rowcnt != 1 THEN
 BEGIN
 ROLLBACK TO SAVEPOINT TRAN1;
 RETURN 25700;
 END;
 END IF;
 COMMIT WORK;
 RETURN 0;
END PROC1;
/

T/SQL and PL/SQL Language Elements

 Triggers and Stored Procedures 3-73

The Migration Workbench does a one-to-one mapping when converting Microsoft
SQL Server and Sybase Adaptive Server transaction commands to their Oracle
equivalents. For more details about how transactions are handled in Oracle, see the
Transaction-Handling Semantics topic later in this chapter.

T/SQL and PL/SQL Language Elements
T/SQL is the Microsoft SQL Server and Sybase Adaptive Server procedural SQL
language and PL/SQL is the Oracle procedural SQL language. This section
discusses the following T/SQL and PL/SQL language elements:

■ Transaction Handling Semantics

■ Exception-Handling and Error-Handling Semantics

■ Special Global Variables

■ Operators

■ Built-in Functions

■ Sending Data to the Client: Result Sets

■ DDL Constructs within Microsoft SQL Server and Sybase Adaptive Server
Stored Procedures

Transaction Handling Semantics
Microsoft SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase Adaptive Server offer two different transaction
models: the ANSI-standard implicit transaction model and the explicit transaction
model.

Microsoft SQL Server and Sybase Adaptive Server provide options to support
ANSI-standard transactions. These options can be set or un-set using the SET
command.

The following SET command sets the implicit transaction mode:

set chained on

Note: Make sure that the functionality remains the same, as the
transaction models may differ in Microsoft SQL Server and Sybase
Adaptive Server and Oracle.

T/SQL and PL/SQL Language Elements

3-74 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

The following SET command sets the isolation level to the desired level:

set transaction isolation level {1|3}

isolation level 1 prevents dirty reads. Isolation level 2 prevents
un-repeatable reads. Isolation level 3 prevents phantoms. Isolation
level 3 is required by ANSI standards. For Microsoft SQL Server and Sybase
Adaptive Server, the default is isolation level 1.

To implement isolation level 3, Microsoft SQL Server and Sybase Adaptive
Server apply HOLDLOCK to all the tables taking part in the transaction. In
Microsoft SQL Server and Sybase Adaptive Server, HOLDLOCK, along with
page-level locks, can block users for a considerable length of time, causing poor
response time.

If the Microsoft SQL Server and Sybase Adaptive Server application implements
ANSI-standard chained (implicit) transactions with isolation level 3, the
application migrates smoothly to Oracle because Oracle implements the
ANSI-standard implicit transaction model, which ensures repeatable reads.

In a non-ANSI standard application, Microsoft SQL Server and Sybase Adaptive
Server transactions are explicit. A logical transaction has to be explicitly started
with the statement BEGIN TRANSACTION. The transaction is committed with a
COMMIT TRANSACTION or rolled back with a ROLLBACK TRANSACTION
statement. The transactions can be named. For example, the following statement
starts a transaction named

account_tran.
BEGIN TRANSACTION account_tran

The explicit transaction mode allows nested transactions. However, the nesting is
only syntactical. Only outermost BEGIN TRANSACTION and COMMIT
TRANSACTION statements actually create and commit the transaction. This could
be confusing as the inner COMMIT TRANSACTION does not actually commit.

The following example illustrates the nested transactions:

BEGIN TRANSACTION
 /* T/SQL Statements */
 BEGIN TRANSACTION
 /* T/SQL Statements */
 BEGIN TRANSACTION account_tran
 /* T/SQL Statements */
 IF SUCCESS
 COMMIT TRANSACTION account_tran
 ELSE

T/SQL and PL/SQL Language Elements

 Triggers and Stored Procedures 3-75

 ROLLBACK TRANSACTION account_tran
 END IF
 /* T/SQL Statements */
 IF SUCCESS
 COMMIT TRANSACTION
 ELSE
 ROLLBACK TRANSACTION
 END IF
 /* T/SQL Statements */
COMMIT TRANSACTION

When BEGIN TRANSACTION and COMMIT TRANSACTION statements are
nested, the outermost pair creates and commits the transaction while the inner pairs
only keep track of nesting levels. The transaction is not committed until the
outermost COMMIT TRANSACTION statement is executed. Normally the nesting
of the transaction occurs when stored procedures containing BEGIN
TRANSACTION /COMMIT TRANSACTION statements call other procedures with
transaction-handling statements. The global variable @@trancount keeps track of
the number of currently active transactions for the current user. If you have more
than one open transaction, you need to ROLLBACK, then COMMIT.

The named and unnamed inner COMMIT TRANSACTION statements have no
effect. The inner ROLLBACK TRANSACTION statements without the name roll
back the statements to the outermost BEGIN TRANSACTION statement and the
current transaction is canceled. The named inner ROLLBACK TRANSACTION
statements cancel the respective named transactions.

Oracle

Oracle applies ANSI-standard implicit transaction methods. A logical transaction
begins with the first executable SQL statement after a COMMIT, ROLLBACK, or
connection to the database. A transaction ends with a COMMIT, ROLLBACK, or
disconnection from the database. An implicit COMMIT statement is issued before
and after each DDL statement. The implicit transaction model prevents artificial
nesting of transactions because only one logical transaction per session can be in
effect. The user can set SAVEPOINT in a transaction and roll back a partial
transaction to the SAVEPOINT.

For example:

UPDATE test_table SET col1=’value_1’;
SAVEPOINT first_sp;
UPDATE test_table SET col1=’value_2’;
ROLLBACK TO SAVEPOINT first_sp;
COMMIT; /* col1 is ’value_1’*/

T/SQL and PL/SQL Language Elements

3-76 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Conversion Preparation Recommendations
Logical transactions are handled differently in Microsoft SQL Server and Sybase
Adaptive Server and Oracle. In Microsoft SQL Server and Sybase Adaptive Server,
transactions are explicit by default. Oracle implements ANSI-standard implicit
transactions. This prevents a direct conversion from T/SQL transaction-handling
statements to PL/SQL transaction-handling statements.

Also, Microsoft SQL Server and Sybase Adaptive Server require that transactions in
stored procedures be allowed to nest, whereas Oracle does not support transaction
nesting.

The following table compares Microsoft SQL Server and Sybase Adaptive Server to
Oracle transaction-handling statements:

At the time of conversion, the Migration Workbench cannot determine the nest level
of the current transaction-handling statement. The variable @@trancount is a
runtime environment variable.

Table 3-38 shows the currently implemented Microsoft SQL Server and Sybase
Adaptive Server to Oracle conversion strategy for the transaction-handling
statements

Table 3–37 Comparison of Transaction-Handling Statements in Oracle and Microsoft
SQL Server and Sybase Adaptive Server

Microsoft SQL Server and Sybase
Adaptive Server Oracle

BEGIN TRAN

BEGIN TRAN tran_1 SAVEPOINT tran_1

COMMIT TRAN

(for the transaction with nest level=1)

 COMMIT

COMMIT TRAN

(for the transaction with nest level>1)

COMMIT TRAN tran_1

(for the transaction with nest level=1)

 COMMIT

COMMIT TRAN tran_1

(for the transaction with nest level>1)

ROLLBACK TRAN ROLLBACK

ROLLBACK TRAN tran_1 ROLLBACK TO SAVEPOINT tran_1

T/SQL and PL/SQL Language Elements

 Triggers and Stored Procedures 3-77

Because of the difference in the way the two databases handle transactions, you
may want to consider some reorganization of the transactions.

Try to design client/server applications so that the transaction-handling statements
are part of the client code rather than the stored procedure code. This strategy
should work because the logical transactions are almost always designed by the
user and should be controlled by the user.

For the conversion of stored procedures, consider setting a SAVEPOINT at the
beginning of the procedures, and roll back only to the SAVEPOINT. In Microsoft
SQL Server and Sybase Adaptive Server, make the changes so that at least the
outermost transaction is controlled in the client application.

Exception-Handling and Error-Handling Semantics
Microsoft SQL Server and Sybase Adaptive Server

In Microsoft SQL Server and Sybase Adaptive Server, you must check for errors
after each SQL statement because control is passed to the next statement regardless
of any error conditions generated by the previous statement. The client ERROR_

Table 3–38 Conversion Strategy for Transaction-Handling Statements

Microsoft SQL Server and Sybase
Adaptive Server Oracle

BEGIN TRAN /*BEGIN TRAN >>> statement ignored <<<*/

BEGIN TRAN tran_1 SAVEPOINT tran_1;

COMMIT TRAN

(for the transaction with nest level=1)

 COMMIT WORK;

COMMIT TRAN

(for the transaction with nest level>1)

 COMMIT WORK;

COMMIT TRAN tran_1

(for the transaction with nest level=1)

 COMMIT WORK;

COMMIT TRAN tran_1

(for the transaction with nest level>1)

 COMMIT WORK;

ROLLBACK TRAN ROLLBACK WORK;

ROLLBACK TRAN tran_1 ROLLBACK TO SAVEPOINT tran_1

SAVE TRAN tran_1 SAVEPOINT tran_1

T/SQL and PL/SQL Language Elements

3-78 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

HANDLER routine is invoked as a call-back routine if any server error occurs, and
the error conditions can be handled in the call back routine.

Stored procedures use the RAISERROR statement to notify the client of any error
condition. This statement does not cause the control to return to the calling routine.

Microsoft SQL Server and Sybase Adaptive Server allow you to customize the error
messages using a system table. The system procedures allow the user to add error
messages to this table.

Oracle

In Oracle, each SQL statement is automatically checked for errors before proceeding
with the next statement. If an error occurs, control immediately jumps to an
exception handler if one exists. This frees you from needing to check the status of
every SQL statement. For example, if a SELECT statement does not find any row in
the database, an exception is raised. The corresponding exception handler part of
the block should include the code to deal with this error. The built-in RAISE_
APPLICATION_ERROR procedure notifies the client of the server error condition
and returns immediately to the calling routine.

Oracle places an implicit SAVEPOINT at the beginning of a procedure. The built-in
RAISE_APPLICATION_ERROR procedure rolls back to this SAVEPOINT or the last
committed transaction within the procedure. The control is returned to the calling
routine.

The Oracle RAISE_APPLICATION_ERROR statement allows the user to customize
the error message. If an exception is raised, SQLCODE is returned automatically by
PL/SQL to the caller. It keeps propagating until it is handled.

Recommendations

To simulate Microsoft SQL Server and Sybase Adaptive Server behavior in Oracle,
you must enclose each SQL statement in an equivalent PL/SQL block. This block
must deal with the exceptions that need to be trapped for the SQL statement.

See the T/SQL Versus PL/SQL Constructs section in this chapter for more
information about the extra code required to simulate Microsoft SQL Server and
Sybase Adaptive Server behavior.

If the RAISERROR statement in an Microsoft SQL Server and Sybase Adaptive
Server stored procedure is immediately followed by the RETURN statement, these
two statements can be converted to the Oracle RAISE_APPLICATION_ERROR
statement.

You can customize error messages with the help of a user-defined table. You can
write standard routines to add and retrieve error messages to this table. This

T/SQL and PL/SQL Language Elements

 Triggers and Stored Procedures 3-79

method serves a two-fold purpose: it ensures that the system is portable, and it
gives the administrator centralized control over the error messages.

Special Global Variables
Microsoft SQL Server and Sybase Adaptive Server

The following global variables are particularly useful in the conversion process:

@@error:

The server error code indicating the execution status of the most recently executed
T/SQL statement. For code examples, see the @@Rowcount and @@Error Variables
topic.

@@identity:

Returns the last identity value generated by the statement. It does not revert to a
previous setting due to ROLLBACKS or other transactions.

@@rowcount:

The number of rows affected by the most recently executed T/SQL statement. For
code examples, see the @@Rowcount and @@Error Variables topic.

@@servername:
The name of the local Microsoft SQL Server and Sybase Adaptive Server server.

@@sqlstatus:
The status information resulting from the last FETCH statements.

@@tranchained:
The current transaction mode of the T/SQL procedure. If @@tranchained returns 1,
the TL/SQL procedure is in chained, or implicit transaction mode.

@@trancount:
Keeps track of the nesting level for the nested transactions for the current user.

@@transtate:
The current state of the transaction.

Oracle

SQLCODE:

The server error code indicating the execution status of the most recently executed
PL/SQL statement.

SQL%ROWCOUNT:

The variable attached to the implicit cursor associated with each SQL statement
executed from within the PL/SQL procedures. This variable contains the number of
rows affected by the execution of the SQL statement attached to the implicit cursor.

T/SQL and PL/SQL Language Elements

3-80 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Recommendations:

The @@error variable has a direct equivalent in Oracle, and that is the SQLCODE
function. The SQLCODE function returns the server error code.

The SQL%ROWCOUNT variable in Oracle is functionally equivalent to @@rowcount.

There are many more special global variables available with PL/SQL. Not all those
variables are listed here. There are more special global variables available in T/SQL
also. Not all those variables are listed here because they do not play a major role in
the conversion process.

Operators
See the Data Manipulation Language section in Chapter 2 for a discussion of
Microsoft SQL Server and Sybase Adaptive Server and Oracle operators.

Built-in Functions
See the Data Manipulation Language section in Chapter 2 for a discussion of
built-in functions in Microsoft SQL Server and Sybase Adaptive Server and Oracle.

Sending Data to the Client: Result Sets

Single Result Set
Microsoft SQL Server and Sybase Adaptive Server stored procedures can return
data to the client by means of a Result Set. A SELECT statement that does not assign
values to the local variables sends the data to the client in the form of byte-stream.

In a case where a third-party user interface product uses the result set capability of
Microsoft SQL Server and Sybase Adaptive Server, consult with the vendor to make
sure that the same functionality is available for the Oracle database.

The following example procedure sends the data out as a result set. More
appropriately, an OUTPUT parameter holding the value "YES" or "NO" (depending
upon the evaluation of <condition>) or a function returning "YES" or "NO"
should have been used.

CREATE PROCEDURE x
AS
BEGIN
...
...
IF <condition> THEN

T/SQL and PL/SQL Language Elements

 Triggers and Stored Procedures 3-81

 SELECT "YES"
ELSE
 SELECT "NO"
END

Multiple Result Sets
Avoid Microsoft SQL Server and Sybase Adaptive Server stored procedures that
return multiple result sets to the calling routine.

The following procedure returns two different result sets, which the client is
responsible for processing:

CREATE PROCEDURE example_proc
AS
BEGIN

SELECT empno,empname, empaddr FROM emp
WHERE empno BETWEEN 1000 and 2000
SELECT empno,deptno, deptname FROM emp, dept
WHERE empno.empno = dept.empno
AND emp.empno BETWEEN 1000 and 2000
END

Recommendations

Some alternatives to simulating the result set in PL/SQL procedures are presented
below:

■ Packaged procedures with PL/SQL tables as output parameters

■ This is an extension of the first method. Instead of fetching one row at a time,
now we fetch many rows (ARRAY FETCH) at a time and assign the values to
PL/SQL tables. These tables are available to the client after the execution of the
procedure.

■ Packaged procedures with a cursor variable as output parameter

■ This alternative is possible in Oracle. Oracle allows you to define a cursor type
variable to clearly return query results. This cursor type variable is similar to
the user-defined record type and array variable. The cursor stored in the cursor
variable is like any other cursor. It is a reference to a work area associated with a
multi-row query. It denotes both the set of rows and a current row in that set.
The cursor referred to in the cursor variable can be opened, fetched from, and
closed just like any other cursor. Since it is a PL/SQL variable, it can be passed
into and out of procedures like any other PL/SQL variable. This is a more direct

T/SQL and PL/SQL Language Elements

3-82 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

equivalent to the result set in Microsoft SQL Server and Sybase Adaptive
Server.

■ Procedure or function that populates a temporary table with result set rows

■ This temporary table has an additional column to hold the SESSION_ID of the
current session to keep the rows separate for each session of the user. The client
program can then retrieve the rows from this temporary table with a simple
SELECT statement.

■ The Migration Workbench adopts the third option to convert the result set.

About Converting a T/SQL Procedure with a Result Set
Method 1

A T/SQL procedure with a result set may need some manual changes after
conversion to an Oracle package with a member function. The problems are
described in detail below.

For example, consider the following T/SQL procedure:

CREATE PROC test_proc
AS
BEGIN
 T/SQL block1
 T/SQL block2
 SELECT statement corresponding to the result set
END

This procedure executes two T/SQL blocks before executing the SELECT statement
associated with the result set. The procedure is converted to an Oracle package as
follows:

CREATE OR REPLACE PACKAGE BODY test_proc_pkg
AS
BEGIN
 FUNCTION test_proc;
END;
CREATE OR REPLACE PACKAGE BODY test_proc_pkg
AS
BEGIN
 cursor declaration for the SELECT statement associated with the result
set in the source T/SQL procedure;
 FUNCTION test_proc
 RETURN INTEGER
 AS

T/SQL and PL/SQL Language Elements

 Triggers and Stored Procedures 3-83

 BEGIN
 PL/SQL version of T/SQL block1;
 PL/SQL version of T/SQL block2;
 FETCH loop for the cursor declared in the package body;
 END;
END;

The two T/SQL blocks in the source T/SQL procedure are executed only once
when the procedure is called, and the result set is sent to the client.

In Oracle client, to simulate the fetching of the result set, the TEST_PROC_
PKG.TEST_PROC function must be called repeatedly until all the rows from the
cursor are fetched. The two PL/SQL blocks in the function are executed with each
call to the function. This behavior differs from that in the source application.

You must manually separate the code associated with the FETCH loop for the
cursor for the result set from the remaining code in the procedure. Changes to the
client have to be made so that the rest of the procedure’s code is called in accurate
sequence with the repeated calls to the function returning rows from the result set.

The final Oracle package should be as follows:

CREATE OR REPLACE PACKAGE BODY test_proc_pkg
AS
BEGIN
 PROCEDURE proc1;
 FUNCTION test_proc;
END;
CREATE OR REPLACE PACKAGE BODY test_proc_pkg
AS
BEGIN
 cursor declaration for the SELECT statement associated with the result
set in the source T/SQL procedure;
 PROCEDURE proc1
 AS
 BEGIN
 PL/SQL version of T/SQL block1;
 PL/SQL version of T/SQL block2;
 END;
 FUNCTION test_proc
 RETURN INTEGER
 AS
 BEGIN
 FETCH loop for the cursor declared in the package body;
 END;
END;

T/SQL and PL/SQL Language Elements

3-84 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

The client should call the TEST_PROC_PKG.PROC1 procedure before repeatedly
calling the TEST_PROC.PKG.TEXT_PROC function in order to achieve functionality
similar to the source T/SQL procedure.

The variables that are common to these two parts should be either declared globally
within the package body or should be passed as parameters to the procedure and
the function.

DDL Constructs within Microsoft SQL Server and Sybase Adaptive Server Stored
Procedures

Microsoft SQL Server and Sybase Adaptive Server allow DDL constructs to be part
of the stored procedures. Oracle allows DDL statements as part of the dynamic SQL.
Oracle issues an implicit COMMIT statement after each DDL statement.

Most of the T/SQL DDL constructs give syntax errors. You must remove the DDL
statements from the T/SQL source to convert the T/SQL procedure to PL/SQL
using the Migration Workbench.

The following DDL statements are ignored by the Migration Workbench. The
statements appear commented in the output with a message "statement ignored."

CREATE TABLE
DROP TABLE
CREATE VIEW
DROP VIEW
CREATE INDEX
DROP INDEX

 Distributed Environments 4-1

4
Distributed Environments

This chapter includes the following sections:

■ Distributed Environments

■ Application Development Tools

Distributed Environments
A distributed environment is chosen for various applications where:

■ The data is generated at various geographical locations and needs to be
available locally most of the time.

■ The data and software processing is distributed to reduce the impact of any
particular site or hardware failure.

Accessing Remote Databases in a Distributed Environment
When a relational database management system (RDBMS) allows data to be
distributed while providing the user with a single logical view of data, it supports
"location transparency." Location transparency eliminates the need to know the
actual physical location of the data. Location transparency thus helps make the
development of the application easier. Depending on the needs of the application,
the database administrator (DBA) can hide the location of the relevant data.

To access a remote object, the local server must establish a connection with the
remote server. Each server requires unique names for the remote objects. The
methods used to establish the connection with the remote server, and the naming
conventions for the remote objects, differ from database to database.

Distributed Environments

4-2 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Oracle and Remote Objects
Oracle allows remote objects (such as tables, views, and procedures) throughout a
distributed database to be referenced in SQL statements using global object names.
In Oracle, the global name of a schema object comprises the name of the schema
that contains the object, the object name, followed by an "at" sign (@), and a
database name. For example, the following query selects information from the table
named scott.emp in the SALES database that resides on a remote server:

SELECT * FROM
scott.emp@sales.division3.acme.com

A distributed database system can be configured so that each database within the
system has a unique database name, thereby providing "effective" global object
names.

Furthermore, by defining synonyms for remote object names, you can eliminate
references to the name of the remote database. The synonym is an object in the local
database that refers to a remote database object. Synonyms shift the responsibility of
distributing data from the application developer to the DBA. Synonyms allow the
DBA to move the objects as desired without impacting the application.

The synonym can be defined as follows:

CREATE PUBLIC SYNONYM emp FOR
scott.emp@sales.division3.acme.com;

Using this synonym, the SQL statement outlined above can be changed to the
following:

SELECT * FROM emp;

Microsoft SQL Server and Sybase Adaptive Server and Remote Objects
Microsoft SQL Server and Sybase Adaptive Server require schema objects
throughout a distributed database to be referenced in SQL statements by fully
qualifying the object names. The complete name of a schema object has the
following format:

server_name.database_name.object_owner_name.object_name

The server_name is the name of a remote server. The database_name is the
name of a remote database on the remote server.

Distributed Environments

 Distributed Environments 4-3

Microsoft SQL Server and Sybase Adaptive Server do not support the concept of
synonyms or location transparency. In a distributed environment, objects cannot be
moved around without impacting the application, as the developers must include
the location of the object in the application code.

Most of the static queries tend to include the references to the remote server and
remote database. Some applications maintain a user table to map the complete
object names (including the remote server name and the database name) to dummy
object names. The queries refer to these dummy object names. The translations are
performed in real-time with the help of the map in the user table. This limitation
precludes any common scheme of referring to remote objects that can work for
Oracle and Microsoft SQL Server and Sybase Adaptive Server.

The Microsoft SQL Server and Sybase Adaptive Server Omni SQL Gateway server
allows location transparency, but this requires that the schema definitions of all the
databases participating in the distribution must be available with the Omni SQL
Gateway server.

Replication
Replication functionality in Microsoft SQL Server and Sybase Adaptive Server has
the following characteristics:

■ Unidirectional

■ Table-based, not transaction-based

■ No automatic conflict resolution (must be manual)

■ Heterogeneous replication through Open Database Connectivity (ODBC)

In addition to the characteristics listed above, Microsoft SQL Server 7.0 replication
provides heterogeneous replication through ODBC.

Oracle replication has richer replication functionality, which includes the following:

■ Bi-directional

■ Any database object can be replicated

■ Automatic resynchronization

■ Automatic conflict resolution

■ Heterogeneous replication provided through gateways

Since Oracle distributed environment and replication support is a superset of
Microsoft SQL Server and Sybase Adaptive Server, conversion of distributed

Application Development Tools

4-4 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

applications from Microsoft SQL Server and Sybase Adaptive Server to Oracle is
feasible.

Application Development Tools
Several application development tools that are currently available use specific
features of one of the various database servers; you may have to invest significant
effort to port these products to other database servers. With critical applications, it is
sometimes best to develop and maintain a different set of application development
tools that work best with the underlying database, as ODBC support is not
adequate in such cases.

The majority of Microsoft SQL Server and Sybase Adaptive Server applications are
written using ODBC application programming interfaces (APIs) or Visual Basic.
DB-Library is widely used to develop 3GL applications with Microsoft SQL Server
and Sybase Adaptive Server as the backend.

Since Oracle provides ODBC connectivity, it is possible to convert ODBC-based
Microsoft SQL Server and Sybase Adaptive Server applications to work with an
Oracle backend.

If a Visual Basic application is written with ODBC as the connection protocol to
access Microsoft SQL Server and Sybase Adaptive Server, it is possible to modify
and fix the Visual Basic application to work with an Oracle backend.

Many Visual Basic applications use VB-SQL which is DB-Library for Visual Basic.
VB-SQL allows Visual Basic programs to access Microsoft SQL Server and Sybase
Adaptive Server natively (as opposed to using ODBC). Such applications can also
be converted to work with an Oracle backend, if you replace the VB-SQL database
access routines with Oracle Objects for OLE.

Oracle provides a call interface knows as Oracle Call Interface (OCI), which is
functionally equivalent to the DB-Library API. Conversion of DB-Library
applications to OCI applications is feasible.

 Migrating Temporary Tables to Oracle 5-1

5
Migrating Temporary Tables to Oracle

Temporary tables are available in Oracle9i and Oracle8i. However, because Oracle9i
and Oracle8i temporary tables differ from Microsoft SQL Server temporary tables
you should still replace or emulate temporary tables within Oracle to ease
migrations from Microsoft SQL Server.

The emulation of temporary tables has been simplified by using temporary tables
instead of permanent tables. See the Oracle9i and Oracle8i temporary table syntax
for Example 2 in the Implementation of Temporary Tables as Permanent Tables
section.

This chapter discusses temporary tables under the following headings:

■ Temporary Table Usage

■ Replace Temporary Tables

■ Emulate Temporary Tables

■ Definition of t_table_catalog

■ Package Body t_table

Temporary Table Usage
In Microsoft SQL Server and Sybase Adaptive Server, temporary tables are used to:

■ Simplify Coding

■ Simulate Cursors when Processing Data from Multiple Tables

■ Improve Performance In a Situation Where Multi-Table Joins are Needed

■ Associate Rows from Multiple Queries in One Result Set (UNION)

■ Eliminate Re-Querying Data Needed for Joins

5-2 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

■ Consolidate the Data for Decision Support Data Requirements

Simplify Coding
Instead of writing complicated multi-table join queries, temporary tables allow a
query to be broken into different queries, where result sets of one query are stored
in a temporary table and subsequent queries join this temporary table with actual
database tables.

This type of code can be converted to Oracle as follows:

■ Rewrite the queries to use multi-table joins

■ Create permanent temporary tables

■ Tune the complicated query using the parallel query option

Microsoft SQL Server and Sybase Adaptive Server:

 WHILE @cur_dt > @start_dt
 BEGIN
 INSERT #TEMP1
 SELECT @cur_dt
 SELECT @cur_dt = dateadd(dd, -7, @cur_dt)
 END
 /******** create a temp table *****/
 INSERT #TEMP2
 SELECT t2.col1,
 t4.col2,
 " ",
 t5.col3,
 t2.col4,
 t3.col5,
 t2.col6,
 t2.col7,
 t4.col8,
 t4.col9
 FROM
 db1..TABLE1 t1,
 db2..TABLE2 t2,
 db2..TABLE3 t3,
 db2..TABLE4 t4,
 db1..TABLE5 t5
 WHERE t1.col10 =@col10
 AND t1.col11 = @flag1
 AND t1.col2 = t4.col2

 Migrating Temporary Tables to Oracle 5-3

 AND t1.col2 = t5.col2
 AND t2.col4 between @start_col4 and @end_col4
 AND t3.col5 between @start_col5 and @end_col5
 AND t3.col12 = @flag2
 AND t2.col13 = @flag1
 AND t4.col2 like @col2
 AND t4.col14 = @flag3
 AND t4.col12 = @flag2
 AND t2.col1 = t4.col1
 AND t3.col1 = t2.col1
 AND t4.col1 = t3.col1
 AND t5.col2 like @col2
 AND t4.col2 = t5.col2
 AND t4.col15 = t5.col15
 AND t5.col3 like @var1
 AND t2.col6 <= @end_dt
 AND (t2.col7 >= @start_dt OR t2.col7 = NULL)
 AND t4.col8 <=@end_dt
 UPDATE TABLE4
 SET t4.col2 = col16
 FROM #TEMP2 t1, db2..TABLE4 t4
 WHERE t1.col1 = t4.col1
 AND t4.col12 = @flag2
 AND t4.col14 = @flag4

Oracle Pseudo Code:

 Use a PL/SQL table to simulate #TEMP1
 For the INSERT #TEMP2 statement
 Declare a cursor with the same SELECT statement
 (as used in Microsoft SQL Server and Sybase Adaptive Server)
 For the UPDATE statement do the following:
 loop
 fetch the cursor
 if cursor not found
 then exit ;
 end if ;
 -- update TABLE4 for each row that matches the criteria
 -- Note : i_col17 and i_col1 are local PL/SQL variables
 which are populated by each fetch
 UPDATE TABLE4
 SET col2 = i_col17
 WHERE col1 = i_col1
 AND col12 = @flag2
 AND col14 = @flag4

5-4 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

 end loop

Simulate Cursors when Processing Data from Multiple Tables
Oracle supports cursors, so this type of code can be converted to Oracle using
cursors.

The following code is part of a procedure written in Microsoft SQL Server.
Compare it with the Oracle example (much simpler coding) that performs the same
function.

Microsoft SQL Server:

 ...
 SELECT * INTO #emp FROM emp WHERE emp.dept = 10
 SELECT @cnt = @@rowcount
 WHILE @cnt > 0
 BEGIN
 SELECT @name = name, @emp_id = emp_id
 FROM #emp
 WHERE emp_id = (SELECT MAX (emp_id) FROM #emp)
 /* process this row */
 DELETE FROM #emp WHERE emp_id = @emp_id
 SELECT @cnt = @cnt -1
 END
 ...

Oracle:

 FOR emp_rec IN (SELECT name, emp_id FROM emp WHERE dept = 10)
 LOOP /*process emp_rec.name and emp_rec.emp_id*/
 END LOOP

Improve Performance In a Situation Where Multi-Table Joins are Needed
In Microsoft SQL Server and Sybase Adaptive Server, you sometimes use
temporary tables to avoid multi-table joins. These cases can be converted to Oracle,
as Oracle performs complex multi-table queries more efficiently than Microsoft SQL
Server and Sybase Adaptive Server.

 Migrating Temporary Tables to Oracle 5-5

See the sample code provided in the To Simplify Coding section for more
information in this regard.

Associate Rows from Multiple Queries in One Result Set (UNION)
Oracle provides a UNION relational operator to achieve similar results.

Microsoft SQL Server and Sybase Adaptive Server:
 INSERT #EMPL_TEMP
 SELECT emp.empno
 dept.dept_no
 location.location_code
 emp.start_date
 emp.end_date
 FROM emp,
 dept ,
 location
 WHERE emp.empno = location.empno
 AND dept.deptno = emp.deptno
 AND dept.deptno = location.deptno
 AND emp.start_date BETWEEN @start_date AND @end_date
 INSERT INTO #EMPL_TEMP VALUES (10000, 10, 15,getdate(),NULL)
 ...

Oracle:

 SELECT emp.empno
 dept.dept_no
 location.location_code
 emp.start_date
 emp.end_date
 FROM emp,
 dept ,
 location
 WHERE emp.empno = location.empno
 AND dept.deptno = emp.deptno
 AND dept.deptno = location.deptno
 AND emp.start_date BETWEEN i_start_date AND i_end_date
 UNION
 SELECT 10000,
 10,
 15,
 SYSDATE,

5-6 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

 NULL
 FROM DUAL

Eliminate Re-Querying Data Needed for Joins
Permanent tables can be created in Oracle to hold the data. The data in these tables
can be deleted at the end of processing. If no COMMIT is performed and no DDL is
issued, the records in these tables are not recorded in the database. If a COMMIT is
performed, the records from these tables can be deleted at the end of the process.
Records in these tables can be kept separate for different users by having an
additional column that holds a SESSION_ID.

If it is not possible to create the tables ahead of time, tables can be created
dynamically with Oracle, using the DBMS_SQL package. In dynamically-created
tables, the extra SESSION_ID columns are no longer needed, and space
management issues such as fragmentation are eliminated. Performance may be
affected, but deleting a large number of rows from a permanent temporary table
also affects performance. In dynamic SQL, tables can be truncated or dropped.

Microsoft SQL Server and Sybase Adaptive Server:
 INSERT #EMPL_TEMP
 SELECT emp.empno
 dept.dept_no
 emp.start_date
 emp.end_date
 FROM emp,
 dept ,
 WHERE emp.empno = dept.deptno
 AND emp.start_date BETWEEN @start_date AND @end_date

 /* Later in the code, one needs to select from the temp table
 only, it is not necessary to do a join of EMP and DEPT */
 SELECT * FROM #EMPL_TEMP

Oracle:

 SELECT emp.empno
 dept.dept_no
 emp.start_date
 emp.end_date
 FROM emp,
 dept ,
 WHERE emp.empno = dept.deptno

 Migrating Temporary Tables to Oracle 5-7

 AND emp.start_date BETWEEN i_start_date AND i_end_date ;
 /* The above join has to be performed every time one needs to get this result set
*/

Consolidate the Data for Decision Support Data Requirements
You often need to consolidate data across servers in a distributed database
environment. You can use predefined views to consolidate this type of data. Oracle
snapshots can replicate the data from remote databases. In addition, you can create
permanent tables for Microsoft SQL Server and Sybase Adaptive Server temporary
tables if queries need to perform joins against these tables.

Replace Temporary Tables
You should replace temporary tables to give the best performance in Oracle. You
should always try to replace temporary tables with standard Oracle SQL. To do
this, you must first determine the function of the temporary table. The function of
the temporary table is one of the following:

■ To store an intermediate result

■ To collect data

Emulate Temporary Tables
If it is not possible to replace temporary tables, you should emulate them as follows:

■ Use PL/SQL tables to emulate temporary tables

■ Create temporary tables as ordinary tables whenever they are needed.

■ Create permanent tables and maintain them for multiple users.

Implementation as PL/SQL Tables
Temporary tables can be implemented as a PL/SQL table of records. Although this
concept is quite appealing, you cannot use SQL on a PL/SQL table. Therefore, this
concept is limited to simple uses of temporary tables. However, for simple uses of
temporary tables, you should always consider replacing these temporary tables
completely with standard SQL.

Implications of Creating Temporary Tables Dynamically
Since temporary tables can be created by any session "on the fly", you may have
multiple instances of the same temporary table within one schema. As this type of

5-8 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

multiple instance is not possible in Oracle, you should attach the SESSION_ID to
the table name to make it unique. The result is a variable table name, which requires
that all accesses to that table must be created with dynamic SQL. This process
would complicate all types of migration tools.

As all DDL operations have an implicit commit, the creation of a temporary table
would disturb the transactional behavior of the migrated application. The programs
would have to be changed so that the creation of a temporary table always occurs at
the start of a transaction. This process would also complicate migration tools.

Implications of Creating Permanent Tables
Currently, several users can share one table. Therefore, you need to maintain an
additional column in the table for the SESSION_ID. As the SESSION_ID is unique
in the lifetime of a database, there are no access conflicts. The enforcement of the
SESSION_ID can be accomplished with a view and a trigger. The cleanup in this
option may be slower, as you must now delete rows and cannot do a simple DROP
TABLE. You can execute this operation asynchronously with the JOBQUEUE
package, or use the TRUNCATE TABLE command whenever you are the only user
of the table. To avoid bottlenecks on the temporary tables, it is possible to create
multiple incarnations of them and point the users via private synonyms. Also, the
upcoming SQL3 Standard implements temporary tables as permanent tables, which
have an incarnation per session.

These arguments show that the permanent table option is the best choice.

Implementation of Temporary Tables as Permanent Tables
The migration utility must first extract from the source database code all commands
that create a temporary table.

The following Microsoft SQL Server and Sybase Adaptive Server T-SQL examples
illustrate two types of commands that create temporary tables:

Example 1

CREATE TEMP TABLE tmpdate(
FromDt datetime year to minute,
ToDt datetime year to minute);

Example 2

SELECT aaufromdt date
from anforord aau, order ord, case cas, casetype ctp
where ctp.ctp_id = CtpId

 Migrating Temporary Tables to Oracle 5-9

and ctp.ctpambukz = "N"
and cas.ctp_id = ctp.ctp_id
and ord.cas_id = cas.cas_id
and aau.ord_id = ord.ord_id
and cas.casgtg = "Y"
and ordstozt is null
INTO temp tmpfromdate;

You should modify all commands that create temporary tables as follows:

■ Change the syntax to Oracle syntax.

■ Identify and substitute alternative values for Oracle reserved words.

■ Prefix the name of the temporary table with t_.

When you have completed these steps, Example 1 type statements may be executed.

For statements of the same type as Example 2, you must also perform the following
steps:

■ Remove all bind variables, such as CtpId, and replace them with constants.

■ Embed the statement in the following wrapper and execute it:

create table t_<temptable>
as select *
from (<original statement>)
where 1=0; -- or similar logic to create the table without any rows

The complete Oracle code for Example 2 is as follows:

create table t_tmpfromdate
as select * from
(
SELECT aaufromdt inf_date
from anforord aau, order ord, case cas, casetype ctp
where ctp.ctp_id = ’X’ -- CtpId
and ctp.ctpambukz = ’N’
and cas.ctp_id = ctp.ctp_id
and ord.cas_id = cas.cas_id
and aau.ord_id = ord.ord_id
and cas.casgtg = ’Y’
and ordstozt is null)
where 0=1;

Oracle9i and Oracle8i Temporary Tables

5-10 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Oracle9i and Oracle8i temporary table data is not visible across sessions so the
SESSION_ID column is not required.

The Oracle9i and Oracle8i temporary table syntax for Example 2 is as follows:

create table global temporary t_<temptable> on commit preserve rows
as select * from (<original statement>)
where 1=0

The Migration Workbench does the following when it encounters a temporary table
in a stored procedure or trigger:

■ Generates the DDL to create the table

■ Renames the table to t_tmpfromdate

■ Checks the column names for reserved words

■ Adds the SESSION_ID column (if Oracle9i and Oracle8i temporary tables
are not being used)

With this setup, you can use the table tmpfromdate as if it is available once per
session.

Maintenance of Temporary Tables
To maintain the temporary tables, you need a dictionary table t_table_catalog (see
Definition of t_table_catalog) and the supporting package t_t_table (see Package
Body t_table). The t_table package performs all maintenance for temporary tables.
To generate it, you need the following grants:

grant select on v_$session to <xxx>;
grant execute on dbms_sql to <xxx>;
grant execute on dbms_lock to <xxx>;
grant create public synonym to <xxx>;
grant create view to <xxx>;
grant create trigger to <xxx>;

The available functionality is explained in the comments of the package t_table as
follows:

create or replace PACKAGE t_table IS

 procedure convert_to_temp (table_name in varchar2,
 use_dbms_output in boolean default
false);
--

 Migrating Temporary Tables to Oracle 5-11

-- Convert an ordinary table to a temporary table.
--

 procedure register (table_name in varchar2);
-- Register the usage of temporary table in t_table_catalog
-- This procedure is called out of the pre-insert trigger
-- on the temporary table.
 procedure drop_t_table (table_name in varchar2);
-- Check usage in t_table_catalog, delete the data of the
-- session and unregister the table

 procedure cleanup_session;
-- Find all temporary table usages of the session, delete or truncate
-- the temporary table and unregister the usage.
-- This procedure commits!

END;

Definition of t_table_catalog

create table t_table_catalog
(session_id number,
 table_name varchar2(30),
 constraint t_table_catalog_pk
 primary key (session_id, table_name))

Package Body t_table
create or replace PACKAGE BODY t_table IS

 last_table varchar2(30) := ; -- Store the last used
 -- object for the register procedure
-- The constant use_truncate enables the use of the truncate command on
-- temporary tables. Change it to false if that is not desired.
 use_truncate constant boolean := true;

 procedure parse_sql (user_cursor in number,
 sql_text in varchar2) is
 begin
 dbms_sql.parse (user_cursor, sql_text, dbms_sql.v7);
 exception

5-12 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

 when others then
 raise_application_error (-20100, ’Parsing Error ’ ||
 to_char (sqlcode) || ’ at ’ ||
 to_char (dbms_sql.last_error_position + 1) ||
 ’ starting with: ’ ||
 substr (sql_text, dbms_sql.last_error_position + 1, 30)
||
 ’...’, true);
 end;

 procedure execute_sql (sql_text in varchar2) is
 ignore number;
 user_cursor number;
 begin
 user_cursor := dbms_sql.open_cursor;
 parse_sql (user_cursor, sql_text);
 ignore := dbms_sql.execute (user_cursor);
 dbms_sql.close_cursor(user_cursor);
 exception
 when others then
 if dbms_sql.is_open(user_cursor) then
 dbms_sql.close_cursor(user_cursor);
 end if;
 raise;
 end;

 function get_lock_id (object_name in varchar2)
--
-- This function returns the lock_id for a specific object.
-- It is calculated as the object_id from oracle + 1000000
--
 return number is
 object_number number;
 begin
 select object_id
 into object_number
 from user_objects uo
 where uo.object_name = get_lock_id.object_name
 and uo.object_type = ’VIEW’;
 return object_number + 1000000;
 exception
-- Object not found ==> Raise error
 when no_data_found then
 raise_application_error (-20100, ’Object ’ ||
 object_name || ’ does not exists’);

 Migrating Temporary Tables to Oracle 5-13

 end;

 procedure convert_to_temp (table_name in varchar2,
 use_dbms_output in boolean default false) is
--
-- Convert an ordinary table to a temporary table.
--
 sql_stmt varchar2 (32000);
 col_sep varchar2 (2) := null;
 con_list varchar2 (100) := ’session_id’;
 sel_table varchar2 (30);
 procedure add (s in varchar2)
 is
-- Print one line of SQL code on sql_stmt or dbms_output
 begin
 if use_dbms_output then
 dbms_output.put_line (chr (9) || s);
 else
 sql_stmt := sql_stmt || chr (10) || s;
 end if;
 end add;
 procedure execute_immediate
 as
 begin
 if (use_dbms_output) then
 dbms_output.put_line(’/’);
 else
 execute_sql (sql_stmt);
 dbms_output.put_line(
 substr(sql_stmt, 2, instr(sql_stmt,chr(10),2)-2)
);
 sql_stmt := NULL;
 end if;
 end;
 begin
 if (use_dbms_output) then
 sel_table := upper (table_name);
 else
 sel_table := ’t_’ || upper (table_name);
 end if;
-- Rename the table to t_XXX

 add (’rename ’ || table_name);

5-14 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

 add (’to t_’ || table_name);
 execute_immediate;
-- In the next step we need to add the support for the sessionid column.
-- The column is added with the following statement:
 add (’alter table t_’ || table_name);
 add (’add session_id number not null’);
 execute_immediate;
-- Create a view for the original table
 add (’create view ’ || table_name);
 add (’as select ’);
 for col_rec in
 (select column_name, table_name
 from user_tab_columns
 where table_name = sel_table
 and column_name != ’SESSION_ID’
 order by column_id) loop
 add (col_sep || col_rec.column_name);
 col_sep := ’, ’;
 end loop;
 add (’ from t_’ || table_name);
 add (’where session_id = userenv (’’sessionid’’)’);
 execute_immediate;
-- To allow public access we need to create a public synonym and
-- grant public access.
 add (’create public synonym ’ || table_name);
 add (’for ’ || table_name);
 execute_immediate;
 add (’grant select, insert, update, delete’);
 add (’on ’ || table_name);
 add (’to public’);
 execute_immediate;
-- To maintain the session_id information a pre-insert - per row trigger
-- is created.
 add (’create trigger t_’ || table_name || ’_bir’);
 add (’before insert’);
 add (’on t_’ || table_name);
 add (’for each row’);
 add (’begin’);
 add (’ :new.session_id := userenv (’’sessionid’’);’);
 add (’end;’);
 execute_immediate;
-- To register the usage of a temporary table for a specific session.
-- The procedure register has to be called in a pre-insert -
-- per statement trigger.
 add (’create trigger t_’ || table_name || ’_bis’);

 Migrating Temporary Tables to Oracle 5-15

 add (’before insert’);
 add (’on t_’ || table_name);
 add (’begin’);
 add (’ t_table.register (’’’ || upper (table_name) ||
 ’’’);’);
 add (’end;’);
 execute_immediate;
 end;

 procedure register (table_name in varchar2)is
--
-- Register the usage of temporary table in t_table_catalog
-- This procedure may be called out of the pre-insert trigger
-- on the temporary table.
--
 dummy varchar2(1);
 return_value number;
 lock_id number;
 begin
-- Check if we just registered the table
 if last_table = table_name then
 return;
 end if;
 last_table := table_name;
-- Check if we have ever registered the table for our session
 begin
 select ’x’ into dummy
 from t_table_catalog ttc
 where ttc.table_name = register.table_name
 and session_id = userenv (’sessionid’);
 exception
 when no_data_found then
-- If it is not registered, register the usage

 insert into t_table_catalog
 values (userenv (’sessionid’), table_name);
-- and put out the share lock with a timeout of 5 seconds
 if use_truncate then
 lock_id := get_lock_id (table_name);
 return_value :=
 dbms_lock.request (lock_id,
 dbms_lock.s_mode, 5,
FALSE);
 if return_value not in (0, 4) then
 raise_application_error (-20100,

5-16 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

 ’Unknown Error in DBMS_LOCK: ’ ||
 to_char (return_value));
 end if;
 end if;
 end;
 end;

 Disconnected Source Model Loading 6-1

6
Disconnected Source Model Loading

The Disconnected Source Model Load feature of the Migration Workbench allows
consultants to work on a customer’s database migration without having to install
and run the Migration Workbench at the customer site.

To perform the disconnected source model load option a customer must generate
delimited flat files containing schema metadata from the database to be migrated.
You generate the flat file by running a predefined Migration Workbench script
against the source database. The flat files are sent to a consultant who uses the
Migration Workbench to load the metadata files into a source and Oracle model.
You can then map this schema to Oracle.

Generating Database Metadata Flat Files
Microsoft SQL Server and Sybase Adaptive Server databases use the Bulk Copy
Program (BCP) to generate delimited metadata flat files. Predefined scripts installed
with the Migration Workbench invoke the BCP, and generate the flat files for each
database. The BCP outputs delimited metadata files from the database with a .dat
extension. However, for a successful migration of a database the .dat metadata files
are converted into XML files by the Migration Workbench. The Migration
Workbench converts the .dat files when the source metadata files are selected
during the capture phase of the migration, and outputs the generated .xml files to
the same root directory as the source .dat files.

Flat File Generation Scripts
The predefined script files are stored in the %ORACLE_HOME%\Omwb\DSML_
Scripts\<plugin> directory. Refer to the following table to locate the correct
Migration Workbench script:

Generating Database Metadata Flat Files

6-2 Reference Guide for Microsoft SQL Server and Sybase Adaptive Server Migrations

Running the Scripts
To run a script file for a plugin from the
%ORACLE_HOME%\DSML_scripts\<plugin> directory, use the following
command line:

<script file name> <database> <password> <server>

For example, to run the Microsoft SQL Server 2000 script file to generate metadata
flat files, use the following command:

SS2K_DSML_SCRIPT <database> <password> <server>

Table 6–1 Location and Name of Script Files and Name of Associated Files

Plug-in Directory Location Script File Name Associated Files

Microsoft SQL
Server 6.5

%ORACLE_HOME%\DSML_
scripts\sqlserver6

SS6_DSML_SCRIPT.BAT CREATE_SS65_INDEX_
TABLES.SQL

DROP_SS65_INDEX_
TABLES.SQL

Microsoft SQL
Server 7

%ORACLE_HOME%\DSML_
scripts\sqlserver7

SS7_DSML_SCRIPT.BAT Not Applicable

Microsoft SQL
Server 2000

%ORACLE_HOME%\DSML_
scripts\sqlserver20
00

SS2K_DSML_SCRIPT.BAT Not Applicable

Sybase Adaptive
Server 11

%ORACLE_HOME%\DSML_
scripts\ybase11

SYBASE11_DSML_SCRIPT.BAT CREATE_SYBASE_
INDEX_TABLES.SQL

DROP_SYBASE_INDEX_
TABLES.SQL

Sybase Adaptive
Server 12

%ORACLE_HOME%\DSML_
scripts\sybase12

SYBASE12_DSML_SCRIPT.BAT CREATE_SYBASE_
INDEX_TABLES.SQL

DROP_SYBASE_INDEX_
TABLES.SQL

 Index-1

Index

A
accessing remote databases, 4-1
AFTER triggers, 3-1
application development tools, 4-4
arithmetic operators, 2-43
ARRAY FETCH, 3-11
ASSIGNMENT statement, 3-55

B
BEGIN TRAN statement, 3-14
BEGIN TRANSACTION statement, 3-14
bit operators, 2-44
BLOBs, 2-6
built-in functions, 2-45, 3-80
byte-stream, 3-4

C
Capture Wizard, 1-3
changing NULL constructs, 2-42
CHAR(n) data type, 2-12
character functions, 2-45
check constraints, 2-7
column aliases, 3-62
column names, 2-3
column-level CHECK constraint, 2-7
COMMIT TRAN statement, 3-14
COMMIT TRANSACTION statement, 3-14
comparison operators, 2-39
connecting to a database, 2-26

control files, 2-24
converting multiple result sets, 3-12
CREATE PROCEDURE statement, 3-38
cursor handling, 3-70
cursor variables, 3-4
cursor variables, return query results, 3-10
customized error messages, 3-16

D
data block, 2-20
data concurrency, 2-51
data manipulation language, 2-25
data storage concepts, 2-20
data type mappings, 2-8
data types, 3-16
data types, conversion considerations, 2-3
database devices, 2-20
datafiles, 2-20
date functions, 2-48
DATETIME data type, 2-3, 2-14
DB-Library code, 3-6
DDL constructs, 3-84
declarative referential integrity, 2-7
DECLARE statement, 3-40
definition

t_table_catalog, 5-11
DELETE statement, 2-38
DELETE triggers, 3-2
DELETE with FROM statement, 3-65
destination database, 1-3
Disconnected Source Model Load, 6-1
distributed environments, 4-1

Index-2

E
emulate temporary tables, 5-7
entity integrity constraints, 2-6
error handling, 3-15
error-handling semantics, 3-77
exception-handling semantics, 3-77
EXECUTE statement, 3-47
explicit transaction model, 3-73
extent, 2-20

F
features, 1-2
FETCH request, 3-4
Flat File Generation Scripts, 6-1
FLOAT data type, 2-11
function, schema object, 3-24
functions, defining in Oracle, 2-48

G
global variables, 3-54, 3-79
GOTO statement, 3-53

I
IF statement, 3-41
IMAGE data type, 2-6
implicit transaction model, 3-73
IN OUT parameter, 3-11
individual SQL statements, 3-13
INSERT statement, 2-35
INSERT triggers, 3-2

L
locking concepts, 2-51
logical transaction, 3-14
logical transaction handling, 2-56

M
maintenance of temporary tables, 5-10
mathematical functions, 2-50
metadata flat files

generating, 6-1
Migration Wizard, 1-3
miscellaneous functions, 2-47
multiple queries, 5-5
multiple result sets, 3-81
multiple results sets, 3-12
multi-row array, 3-7
multi-row query, 3-10
multi-table joins, performance, 5-4

O
object names, 2-3
ODBC, 3-6
operators, 2-39, 3-80
Oracle Model, 1-3
output variables, 3-4

P
package body, 3-32
package, schema object, 3-28
page, 2-20
page-level locking, 2-54
parameter passing, 3-39
permanent tables, 5-8
PL/SQL and T-SQL constructs, comparison, 3-36
PL/SQL and T-SQL, language elements, 3-73
PL/SQL tables as output variables, 3-7
procedure, schema object, 3-18
product description, 1-1

R
RAISERROR statement, 3-16, 3-46
read consistency, 2-55
redo log files, 2-22
referential integrity, 3-2
referential integrity constraints, 2-7
remote objects, Oracle, 4-2
remote objects, SQL Server and Sybase, 4-2
replace temporary tables, 5-7
replication, 4-3
repository, 1-4
reserved words, 2-3

 Index-3

result set with multiple rows, 3-6
result set, converted using cursor variable, 3-68
result sets, 3-4
RETURN statement, 3-45
ROLLBACK TRAN statement, 3-14
ROLLBACK TRANSACTION statement, 3-14
row-level locking, 2-54

S
schema migration, 2-1
schema object similarities, 2-1
segments, 2-21
SELECT INTO statement, 2-31
SELECT statement, 2-27, 3-56
SELECT statement, part of SELECT list, 3-59
SELECT statement, result sets, 3-7
SELECT statement, with GROUP BY clause, 3-61
SELECT statements without FROM clauses, 2-30
SELECT with GROUP BY statement, 2-34
set operators, 2-44
single result set, 3-80
source database, 1-4
Source Model, 1-4
special global variables, 3-79
stored procedures, SQL Server, 3-1
stored subprograms, Oracle, 3-1
string operators, 2-43
subqueries, 2-33
SYSNAME data type, 2-18

T
t_table_catalog

definition, 5-11
table design considerations, 2-3
table-level CHECK constraint, 2-7
tablespace, 2-21
temporary table usage, 5-1
temporary tables, comparison, 3-67
temporary tables, creating dynamically, 5-7
temporary tables, emulate, 5-7
temporary tables, maintenance, 5-10
temporary tables, replace, 5-7
TEXT data type, 2-6

TIMESTAMP data type, 2-18
transaction handling semantics, 3-73
transaction handling statements, 3-72
triggers, Oracle, 3-1
triggers, SQL Server, 3-1
T-SQL and PL/SQL constructs, comparison, 3-36
T-SQL and PL/SQL, language elements, 3-73
T-SQL local variables, 3-17

U
unique keys, 2-7
UPDATE statement, 2-36
UPDATE triggers, 3-2
UPDATE with FROM statement, 3-63
user-defined types, SQL Server, 2-6

V
VARCHAR(n) data type, 2-13

W
WHILE statement, 3-48

Index-4

	Contents
	Send Us Your Comments
	Preface
	Audience
	What You Should Already Know
	How this Reference Guide is Organized
	Using This Reference Guide
	Documentation Accessibility
	Accessibility of Code Examples in Documentation
	Related Documentation
	Conventions

	1 Overview
	Introduction
	Product Description
	Features
	Glossary

	2 Microsoft SQL Server, Sybase Adaptive Server, and Oracle Compared
	Schema Migration
	Schema Object Similarities
	Schema Object Names
	Table Design Considerations
	Data Types
	DATETIME Data Types
	IMAGE and TEXT Data Types (Binary Large Objects)
	Microsoft SQL Server and Sybase Adaptive Server User-Defined Data Types

	Entity Integrity Constraints
	Referential Integrity Constraints
	Unique Key Constraints
	Check Constraints
	SQL Server Rule:

	Data Types
	Data Types Table

	Data Storage Concepts
	Data Storage Concepts Table

	Data Manipulation Language
	Connecting to the Database
	SELECT Statement
	SELECT Statements without FROM Clauses:
	SELECT INTO Statement:
	Subqueries in Place of Columns:
	Microsoft SQL Server and Sybase Adaptive Server:
	Oracle:
	Comparing Subqueries to Subqueries:
	Column Aliases:
	Table Aliases:
	Compute:
	Outer JOIN Syntax:

	SELECT with GROUP BY Statement
	INSERT Statement
	UPDATE Statement
	Method 1 - Convert UPDATE statements with FROM clauses:
	Method 2 - Convert UPDATE statements with FROM clauses:

	DELETE Statement
	Remove Second FROM Clause:

	Operators
	Comparison Operators
	Arithmetic Operators
	String Operators
	Set Operators
	Bit Operators

	Built-In Functions
	Character Functions
	Miscellaneous Functions
	Defining Functions in Oracle:

	Date Functions
	Mathematical Functions

	Locking Concepts and Data Concurrency Issues
	Locking
	Row-Level Versus Page-Level Locking
	Read Consistency
	Logical Transaction Handling

	3 Triggers and Stored Procedures
	Introduction
	Triggers
	Stored Procedures
	Methods Used to Send Data to Clients
	Output Variables
	Results Sets: Microsoft SQL Server and Sybase Adaptive Server Method of Sending Data to the Client
	Oracle: Cursor Variables for Returning Query Results
	Pro*C Client:
	Oracle Server:
	Microsoft SQL Server and Sybase Adaptive Server: Multiple Results Sets
	Microsoft SQL Server and Sybase Adaptive Server: Cursors

	Individual SQL Statements
	Microsoft SQL Server and Sybase Adaptive Server:
	Oracle:
	Microsoft SQL Server and Sybase Adaptive Server:
	Oracle:

	Logical Transaction Handling
	Transaction-Handling Statements

	Error Handling within the Stored Procedure
	RAISERROR Statement
	Customized Error Messages

	Data Types
	Local Variable
	Server Data Types
	Composite Data Types

	Schema Objects
	Procedure
	Create
	Drop
	Execute
	Alter

	Function
	Create
	Drop
	Execute
	Alter

	Package
	Create
	Drop
	Alter

	Package Body
	Create
	Drop
	Alter

	T/SQL Versus PL/SQL Constructs
	CREATE PROCEDURE Statement
	Parameter Passing
	DECLARE Statement
	IF Statement
	RETURN Statement
	RAISERROR Statement
	EXECUTE Statement
	WHILE Statement
	GOTO Statement
	@@Rowcount and @@Error Variables
	ASSIGNMENT Statement
	SELECT Statement
	SELECT Statement as Part of the SELECT List
	SELECT Statement with GROUP BY Clause
	Column Aliases
	UPDATE with FROM Statement
	DELETE with FROM Statement
	Temporary Tables
	Result Set (Converted Using a Cursor Variable)
	Cursor Handling
	Transaction Handling Statements

	T/SQL and PL/SQL Language Elements
	Transaction Handling Semantics
	Conversion Preparation Recommendations

	Exception-Handling and Error-Handling Semantics
	Special Global Variables
	Operators
	Built-in Functions
	Sending Data to the Client: Result Sets
	Single Result Set
	Multiple Result Sets
	About Converting a T/SQL Procedure with a Result Set

	DDL Constructs within Microsoft SQL Server and Sybase Adaptive Server Stored Procedures

	4 Distributed Environments
	Distributed Environments
	Accessing Remote Databases in a Distributed Environment
	Oracle and Remote Objects

	Microsoft SQL Server and Sybase Adaptive Server and Remote Objects
	Replication

	Application Development Tools

	5 Migrating Temporary Tables to Oracle
	Temporary Table Usage
	Simplify Coding
	Microsoft SQL Server and Sybase Adaptive Server:
	Oracle Pseudo Code:

	Simulate Cursors when Processing Data from Multiple Tables
	Microsoft SQL Server:
	Oracle:

	Improve Performance In a Situation Where Multi-Table Joins are Needed
	Associate Rows from Multiple Queries in One Result Set (UNION)
	Microsoft SQL Server and Sybase Adaptive Server:
	Oracle:

	Eliminate Re-Querying Data Needed for Joins
	Microsoft SQL Server and Sybase Adaptive Server:
	Oracle:

	Consolidate the Data for Decision Support Data Requirements

	Replace Temporary Tables
	Emulate Temporary Tables
	Implementation as PL/SQL Tables
	Implications of Creating Temporary Tables Dynamically
	Implications of Creating Permanent Tables
	Implementation of Temporary Tables as Permanent Tables
	Maintenance of Temporary Tables

	Definition of t_table_catalog
	Package Body t_table

	6 Disconnected Source Model Loading
	Generating Database Metadata Flat Files
	Flat File Generation Scripts
	Running the Scripts

	Index

