
Oracle Migration Workbench

Reference Guide for Informix Dynamic Server 7.3 Migrations

Release 9.2.0 for Microsoft Windows 98/2000 and Microsoft Windows NT

March 2002

Part Number: A97251-01

This reference guide describes how to migrate from Informix Dynamic Server to
Oracle9i or Oracle8i database.

Oracle Migration Workbench Reference Guide for Informix Dynamic Server 7.3 Migrations, Release 9.2.0
for Microsoft Windows 98/2000 and Microsoft Windows NT

Part Number: A97251-01

Copyright © 1998, 2002 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8, Oracle8i, Oracle9i, SQL*Plus, PL/SQL, Pro*C, Pro*C/C++
are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments .. vii

Preface.. ix

Audience ... ix
What You Should Already Know... x
How This Reference Guide is Organized.. x
How to Use This Reference Guide ... x
Documentation Accessibility ... xi
Accessibility of Code Examples in Documentation.. xi
Related Documentation .. xi
Conventions... xii

1 Overview

Introduction ... 1-1
Product Description.. 1-1
Features ... 1-2
Glossary .. 1-2

2 Oracle and Informix Dynamic Server Compared

Database Security ... 2-1
Database Authentication ... 2-1

Schema Migration... 2-3
Schema Object Similarities .. 2-3
Schema Object Names.. 2-4

iv

Informix Dynamic Server Database-level Privileges... 2-5
Migrating Multiple Databases .. 2-5
Table Design Considerations .. 2-5

Data Types .. 2-11
BYTE ... 2-15
CHAR(n) .. 2-16
CHARACTER(n)... 2-18
NCHAR(n) ... 2-18
VARCHAR(m,r) .. 2-19
CHARACTER VARYING(m,r) ... 2-21
NVARCHAR(m,r)... 2-21
DATE .. 2-21
DATETIME .. 2-22
INTERVAL... 2-23
DECIMAL .. 2-24
MONEY(p,s) .. 2-25
INTEGER.. 2-25
INT .. 2-26
SMALLINT .. 2-26
SERIAL ... 2-27

Data Storage Concepts ... 2-32
Recommendations .. 2-32
Data Storage Concepts Table .. 2-33

3 Triggers, Packages, and Stored Procedures

Introduction ... 3-2
Triggers.. 3-2

Mapping Triggers ... 3-2
Mutating Tables .. 3-3

Packages .. 3-4
Stored Procedures ... 3-5

NULL as an Executable Statement ... 3-6
Parameter Passing... 3-7
Individual SPL Statements .. 3-10
Error Handling within Stored Procedures.. 3-47

v

DDL Statements in SPL Code ... 3-47
Using Keywords as Identifiers ... 3-51
Issues with Converting SPL Statements.. 3-53

4 Distributed Environments

Distributed Environments .. 4-2
Accessing Remote Databases in a Distributed Environment... 4-2

Application Development Tools .. 4-3

5 The ESQL/C to Oracle Pro*C Converter

Introduction to E/SQL and Pro*C .. 5-1
Using the ESQL/C to Oracle Pro*C Converter .. 5-2
Example Capture of ESQL/C Source Files ... 5-2
Oracle Pro*C Conversion .. 5-4
Manual Changes to the Oracle Pro*C File .. 5-8

Syntactical Conversion Issues .. 5-9
Application Conversion Issues... 5-13
The Oracle Pro*C Preprocessor .. 5-14

Conversion Errors and Warnings... 5-14
ESQL/C to Oracle Pro*C Converter Errors .. 5-14
ESQL/C to Oracle Pro*C Warnings... 5-15

Restrictions... 5-23
Renaming Reserved Words... 5-23
Header Files... 5-23
Using multiple connections for different transactions.. 5-23

Using Demonstration Code .. 5-24

6 Disconnected Source Model Loading

Generating Database Metadata Flat Files .. 6-1
Flat File Generation Scripts ... 6-1

vi

A Code Samples

OMWB_Emulation Utilities Package.. A-1

Index

vii

Send Us Your Comments

Oracle Migration Workbench Reference Guide for Informix Dynamic Server 7.3 Migrations,
Release 9.2.0 for Microsoft Windows 98/2000 and Microsoft Windows NT

Part Number: A97251-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ Email - infomwb_ww@oracle.com
■ FAX - +353-1-803-1899
■ Postal service:

Documentation Manager
Migration Technology Group
Oracle Corporation
Eastpoint Business Park
Dublin 3
Ireland

viii

ix

Preface

The Oracle Migration Workbench Reference Guide for Informix Dynamic Server 7.3
Migrations provides detailed information about migrating a database from
Informix Dynamic Server to Oracle9i or Oracle8i. It is a useful guide regardless of
the conversion tool you are using to perform the migration, but the recommended
tool for such migrations is Oracle Migration Workbench (Migration Workbench).
This reference guide describes several differences between Informix Dynamic
Server and Oracle and outlines how those differences are handled by the Migration
Workbench during the conversion process.

This chapter contains the following sections:

■ Audience

■ What You Should Already Know

■ How This Reference Guide is Organized

■ How to Use This Reference Guide

■ Documentation Accessibility

■ Accessibility of Code Examples in Documentation

■ Related Documentation

■ Conventions

Audience
This guide is intended for anyone who is involved in converting an Informix
Dynamic Server database to Oracle using the Migration Workbench.

x

What You Should Already Know
You should be familiar with relational database concepts and with the operating
system environments under which you are running Oracle and Informix Dynamic
Server.

How This Reference Guide is Organized
This reference guide is organized as follows:

Chapter 1, "Overview"

Introduces the Migration Workbench and outlines features of this tool.

Chapter 2, "Oracle and Informix Dynamic Server Compared"

Contains detailed information about the differences between data types, data
storage concepts, and schema objects in Informix Dynamic Server and Oracle.

Chapter 3, "Triggers, Packages, and Stored Procedures"

Introduces triggers and stored procedures, and compares T-SQL and PL/SQL
language elements and constructs in Informix Dynamic Server and Oracle.

Chapter 4, "Distributed Environments"

Describes when and why distributed environments are used, and discusses
application development tools.

Chapter 5, "The ESQL/C to Oracle Pro*C Converter"

Describes how to use the ESQL/C to Oracle Pro*C Converter and includes an
example conversion.

Chapter 6, "Disconnected Source Model Loading"

Describes how to perform a disconnected source model load, using delimited flat
files containing schema metadata.

How to Use This Reference Guide
Every reader of this reference guide should read Chapter 1, "Overview" as that
chapter provides an introduction to the concept and terminology of the Migration
Workbench.

xi

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Related Documentation
For more information, see these Migration Workbench resources:

■ Oracle Migration Workbench Frequently Asked Questions (FAQ)

■ Oracle Migration Workbench Release Notes

■ Oracle Migration Workbench Online Help

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and you can do it at:

http://otn.oracle.com/membership/index.htm

If you already have a user name and password for OTN, then you can go directly to
the Migration Workbench documentation section of the OTN Web site at:

http://otn.oracle.com/tech/migration/workbench

http://otn.oracle.com/membership/index.htm
http://otn.oracle.com/tech/migration/workbench
http://www.oracle.com/accessibility/

xii

Conventions
This section describes the conventions used in the text and code examples of the this
documentation. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold type indicates GUI options. It also
indicates terms that are defined in the text
or terms that appear in a glossary, or both.

The C datatypes such as ub4, sword, or
OCINumber are valid.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles,
emphasis, syntax clauses, or placeholders.

Reference Guide

Run Uold_release.SQL where old_release
refers to the release you installed prior to
upgrading.

UPPERCASE
monospace
(fixed-width font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database using the
BACKUP command.

lowercase
monospace
(fixed-width font)

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

Enter sqlplus to open SQL*Plus.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

http://otn.oracle.com/tech/migration/workbench

xiii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

Square Brackets [] Indicates that the enclosed arguments are
optional. Do not enter the brackets.

DECIMAL (digits [, precision])

Curly Braces { } Indicates that one of the enclosed
arguments is required. Do not enter the
braces.

{ENABLE | DISABLE}

Vertical Line | Separates alternative items that may be
optional or required. Do not type the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Ellipses ... Indicates that the preceding item can be
repeated. You can enter an arbitrary
number of similaritems. In code
fragments, an ellipsis means that code not
relevant to the discussion has been
omitted. Do not type the ellipsis

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Italics Indicates variables that you must supply
particular values.

CONNECT SYSTEM/system_password

UPPERCASE Uppercase text indicates case-insensitive
filenames or directory names, commands,
command keywords, initializing
parameters, data types, table names, or
object names. Enter text exactly as
spelled; it need not be in uppercase

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase words in example statements
indicate words supplied only for the
context of the example. For example,
lowercase words may indicate the name
of a table, column, or file.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

xiv

Overview 1-1

1
Overview

This chapter introduces the Oracle Migration Workbench (Migration Workbench)
under the following headings:

■ Introduction

■ Product Description

■ Features

■ Glossary

Introduction
The Migration Workbench is a tool that simplifies the process of migrating data and
applications from an Informix Dynamic Server 7.3 environment to an Oracle9i,
Oracle8i, Oracle8i Appliance, or Oracle8 destination database. The Migration
Workbench allows you to quickly and easily migrate an entire application system,
that is the database schema including triggers, views, and stored procedures, in an
integrated, visual environment.

Product Description
The Migration Workbench allows you to migrate an Informix Dynamic Server
database to an Oracle9i, Oracle8i, Oracle8i Appliance, or Oracle8 database. The
Migration Workbench employs an intuitive and informative user interface and a
series of wizards to simplify the migration process. To ensure portability, all
components of the Migration Workbench are written in Java.

The Migration Workbench uses a repository to store migration information. This
allows you to query the initial state of the application before migration. By initially

Features

1-2 Reference Guide for Informix Dynamic Server 7.3 Migrations

loading the components of the application system that you can migrate into a
repository, you can work independently of the production application.

Furthermore, the Migration Workbench saves useful dependency information about
the components you are converting. For example, the Migration Workbench keeps a
record of all the tables accessed by a stored procedure. You can then use this
information to understand the impact of modifying a given table.

Features
The Migration Workbench is a wizard-driven tool. It is composed of core features
and Informix Dynamic Server migration specific features. The Migration
Workbench allows you to:

■ Migrate a complete Informix Dynamic Server database to Oracle9i, Oracle8i,
Oracle8i Appliance, or Oracle8.

■ Migrate groups, users, tables, primary keys, foreign keys, unique constraints,
indexes, rules, check constraints, views, triggers, stored procedures, and
privileges to Oracle.

■ Migrate multiple Informix Dynamic Server source databases to a single Oracle
database.

■ Customize the parser for stored procedures, triggers, or views.

■ Generate the Oracle SQL*Loader and Informix Dynamic Server Unload scripts
for offline data loading.

■ Display a representation of the source database and its Oracle equivalent.

■ Generate and view a summary report of the migration.

■ Customize users, tables, indexes, and tablespaces.

■ Customize the default data type mapping rules.

■ Create ANSI-compliant names.

■ Automatically resolve conflicts such as Oracle reserved words.

■ Remove and rename objects in the Oracle Model.

Glossary
The following terms are used to describe the Migration Workbench:

Glossary

Overview 1-3

Application System is the database schema and application files that have been
developed for a database environment other than Oracle, for example, Informix
Dynamic Server.

Capture Wizard is an intuitive wizard that takes a snapshot of the data dictionary of
the source database, loads it into the Source Model, and creates the Oracle Model.

Dependency is used to define a relationship between two migration entities. For
example, a database view is dependent upon the table it references.

Destination Database is the Oracle database to which the Migration Workbench
migrates the data dictionary of the source database.

Migration Component is part of an application system that you can migrate to an
Oracle database. Examples of migration components are tables and stored
procedures.

Migration Entity is an instance of a migration component. The table EMP is a
migration entity belonging to the table MIGRATION COMPONENT.

Migration Wizard is an intuitive wizard that helps you migrate the source database
to Oracle.

Migration Workbench is the graphical tool that allows migration of an application
system to an Oracle database environment.

Navigator Pane is the part of the Migration Workbench User Interface that contains
the tree views representing the Source Model and the Oracle Model.

Oracle Model is a a series of Oracle tables that is created from the information in the
Source Model. It is a visual representation of how the source database looks when
generated in an Oracle environment.

Properties Pane is the part of the Migration Workbench User Interface that displays
the properties of a migration entity that has been selected in one of the tree views in
the Navigator Pane.

Progress Window is the part of the Migration Workbench User Interface that contains
informational, error, or warning messages describing the progress of the migration
process.

Software Development Kit (SDK) is a set of well-defined application programming
interfaces (APIs) that provide services that a software developer can use.

Source Database is the database containing the data dictionary of the application
system being migrated by the Migration Workbench. The source database is a
database other than Oracle, for example, Informix Dynamic Server.

Glossary

1-4 Reference Guide for Informix Dynamic Server 7.3 Migrations

Source Model is a replica of the data dictionary of the source database. It is stored in
the Oracle Migration Workbench Repository and is loaded by the Migration Work-
bench with the contents of the data dictionary of the source database.

Workbench Repository is the area in an Oracle database used to store the persistent
information necessary for the Migration Workbench to migrate an application sys-
tem.

Oracle and Informix Dynamic Server Compared 2-1

2
Oracle and Informix Dynamic Server

Compared

This chapter contains information comparing the Informix Dynamic Server
database and the Oracle database. It includes the following sections:

■ Database Security

■ Schema Migration

■ Data Types

■ Data Storage Concepts

Database Security
This section includes information on issues of security with Informix Dynamic
Server databases and Oracle databases.

Database Authentication
A fundamental difference between Informix Dynamic Server and Oracle is database
user authentication. Informix Dynamic Server users are maintained and
authenticated by the host operating system, whereas Oracle users are maintained
by the database and can use several methods of authentication, usually through the
database.

A user can connect to an Informix Dynamic Server database server through the
operating system login information, however access to the databases the server
supports is restricted by the sysuser table. The sysuser is maintained by each
database and the database administrator.

Database Security

2-2 Reference Guide for Informix Dynamic Server 7.3 Migrations

Database as a Logical Partition
Multiple databases on a single Informix Dynamic Server database server are
migrated to a single Oracle database. Schemas in different databases are owned by
the same user.

Users
Informix Dynamic Server has two special users, informix and root. A
description of these users is as follows:

These users have database administrator access to all the databases supported by
the Informix Dynamic Server database server. The two user names do not have to
be listed in the sysusers table for any database. The Informix Dynamic Server
plug-in creates the two user names in the Oracle database. Another special Informix
Dynamic Server database user, which does not have to be an operating system user,
is public.

You can grant the public database user system and object privileges and its
database level privileges are entered in the sysusers table. The privileges granted to
public are automatically available to every other database user. The Informix
Dynamic Server plug-in migrates all the object privileges.

Oracle has the concept of a database group or role, where you can grant privileges.
These privileges are made available to all other users in the database. It is also
called PUBLIC.

The difference is that public is not listed as a database user and you cannot grant
connect system privilege to public to enable any user logged on to the host
operating system gain access to the database.

All Informix Dynamic Server object level privileges granted to public are
migrated to Oracle. None of the three Informix Dynamic Server database privileges
granted to public are migrated.

The Informix Dynamic Server plug-in could not detect what operating system users
had access to the database. The Informix Dynamic Server plug-in only creates
Oracle users for the users listed in sysusers in each of the Informix Dynamic Server
databases selected for migration. Therefore, if you rely on granting connect,

User name Description

informix Informix Dynamic Server software owner

root Operating system super user

Schema Migration

Oracle and Informix Dynamic Server Compared 2-3

resource, or even dba to public as a method of allowing operating system users
access to the database, then you must explicitly grant each of those users the
appropriate database level privilege.

Schema Migration
The schema contains the definitions of the tables, views, indexes, users, constraints,
stored procedures, triggers, and other database-specific objects. Most relational
databases work with similar objects.

The schema migration topics discussed here include the following:

■ Schema Object Similarities

■ Schema Object Names

■ Informix Dynamic Server Database-level Privileges

■ Migrating Multiple Databases

■ Table Design Considerations

■ Schema Migration Limitations for Informix Dynamic Server

Schema Object Similarities
There are many similarities between schema objects in Oracle and Informix
Dynamic Server. However, some schema objects differ between these databases. For
specific information about schema objects, see the SQL Statements topic within the
Oracle9i SQL Reference, Release 1 (9.0.1).

Table 2–1 shows the differences between Oracle and Informix Dynamic Server.

Table 2–1 Schema Objects in Informix Dynamic Server and Oracle

Oracle Informix Dynamic Server

Database Database

Schema Schema

Tablespace Dbspace

User User

Role Role

Table Table

Schema Migration

2-4 Reference Guide for Informix Dynamic Server 7.3 Migrations

Schema Object Names
Reserved words differ between Oracle and Informix Dynamic Server. Many Oracle
reserved words are valid object or column names in Informix Dynamic Server. Use
of reserved words as schema object names makes it impossible to use the same
names across databases. The Migration Workbench appends an underscore (_) to
the name of an Informix Dynamic Server object that is an Oracle reserved word.

Neither Oracle nor Informix Dynamic Server is case-sensitive with respect to object
names. Object names in Informix Dynamic Server are stored as lower case, while
Oracle schema object names are stored as upper case.

Choose a schema object name that is the following:

Temporary tables Temporary tables

Index Cluster Index

Check constraint Check constraint

Column default Column default

Unique key Unique key

Primary key Primary key

Foreign key Foreign key

Index Index

PL/SQL Procedure SPL Procedure

PL/SQL Function SPL Function

Packages N/A

AFTER triggers Triggers

BEFORE triggers Triggers

Triggers for each row Triggers for each row

Synonyms Synonyms

Sequences SERIAL datatype for a column

Snapshot N/A

View View

Table 2–1 Schema Objects in Informix Dynamic Server and Oracle (Cont.)

Oracle Informix Dynamic Server

Schema Migration

Oracle and Informix Dynamic Server Compared 2-5

■ unique by case

■ by at least one other characteristic

Ensure that the object name is not a reserved word from either database.

For a list of Oracle reserved words, see the Oracle9i SQL Reference, Release 1 (9.0.1).

In non-ANSI-Compliant Informix Dynamic Server databases, schema object names
are required to be unique across users. This behavior in Oracle is similar to Informix
Dynamic Server ANSI-Compliant mode databases. Different users can create objects
with the same name without any conflicts.

Informix Dynamic Server Database-level Privileges
For information on database-level privileges, see the Oracle Migration Workbench
Release Notes.

Migrating Multiple Databases
The Migration Workbench supports the migration of multiple Informix Dynamic
Server databases if they are on the same Informix Dynamic Server database server.

Table Design Considerations
This section discusses table design issues that you need to consider when
converting Informix Dynamic Server databases to Oracle. This section includes the
following:

■ Data Types

■ IMAGE and TEXT Data Types (Binary Large Objects)

■ Check Constraints

Data Types
This section outlines conversion considerations for the following data type:

■ DATETIME Data Types

DATETIME Data Types The Datetime precision in Informix Dynamic Server is to 5
decimal places, 1/100000th of a second. Oracle9i has a new data type TIMESTAMP
which has a precision of 1/100000000th of a second. Oracle also has a DATE data
type that stores date and time values accurate to one second. The Migration
Workbench has a default mapping to the DATE data type.

Schema Migration

2-6 Reference Guide for Informix Dynamic Server 7.3 Migrations

For applications that require finer date/time precision than seconds, the
TIMESTAMP data type should be selected for the datatype mapping of date data
types in Informix Dynamic Server. The database stores point-in-time values for
DATE and TIME data types.

As an alternative, if an Informix Dynamic Server application uses the DATETIME
column to provide unique IDs instead of point-in-time values, you can replace the
DATETIME column with a SEQUENCE in the Oracle schema definition.

In the following examples, the original design does not allow the DATETIME
precision to exceed seconds in the Oracle table. The examples assume that the
DATETIME column is used to provide unique IDs. If millisecond precision is not
required, the table design outlined in the following example is sufficient:

The design shown in Table 2–3 allows you to insert the value of the sequence into
the integer_column. This allows you to order the rows in the table beyond the
allowed precision of one second for DATE data type fields in Oracle. If you include
this column in the Informix Dynamic Server table, you can keep the same table
design for the Oracle database.

Table 2–2 Original Table Design

Informix Dynamic Server Oracle

CREATE TABLE example_table
(datetime_column datetime
not null,
text_column text
null,
varchar_column
varchar(10) null)

CREATE TABLE example_table
(datetime_column date not null,
text_column clob null,
varchar_column varchar2(10) null)

Schema Migration

Oracle and Informix Dynamic Server Compared 2-7

For Informix Dynamic Server, the value in the integer_column is always NULL. For
Oracle, the value for the field integer_column is updated with the next value of the
sequence.

Create the sequence by issuing the following command:

CREATE SEQUENCE datetime_seq

Values generated for this sequence start at 1 and increment by 1.

Many applications do not use DATETIME values as UNIQUE IDs, but still require
the date/time precision to be higher than seconds. For example, the timestamp of a
scientific application may have to be expressed in milliseconds, microseconds, and
nanoseconds. The precision of the Informix Dynamic Server DATETIME data type
is 1/100000th of a second; the precision of the Oracle DATE data type is one second.
The Oracle TIMESTAMP data type has a precision to 1/100000000th of a second.
However, the precision recorded is dependent on the operating system.

IMAGE and TEXT Data Types (Binary Large Objects)
The physical and logical storage methods for BYTE and TEXT data in Informix
Dynamic Server is similar to Oracle BLOB data storage. A pointer to the BYTE or
TEXT data is stored with the rows in the table while the IMAGE or TEXT data is
stored separately. This arrangement allows multiple columns of IMAGE or TEXT
data per table. Oracle may store IMAGE data in a BLOB type field and TEXT data
may be stored in a CLOB type field. Oracle allows multiple BLOB and CLOB
columns per table. BLOBs and CLOBs may or may not be stored in the row

Table 2–3 Revised Table Design

Informix Dynamic Server Oracle

CREATE TABLE example_table
(datetime_column datetime
not null,
integer_column int
null,
text_column text
null,
varchar_column varchar(10)
null)

CREATE TABLE example_table
(datetime_column date not null,
integer_column number null,
text_column clob null,
varchar_column varchar2(10) null)

Schema Migration

2-8 Reference Guide for Informix Dynamic Server 7.3 Migrations

depending on their size. If LONG or LONG RAW appears, only one column is
allowed.

If the Informix Dynamic Server TEXT column is such that the data never exceeds
4000 bytes, convert the column to an Oracle VARCHAR2 data type column instead of
a CLOB column. An Oracle table can define multiple VARCHAR2 columns. This size
of TEXT data is suitable for most applications.

Check Constraints
You can define check constraints in a CREATE TABLE statement or an ALTER
TABLE statement in Informix Dynamic Server. You can define multiple check
constraints on a table. A table-level check constraint can reference any column in
the constrained table. A column can have only one check constraint. A column-level
check constraint can reference only the constrained column. These check constraints
support complex regular expressions.

Oracle defines check constraints as part of the CREATE TABLE or ALTER TABLE
statements. A check constraint is defined at the TABLE level and not at the COLUMN
level. Therefore, it can reference any column in the table. Oracle, however, does not
support complex regular expressions.

Schema Migration Limitations for Informix Dynamic Server
The schema migration limitations are separated into the following categories:

■ Dbspaces

■ Mapping for Informix Dynamic Server Database Level Privileges to Oracle
System Privileges

■ Defaults

■ Indexes

■ Check Constraints

■ Check Constraint Owners

Dbspaces The Migration Workbench captures all dbspaces on the Informix Dynamic
Server, even though you may not require all dbspaces. You can delete the dbspaces,
as appropriate, from the Source Model. If you delete the root dbspace, the next time
you start the Migration Workbench, the sizing information shows up as zero (0).

Schema Migration

Oracle and Informix Dynamic Server Compared 2-9

Mapping for Informix Dynamic Server Database Level Privileges to Oracle System
Privileges Before migration ensure that the sysmaster database exists for the
database server you are migration from. Oracle does not support the migration of
Default DATETIME literal.

The Informix Dynamic Server CONNECT privilege maps to the following Oracle
system privileges:

■ Create Session

■ Alter Session

■ Create View

■ Create Any View

■ Create Synonym

■ Create Any Synonym

■ Create Public Synonym

■ Drop Public Synonym

■ Create Cluster

■ Create Database Link

■ Create Sequence

■ Unlimited Tablespace

■ Create Table

■ Create Procedure

■ Create Trigger

The Informix Dynamic Server RESOURCE privilege maps to the following Oracle
system privileges:

■ Create Session Operator

■ Alter Session

■ Create Any View

■ Create View

■ Create Synonym

■ Create Any Synonym

Schema Migration

2-10 Reference Guide for Informix Dynamic Server 7.3 Migrations

■ Create Public Synonym

■ Drop Public Synonym

■ Create Cluster

■ Create Database Link

■ Create Sequence

■ Unlimited Tablespace

■ Create Table

■ Create Procedure

■ Create_trigger

■ Create_type

■ Create_indextype

■ Create_operator

The Informix Dynamic Server DBA privilege maps to the Oracle system All
Privileges privilege.

You cannot migrate Informix Dynamic Server DBA users with the WITH ADMIN
OPTION for any of the system privileges. The Informix Dynamic Server DBA cannot
grant the privileges to other users.

Note: nformix database users granted the CONNECT database
level privilege do not have the privilege to create tables, procedures
or triggers. However, CONNECT users may be the owner of these
object types, created for them by more privileged users.

The Migration Workbench creates schema objects connected to the
Oracle database as the owner of the object. Any attempt to create an
object without the appropriate privilege generates an error.
Therefore, the Informix Dynamic Server plug-in maps users, that
have the Informix Dynamic Server CONNECT privilege, to Oracle
with the system privileges to create tables, procedures and
triggers. To revoke the privileges from the users after migration
execute the following:

revoke create table, create procedure, create
trigger from <user>;

Data Types

Oracle and Informix Dynamic Server Compared 2-11

Defaults The following limitations apply to the Defaults schema object:

■ An Informix Dynamic Server user name can be up to 8 characters long. Oracle
users can be up to 30 characters long. The Informix Dynamic Server USER
system function maps to the Oracle USER system function. However, if you use
the Oracle USER function as the default, the addition of the default fails because
the column definition, such as CHAR(8), in Informix Dynamic Server is too
small for Oracle USER names. Change the length of the column in the Oracle
Model to CHAR(30) before migrating.

■ You cannot delete defaults in the Source Model although it appears this is
possible within the Migration Workbench. For more information, see Bug
1642519 in the Oracle Bug Database.

■ Defaults for INTERVAL columns that are not a number and are migrated to
CHAR(30) fail during migration.

■ Defaults for DATETIME columns that you do not specify in the YYYY-MM-DD
HH:MI:SS format fail to migrate properly.

Indexes Migrate indexes, then migrate unique constraints and primary key
constraints. If you do not migrate the schema objects in this order, a system
generated index is created for unique constraints and primary keys. This causes the
CREATE INDEX statement to fail.

Check Constraints Check constraints within Informix Dynamic Server are not parsed
to Oracle syntax. The user should ensure that they can successfully execute all check
constraints listed in the Oracle Model. For more information, see Bug 1644309 in the
Oracle Bug Database.

Check Constraint Owners If a user creates a check constraint on another users’ table,
the check constraint is created in the Oracle Model and the check constraint is
owned by the owner of that table.

Data Types
This section provides descriptions of the differences in data types used by Informix
Dynamic Server and Oracle databases. This section contains the following
information:

■ A table showing the base Informix Dynamic Server data types available and
how they are mapped to Oracle data types

■ Recommendations based on the information listed in the table

Data Types

2-12 Reference Guide for Informix Dynamic Server 7.3 Migrations

Table 2–4 Data Types Summary Table

Informix Dynamic
Server Description Oracle Comments

INTEGER

INT

Four-byte integer, 31 bits, and
a sign. Stores whole numbers
in the range -2,147,483,647 to
+2,147,483,647

NUMBER(10) You may wish to place a check
constraint on columns of this
type to enforce values between
2^31 and2^31.

SMALLINT Two-byte integer, 15 bits, and
a sign. Stores whole numbers
in the range -32,767 to
+32,767.

NUMBER(5) You may wish to place a check
constraint on columns of this
type to enforce values between
-2^15 and 2^15.

SERIAL Stores a sequential INTEGER
assigned automatically by the
database server when a row is
inserted.

NUMBER(10) A Sequence and Trigger is
created automatically to
update the column that was
originally SERIAL.

DECIMAL

DECIMAL(p)
floating point

DEC

DEC(p)

A floating point number with
p digits of precision. If you
omit p, p defaults to 16.

NUMBER A floating point number with
38 digits of precision.

DECIMAL(p,s)
fixed-point

DEC (p,s)

A fixed point number with
precision p and scale s.

NUMBER(p,s) A fixed point number with
precision p and scale s.

SMALLFLOAT

REAL

Stores single-precision
floating-point numbers
corresponding to the float
datatype in C.

FLOAT(63)

FLOAT(p)

DOUBLE
PRECISION

Stores double-precision
floating-point numbers
corresponding to the double
datatype in C. p specifies a
precision, 1.14, however it is
ignored.

FLOAT(126) You may want to add a check
constraint to constrain range of
values. Also, you get different
answers when performing
operations on this type due to
the fact that the Oracle NUMBER
type is much more precise and
portable than FLOAT.

Data Types

Oracle and Informix Dynamic Server Compared 2-13

CHAR(n)

CHARACTER(n)

Fixed-length string of exactly
n 8-bit characters, blank
padded.

0< n < 32768

CHAR(n)

if n <= 2000

VARCHAR2(n)

if 2000 < n <= 4000

CLOB or LONG

if n > 4000

Oracle CHAR can only hold up
to 2000 bytes of data.

Oracle VARCHAR2 can hold
up to 4000 bytes of data.

Oracle LONG can hold up to
2G of data, but there are many
restrictions on LONG columns.

Oracle CLOB can hold up to
4G.

VARCHAR(n) Varying-length character
string.

0 < n < 256.

VARCHAR2(n)

TEXT Stores any kind of text data,
up to 2G. A table can contain
more than one TEXT column.

CLOB

LONG

The CLOB datatype can hold
up to 4G of character data. A
table can have more than one
CLOB column.

LONG has a limit of 2G but
there are several restrictions on
LONG columns.

BYTE Stores any kind of binary
data, up to 2G.

A table can contain more than
one BYTE column.

BLOB

LONG RAW

The BLOB datatype can hold
up to 4G of binary data. A table
can have more than one BYPE
column.

 LONG RAW can store binary
data. has a limit of 2G but there
are several restrictions on
LONG columns.

Table 2–4 Data Types Summary Table (Cont.)

Informix Dynamic
Server Description Oracle Comments

Data Types

2-14 Reference Guide for Informix Dynamic Server 7.3 Migrations

Recommendations

You can map data types from Informix Dynamic Server to Oracle with the equiva-
lent data types listed in Table 2–4. You can define how the base type is mapped to
an Oracle type in the Data Type Mappings page in the Options dialog.

DATETIME Stores and instance in time
expressed as a calendar date
and time of day. It can be
defined with qualifiers to
specify the precision. For
example:

DATETIME largest_qualifier
TO smallest_qualifier

Qualifier Values

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

FRACTION a decimal
fraction of a second with up
to five digits of precision.

DATE The Informix Dynamic Server
DATETIME data type has
higher precision, YEAR to
Fraction of Second, than the
Oracle DATE data type, Year to
Second. The fractional second
information, if specified in the
Informix Dynamic Server
column definition, is lost in the
migration.

The Oracle TIMESTAMP data
type can also be used . It has a
precision of 1/10000000th of a
second.

DATE DATE is stored internally as
an integer equal to the
number of days since
December 31,1899.

DATE Store a date and time, the time
defaults to 12:00AM midnight.

INTERVAL NUMBER(p) Where p is the precision of the
largest qualifier value.

MONEY(p,s) NUMBER(p,s)

Table 2–4 Data Types Summary Table (Cont.)

Informix Dynamic
Server Description Oracle Comments

Data Types

Oracle and Informix Dynamic Server Compared 2-15

BYTE
The Informix Dynamic Server BYTE datatype stores any type of binary data and has
a maximum limit of 2^31 bytes (2G). The comparable Oracle datatypes are LONG
RAW and BLOB.

Oracle LONG RAW stores variable-length raw binary data field used for binary data
up to 2G in length. Although you can insert RAW data as a literal in an INSERT
statement (a hexidecimal character represents the bit pattern for every four bits of
RAW data, ’CB’ = 11001011), there are several restrictions on LONG and LONG RAW
columns, for example, only one LONG columns is allowed per table and LONG
columns can not be indexed. The LONG RAW datatype is provided for backward
compatibility with existing applications. For new applications, Oracle recommends
the use of BLOB and BFILE datatypes for large amounts for binary data.

Oracle9i and Oracle8i BLOB, and other Oracle9i and Oracle8i LOB types,
CLOB, NCLOB, and BFILE, have a much greater storage capacity than LONG RAW,
storing up to 4G of data and Oracle9i and Oracle8i tables can have multiple LOB
columns.

Oracle LONGs support on sequential access, while Oracle9i and Oracle8i LOBs
support random piece wise access. Although Oracle9i and Oracle8i SQL cannot
directly manipulate LOBs, you can access LOBs from SQL through the Oracle9i
and Oracle8i supplied DBMS_LOB PL/SQL package. The DBMS_LOB package
provides many functions and procedures to append the contents of one LOB to
another, compares contents or parts of contents, copies contents, reads from and
writes to LOBs, and also returns part of a LOB from a given offset and length.

For example, with Informix Dynamic Server you can select any part of a BYTE
column by using subscripts:

select cat_picture[1,75] from catalog where catalog_num = 10001;

A similar request in Oracle9i and Oracle8i follows:

blob_loc BLOB;
binchunk RAW;

SELECT cat_picture INTO blob_loc FROM catalog WHERE catalog_num = 10001;
binchunk := dbms_lob.substr(blob_loc, 75, 1);

Data Types

2-16 Reference Guide for Informix Dynamic Server 7.3 Migrations

CHAR(n)
The Informix Dynamic Server CHAR datatype stores any sequence of letters,
numbers, and symbols. It can store single byte and multibyte characters. A
character column has a maximum length of n bytes, where 1<=n<=32767. If n is not
specified, 1 is the default. If a character string is less than n bytes, then the string is
extended with spaces to make up the length. If the string value is longer than n
bytes, the string is truncated without raising an error.

The comparable Oracle datatypes are:

■ CHAR(n), fixed-length field, up to 2000 bytes in length

■ VARCHAR2(n), variable-length character data, up to 4000 bytes

■ LONG, variable-length character data up to 2G in length

■ CLOB, character large object up to 4G in length

Informix Dynamic Server CHAR(n) datatypes can be up to 32767 bytes in length.
Columns defined as CHAR with a length <= 2000 can be migrated to the Oracle CHAR
datatype and functionality contains nearly the same functionality. Both are
fixed-length character strings and if you insert a shorter string, the value is
blank-padded to the fixed length. If, however, a string is longer, Oracle returns an
error.

Oracle VARCHAR2 can hold data up to 4000 bytes in length. Oracle Corporation
recommends you us a migration to VARCHAR2 when you are migrating Informix
Dynamic Server CHAR columns that store more than 2000 bytes of data but less than
or equal to 4000. VARCHAR2 is a variable length datatype and uses non-padded
comparison semantics.

If Informix Dynamic Server tables have CHAR(n) columns defined with n > 4000
then the only option is to migrate to Oracle LONG or CLOB.

The LONG datatype can store variable-length character data up to 2G in length.
LONG columns can be used in SELECT lists, SET clauses of UPDATE statements, and
VALUES clause of INSERT statements. The LONG datatype is provided for backward
compatibility and CLOB should be used for storing large amounts of character data.
There are several restrictions on LONG datatypes, such as the following:

Note: Oracle compares CHAR values using blank-padded
comparison semantics. For more information, see the Comparison
Sematics topic.

Data Types

Oracle and Informix Dynamic Server Compared 2-17

■ One LONG columns is allowed per table

■ LONG columns can not be indexed

The CLOB datatype is just one of the LOB datatypes supported by Oracle. LOB
datatypes differ form LONG datatypes in several ways:

■ A table may contain multiple LOB columns but only one LONG column

■ A table containing one or more LOB columns can be partitioned, but a table
containing a LONG columns can not be partitioned

■ Maximum size of a LOB is 4G, maximum size of LONG is 2G

■ LOBs support random access to data, but LONGs only support sequential access

LOB datatyes can be stored in-line within a table, or out-of-line within a tablespace,
using a LOB locator, or in an external file -- a BFILE datatype. It is not currently
supported by the Migration Workbench.

Using PL/SQL to manipulate LOBs, VARCHAR2s in PL/SQL can store up to 32767
bytes of data, so handling large Informix Dynamic Server CHAR datatypes should be
reasonably efficient when stored in Oracle as CLOBs.

...
clob_loc CLOB;
some_text VARCHAR2(32767);
text_len INTEGER;
...
INSERT INTO page_info (page_num, page_text) VALUES (101, empty_clob);
SELECT page_text INTO clob_loc FROM page_info where page_num = 101;
text_len := LENGTH(some_text);
DBMS_LOB.WRITE(clob_loc, text_len,1, some_text);

You can use subscripts on BYTE columns. Subscripts can also be used on CHAR,
VARCHAR2, NCHAR, NVARCHAR, and TEXT columns. The subscripts indicate the
starting and ending character positions that define each column substring. With the
DBMS_LOB package functions, you can choose to receive all or part of the CLOB,
using READ and SUBSTR.

Collation Order
Data stored in CHAR columns is sorted based on the order of the code-set for the
character set of the database, irrespective of the current location. Sorting in Oracle is
based on the Oracle NLS settings. If the Oracle NLS specify a different sort order
than the character code set, a sort-by code set can be enabled to ensure that the
expected result remains the same. For more information, see the NCHAR(n) topic.

Data Types

2-18 Reference Guide for Informix Dynamic Server 7.3 Migrations

Multibyte Character Sets
Just as is the case for Informix Dynamic Server CHAR and VARCHAR datatypes, the
length of Oracle CHAR and VARCHAR2 datatypes is specified in bytes. If the database
character set is multibyte, make sure to calculate the appropriate space
requirements to allow for the maximum possible number of bytes for a given
number of characters.

Comparison Sematics
Informix Dynamic Server comparison semantics for the CHAR datatype and the
Oracle CHAR datatype are the same. If you are migrating CHAR(n) columns that
have a length where n such that 2000< n <= 4000 to then see the VARCHAR section
for more details on comparison semantics for VARCHAR2.

Empty Strings
Informix Dynamic Server CHAR (and VARCHAR) columns can store an empty string,
i.e. no data with a length zero. Even though a CHAR column may appear
blank-padded, its length is 0. The empty string is not the same as NULL, which
indicates that the value is undefined and of unknown length. However, Oracle does
not have the concept of an empty string. Therefore, Oracle inserts empty strings as
NULL.

You should check the application code and logic for unexpected behavior, such as
empty strings migrating to NULL.

CHARACTER(n)
CHARACTER is a synonym for CHAR.

NCHAR(n)
Informix Dynamic Server CHAR and NCHAR datatypes both store the same type of
data, a sequence of single-byte or multibyte letters, numbers, and symbols. The
main difference between the datatypes is the order the Informix Dynamic Server
database server sorts the data. CHAR columns are sorted on code set, the numeric
values of the characters defined by the character encoding scheme. NCHAR columns
are sorted based on the locale-specific localized order.

Oracle can sort CHAR data based on both the code set and the local-specific order.

The Migration Workbench for Informix Dynamic Server migrates both the Informix
Dynamic Server CHAR and NCHAR datatypes to the Oracle CHAR datatype.

Data Types

Oracle and Informix Dynamic Server Compared 2-19

Collation Order
The Oracle NLS settings, either by default or as configured by the DBA, define the
exact behavior of the sorting order. The NLS settings can be made at the
database/init.ora, environment, and session levels.

A locale-specific sort is as a known as a linguistic sort in Oracle. You can use a
linguistic sort by setting one of the Oracle collation parameters, NLS_SORT. The
following is an example of a linguistic sort:

NLS_SORT = French

A code set sort is known as a binary sort in Oracle. If an application, for some
reason, needs to sort data in a CHAR column based only on the code set, then the
application can set the NLS_SORT to be a binary sort. The following is an example
of a binary sort:

NLS_SORT = BINARY

Aside
Oracle does have a built-in NCHAR datatype, as well as NVARCHAR2 and NCLOB
datatypes. These three datatypes can be used to store fixed-width and
variable-width multibyte character set data as specified by the NATIONAL
CHARACTER SET setting in the CREATE DATABASE command.

The National Character Set is an alternative character set to the Database Character
Set. It is particularly useful in databases with a variable-width multibyte database
character set because NCHAR, NVARCHAR2, and NCLOB can store fixed-width
multibyte characters. Storing fixed-width multibyte characters enhances
performance by allowing optimized string processing on these columns. An Oracle
database can not be created with a fixed-width multibyte character set but the
National Language datatypes allow storage of fixed-width multibyte character set
data. The properties of a fixed-width character set may be more desirable for
extensive processing operations or for facilitating programming.

VARCHAR(m,r)
The Informix Dynamic Server VARCHAR datatype stores varying length single-byte
and multibyte character strings of letters, numbers. and symbols. The maximum
size of this column is m, which can range from 1 to 255. The minimum reserved
space is r. This is optional and defaults to 0 if not specified. The minimum reserved
space can range from 0 to 255.

Data Types

2-20 Reference Guide for Informix Dynamic Server 7.3 Migrations

The comparable Oracle datatype is VARCHAR2(n) that also stores variable-length
character strings. An Oracle VARCHAR2(n), however, can have a maximum string
length of between 1 and 4000 specified for n.

Specifying a minimum reserved space is useful if the data in a row is initially small
but is expected to grow at a later date. If this is the case then, when migrating
Informix Dynamic Server tables that contain VARCHAR columns consider increasing
the PCTFREE value in the storage clause for these tables in the Oracle database. If
this column is used in an index, then the PCTFREE values for the corresponding
index storage should also be considered. For indexes based on VARCHAR columns,
Informix Dynamic Server allocates the maximum storage.

Comparison Semantics
Informix Dynamic Server VARCHAR values are compared to other VARCHAR
values and to character values in the same way that character values are compared.
The shorter values are blank-padded until the values have equal lengths, then they
are compared for the full length.

Oracle VARCHAR2 comparisons are made using non-padded comparison semantics.
Trailing blanks are important and are included in the comparison. Two values are
only equal if they have the same characters and are of equal length.

Oracle CHAR comparison uses blank-padded comparison semantics, similar to the
way Informix Dynamic Server compares CHAR and VARCHAR data. If two values
have different lengths, Oracle adds blanks at the end of the shorter value, until the
two values are the same length. Oracle then compares the values, character by
character, up to the first character that differs. So two values that are different only
in the number of trailing blanks are considered equal.

This is important behavior for the migration of the applications. It is possible for
some comparisons on Informix Dynamic Server VARCHAR columns may fail when
migrated to Oracle VARCHAR2 columns where trailing blanks are involved. To offset
this, you may need to use RTRIM() on all columns in a comparison to strip off the
trailing blanks.

Collating VARCHAR
The main difference between the NVARCHAR and VARCHAR datatype is the
difference in collation sequencing. NVARCHAR character collation order depends on
the database server locale, while the collation of VARCHAR characters depends on
the code set. For more information on how these collation methods are
implemented in Oracle and the impact on Informix Dynamic Server, see the
NCHAR(n) topic.

Data Types

Oracle and Informix Dynamic Server Compared 2-21

Aside
Oracle has a built-in VARCHAR datatype that is currently synonymous with the
VARCHAR2 datatype. However, VARCHAR is reserved for future use. In a later
version of Oracle, the definition of VARCHAR may change and since VARCHAR2 is
fully supported, the VARCHAR2 datatype is used to store variable-length character
strings to avoid any possible changes from the current behavior.

CHARACTER VARYING(m,r)
The Informix Dynamic Server CHARACTER VARYING datatype is the
ANSI-compliant format for character data of varying length. The Informix Dynamic
Server VARCHAR datatype supports the same functionality and is treated as one in
the database server. This datatype is treated the same as the VARCHAR datatype and
migrates to the Oracle VARCHAR2 datatype. For more information, see the
VARCHAR(m,r) topic.

NVARCHAR(m,r)
The Informix Dynamic Server NVARCHAR(m,r) datatype stores data of varying
length, similar to VARCHAR, except that it compares data in the order that the locale
specifies.

The Informix Dynamic Server NVARCHAR(m,r) datatype is migrated to the Oracle
VARCHAR2(n) datatype.

For more information on migration issues, see the VARCHAR(m,r) and
NCHAR(n) topics.

DATE
The DATE datatype stores the calendar date and the default display format is
mm/dd/yyyy where mm is the month (01-12), dd is the day of the month (01-31) and
yyyy is the year (0001-9999).

The DATE values are stored as integers thus DATE can be used in arithmetic
expressions. For example, subtracting a DATE value from another DATE value
returns the number of days that have elapsed between the two dates.

Subtracting two Oracle DATE datatypes from each other returns the number of days
between the two dates. If only calendar dates are stored in Oracle, then the default
time of 12:00:00AM (midnight) is also stored, so any subtraction results in a whole
number indicating the number of days between the two dates. For the month,
Informix Dynamic Server accepts a number value of either 1 or 01 for January, and

Data Types

2-22 Reference Guide for Informix Dynamic Server 7.3 Migrations

so on. Similarly, for the day, Informix Dynamic Server accepts either 1 or 01 for the
first day of the month. This is also true in Oracle.

DATETIME
The Informix Dynamic Server DATETIME datatype stores an instant in time
expressed as a calendar date and time of day. The precision that a DATETIME value
is stored can be chosen, with the precision ranging from a year to a fraction of a
second. DATETIME in effect is a family of 28 datatypes.

The Oracle DATE datatype matches just one of the 28 datetime types, DATETIME
YEAR TO SECOND.

The Informix Dynamic Server plug-in stores DATETIME values as Oracle DATE
values, losing the FRACTION part of DATETIME. If you need to keep the fraction
part of DATETIME, before migration, add a new column to the table and store the
fraction part as a DECIMAL with the appropriate precision migrated to the
appropriate NUMBER datatype.

Any DATETIME table columns that do not store a particular precision use the Oracle
defaults. The defaults for Oracle DATE are the first day of the current month and
12:00:00AM (midnight).

For applications that need to manipulate various DATETIME precisians, the SQL
code needs to be changed. For example, if a column is defined as MONTH TO DAY,
and contains two values, date1: March 10 and date2: February 18 shown as (mm/dd)
03/10 and 02/18. If these values are stored in Oracle DATE (if the current year is
1999, the values would be date1: 1999/03/10 12:00:00 and date2:1999/02/18 12:00:00
respectively. The expression date1 - date2 UNITS DAY returns 20 days. However, if
the year was 2000, then the expression date1 - date 2 UNITS DAY returns 21 days.

Using a combination of TO_DATE and TO_CHAR and appropriate date format
masks, the year the DATE was stored can be replaced with the current year for use
in the expression. The following is an example of this combination:

SQL> SELECT TO_CHAR(TO_DATE(TO_CHAR(TO_DATE(’01-01-1997’,
’MM-DD-YYYY’), ’MM-DD’), ’MM-DD’), ’MM-DD-YYYY’) from dual;
TO_CHAR(TO

01-01-2000

Data Types

Oracle and Informix Dynamic Server Compared 2-23

Oracle DATE Arithmetic
Subtraction of DATE returns days. Because each date contains a time component,
most results of date operations include a fraction. The fraction indicates a portion of
one day. For example, 1.5 days is 36 hours.

The MONTHS_BETWEEN function returns the number of months between two
dates. The fractional portion of the result represents that portion of a 31 day month.

You cannot add dates, but another Oracle function available for date arithmetic is
ADD_MONTHS(date,n). To add days to a date, add a number constant to the date.

INTERVAL
Currently, there is no corresponding Oracle datatype for the Informix Dynamic
Server INTERVAL datatype.

The Informix Dynamic Server INTERVAL datatype can be defined as one of 18
different precisions, YEAR TO YEAR, YEAR TO MONTH, MONTH TO MONTH,
DAY TO DAY and so on right down to FRACTION TO FRACTION(f). These are
divided into two classes, YEAR TO MONTH, and DAY TO FRACTION.

If the largest qualifier value and the smallest qualifier value are not the same, then
the INTERVAL column is migrated to CHAR(30).

Manipulating Oracle DATE with Informix Dynamic Server INTERVAL Values
Numeric constants can be added or subtracted from the Oracle DATE datatype -- to
that Informix Dynamic Server DATE and DATETIME datatypes are mapped -- and
are treated in terms of days. Therefore any operations involving the second class of

Note: Evaluate the logic of the addition or subtraction. Remember
you can have months that are 28, 29, 30, or 31 days and you can
have years that are 365 or 366 days.

Value INTERVAL

YEAR TO YEAR NUMBER(4)

Informix Dynamic Server default precision for YEAR

DAY(3) TO DAY NUMBER(3)

SECOND(6) TO
SECOND

NUMBER(6)

Data Types

2-24 Reference Guide for Informix Dynamic Server 7.3 Migrations

Informix Dynamic Server INTERVAL, DAY TO FRACTION must be expressed as a
fraction in terms of days. For example,

CURRENT + INTERVAL (10 12) DAY TO HOUR

should be expressed as

SYSDATE + 10.5

To handle addition and subtraction of the first class of INTERVAL, YEAR TO
MONTH, the INTERVAL needs to be expressed in terms of months and passed as a
parameter, along with the date.

The Oracle function ADD_MONTHS(date,n) can be used for arithmetic:

TODAY + INTERVAL (2) YEAR TO YEAR

should be expressed as

ADD_MONTHS(SYSDATE, 24)

You do have the option to migrate all INTERVAL columns as CHARACTER(30)
preserving all details, including subsecond information. However, the application
must manipulate this data appropriately, using TO_DATE() and others.

DECIMAL
Informix Dynamic Server DECIMAL datatype can take two forms:

■ DECIMAL(p) floating-point

■ DECIMAL(p,s) fixed point

DECIMAL(p) floating point
DECIMAL(p) floating point stores decimal floating point numbers up to a
maximum of 32 significant digits.

The total number of significant digits is p. This is optional, DECIMAL is treated as
DECIMAL(16). DECIMAL(p) has an absolute values range of between 10-130 and
10124.

In an ANSI-compliant Informix Dynamic Server database, DECIMAL(p) defaults to
DECIMAL(p,0). If only p is specified, s is actually stored as 255 in the catalog tables.

In Oracle, Informix Dynamic Server DECIMAL(p) floating point values are always
stored as NUMBER. It has 38 significant digits since it is not possible to restrict the

Data Types

Oracle and Informix Dynamic Server Compared 2-25

total number of significant digits for storing a floating-point number. Oracle can
store negative and positive values in the range 1.0x10-130 and 9.9...9x10125, which
is 38 nines followed by 88 zeros. NUMBERS are stored in scientific notation.
Leading and trailing zeros are not stored.

Since Oracle can store floating-point numbers with a greater precision than
Informix Dynamic Server, there should be no loss of precision after the migration to
Oracle.

DECIMAL(p,s) fixed-point
The precision is p with a range 1 to 32. The number of digits to the right of the
decimal place is s. Numbers < 0.5x10-s have the value 0.

In Oracle, DECIMAL(p,s) maps to NUMBER(p,s).

MONEY(p,s)
The MONEY datatype is always a fixed-point number with a maximum 32
significant digits.

MONEY(p) = DECIMAL(P,2)

MONEY = DECIMAL(16,2)

The Informix Dynamic Server MONEY datatype is represented as DECIMAL. The
Informix Dynamic Server MONEY(p,s) datatype maps to Oracle NUMBER(p,s).

INTEGER
The Informix Dynamic Server INTEGER datatype is mapped to NUMBER(10).

Range Boundaries
The Informix Dynamic Server INTEGER datatype can store values in the range
-2,147,483,647 to 2,147,483,647. If a value to be inserted is outside this range, the
Informix Dynamic Server database server does not store the value and returns an
error. A column defined as NUMBER(10) in an Oracle database allows values in the
range -9,999,999,999 to 9,999,999,999 to be inserted without raising an error. If
mapped, INTEGER columns should enforce the original range, then a check
constraint can be added to the columns to ensure that values entered into these
columns are within the range -2,147,483,647 to 2,147,483,647.

Data Types

2-26 Reference Guide for Informix Dynamic Server 7.3 Migrations

Storage
Informix Dynamic Server stores INTEGER as a signed binary integer and requires 4
bytes per value.

Oracle stores numeric data in variable length format, in scientific notation. The
smallest storage space Oracle uses to represent an INTEGER is 2 bytes, 12 bytes is
the maximum storage space required. The storage space for the value depends on
the number of significant digits.

Inserting Fractions
If you insert 7.2 and 7.8 into Informix Dynamic Server INTEGER datatype, fractional
parts are truncated, therefore the values 7 and 7 are stored.

If you insert 7.2 and 7.8 into Oracle NUMBER(10), fractional parts are rounded,
therefore the values are stored as 7 and 8.

It may be necessary to check application code and logic to ensure there is no
unexpected behavior. This is because it is assumed that fractional parts of any
number are automatically truncated when inserted into the Informix Dynamic
Server database.

INT
The Informix Dynamic Server INT datatype is a synonym for INTEGER

SMALLINT
The Informix Dynamic Server SMALLINT datatype is mapped to NUMBER(5).

Range Boundaries
The Informix Dynamic Server INTEGER datatype can store values in the range
-32,767 to 32767. If a value is outside this range, the Informix Dynamic Server
database server does not store the value and returns an error. A column defined as
NUMBER(10) in an Oracle database allows values in the range -99,999 to 99,999 to
be inserted without raising an error. If mapped, INTEGER columns should enforce
the original range then a check constraint can be added to the columns to ensure
that values entered into these columns are within the range -32,767 to 32767.

Storage
Informix Dynamic Server SMALLINT datatype values take up 2 bytes per value.

Data Types

Oracle and Informix Dynamic Server Compared 2-27

Oracle stores a values in an NUMBER(5) datatype with a minimum of 2 bytes and a
maximum of 4 bytes

Inserting Fractions
For information on differences in behavior for Informix Dynamic Server INTEGER
and Oracle NUMBER, see the Inserting Fractions topic.

SERIAL
The Informix Dynamic Server SERIAL datatype creates a column in a table that
auto-increments an INTEGER value every time a row is inserted into the table. By
default, if the column is simply defined as SERIAL, the column begins inserting
with the value 1. Other starting values can be set by defining the column. For
example, SERIAL(1000)creates a column that begins inserting with the value
1000. The starting number cannot be 0 and the maximum value SERIAL can reach,
or be initially set to, is 2,147,483,647. After reaching the maximum value, the
SERIAL column resets to 1. Only one SERIAL column may be defined for an
Informix Dynamic Server table. The SERIAL datatype is not automatically a unique
column, a unique index must be created for this column to prevent duplicate serial
numbers.

The Migration Workbench for Informix Dynamic Server maps the Informix
Dynamic Server SERIAL datatype to an Oracle NUMBER(10) datatype and flags the
column as an auto-increment column. The Migration Workbench also creates a
NOT NULL CONSTRAINT on that column, as is the case with Informix Dynamic
Server SERIAL columns.

The Migration Workbench creates an Oracle sequence and an Oracle trigger on the
table that contained the SERIAL column. The trigger fires every time a row is
inserted into the table. It gets the next value in the sequence and inserts it into the
field.

For example, the following JOBS table was migrated to Oracle and the JOB_ID
column was originally defined as an Informix Dynamic Server SERIAL datatype:

 CREATE TABLE clerk.JOBS(JOB_ID NUMBER (10) NOT NULL,
 JOB_DESC VARCHAR2 (50) NOT NULL,
 MIN_LVL NUMBER (5),
 MAX_LVL NUMBER (5))

 TABLESPACE PUBS;
 REM
 REM Message : Created Sequence: clerk.SEQ_11_1
 REM User : system

Data Types

2-28 Reference Guide for Informix Dynamic Server 7.3 Migrations

 CREATE SEQUENCE clerk.SEQ_11_1 START WITH 1
 /
 REM
 REM Message : Created Sequence Trigger: clerk.TR_SEQ_11_1
 REM User : system
 CREATE TRIGGER clerk.TR_SEQ_11_1
 BEFORE INSERT ON clerk.JOBS FOR EACH ROW
 BEGIN
 SELECT clerk.SEQ_11_1.nextval INTO :new.JOB_ID FROM dual; END;
 /

The Oracle trigger and sequence is created after a table with a SERIAL column is
migrated. The sequence is created using the option START WITH 1. If the data for
this table is not moved automatically by the Migration Workbench, the sequence
starts inserting with 1.

If the table data is selected to be moved automatically by the Migration Workbench
while database table objects are created, the Migration Workbench creates the
trigger and sequence after the data has been moved. Before the sequence is created
the Migration Workbench selects the maximum value from the SERIAL column (for
example, 1231) and add 1 to this value and use it as the START WITH value in the
CREATE SEQUENCE statement; as follows:

CREATE SEQUENCE clerk.SEQ_11_1 START WITH 1232;

In the resulting Oracle database inserts to the table continue to auto-increment by
one a value for the old serial column every time a row is inserted into the table.

Additional Oracle Sequence Options for Informix Dynamic Server SERIAL
Migrations
The Migration Workbench uses the following command to create the sequence:

CREATE SEQUENCE sequence_name START WITH integer;

The Oracle CREATE SEQUENCE command has several options, the only option
that is used is the START WITH option.

Many of these options have defaults that are what would be required to replicate
the Informix Dynamic Server SERIAL datatype. However, there are a couple of
settings that can be altered on the SEQUENCE to make it behave even more closely
to the Informix Dynamic Server SERIAL datatype.

Data Types

Oracle and Informix Dynamic Server Compared 2-29

Option Description

START WITH integer Specify the start sequence value.

For more information, see Resetting the Start Value.

INCREMENT BY integer Specify the interval between sequence numbers. If this value is
negative, then the sequence descends. For Informix Dynamic
Server, use the Oracle default of 1.

MAXVALUE integer NOMAXVALUE is the default setting. For Informix Dynamic
Server, set this to 2147483647 to override the Oracle default
value.

NOMAXVALUE Specify NOMAXVALUE to indicate a maximum value of
(10^27)-1, twenty eight 9’s in a row, for an ascending sequence
or -1 for a descending sequence. This is the default.

MINVALUE integer Specify the sequence minimum value. For Informix Dynamic
Server, indicate 1 as the value so that if the sequence ever
restarts, it restarts with this value.

NOMINVALUE Specify NOMINVALUE to indicate a minimum value of 1 for an
ascending sequence or -(10^26) for a descending sequence. This
is the default. For Informix Dynamic Server, use the default
because the default INCREMENT BY value of 1, we get a default
minimum value of 1.

CYCLE Specify CYCLE to indicate that the sequence continues to
generate values after reaching either maximum or minimum
value. After an ascending sequence reaches maximum value, it
generates minimum value.

SERIAL For Informix Dynamic Server, the column resets to 1 after
reaching 2147483647.

NOCYCLE Specify NOCYCLE to indicate that the sequence cannot generate
more values after reaching maximum or minimum value. This is
the default. For Informix Dynamic Server, override this default
Oracle behavior to CYCLE.

CACHE integer Specify how many values of the sequence Oracle preallocates
and keeps in memory for faster access.

Data Types

2-30 Reference Guide for Informix Dynamic Server 7.3 Migrations

In Oracle, all the options that were used to create a sequence can be altered except
for START WITH.

Resetting the Start Value
To restart an Oracle sequence at a different number, you must drop and re-create it.

The following Table 2–5 shows that Informix Dynamic Server changes the next
value to be used in a SERIAL column, provided 1000 is not less than the current
maximum for the column.

Some Exceptional Cases
Occasionally the migrated SERIAL column does not behave as it would in Informix
Dynamic Server.

Example 1

If the last number values inserted into a table are deleted from the table, the
migrated tables sequence begin before the next.

If the table was created as follows:

CREATE TABLE table_with_serial_col (col1 SERIAL, col2 CHAR(5))

and after several inserts on the table, as follows:

NOCACHE Specify NOCACHE to indicate that values of the sequence are
not preallocated.

If both CACHE and NOCACHE are omitted, Oracle caches 20
sequence numbers by default. For Informix Dynamic Server,
since MINVALUE is 1, MAXVALUES is at least 2,147,483,647
and INCREMENT is 1, then there should be no problems with
the default. If the table is a target of high activity then, the
CACHE values may have to be reviewed along with FREELISTS,
INITTRANS, MAXTRANS, and others.)

Table 2–5 Serial Column Comparison

Informix Dynamic Server Oracle

ALTER TABLE clerk.jobs MODIFY (job_id
SERIAL(1000));

DROP SEQUENCE seq_11_1;
CREATE SEQUENCE seq_11_1 STARTWITH 1000
MAXVALUE 2147483647 CYCLE;

Option Description

Data Types

Oracle and Informix Dynamic Server Compared 2-31

INSERT INTO table_with_serial_col VALUES ("XXX"); [col1 = 1]
INSERT INTO table_with_serial_col VALUES ("XXX"); [col1 = 2]
INSERT INTO table_with_serial_col VALUES ("XXX"); [col1 = 3]

the definition is changed, as follows:

ALTER TABLE table_with_serial_col MODIFY (col1 SERIAL(1000))

If the database is migrated at this point, execute the following command on
Informix Dynamic Server:

INSERT INTO table_with_serial_col VALUES ("XXX");

results in the new row with a value of 1000 for col1. If you execute the same
command in the migrated Oracle environment, the new row would have a value of
4 for col1.

Example 2

Another possibility follows:

INSERT INTO table_with_serial_col VALUES ("XXX"); [col1 = 1]
INSERT INTO table_with_serial_col VALUES ("XXX"); [col1 = 2]
INSERT INTO table_with_serial_col VALUES ("XXX"); [col1 = 3]

DELETE FROM table_with_serial_col WHERE col1 = 3;

If the database is migrated at this point, execute the following command on
Informix Dynamic Server:

INSERT INTO table_with_serial_col VALUES ("XXX");

results in the new row with a value of 4 for col1. If you execute the same command
in the migrated Oracle environment, the new row would have a value of 3 for col1.

It is possible that this would have no effect on the execution of the application or the
integrity of the data. The only dependency is that this value is unique and
auto-incremental, but it may be useful to check the application logic if situations
similar to the examples could occur.

How to examine current Informix Dynamic Server SERIAL values
For Informix Dynamic Server, set the SERIAL value to the values of
sysmaster:systabinfo(ti_serialv) where sysmaster:systabinfo(ti_
partnum) is the partnum of the table with the serial column.

select c.dbsname, a.owner, a.tabname, d.ti_serialv

Data Storage Concepts

2-32 Reference Guide for Informix Dynamic Server 7.3 Migrations

 from systables a, syscolumns b, sysmaster:informix.systabnames c,
sysmaster:informix.systabinfo d
 where (b.coltype = 6 OR b.coltype = 262)
 and a.tabid = b.tabid
 and a.tabid > 99
 and a.owner = c.owner
 and a.tabname = c.tabname
 and c.dbsname = "<DATABASENAME>"
 and c.partnum = d.ti_partnum;

Replace <DATABASENAME> as appropriate.

In the Oracle environment, use the following SQL statements to get the next
sequence number to be generated for each sequence:

SQL> SELECT sequence_name FROM USER_SEQUENCES;
SQL> SELECT (<sequence_name>.CURRVAL+1) FROM DUAL;

Replace <sequence_name> as appropriate.

Data Storage Concepts
This chapter provide a description of the conceptual differences (and in many cases,
similarities) in data storage for Informix Dynamic Server and Oracle9i and
Oracle8i databases.

Recommendations
The following are recommendations:

1. The conceptual differences in the storage structures do not affect the conversion
process directly.

2. Both Oracle and Informix Dynamic Server have a way to control the physical
placement of database objects:

■ IN dbspace for Informix Dynamic Server

■ TABLESPACE for Oracle.

3. Storage information can be preserved when converting to Oracle. The decisions
made when defining the storage of the database objects for Informix Dynamic
Server should also apply for Oracle. Especially important are the initial object
and physical object placement.

Data Storage Concepts

Oracle and Informix Dynamic Server Compared 2-33

An Oracle database server consists of a shared memory area, several processes that
access the database and maintain data integrity and consistency, the Oracle
Instance, and a database that stores the data.

An Informix Dynamic Server database server also consists of a shared memory area,
several process to access the data and maintain data integrity and consistency,
however a single Informix Dynamic Server database server can support several
separate databases.

A Oracle database consists of one or more tablespaces. Tablespaces provide logical
storage space that link a database to the physical disks that hold the data. A
tablespace is created from one or more data files. Data files are files in the file
system or an area of disk space specified by a raw device. A tablespace can be
enlarged by adding more data files.

An Oracle database consists of a least a SYSTEM tablespace, where the Oracle tables
are stored. It can also consist of user defined tablespaces. A tablespace is the logical
storage location for database objects. For example, you can specify where a
particular table or index gets created in the tablespace.

The size of a tablespace is determined by the amount of disk space allocated to it.
Each tablespace is made up of one or more data files.

Data Storage Concepts Table

Table 2–6 Data Storage Concepts in Informix Dynamic Server and Oracle

Informix Dynamic Server Oracle

Chunks

Physical disk space is allocated in terms
of chunks. A chunk can be from a file
system or raw disk space.

The root dbspace is mapped to a chunk
specified by a raw device name or the full
path name of a file in a file system,
through the initialization file, on_config.

Data Files

One or more data files are created for
each tablespace to physically store the
data of all the logical structures in a
tablespace.

Data Storage Concepts

2-34 Reference Guide for Informix Dynamic Server 7.3 Migrations

Page and Blobpage

Page:

A chunk has its space divided into pages,
each with a specified number of bytes.
Any I/O must be performed in page
units.

Blobpage:

A blobpage stores BYTE and a TEXT data
within a blobspace. The size of blobpage
is a unit of disk allocation selected by the
user who creates the blobspace, and can
vary from blobspace to blobspace.

Data Block

One data block corresponds to a specific
number of bytes of physical space on disk. The
database block size can be specified when
creating the database.

Extent

Extent is the allocation of disk space to a
database object in units of physically
contiguous pages and cannot span chunk
boundaries. All database objects have
space allocated in increment of one
extent. For a single table, extents can be
located in different chunks of the same
dbspace. Within an extent, all data
pertains to a single tblspace.

Extent

An extent is a specific number of contiguous
data blocks, obtained in a single allocation.

Tblspace

The total diskspace allocated to a table
includes pages allocated to:

■ data

■ indexes

■ storage of blob data (BYTE or TEST)
in the dbspace (excluding pages
storing blob data in separate
blobspace)

■ tracking page usage within the table
extents

Segments

A segment is a set of extents allocated for a
certain logical structure. The extents of a
segment may or may not be contiguous on
disk, and may or may not span datafiles.

Table 2–6 Data Storage Concepts in Informix Dynamic Server and Oracle (Cont.)

Informix Dynamic Server Oracle

Data Storage Concepts

Oracle and Informix Dynamic Server Compared 2-35

Physical Log

A unit of contiguous disk pages
containing "before images" of data that
has been modified during processing.

Logical Log

Logical log file is the name of each of
these additions of space. This log records
logical operations during on-line
processing. All transaction information is
stored in the logical files as a database is
created with the transaction log.

Redo Log Files

Each database has a set of two or more redo
log files. All changes made to the database are
recorded in the redo log. Redo log files are
critical in protecting a database against
failures.

Root dbspace

The root dbspace stores information
about all databases created.

System Tablespace

Oracle Control Files

Each database has a control file. This file
records the physical structure of the database,
such as the database name, name and location
of the database data files and redo logs.

Dbspace and Blobspace

Dbspaces:

Database objects are stored in a dbspace,
which is a minimum of one piece of
physical disk or chunk.

BYTE and TEXT (Binary Large Objects, or
BLOBs) data can be stored in a dbspace,
but performance may suffer if the BLOBs
are larger than two dbspace pages.

The ROOT dbspace is the name of the
first dbspace created. Specific pages and
internal tables in the ROOT dbspace
describe and track all other dbspaces,
blobspaces, and tblspaces.

Blobspaces:

A blobspace provides a storage area for
TEXT and BYTE data using a larger and
more efficient space allocation
mechanism more suited to large objects as
opposed to storing them in a dbspace
with more traditional data types.

Tablespace

A database is divided into logical storage
units called tablespaces. A tablespace is used
to group related logical structures together. A
database typically has one system tablespace
an one or more user tabletops.

Table 2–6 Data Storage Concepts in Informix Dynamic Server and Oracle (Cont.)

Informix Dynamic Server Oracle

Data Storage Concepts

2-36 Reference Guide for Informix Dynamic Server 7.3 Migrations

Triggers, Packages, and Stored Procedures 3-1

3
Triggers, Packages, and Stored Procedures

This chapter includes the following sections:

■ Introduction

■ Triggers

■ Packages

■ Stored Procedures

Introduction

3-2 Reference Guide for Informix Dynamic Server 7.3 Migrations

Introduction
Informix Dynamic Server stores triggers and stored procedures with the server.
Oracle stores triggers and stored subprograms with the server. Oracle has three
different kinds of stored subprograms: functions, stored procedures, and packages.
For detailed discussion on all these objects, see the PL/SQL User’s Guide and
Reference, Release 1(9.0.1).

Triggers
Triggers provide a way of executing PL/SQL code on the occurrence of specific
database events. For example, you can maintain an audit log by setting triggers to
fire when insert or update operations are carried out on a table. The insert and
update triggers add an entry to an audit table whenever the table is altered.

The actions that Informix Dynamic Server triggers perform are constrained to
multiple insert, update, delete, and execute procedure clauses; whereas, Oracle
allows triggers to execute arbitrary PL/SQL code. Oracle triggers are similar to
stored procedures in that they can contain declarative, execution, and exception
handling code blocks.

Additionally, Oracle enables triggers to be invoked by many events other than table
insert, update and delete operations. However, there are restrictions.

For more information on trigger restrictions, see the Oracle9i Application
Developer’s Guide - Fundamentals, Release 1 (9.0.1).

Mapping Triggers
All Informix Dynamic Server trigger types have an equivalent Oracle trigger type.
The converter takes the optional WHEN clause in Informix Dynamic Server and
converts it to an IF clause. This is shown in the following example:

Informix Dynamic Server SPL

create trigger t_traffic
update of comments
on msg_traffic
referencing new as new
for each row
when (new.msg_id>10000)
 (update msg_traffic set msg_traffic.update_dt = CURRENT year to fraction(3)
 where (((msg_id = new.msg_id) AND (msg_source = new.msg_source))
 AND (sub_msg_id = new.sub_msg_id)));

Triggers

Triggers, Packages, and Stored Procedures 3-3

Oracle PL/SQL

CREATE OR REPLACE TRIGGER t_traffic
BEFORE UPDATE OF comments ON msg_traffic
REFERENCING NEW as new_ FOR EACH ROW
BEGIN
DECLARE
ItoO_selcnt NUMBER;
ItoO_rowcnt NUMBER;
BEGIN
 IF :new_.msg_id > 10000 THEN
 UPDATE msg_traffic
 SET msg_traffic.update_dt = SYSDATE
 WHERE (((msg_id = :new_.msg_id)
 AND (msg_source = :new_.msg_source))
 AND (sub_msg_id = :new_.sub_msg_id));
 END IF;
 END;
END;

Informix Dynamic Server declares triggers on a per table basis with BEFORE and
AFTER triggers held together in a single trigger declaration. In Oracle, the BEFORE
and AFTER triggers are declared separately. Therefore, the convertor creates
multiple Oracle triggers when parsing Informix Dynamic Server per table trigger
code.

In the initial release, the Oracle triggers display one after the other in the same text
area. The Oracle triggers require manual intervention to build on the Oracle
destination database.

Mutating Tables
When you are using Oracle, the trigger or function may cause a mutating table
error. This causes you to receive the following error message while executing the
trigger:

ORA-04091: table SCOTT.Emp_tab is mutating, trigger/function may not see it.

If you receive this error, you need to manually alter the trigger so that the per row
information is stored in an interim PL/SQL table. It is then copied into the
destination table after the per row triggers have been fired. For more information,
see the Mutating: Containing Tables topic at the following Web site:

http://otn.oracle.com/tech/migration/workbench/htdocs/mutating.htm

http://otn.oracle.com/tech/migration/workbench/htdocs/mutating.htm

Packages

3-4 Reference Guide for Informix Dynamic Server 7.3 Migrations

Packages
Packages are PL/SQL constructs that enable the grouping of related PL/SQL
objects, such as procedures, variables, cursors, functions, constants, and type
declarations. Informix Dynamic Server does not support the package construct.

A package can have two parts: a specification and a body. The specification defines
a list of all objects that are publicly available to the users of the package. The body
defines the code that is used to implement these objects, such as, the code behind
the procedures and functions used within the package.

The general PL/SQL syntax for creating a package specification is:

CREATE [OR REPLACE] PACKAGE package_name {IS | AS}
 procedure_specification
..function_specification
..variable_declaration
..type_definition
..exception_declaration
..cursor_declaration
END [package_name];

The general PL/SQL syntax for creating a package body is:

CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}
..procedure_definition
..function_definition
..private_variable_declaration
..private_type_definition
..cursor_definition
[BEGIN
 executable_statements
[EXCEPTION
..exception_handlers]]
END [package_name];

The package body is optional. If the package contains only variable, cursor and type
definitions then the package body is not required.

As the package specification is accessible to users of the package, it can be used to
define global variable definitions within PL/SQL.

The Migration Workbench automatically creates packages during the conversion
process for the following reasons:

■ The Utilities package, which is used to emulate built-in Informix Dynamic
Server functions, is not available in Oracle.

http://otn.oracle.com/tech/migration/workbench/htdocs/mutating.htm

Stored Procedures

Triggers, Packages, and Stored Procedures 3-5

■ Packages have to be created to emulate Informix Dynamic Server GLOBAL
variable definitions.

For more information on package creation, see the following sections:

■ Converting TRACE Statements

■ GLOBAL Variable Declarations

■ Converting RETURN WITH RESUME Statements

■ Returning Section

For more information on package creation and use, see the PL/SQL User’s Guide
and Reference, Release 1 (9.0.1).

Stored Procedures
Stored procedures provide a powerful way to code application logic that can be
stored on the server. Informix Dynamic Server and Oracle both use stored
procedures. Oracle also uses an additional type of subprogram called a function.

The language used to code stored procedures is a database-specific procedural
extension of SQL. In Oracle it is PL/SQL and in Informix Dynamic Server it is
Informix Dynamic Server Stored Procedure Language (SPL). These languages differ
considerably. However, most of the individual SQL statements and the procedural
constructs, such as if-then-else, are similar in both languages.

The PL/SQL procedures, which the Migration Workbench generates, add
appropriate comments to indicate the manual conversion required. In general, the
Migration Workbench deals with the Informix Dynamic Server constructs in one of
the following ways:

■ Converts ANSI-standard SQL statements to PL/SQL because Oracle supports
ANSI-standard SQL.

Note: The PL/SQL procedure examples included in the
document are the actual output of the Migration Workbench. They
are longer than the source Informix Dynamic Server SPL
procedures because they are converted to emulate SPL
functionality. When the PL/SQL procedures are written for
equivalent Oracle functionality, the Output code is shorter.

Stored Procedures

3-6 Reference Guide for Informix Dynamic Server 7.3 Migrations

■ Converts into PL/SQL constructs if the equivalent constructs are available in
PL/SQL.

■ Ignores some constructs and incorporates appropriate comments in the output
file.

■ Wraps constructs that require manual conversion around proper comments in
the output file.

■ Displays an appropriate error message, including the line number, for those
contructs resulting in syntax errors.

The following sections provide a comparison of Informix Dynamic Server and
Oracle:

■ NULL as an Executable Statement

■ Parameter Passing

■ Individual SPL Statements

■ Error Handling within Stored Procedures

■ DDL Statements in SPL Code

■ Using Keywords as Identifiers

■ Issues with Converting SPL Statements

NULL as an Executable Statement
In some cases within stored procedure code, it may be necessary to indicate that no
action should be taken. To accomplish this in Oracle, the NULL statement is used.
Unlike Informix Dynamic Server, Oracle treats the NULL statement as executable
within a PL/SQL code block. In Oracle the NULL statement does not perform an
action. Instead, it forms a syntactically legal statement that serves as a placeholder.

Oracle places a NULL statement into PL/SQL code in the following situations:

■ When converting a CONTINUE statement within a FOR, FOREACH, or WHILE
LOOP construct is encountered.

■ When encountering an unsupported SPL statement.

For information on how the converter uses NULL statements, see the following
sections:

■ Converting CONTINUE Statements

■ Issues with Converting SPL Statements

Stored Procedures

Triggers, Packages, and Stored Procedures 3-7

Parameter Passing
An Informix Dynamic Server stored procedure contains the following logical parts:

1. Procedure name

2. Parameters area

3. Returning section

4. Statement block

5. Document section

6. With listing directive

Parts two and three define how data is passed to and from a stored procedure. Part
two ties data values that are passed by the client to variable names.

Part three is optional. It defines a listing of the data types that the stored procedure
returns to the client or calling environment.

The following example demonstrates parts one, two and three: the Informix
Dynamic Server stored procedure code for the procedure name, parameters area,
and the returning section.

Informix Dynamic Server SPL

/* Procedure name */
CREATE PROCEDURE bal_enquiry(
/* The Parameters area */
cust_id NUMBER,
account_num NUMBER)
/* The Returning section */
RETURNING NUMBER;

Unlike Informix Dynamic Server, Oracle does not require the use of a Returning
section. Instead, Oracle passes values to the stored procedure and from the stored
procedure by using IN, OUT or IN OUT parameter modes.

In a similar way to Informix Dynamic Server, PL/SQL parameters within Oracle
can have default values assigned to them.

Oracle Parameter Passing Modes
The modes for Oracle formal parameters are IN, OUT, or IN OUT. If a mode is not
specified for a parameter, it defaults to the IN mode. Table 3–1 describes parameter
modes within Oracle.

Stored Procedures

3-8 Reference Guide for Informix Dynamic Server 7.3 Migrations

Input Parameters
Informix Dynamic Server uses all parameters defined within the parameters area to
pass values into the stored procedure. These parameters cannot pass data back to
the client. If a default value is included for each variable, clients that execute the
procedure do not have to send data to the procedure. Each parameter within the
parameters area can, therefore, be converted to a functionally equivalent Oracle IN
parameter. An example of an Informix Dynamic Server SPL procedure definition
and the converted equivalent in Oracle is as follows:

Informix Dynamic Server SPL

CREATE PROCEDURE informix.update_bal(
cust_id INT,
amount INT DEFAULT 1)

Oracle PL/SQL

CREATE OR REPLACE PROCEDURE "INFORMIX".update_bal(
cust_id_IN NUMBER,
amount_IN NUMBER DEFAULT 1) AS
BEGIN
cust_id NUMBER := cust_id_IN;
amount NUMBER := amount_IN;

Table 3–1 Parameter Passing Modes in Oracle

Mode Description

IN The value of the parameter is passed into the procedure when
the procedure is invoked. It is similar to read-only

OUT Any value the parameter has when it is called is ignored. When
the procedure finishes, any value assigned to the parameter
during its execution is returned to the calling environment. It is
similar to write-only

IN OUT This mode is a combination of both IN and OUT. The
value of the parameter can be passed into the procedure
when the procedure is invoked. It is then manipulated
within the procedure and returned to the calling
environment. It is similar to read-write

Stored Procedures

Triggers, Packages, and Stored Procedures 3-9

Output Parameters
You use the Informix Dynamic Server returning section to define a list of data types
to be returned to the client. If you use a returning section, the type and number of
data values listed after the RETURN statement must match what was declared in the
returning clause. The RETURN statement only sends one set of results back to the
calling environment. If multiple contiguous sets of results need to be returned then
you can add the WITH RESUME keywords.

If you use the WITH RESUME keywords, after the RETURN statement executes, the
next invocation of the procedure starts at the statement that directly follows the
RETURN statement.

If a procedure is defined using a WITH RESUME clause, a FOREACH loop within the
calling procedure or program must call the procedure. In Informix Dynamic Server,
a procedure returning more than one row or set of values is called a cursory
procedure.

In effect, Informix Dynamic Server stored procedures have to be invoked repeatedly
should multiple values need to be passed back to the calling environment. So n
invocations returns n sets of contiguous singleton results.

If the Informix Dynamic Server stored procedure does not contain a WITH RESUME
clause, it has been designed to be invoked only once and, optionally, send singleton
values back to the calling environment.

In this case, all returning section parameters are converted to be OUT parameters
within the generated Oracle PL/SQL code.

If a WITH RESUME statement is present within the Informix Dynamic Server stored
procedure, then the Migration Workbench uses each returning clause parameter to
build a global temporary table to store the procedures interim results. The
Migration Workbench then uses this temporary tableto build and return a
populated cursor to the calling environment.

For more information on the strategy the Migration Workbench employs to convert
the Informix Dynamic Server returning section to PL/SQL, see the following
sections:

■ Returning Section

■ Converting RETURN WITH RESUME Statements

Stored Procedures

3-10 Reference Guide for Informix Dynamic Server 7.3 Migrations

Individual SPL Statements
Both Informix Dynamic Server and Oracle use a database-specific procedural
extension of SQL as their procedural language. However, the languages are not
common so it is necessary that Migration Workbench emulates Informix Dynamic
Server functionality that is not found in Oracle within the converted stored
procedure PL/SQL code.

The following statements or constructs have to be, to a varying degree of
complexity, emulated within the generated Oracle PL/SQL code:

■ Returning Section

■ DOCUMENT Clause

■ GLOBAL Variable Declarations

■ LIKE and MATCHES Comparison Conditions

■ FOR LOOP Constructs

■ FOREACH LOOP Constructs

■ Compound LET Statements

■ Converting CONTINUE Statements

■ Converting RETURN WITH RESUME Statements

■ Built-in Functions

■ Converting the SYSTEM Statement

■ Converting TRACE Statements

■ Set Up Tasks for the DEBUG Procedure

■ SELECT Statements as Conditions

■ Exception Blocks

■ RAISE EXCEPTION Statements

Returning Section
The Informix Dynamic Server returning section is used to define the list of data
types being returned to the client. The way the Migration Workbench converts the
Returning section is determined by whether the RETURN WITH RESUME statement
resides within the Informix Dynamic Server stored procedure. The Migration
Workbench converts the returning section using one of the following methods:

Stored Procedures

Triggers, Packages, and Stored Procedures 3-11

■ Informix Dynamic Server Procedures Containing no WITH RESUME Clause

■ Informix Dynamic Server Procedures Containing a WITH RESUME Clause

Informix Dynamic Server Procedures Containing no WITH RESUME Clause If only
one parameter is specified in the Informix Dynamic Server returning section and
the procedure contains no WITH RESUME clause, then Migration Workbench
converts the procedure to an Oracle FUNCTION. An example of a procedure
returning one value in Informix Dynamic Server and the converted equivalent in
Oracle is as follows:

Informix Dynamic Server SPL

CREATE PROCEDURE "informix".add_category(
name like Recipecategory.category_name,
desc like recipeCategory.category_desc)
RETURNING integer;

Oracle PL/SQL

CREATE OR REPLACE FUNCTION informix.add_category(
name_IN Recipecategory.category_name%TYPE,
desc__IN recipeCategory.category_desc%TYPE)
RETURN NUMBER AS

If multiple returning parameters are defined within the Informix Dynamic Server
returning section and the procedure contains no WITH RESUME clause, Migration
Workbench converts each returning parameter to an Oracle OUT parameter. An
example of a procedure returning multiple singleton values and the converted
equivalent in Oracle is as follows:

Informix Dynamic Server SPL

CREATE PROCEDURE "root".ocsa_list_total(sp_order_id INT)
 RETURNING DECIMAL(9,4), DECIMAL(9,4),
 DECIMAL(9,4), DECIMAL(10,4);
/* Other statements, one of which is of type
 RETURN <decimal>, <decimal>, <decimal>, <decimal>; */

Oracle PL/SQL

CREATE OR REPLACE PROCEDURE root.ocsa_list_total(
sp_order_id_IN NUMBER,
/* SPCONV-MSG:(RETURNING) Informix RETURNING clause parameters converted to
Oracle OUT parameters. */
OMWB_outParameter1 OUT NUMBER,

Stored Procedures

3-12 Reference Guide for Informix Dynamic Server 7.3 Migrations

OMWB_outParameter2 OUT NUMBER,
OMWB_outParameter3 OUT NUMBER,
OMWB_outParameter4 OUT NUMBER) AS

Informix Dynamic Server Procedures Containing a WITH RESUME Clause The method
used to pass sets of results back to the client in Oracle differs considerably from the
one used in Informix Dynamic Server.

Oracle stored procedures are only ever invoked once in order to return multiple sets
of results and therefore PL/SQL does not contain any such WITH RESUME construct

Multiple sets of data are returned to the calling environment through the use of OUT
or IN OUT parameters of type REF CURSOR. This cursor variable is similar to the
user-defined record type and array type. The cursor stored in the cursor variable is
like any other cursor. It is a reference to a work area associated with a multi-row
query. It denotes both the set of rows and a current row in that set. The cursor
referred to in the cursor variable can be opened, fetched from, and closed just like
any other cursor. Since it is a PL/SQL variable, it can be passed into and out of
procedures like any other PL/SQL variable.

If the Informix Dynamic Server stored procedure contains a WITH RESUME clause,
the procedure is classed as a cursory procedure, which is a procedure that returns a
result set. Each parameter defined within the procedures returning section is then
used to construct a global temporary table uniquely associated with the procedure.
This global temporary table is then used to store the procedures interim results.

The following Informix Dynamic Server code causes the converter to create a
temporary table named get_slistTable. This table is then used to store the
interim results of the procedure.

Informix Dynamic Server SPL

CREATE PROCEDURE "root".get_slist(
v_uid like PHPUser.user_id,
v_listid like ShoppingList.list_id)
returning integer, char(75), char(255);

/* Other stored procedure statements one of which is of type
 RETURN <integer>, <char>, <char> WITH RESUME
*/

END PROCEDURE;

Oracle PL/SQL temp table Definition

Stored Procedures

Triggers, Packages, and Stored Procedures 3-13

CREATE GLOBAL TEMPORARY TABLE get_slistTable(
/* The first column ’col00’ is used to create an ordered
 SELECT statement when populating the REF CURSOR
 OUT parameter to the procedure */
col00 NUMBER,
col01 NUMBER,
col02 CHAR(75),
col03 CHAR(255))
ON COMMIT DELETE ROWS;

The converter then adds an OUT parameter whose type is derived from a packaged
WEAK REF CURSOR type to the PL/SQL stored procedure parameter list. For
example:

CREATE OR REPLACE PROCEDURE root.get_slist(
v_uid_IN informix.PHPUser.user_id%TYPE,
v_listid_IN
informix.ShoppingList.list_id%TYPE,
/* The following cursor is added to the procedure by the converter */
OMWB_ret_cv OUT
AS

Using a cursor variable in this way in PL/SQL emulates the Informix Dynamic
Server cursory procedure. The main difference from Informix Dynamic Server SPL
is that the PL/SQL procedure is invoked only once and it returns a cursor variable
containing the complete set of results.

For more information, see the following:

■ Converting RETURN WITH RESUME Statements

■ FOREACH LOOP Constructs

DOCUMENT Clause
The DOCUMENT clause enables a synopsis or description of the Informix Dynamic
Server stored procedure to be detailed. The text contained after the DOCUMENT
keyword is inserted into the Informix Dynamic Server sysprocbody system
catalogue during the procedures compilation. This text can then be queried by the
users of the stored procedure. Oracle PL/SQL has no such DOCUMENT clause.

The Migration Workbench converts the Informix Dynamic Server DOCUMENT clause
to a multi-line comment within the PL/SQL stored procedure. This is demonstrated
by the following example:

Informix Dynamic Server SPL

Stored Procedures

3-14 Reference Guide for Informix Dynamic Server 7.3 Migrations

create procedure "informix".min_two(first integer, scd integer)
returning integer;
 if (first < scd) then
 return first;
 else
 return scd;
 end if;
end procedure
DOCUMENT ’The following procedure accepts two INTEGER values and returns the
smallest of the two.’;

Oracle PL/SQL

CREATE OR REPLACE FUNCTION informix.min_two(
 first_IN NUMBER,
 scd_IN NUMBER) RETURN NUMBER AS

/*
’The following procedure accepts two INTEGER values and returns the smallest of
the two.’
*/

first NUMBER(10) := first_IN;
scd NUMBER(10) := scd_IN;
ItoO_selcnt NUMBER;
ItoO_rowcnt NUMBER;

BEGIN
 IF (first < scd) THEN
 RETURN first;
 ELSE
 RETURN scd;
 END IF;
END min_two;

GLOBAL Variable Declarations
Informix Dynamic Server enables the definition of GLOBAL variables by using the
GLOBAL keyword within the variable declaration. For example:

Informix Dynamic Server SPL

DEFINE GLOBAL gl_var INT;

Stored Procedures

Triggers, Packages, and Stored Procedures 3-15

This specifies that the GLOBAL variable gl_var is available to other procedures
running within the same session. The first declaration of the GLOBAL variable
establishes it within the Informix Dynamic Server global environment. Subsequent
definitions of the same GLOBAL variable, within other procedures, are ignored.

The first procedure to define the GLOBAL variable can also set its initial value
through the use of the DEFAULT clause. For example:

Informix Dynamic Server SPL

DEFINE GLOBAL gl_var INT DEFAULT 20;

If another stored procedure has already defined the GLOBAL variable within the
global environment, the DEFAULT clause is ignored.

Therefore, if two procedures define the same GLOBAL variable with different
DEFAULT values, the procedure executed first within the current session is the one
that sets the GLOBAL variable’s initial value.

Informix Dynamic Server GLOBAL variables can be emulated in Oracle by defining
the variables within a package.

Variables defined within a package specification are available to the users of the
package. The package specification emulates the per-session Informix Dynamic
Server global environment.

Two Informix Dynamic Server procedures and the converted equivalent in Oracle
are as follows.

Informix Dynamic Server SPL

CREATE PROCEDURE proc01()
DEFINE GLOBAL gl_var INT DEFAULT 10;
LET gl_var = gl_var + 1;

END PROCEDURE;

CREATE PROCEDURE proc02()
DEFINE GLOBAL gl_var INT DEFAULT 20;
LET gl_var = gl_var - 1;

END PROCEDURE;

Oracle PL/SQL Package

CREATE OR REPLACE PACKAGE informix.globalPkg AS
 gl_var NUMBER;
END globalPkg;

Stored Procedures

3-16 Reference Guide for Informix Dynamic Server 7.3 Migrations

Oracle PL/SQL

CREATE OR REPLACE PROCEDURE informix.proc01 AS
BEGIN
 IF(globalPkg.gl_var IS NULL) THEN
 globalPkg.gl_var := 10; /* Only set default if value is NULL */
 ENDIF;
 globalPkg.gl_var := globalPkg.gl_var +1;
END proc01;

CREATE OR REPLACE PROCEDURE informix.proc02 AS
BEGIN
 IF(globalPkg.gl_var IS NULL) THEN
 globalPkg.gl_var := 20; /* Only set default if value is NULL */
 ENDIF;
 globalPkg.gl_var := globalPkg.gl_var -5;
END proc02;

In the previous example, if proc01 is executed first, the procedure checks if the
value of the globalPkg.gl_out packaged variable is NULL. As this is the first
time the package has been initialized, the variable contains a NULL value, therefore
proc01 sets the value of the globalPkg.gl_var variable to 10 before adding 1 to
the value within the statement block. If proc02 is then executed, the procedure
again checks to see if the globalPkg.gl_var packaged variable has a NULL value.
As proc01 has previously set this variable (initially to 10 and then to 11), the
boolean IF statement condition within proc02 IF(globalPkg.gl_var IS
NULL) does not return true and the value of 20 is not set. proc02 then subtracts 5
from the current value of the variable, setting its final value to 6.

If proc02 is executed first, it checks if the value of the globalPkg.gl_out
variable is NULL. As this is the first time the package has been initialized, the
variable contains a NULL value, therefore proc02 sets the value of the
globalPkg.gl_out variable to 20 before subtracting 5 from the value within the
statement block. If proc01 is then executed, the procedure again checks to see if the
globalPkg.gl_out variable has a NULL value. As proc02 has previously set this
variable (initially to 20 and then to 15), the boolean IF statement condition
IF(INFORMIX.gl_var IS NULL) returns false, therefore, the value of 10 is not
set. proc01 then adds 1 to the current value of the variable, setting its final value to
16.

Both the converted procedures reflect the same functionality found within the
original Informix Dynamic Server procedures.

Stored Procedures

Triggers, Packages, and Stored Procedures 3-17

LIKE and MATCHES Comparison Conditions
Informix Dynamic Server uses the LIKE and MATCHES comparison conditions to
test for matching character strings. Oracle has only one of these pattern-matching
constructs, the LIKE clause. The Informix Dynamic Server and Oracle LIKE clauses
are functionally identical and so no conversion of the original pattern is required.

The Informix Dynamic Server specific MATCHES clause works in a similar way to
the LIKE clause. The only difference between the two types of clause is in the range
of pattern-matching wildcard characters available for use. A comparison of the
Informix Dynamic Server MATCHES and Oracle LIKE wildcard operators are
displayed in tables Table 3–2 and Table 3–3.

If the [..] pattern matching operator is not used within the original pattern, the
Migration Workbench takes one of the following actions when it encounters a
MATCHES clause:

■ The MATCHES keyword is converted to the Oracle LIKE keyword.

■ All ? characters within the original pattern are converted to functionally
equivalent _ characters.

■ All * characters within the original pattern are converted to functionally
equivalent % characters.

Table 3–2 Informix Dynamic Server SPL MATCHES Clause Wildcards

Wildcard Description

* Matches 0 or more characters

? Matches any single character.

\ Removes the special significance of the next character
used.

[..] Matches any of the enclosed characters.

^ When used within the [..] wildcard operator, it matches
any character not specified within the [..] character range

Table 3–3 Oracle PL/SQL LIKE Clause Wildcards

Wildcard Description

% Matches 0 or more characters.

_ Matches any single character.

Stored Procedures

3-18 Reference Guide for Informix Dynamic Server 7.3 Migrations

If the [..] pattern matching operator is used within the original pattern and a
character range is specified, the Migration Workbench converts each MATCHES
clause that it encounters to a BETWEEN clause.

If the [..] pattern matching operator is used within the original pattern and no
character range has been specified, the Migration Workbench converts each
MATCHES clause it encounters to an Oracle IN clause.

The following table presents example Informix Dynamic Server MATCHES clauses
and the converted Oracle equivalent:

If the Migration Workbench can not fully convert an Informix Dynamic Server
MATCHES clause, it takes the following actions:

1. Generates a warning within the converted PL/SQL stored procedure code.

2. Converts the Informix Dynamic Server MATCHES keyword to the PL/SQL LIKE
keyword.

3. The original pattern remains unchanged.

It is therefore necessary for you to manually convert any search pattern not handled
by the Migration Workbench.

FOR LOOP Constructs
Informix Dynamic Server allows a number of FOR LOOP constructs that Oracle
does not support. The most difficult of these to convert to Oracle is a FOR LOOP
that mixes RANGE and EXPRESSION LISTs within the same iteration definition. In
PL/SQL, it is necessary to split each defined iteration range into its own unique FOR
LOOP or functionally equivalent PL/SQL code block.

In the following example, the converter splits the original Informix Dynamic Server
FOR LOOP construct into four functionally equivalent PL/SQL code blocks. One

 MATCHES Statements Conversion Results

MATCHES ’[A-Z]’ BETWEEN ’A’ AND ’Z’

MATCHES '[abcdefg]'' IN ('a','b','c','d','e','f','g')

MATCHES '*tennis*' LIKE '%tennis%'

MATCHES '?ennifer*' LIKE '_ennifer%'

MATCHES '[^qwerty]' NOT IN ('q','w','e','r','t','y')

MATCHES '[^a-z] NOT BETWEEN 'a' AND 'z'

Stored Procedures

Triggers, Packages, and Stored Procedures 3-19

PL/SQL code block for each iteration range defined within the Informix Dynamic
Server FOR LOOP construct. An example of an Informix Dynamic Server FOR LOOP
construct and the converted equivalent in Oracle is as follows:

Informix Dynamic Server SPL

CREATE PROCEDURE forloop_example()
DEFINE iterator_var, j INT;
LET j = 10;
FOR iterator_var IN (

/* A range definition */
1 TO 20 STEP 2,
 /* a SELECT statement */
(SELECT aval from atable where avalid = j),
/* An expression range definition */
j+10 TO j-20,
/* A singleton value */
1000)
 INSERT INTO testtable VALUES(iterator_var);

END FOR;
END PROCEDURE;

Oracle PL/SQL

CREATE OR REPLACE PROCEDURE forloop_example AS
iterator_var NUMBER(10);
j NUMBER(10);
ItoO_selcnt NUMBER;
ItoO_rowcnt NUMBER;

CURSOR cursor1 IS
SELECT aval
FROM atable
WHERE avalid = j;

BEGIN
j := 10;
/* A range definition */
iterator_var := 1;

LOOP
INSERT INTO testtable
VALUES(iterator_var);
iterator_var := iterator_var + 2;
EXIT WHEN (iterator_var >= 20);

END LOOP;
/* A SELECT statement */
FOR cursor1Record IN cursor1 LOOP

Stored Procedures

3-20 Reference Guide for Informix Dynamic Server 7.3 Migrations

iterator_var := cursor1Record.aval;
INSERT INTO testtable
VALUES(iterator_var);

END LOOP;
/* An expression range definition */
FOR iterator_var IN j + 10 .. j - 20 LOOP

INSERT INTO testtable
VALUES(iterator_var);

END LOOP;
/* A singleton value */
iterator_var := 1000;
INSERT INTO testtable
VALUES(iterator_var);
END forloop_example;

FOREACH LOOP Constructs
An Informix Dynamic Server FOREACH LOOP is the equivalent of a PL/SQL cursor.
When an Informix Dynamic Server FOREACH statement executes, the database
server:

1. Declares and implicitly opens a cursor.

2. Obtains the first row from the query contained within the FOREACH LOOP or it
obtains the first set of values returned by the procedure.

3. Assigns each variable in the variable list the value of the corresponding value
from the active set that the SELECT statement or called cursory procedure
returns.

4. Executes the statement block.

5. Fetches the next row from the SELECT statement or procedure on each iteration
and repeats steps 3, 4, and 5.

6. Terminates the loop when it finds no more rows that satisfy the SELECT
statement or when no more data is returned from the procedure. The implicit
cursor is closed when the loop terminates.

Within Informix Dynamic Server, FOREACH statements can be one of following
types:

■ FOREACH .. SELECT .. INTO Statement

■ FOREACH CURSOR Statement

■ FOREACH Execute Procedure Statement

Stored Procedures

Triggers, Packages, and Stored Procedures 3-21

 FOREACH .. SELECT .. INTO Statement The Migration Workbench emulates
FOREACH .. SELECT .. INTO statement in PL/SQL by converting the Informix
Dynamic Server FOR EACH SELECT statement into a cursor definition. Then it
iterates over the cursor contents, assigning the values within the current cursor row
to the original list of variables defined within the SELECT INTO statement.
Migration Workbench repeats this process until no more data is found. An example
of a FOREACH..SELECT..INTO statement and the converted equivalent in Oracle
is as follows:

Informix Dynamic Server SPL

DECLARE name VARCHAR(30);
DECLARE address VARCHAR(255);
FOREACH SELECT ename, eaddress INTO name, address FROM emp
 INSERT INTO mailing_list VALUES(name, address);
END FOREACH;

Oracle PL/SQL

/* Declare original variables */
name VARCHAR(30);
address VARCHAR(255);

/* Declare a cursor using the original SELECT statement
 Notice how the converter has now named the cursor within
 PL/SQL */
CURSOR cursor1 IS
SELECT ename, eaddress
FROM emp;
BEGIN
/* Open the previously declared (now) named cursor */
OPEN cursor1;
/* Iterate over the cursor contents */
LOOP

/* Fetch the values of the cursor’s current row
 into the original variables */
FETCH cursor1
INTO name,
 address;
/* Exit the LOOP when no more data found */
EXIT WHEN cursor1%NOTFOUND;
/* The original statement block */
INSERT INTO mailing_list
VALUES(name,
 address);

Stored Procedures

3-22 Reference Guide for Informix Dynamic Server 7.3 Migrations

END LOOP;
/* Close the cursor */
CLOSE cursor1;
END;

 FOREACH CURSOR Statement An Informix Dynamic Server FOREACH statement can
contain an explicitly named cursor. This enables the use of the WHERE CURRENT
OF clause within the statement block contained within the FOREACH construct. The
Informix Dynamic Server FOREACH cursor statement is converted to PL/SQL in a
similar way to the FOREACH.. SELECT .. INTO statement. The named cursor is
defined within the PL/SQL procedure, opened, and the contents iterated over until
no more data is found. A FOREACH CURSOR statement and the converted
equivalent in Oracle is as follows:

Informix Dynamic Server SPL

CREATE PROCEDURE "informix".update_list
DECLARE name VARCHAR(30);
DECLARE address VARCHAR(255);
FOREACH namedCursor FOR
 SELECT ename, eaddress INTO name, address FROM emp
 INSERT INTO mailing_list VALUES(name, address);
 IF(ename="McAllister") THEN
 UPDATE emp SET sal = sal + 2000 WHERE CURRENT OF namedCursor;
 CONTINUE FOREACH;
 END IF
 UPDATE emp SET sal = sal + 1000 WHERE CURRENT OF namedCursor;
END FOREACH
END PROCEDURE

Oracle PL/SQL

CREATE OR REPLACE PROCEDURE "informix".update_list AS

name VARCHAR2(30);
address VARCHAR2(255);
ItoO_selcnt NUMBER;
ItoO_rowcnt NUMBER;

CURSOR namedCursor IS
SELECT ename,
 eaddress
FROM emp FOR UPDATE;

BEGIN

Stored Procedures

Triggers, Packages, and Stored Procedures 3-23

OPEN namedCursor;
LOOP

FETCH namedCursor
INTO name,

address;
EXIT WHEN namedCursor%NOTFOUND;
INSERT INTO mailing_list
VALUES(name,
 address);
IF (ename = ’McAllister’) THEN

UPDATE emp
 SET sal = sal + 2000
 WHERE CURRENT OF namedCursor;
 /* SPCONV-MSG:(CONTINUE FOREACH) Statement emulated using GOTO
 statement and LABEL definition. */
 GOTO Continue_ForEach1;

 END IF;
UPDATE emp
SET sal = sal + 1000
WHERE CURRENT OF namedCursor;
<<Continue_ForEach1>>
NULL;

END LOOP;
CLOSE namedCursor;
END update_list;

For more information on the translation of Informix Dynamic Server CONTINUE
statements, see Converting CONTINUE Statements.

FOREACH Execute Procedure Statement If a FOREACH execute statement is encountered
by the convertor, it assumes the procedure being called is a cursory procedure. As
cursory procedures are automatically converted to utilize PL/SQL REF CURSORS,
the procedure being called always return a REF CURSOR as it’s last parameter. This
cursor variable contains the full set of results returned by the called stored
procedures.

The Informix Dynamic Server FOREACH EXECUTE statement can be emulated by
iterating over the contents of the cursor variable returned by the converted cursory
procedure.

The following shows an example of the Informix Dynamic Server FOREACH
EXECUTE statement repeatedly executing a cursory procedure bar() until no more
results are returned and the converted equivalent in Oracle:

Informix Dynamic Server SPL

Stored Procedures

3-24 Reference Guide for Informix Dynamic Server 7.3 Migrations

FOREACH EXECUTE PROCEDURE bar(100,200) INTO i
 INSERT INTO tab2 VALUES(i);
END FOREACH

Oracle PL/SQL

/* DEFINE a cursor variable of the correct type */
OMWB_cv1 OMWB_emulation.globalPkg.RCT1;

/* Cursor variable added to the call to procedure bar() */
bar(100,200,OMWB_cv1);
/* Iterate over the cursor contents */
LOOP
 /* FETCH the contents into the original variable */
 FETCH OMWB_cv1
 INTO i;
 /* EXIT the LOOP when no more data found */
 EXIT WHEN OMWB_cv1%NOTFOUND;
 /* execute statement block */
 INSERT INTO tab2 VALUES(i);
END LOOP;

Compound LET Statements
Informix Dynamic Server uses the LET statement to assign values to variables.
PL/SQL only allows simple assignments, which assign a single value to a single
variable. Informix Dynamic Server SPL allows compound assignments, which
assign values to two or more variables within the same statement.

In order to convert compound LET statements into functionally equivalent PL/SQL
code, the converter splits the Informix Dynamic Server compound assignment
statement into logically equivalent simple assignment statements.

An example of both Informix Dynamic Server simple assignments and compound
assignments and the converted equivalent in Oracle are as follows:

Informix Dynamic Server SPL

/* Simple assignment */
LET a = 10;
/* Compound assignment */
LET b,c = 20,30;

Oracle PL/SQL

/* Simple assignment conversion*/
a := 10;

Stored Procedures

Triggers, Packages, and Stored Procedures 3-25

/* Compound assignment conversion*/
b := 20;
c := 30;

The two original Informix Dynamic Server LET statements have been converted
into three logically equivalent PL/SQL statements. One PL/SQL statement for
every variable used within both Informix Dynamic Server LET statements. Informix
Dynamic Server also enables SELECT statements and PROCEDURE calls to assign
values to variables within a LET statement.

Using SELECT Statements in LET Assignment Statements Informix Dynamic Server
enables the use of a SELECT statement as part of the LET statement assignment list.

The following shows an example of an Informix Dynamic Server SELECT
statement as part of a LET statement assignment list and the converted equivalent
in PL/SQL:

Informix Dynamic Server SPL

LET enum = (SELECT empnum FROM emp WHERE empname = "McAllister");

Oracle PL/SQL

SELECT empnum INTO enum FROM emp WHERE empname = ’McAllister’;

Calling Procedures in LET Assignment Statements Informix Dynamic Server enables the
use of a procedure call within a LET statement. The procedure may return more
than one value into a list of variables.

An example of an Informix Dynamic Server procedure call that returns three values
into the variables a, b, and c and the converted equivalent in Oracle is as follows:

Informix Dynamic Server SPL

LET a,b,c = someProc(100,200);

Oracle PL/SQL

someProc(100, 200, OMWB_outparameter1 => a, OMWB_outparameter2 => b, OMWB_
outparameter3 => c);

The someProc procedure is converted to pass these values back as Oracle OUT
parameters. These OUT parameters are explicitly named:

OMWB_outparamater<number>

Stored Procedures

3-26 Reference Guide for Informix Dynamic Server 7.3 Migrations

Thus, if the original Informix Dynamic Server stored procedure returned n values,
the converter adds n OUT parameters to the converted stored procedure,
sequentially named OMWB_outparameter1 .. OMWB_outparametern.

An example of an Informix Dynamic Server LET statement which assigns a value to
only one variable and the converted equivalent in Oracle is as follows:

Informix Dynamic Server SPL

LET a = anotherProc(200);

In the above example, the converter assumes that the procedure being called has
been converted to a function within PL/SQL and convert the statement to read:

Oracle PL/SQL

a := anotherProc(200);

For more information on named and positional parameter passing notation, see the
following:

■ PL/SQL User’s Guide and Reference Release 1 (9.0.1)

■ Parameter Passing

Converting CONTINUE Statements
An Informix Dynamic Server CONTINUE statement is used to start the next iteration
of the innermost FOR, FOREACH or WHILE loop. When a CONTINUE statement is
encountered, the rest of the statements contained within the innermost LOOP of the
innermost TYPE are skipped and execution continues at the next iteration of the
LOOP.

Oracle PL/SQL does not contain a CONTINUE statement so Migration Workbench
emulates the statement by using a PL/SQL LABEL definition and a code branching
GOTO statement. This label is defined as the penultimate statement within the
converted looping constructs statement block. As PL/SQL requires the statement
directly following a label definition to be executable, Migration Workbench adds a
NULL statement directly after the inserted label definition. The END LOOP PL/SQL
statement is declarative, not executable, whereas, the NULL statement within
PL/SQL is executable.

An example of an Informix Dynamic Server CONTINUE statement and its converted
equivalent in Oracle is as follows:

Informix Dynamic Server SPL

CREATE PROCEDURE continue_test()

Stored Procedures

Triggers, Packages, and Stored Procedures 3-27

indx INT;
FOR indx IN 1 TO 10 LOOP
 IF(indx = 5) THEN
 CONTINUE FOR;
 END IF
 INSERT INTO tab VALUES(indx) ;
END FOR

Oracle PL/SQL

CREATE OR REPLACE PROCEDURE continue_test AS
indx INTEGER;
BEGIN
 FOR indx IN 1 .. 10 LOOP
 IF(indx = 5) THEN
 /* The original Informix CONTINUE statement has been
 replaced by a PL/SQL GOTO statement*/
 GOTO FOR_LABEL1;
 END IF
 /* Original statement block */
 INSERT INTO tab VALUES(indx) ;
 /* The following label definition are placed at the end of the
 LOOP constructs statement block*/
 <<FOR_LABEL1>>
 /* Label definitions have to be followed by an executable
 statement. As PL/SQL treats the END LOOP statement as
 being declarative, a NULL statement is placed after
 the label definition. NULL statements within PL/SQL are
 classed as being executable */
 NULL;
 END LOOP;
END;

Converting RETURN WITH RESUME Statements
Informix Dynamic Server enables procedures to return multiple sets of results by
the inclusion of the WITH RESUME keywords after the RETURN statement. An
Informix Dynamic Server procedure of this type is called a cursory procedure.

The result set returned by an Informix Dynamic Server cursory procedure is
emulated within Oracle by adding a REF CURSOR variable to the parameter list of
the converted PL/SQL procedure.

This cursor variable stores the complete set of results returned from the stored
procedure.

Stored Procedures

3-28 Reference Guide for Informix Dynamic Server 7.3 Migrations

An Oracle temporary table is used to return an identical set of results in an identical
order within the PL/SQL procedure as would have been returned in the original
Informix Dynamic Server procedure. This temporary table stores the interim results
in an ordered sequence.

In the following Informix Dynamic Server example, the procedure returns every
continuous integer value between 1 and 100, except the values between 49 and 61,
in ascending order to the parent procedure or calling environment.

In order to successfully emulate the order in which these results are returned in
Informix Dynamic Server, the Migration Workbench creates a GLOBAL TEMPORARY
TABLE specifically to store the interim procedure results. The Migration Workbench
then converts the Informix Dynamic Server RETURN WITH RESUME statement to
INSERT results into this temporary table. The Migration Workbench then uses the
temporary table to populate the cursor returned to the calling environment.

An example of a RETURN WITH RESUME statement and the converted equivalent in
Oracle is as follows:

Informix Dynamic Server SPL

CREATE PROCEDURE resume_test() RETURNING NUMBER;
indx INT;
FOR indx = 1 to 100 LOOP
 IF(indx > 49 and indx < 61) THEN
 CONTINUE FOR;
 END IF
 RETURN indx WITH RESUME;
END FOR;
END resume_test;

Oracle PL/SQL temporary table DDL statement

CREATE GLOBAL TEMPORARY TABLE resume_testTable(
/* The first column ’col00’ is used to create an ordered
 SELECT statement when populating the REF CURSOR
 OUT parameter to the procedure */
col00 NUMBER,
col01 NUMBER)
ON COMMIT DELETE ROWS;

Oracle PL/SQL Converted Procedure

CREATE OR REPLACE PROCEDURE resume_test(
/* Define the cursor used to pass back the complete list
 of results to the calling environment as an OUT
 parameter */

Stored Procedures

Triggers, Packages, and Stored Procedures 3-29

OMWB_ret_cv OUT OMWB_emulation.globalPkg.RCT1)
AS
indx INTEGER;
/* A counter is automatically added by the converter.
 This is used to INSERT a sequential set of results
 into the GLOBAL TEMPORARY TABLE resume_testTable. */
OMWB_resume_testSeq INTEGER := 0;
BEGIN
/* Clear the temporary table of old results at the start
 of the procedure */
DELETE FROM resume_testTable;
FOR indx IN 1 .. 100 LOOP
 IF(indx > 49 and indx < 61) THEN
 /* CONTINUE statement emulated by using a GOTO
 statement and LABEL definition */
 GOTO FOR_LABEL1;
 END IF;
 /* Return with resume statement converted to INSERT the
 return data into this procedures GLOBAL TEMPORARY
 TABLE.
 The OMWB_resume_testSeq variable is used in order to
 create a continuous sequence of values when ordering
 the results for insertion into the return cursor
 OMWB_ret_cv */
 INSERT INTO resume_testTable
 VALUES(OMWB_resume_testSeq,
 indx);
 /* Now we increment the sequence variable ready for the
 next converted RETURN WITH RESUME statement */
 OMWB_resume_testSeq := OMWB_resume_testSeq + 1;
 /* Label definition used by the GOTO statement above */
 <<FOR_LABEL1>>
 NULL;
END LOOP;
/* The temporary table is then used to populate the
 REF CURSOR we return to the calling environment.
 The first column is used to return the results from
 the select statement in an ordered fashion and is
 never made part of the return data */
 OPEN OMWB_ret_cv FOR
 SELECT col01
 FROM resume_testTable
 ORDER BY col00;
END resume_test;

Stored Procedures

3-30 Reference Guide for Informix Dynamic Server 7.3 Migrations

When the PL/SQL procedure in this example is called, it deletes past results from
the associated temporary table of the procedure using the DELETE FROM syntax.
For example:

Oracle PL/SQL

DELETE FROM resume_testTable;

The table is now void of results and ready for use within the procedure. The
Informix Dynamic Server RETURN WITH RESUME statement is then converted to
INSERT results into this temporary table. An INTEGER variable called:

OMWB_<procedure name>Seq

This is automatically added to the variable declaration section within the stored
procedure. This variable is used to insert an ordered sequence number into the first
column of the resume_testTable table.

To populate the cursor variable designed to return the results to the calling
environment, the converter then adds an OPEN CURSOR .. FOR .. SELECT
statement as the last executable line of the procedure. At this stage of the
procedures execution, the temporary table is populated with a full set of results.

The first column of the temporary table is used within the ORDER BY section of the
last SELECT statement to populate the cursor rows with the ordered temporary
table data. The procedure completes execution and the populated cursor is returned
to the calling environment.

Built-in Functions
Some built-in functions within Informix Dynamic Server are not available in Oracle.
These functions are emulated within Oracle using the utilities package.
Migration Workbench automatically creates this package within the destination
Oracle database. It contains a suite of PL/SQL stored functions and procedures that
mimic the functionality of the following Informix Dynamic Server built-in
procedures:

■ HEX

■ DAY

■ MONTH

■ WEEKDAY

■ YEAR

Stored Procedures

Triggers, Packages, and Stored Procedures 3-31

■ MDY

■ TRACE

The Migration Workbench creates a new user within the destination Oracle
database. The user name is OMWB_emulation and the password is oracle. This
OMWB_emulation users schema stores the utilities package. To enable access to this
package to all database users, the Migration Workbench executes the following
statement:

Oracle PL/SQL

GRANT EXECUTE ON OMWB_emulation.utilities TO PUBLIC;

Every time the stored procedure converter encounters a reference to one of the
unsupported built-in functions within the Informix Dynamic Server SPL code, it
generates a reference to the equivalent emulation function within the OMWB_
emulation users utilities package. An example of a SPL statement
converted to reference the OMWB_emulation.utilities.HEX emulation
function within Oracle is as follows:

Informix Dynamic Server SPL

LET a = HEX(255);

Oracle PL/SQL

a := OMWB_emulation.utilities.HEX(255);

With the exception of the Informix Dynamic Server TRACE function, all emulation
functions have the same names as their Informix Dynamic Server counterpart. The
TRACE statement is converted to reference a procedure named DEBUG within the
OMWB_emulation.utilities package.

Converting the SYSTEM Statement
The SYSTEM statement enables operating system commands to be executed from
within an Informix Dynamic Server stored procedure. For example:

Informix Dynamic Server SPL

SYSTEM ‘ ls -al /tmp/salary_upgrades > /tmp/salary_upgrades/totals.out’;

Caution: It is imperative that you test the utilities package
and all functions and procedures within before implementation in a
production environment.

Stored Procedures

3-32 Reference Guide for Informix Dynamic Server 7.3 Migrations

Oracle does not have any such SYSTEM statement so it is necessary to emulate the
Informix Dynamic Server SYSTEM functionality by using an Oracle external
procedure. This external procedure is written in C and compiled into an executable.
A stored procedure named SHELL is then associated with a call to the executable.

In essence, a call to the associated PL/SQL stored procedure actually invokes the
compiled executable resident on the file system. This binary executable then
performs the operating system command passed into the SHELL stored procedure.
You need to manually compile this executable before emulation of the Informix
Dynamic Server SYSTEM command can commence.

The Migration Workbench creates a placeholder PL/SQL stored procedure named
SHELL within the OMWB_Emulation users schema. It then converts each Informix
Dynamic Server SYSTEM statement to reference this placeholder procedure. For
example, the previous SYSTEM statement is converted into the following PL/SQL
code:

Oracle PL/SQL

OMWB_Emulation.SHELL(‘ ls -al /tmp/salary_upgrades >
/tmp/salary_upgrades/totals.out’);

This placeholder procedure currently contains no executable code, it is a stub
created within the destination database so that any procedure containing references
to it does not fail compilation.

Oracle invalidates a stored procedure if any other stored procedure it references is
itself invalid. Therefore, the stub procedure is required until the set-up tasks have
been performed. If the stub procedure is invoked prior to the set-up tasks being
performed, the string containing the operating system command is not executed.

Set-Up Tasks for Configuring the SHELL Procedure In order to configure the SHELL
procedure so that it executes the operating system command, you should first
perform the following set-up tasks on the destination server:

1. Download and install Borland’s free C++ compiler from the Web site at:

http://www.borland.com

2. Create the file shell.c:

 ==============begin shell.c=================

Note: The following set-up tasks are specific to Windows NT.

http://www.borland.com

Stored Procedures

Triggers, Packages, and Stored Procedures 3-33

 #include <windows.h>
 #include <stdio.h>
 #include <stdlib.h>

 void __declspec(dllexport) sh(char *);
 void sh(char *cmd)
 {
 system(cmd);
 }

 ============end shell.c======================

3. Create a test program shell_run.c:

 =============begin shell_run.c===============

 void __declspec(dllimport)ch (char*);

 int main(int argc, char *argv[])
 {
 sh(argv[1]);
 return 0;
 }

 ============end shell_run.c==================

4. Create and run shell_compile.bat that compiles and link shell.c and shell_
run_c:

 ============begin shell_compile.bat =========

 bcc32 -WD shell.c
 implib shell.lib shell.dll
 bcc32 shell_run.c shell.lib

 ============end shell_compile.bat ===========

5. Test shell.dll by issuing the following command on the DOS prompt:

 C:\> shell_run "any operating system command"

6. Configure the destination databases listener.ora and tnsnames.ora files
for external procedures.

For the configuration of external procedures, you need to define a
tnsnames.ora entry: extproc_connection_data.

Stored Procedures

3-34 Reference Guide for Informix Dynamic Server 7.3 Migrations

When the server references an external-procedure, it looks into the
tnsnames.ora file to find the listener address. The alias used is the
hard-coded extproc_connection_data value. This alias contains the
address of the listener process and the SID for the extproc agent. With this info,
the server contacts the listener and the listener spawns the new extproc-process.

 Add the following entry to the tnsnames.ora file:

 EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))
)
 (CONNECT_DATA =
 (SID = PLSExtProc_817)
 (PRESENTATION = RO)
)
)

 Configure the listener.ora file, add an SID_DESC entry similar to the

 following:

 SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc_817)
 (ORACLE_HOME = <ORACLE_HOME>)
 (PROGRAM = extproc)
)
)

7. Create the external library and replace the stub OMWB_Emulation.SHELL
wrapper procedure using SQL*Plus:

 SQL> create library shell_lib is ’shell.dll’;
 SQL> create or replace procedure OMWB_emulation.SHELL (
 cmd IN varchar2)
 as external
 library shell_lib
 name "_sh"
 language C
 parameters (
 cmd string);
 /

Stored Procedures

Triggers, Packages, and Stored Procedures 3-35

8. Test the external library from the SQL*Plus command line:

 SQL> exec shell(’any operating system command’);

The external procedure will execute all operating system commands using Oracle
permissions. For example, the following statement creates the hello.txt file within
the /home/myname directory:

OMWB_emulation.SHELL(’echo "Hello" > /home/myname/hello.txt’);

The hello.txt file is owned by Oracle. To reassign the file to another user, you should
alter the call to the SHELL procedure. For example:

OMWB_emulation.SHELL(’echo "Hello" > /home/myname/hello.txt; chown myname
hello.txt’);

Converting TRACE Statements
The Informix Dynamic Server TRACE statement is used to control the generation of
debugging output. The TRACE statement sends output to the file specified by the
SET DEBUG FILE statement. Tracing within Informix Dynamic Server prints the
current values of the following items:

■ Variables

■ Procedure arguments

■ Return values

■ SQL error codes

■ ISAM error codes

The Informix Dynamic Server TRACE statement can also be used to print
expressions to the debug file using the syntax: TRACE expression. For example:

Informix Dynamic Server SPL

TRACE "This is a trace statement and is written out to the debug log";

All statements are traced within Informix Dynamic Server by the issue of the TRACE
ON command. This implies that all statements and procedure calls are traced, such
as the value of all variables before they are used and the return values of procedure
calls. The Informix Dynamic Server statement TRACE OFF is used in order to turn
tracing off. The TRACE <expression> statement can still be used even if the
TRACE OFF statement has been issued.

Stored Procedures

3-36 Reference Guide for Informix Dynamic Server 7.3 Migrations

The Migration Workbench only supports the conversion of the Informix Dynamic
Server TRACE <expression> statement. All other TRACE statements cause the
converter to flag a warning and output the original TRACE statement within the
PL/SQL code as a single line comment along with an accompanying executable
NULL statement. An example of an unsupported TRACE statement and the
converted equivalent in Oracle is as follows:

Informix Dynamic Server SPL

TRACE PROCEDURE;

Oracle PL/SQL

/* SPCONV-WRN:(TRACE PROCEDURE) Statement not converted. Manual conversion
required. */
--TRACE PROCEDURE;
NULL;

The TRACE <expression> statement is emulated using the DEBUG stored
procedure resident within the utilities package. The DEBUG stored procedure is
generated automatically by the Migration Workbench.

The DEBUG stored procedure enables the logging of debug messages to the console
window using the DBMS_OUTPUT package, a table within the database or, using the
UTL_FILE package, a flat file stored locally on the file system. The supplied DEBUG
stored procedure logs messages to a table called debug_table by default.

The Migration Workbench converts all Informix Dynamic Server TRACE
<expression> statements to reference the DEBUG stored procedure. For example:

Informix Dynamic Server SPL

TRACE "This is a trace statement and is written out to the debug log";

Oracle PL/SQL

OMWB_emulation.utilities.DEBUG(’This is a trace statement and is written out to
the debug log’);

Informix Dynamic Server TRACE <expression> statements are used to build a
log of systematic debug information. Because of this, converted TRACE
expression statements can become a powerful quality assurance monitor. You can
compare the logs produced by the original Informix Dynamic Server TRACE
statements against the logs built by the converted statements within the destination
Oracle database. This may aid in the unit testing of each converted stored
procedure.

Stored Procedures

Triggers, Packages, and Stored Procedures 3-37

For a code listing of the complete utilities package, refer to Appendix1.

Set Up Tasks for the DEBUG Procedure
The DEBUG procedure is designed by default to log messages to the debug_table
resident under the OMWB_emulation user’s schema. The following shows the
DDL statement that the Migration Workbench uses to construct the debug_table:

Oracle PL/SQL

CREATE TABLE debug_table(
log_date DATE,
log_user VARCHAR(100),
log_message VARCHAR(4000))

The Migration Workbench automatically creates and executes the appropriate
database grants on this table. Therefore, in order to use the OMWB_
emulation.utilities.DEBUG procedure, immediate set-up tasks are not
necessary.

If you want to log all DEBUG messages to a flat file, you should first create a UTL_
FILE_DIR entry within the init.ora initialization file of the destination Oracle
database.

This init.ora parameter defines a list of directories into which the UTL_FILE
package can write. The directories specified have to reside on the database servers
local file system.

In the init.ora file, each accessible directory is stipulated by a line such as

utl_file_dir = D:\Oracle\Migration\Debug

The previous line enables the UTL_FILE package to write to files present within the
D:\Oracle\Migration\Debug directory. Access to files within subdirectories is
forbidden. You must explicitly define each directory within the init.ora file.

Using the DEBUG Procedure After have added the UTL_FILE_DIR entries to the
init.ora initialization file, you need to configure the DEBUG procedure. To do
this, you alter the value of the following utilities package variables:

■ utilities.DebugOut

■ utilities.DebugFile:

■ utilities.DebugDir

Stored Procedures

3-38 Reference Guide for Informix Dynamic Server 7.3 Migrations

The utilities.DebugOut variable is an integer value that indicates whether to
log trace messages to a flat file, the console windrow, or a table within the database.
You can set this variable programmatically within stored procedures by including
the following line of PL/SQL code:

Oracle PL/SQL

OMWB_Emulation.utilities.DebugOut := <variable value>;

The variable value can be one of the following:

■ A value of 1 instructs the DEBUG procedure to log all converted trace
messages to a file. The filename used is specified by the value of the
utilities.DebugFile variable. The value of the
utilities.DebugDir variable specifies the directory where this file is
located.

■ A value of 2 instructs the DEBUG procedure to log all converted trace
messages to the console window.

■ Any other value instructs the DEBUG procedure to log messages to a table
named debug_table resident under the OMWB_Emulation users schema.

If the DEBUG procedure has been configured to log trace messages to a file, the
value of the utilities.DebugFile variable determines the filename. You can set
this variable programmatically within stored procedures by including the
following:

OMWB_Emulation.utilities.DebugFile := <variable value>;

The value for this variable has to be a string expression that evaluates to a legal
operating system filename. For more information on this variable, see the SET
DEBUG FILE Statement topic.

If the procedure has been configured to log trace messages to a file, the variable
value of the utilities.DebugDir variable determines the directory where the
file is created. You can set this variable programmatically within stored procedures
by including the following:

OMWB_Emulation.utilities.DebugDir := <variable value>;

The value for this variable has to be a string expression that evaluates to a legal
operating system file path. The file path has to exist at runtime or an error is raised.
Additionally, this file path must have a matching UTL_FILE_DIR entry.

Stored Procedures

Triggers, Packages, and Stored Procedures 3-39

For example, in order to configure a stored procedure to log converted trace
messages to a file named procA.out within the D:\logs directory, include the
following lines within the stored procedure code:

utilities.DebugOut := 1;
utilities.DebugFile := ’procA.out’;
utilities.DebugDir := ’D:\logs\’;

Alternatively, in order to log messages to the console window, include the
following:

utilities.DebugOut := 2;

In order to log converted trace messages to the debug_table, set the
utilities.DebugOut variable to any value except 1 or 2. Therefore, any one of
the following three values is legal:

utilities.DebugOut := 3;
utilities.DebugOut := 300000;
utilities.DebugOut := NULL;

 SET DEBUG FILE Statement Informix Dynamic Server uses the SET DEBUG FILE
statement to indicate the file where TRACE messages are logged. The Migration
Workbench emulates the Informix Dynamic Server TRACE statement by using the
utilities.DEBUG procedure. This PL/SQL stored procedure offers an option
that enables you to log debug messages to a flat file stored locally on the file system.

If the DEBUG procedure has been configured to log messages to a file then the
converted SET DEBUG FILE statement determines the name of the file within the
destination Oracle database.

The following shows an example of an Informix Dynamic Server SET DEBUG FILE
statement:

Informix Dynamic Server SPL

SET DEBUG FILE TO ’errorlog.out’;

The Migration Workbench converts this statement by setting the name of the file
written to by the utilities.DEBUG procedure to errorlog.out. The converted
SET DEBUG FILE statement sets the value of a variable named DebugFile defined
within the utilities package. The following shows the converted PL/SQL code:

Oracle PL/SQL

OMWB_Emulation.utilities.DebugFile := ’errorlog.out’;

Stored Procedures

3-40 Reference Guide for Informix Dynamic Server 7.3 Migrations

The filename stipulated within the Informix Dynamic Server SET DEBUG FILE
statement may also contain a file path, for example

Informix Dynamic Server SPL

SET DEBUG FILE TO ’D:\informix\audit\errorlog.out’;

If this is the case, the converter extracts the file path and use it to set the value of a
variable named utilities.DebugDir also defined within the utilities
package. For example, the preceding SET DEBUG FILE statement is converted into
the following lines:

Oracle PL/SQL

OMWB_Emulation.utilities.DebugFile := ’errorlog.out’;
OMWB_Emulation.utilities.DebugDir := ’D:\informix\audit\’;

For further information on the use of the DEBUG package, see the Converting
TRACE Statements topic. A code listing of the utilities package can be viewed
in Appendix 1.

BEGIN WORK Statement Informix Dynamic Server uses the BEGIN WORK statement
to start a transaction. The Migration Workbench converts this statement into a
named PL/SQL savepoint. The BEGIN WORK statement and its equivalent in Oracle
are as follows:

Informix Dynamic Server SPL

BEGIN WORK;

Oracle PL/SQL

SAVEPOINT SP1;

Savepoints within Oracle are used to mark a place within a transaction. Once the
savepoint is defined, it is possible to rollback to it using the ROLLBACK WORK
statement.

The Migration Workbench automatically generates a savepoint name of the form
SP<integer>.The integer value starts at 1 and increments each time a new BEGIN
WORK statement is converted. Using savepoints in this way enables finer transaction
control within the Oracle stored procedure. It is recommended that you manually
convert the generated stored procedure to take full advantage of the nested
savepoint capabilities within Oracle. For more information on Oracle savepoints,
see the PL/SQL User’s Guide and Reference Release 1 (9.0.1).

Stored Procedures

Triggers, Packages, and Stored Procedures 3-41

ROLLBACK WORK Statement Informix Dynamic Server uses the ROLLBACK WORK
statement to undo any of the changes made since the beginning of the transaction.
The Oracle ROLLBACK statement acts in an identical way. However, only part of the
transaction need be undone. To achieve this Oracle SAVEPOINT definitions within
the PL/SQL stored procedure code are used.

The Migration Workbench automatically converts Informix Dynamic Server BEGIN
WORK statements into Oracle SAVEPOINTs. These savepoints are then integrated
into the conversion of the original Informix Dynamic Server ROLLBACK WORK
statement. An example of the ROLLBACK WORK and the converted equivalent in
Oracle is as follows:

Informix Dynamic Server SPL

BEGIN WORK
INSERT INTO student VALUES(300, ’Tara’, ’Finn’);
INSERT INTO major VALUES(300, 1237);
ROLLBACK WORK;

Oracle PL/SQL

SAVEPOINT SP1;
INSERT INTO student
VALUES(300,
 ’Tara’,
 ’Finn’);
INSERT INTO major
VALUES(300,
 1237);
ROLLBACK TO SAVEPOINT SP1;

SELECT Statements as Conditions
Informix Dynamic Server allows you to use SELECT statements within an IF
statement condition. Oracle does not enable you to use SELECT queries as
conditions in this way. In order to emulate this Informix Dynamic Server statement,
the Migration Workbench automatically generates a Boolean variable within the
PL/SQL code. It then sets the value of this Boolean variable within a SELECT..
FROM DUAL statement that incorporates the original SELECT statement within the
WHERE clause.

DUAL is a table automatically created by Oracle along with the data dictionary. DUAL
is in the schema of the user SYS, but is accessible by the name DUAL to all users. It
has one column, DUMMY, defined to be VARCHAR2(1), and contains one row with

Stored Procedures

3-42 Reference Guide for Informix Dynamic Server 7.3 Migrations

a value ’X’. Selecting from the DUAL table is useful for computing a constant
expression with the SELECT statement. Because DUAL has only one row, the
constant is returned only once.

An Informix Dynamic Server example of a SELECT statement used as a condition
and the converted equivalent in Oracle is as follows:

Informix Dynamic Server SPL

IF EXISTS (SELECT content_id
 FROM slistcontent
 WHERE list_id = sp_list_id
 AND thing_id = new_thing)
THEN
 /* statement block */
END IF;

Oracle PL/SQL

/* SPCONV-MSG:(SUBQUERY) Subquery within IF statement emulated by using Boolean
variable. */
OMWB_tempBoolVar1 := FALSE;
SELECT TRUE INTO OMWB_tempBoolVar2 FROM DUAL
WHERE EXISTS (SELECT content_id
FROM informix.slistcontent
WHERE list_id = sp_list_id
AND thing_id = new_thing);
IF(OMWB_tempBoolVar1) THEN
/* statement block */
END IF;

The Migration Workbench automatically adds the Boolean variable OMWB_
tempBoolVar1 to the generated PL/SQL code. The value of this variable is then
set by the SELECT .. FROM DUAL statement, which itself contains the original
Informix Dynamic Server SELECT statement as part of the WHERE clause. The
Boolean variable added by the converter is then used within the IF condition.

Exception Blocks
Informix Dynamic Server exception blocks are declared prior to the statement block
they encapsulate. Oracle exception blocks are declared at the end of the statement
block they encapsulate. This causes the Migration Workbench to transfer the
converted exception handling code to the bottom of the statement block within the
generated PL/SQL code.

Stored Procedures

Triggers, Packages, and Stored Procedures 3-43

If the exception block have been defined with the keywords WITH RESUME, the
following warning is also output within the generated PL/SQL code:

Informix Dynamic Server SPL

/* SPCONV-WRN:(WITH RESUME) Oracle has no such construct. Manual conversion
required. */

The converter automatically maps the following Informix Dynamic Server error
numbers to Oracle predefined exceptions. When the convertor encounters any
Informix Dynamic Server error number not presented within the following table, it
outputs the error number as a comment within the generated PL/SQL stored
procedure and indicate that manual conversion of the exception block is required.
-1215

The following shows an example of an Informix Dynamic Server stored procedure
that defines one exception block to catch multiple errors and it’s converted
equivalent in Oracle PL/SQL:

Informix Dynamic Server SPL

CREATE PROCEDURE "root".add_slist_thing(
v_uid like PHPUser.user_id,
v_lstid like ShoppingList.list_id,
v_thgid like Thing.thing_id,
v_cntdesc like SListContent.content_desc)
RETURNING smallint;
BEGIN
on exception in (-239, -310)

Informix Dynamic Server Error
Number Oracle Predefined Exception

-239 DUP_VAL_ON_INDEX

100 NO_DATA_FOUND

-259 INVALID_CURSOR

-415 VALUE_ERROR

-1213 INVALID_NUMBER

-1214 VALUE_ERROR

-1215 VALUE_ERROR

-1348 ZERO_DIVIDE

-248 TOO_MANY_ROWS

Stored Procedures

3-44 Reference Guide for Informix Dynamic Server 7.3 Migrations

return -2;
end exception;

insert into listcontent
values (v_lstid, v_uid, v_thgid, v_cntdesc);
let returnCode = upd_slist_date(v_lstid, v_uid);
return returncode;
END
END PROCEDURE;

Oracle PL/SQL

CREATE OR REPLACE FUNCTION root.add_slist_thing(
v_uid_IN informix.PHPUser.user_id%TYPE,
v_lstid_IN informix.ShoppingList.list_id%TYPE,
v_thgid_IN informix.Thing.thing_id%TYPE,
v_cntdesc_IN informix.SListContent.content_desc%TYPE) RETURN NUMBER AS

v_uid informix.PHPUser.user_id%TYPE := v_uid_IN;
v_lstid informix.ShoppingList.list_id%TYPE := v_lstid_IN;
v_thgid informix.Thing.thing_id%TYPE := v_thgid_IN;
v_cntdesc informix.SListContent.content_desc%TYPE := v_cntdesc_IN;
ItoO_selcnt NUMBER;
ItoO_rowcnt NUMBER;

BEGIN
BEGIN
INSERT INTO listcontent
VALUES(v_lstid,
 v_uid,
 v_thgid,
 v_cntdesc);
returnCode := upd_slist_date (v_lstid , v_uid);
RETURN returncode;
EXCEPTION

/* SPCONV-WRN:(EXCEPTION) Could not convert 1 Informix error number to a
predefined Oracle exception. Manual conversion required. */
WHEN DUP_VAL_ON_INDEX THEN /* Not Converted : -310 */

RETURN - 2;
END;
END add_slist_thing;

Stored Procedures

Triggers, Packages, and Stored Procedures 3-45

RAISE EXCEPTION Statements
The Informix Dynamic Server RAISE EXCEPTION statement is used to simulate the
generation of an error message. It passes program control to the execution handler
that is designed to explicitly catch the raised exception. The execution of the stored
procedure can then continue.

If the RAISE EXCEPTION statement is encountered within the Informix Dynamic
Server stored procedure, it is converted into a call to the built-in Oracle RAISE_
APPLICATION_ERROR function. This function enables the raising of errors
containing user defined messages. The following shows an example of the RAISE
EXCEPTION statement and its conversion to an Oracle PL/SQL RAISE_
APPLICATION_ERROR function call:

Informix Dynamic Server SPL

RAISE EXCEPTION -208, 0, ’Cannot insert. Required datafile ’ || datafilename ||
’ missing. insert_seq_proc procedure’;

Oracle PL/SQL

RAISE_APPLICATION_ERROR(-299999, /* Informix error number : -208, 0 */ "Cannot
insert. Required datafile ’ || datafilename || ’ missing. insert_seq_proc
procedure");

The following is an abbreviated syntax of the Oracle RAISE_APPLICATION_
ERROR function:

Oracle PL/SQL Syntax

RAISE_APPLICATION_ERROR(error number, error message);

Where the error number is a number between -20000 and -20999 and error message
the text associated with this error. An additional keep errors parameter is also
available. For more information on this parameter, see the PL/SQL User’s Guide
and Reference Release 1 (9.0.1).

The original error number used within the Informix Dynamic Server RAISE
EXCEPTION statement is output as a comment within the call to RAISE_
APPLICATION_ERROR.

The Informix Dynamic Server RAISE EXCEPTION statement is always used in
conjunction with an ON EXCEPTION statement. The RAISE EXCEPTION statement
simulates an error condition and program control passes to the ON EXCEPTION
exception handler designed to catch the error condition raised.

Stored Procedures

3-46 Reference Guide for Informix Dynamic Server 7.3 Migrations

An example of an exception block and the converted equivalent in Oracle is as
follows:

Informix Dynamic Server SPL

ON EXCEPTION IN (-208)
 DELETE FROM students;
END EXCEPTION;

IF(clear_table=1)THEN
 RAISE EXCEPTION -208, 0, ’No datafile’;
END IF;

Oracle PL/SQL

BEGIN
 IF(clear_table=1)THEN
 RAISE_APPLICATION_ERROR(-29999,
 /* Informix error number : -208, 0 */
 "No datafile"
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 DELETE FROM students;
END

The converted Informix Dynamic Server exception block is still resident within the
PL/SQL code but the converted RAISE EXCEPTION statement now calls the
built-in RAISE_APPLICATION_ERROR function instead of calling the embedded
exception block originally defined for it. The Oracle RAISE_APPLICATION_ERROR
statement also terminates the execution of the stored procedure and returns to the
calling routine. However, the execution of the Informix Dynamic Server stored
procedure continues.

Using the RAISE_APPLICATION_ERROR function in this way changes the
execution flow and error handling functionality of the converted PL/SQL stored
procedure. Therefore, manual conversion of the procedure is usually required.

For more information, see the following sections:

■ Exception Blocks

■ Error Handling within Stored Procedures

Stored Procedures

Triggers, Packages, and Stored Procedures 3-47

Error Handling within Stored Procedures
Oracle PL/SQL checks each SQL statement for errors before proceeding to the next
statement. If an error occurs, control immediately jumps to an exception handler.
This prevents you from having to check the status of every SQL statement. For
example, if a SELECT statement does not find any rows in the database, an
exception is raised and the code to deal with this error is executed.

Informix Dynamic Server has similar error handling capabilities to Oracle. Blocks of
exception handler code resident within the SPL stored procedure catch any errors
raised by the database server during execution of the stored procedure code.

Informix Dynamic Server error handlers, unlike Oracle error handlers, can continue
execution of the stored procedure after the error occurs. This fundamental
difference has immediate implications for the conversion process.

While Informix Dynamic Server SPL exception blocks can be translated into
syntactically correct PL/SQL, the execution flow of the PL/SQL stored procedure
differs to a considerable extent should an error occur. The Oracle server terminates
execution of the stored procedure, while the Informix Dynamic Server server
resumes execution of the stored procedure.

In order to successfully convert Informix Dynamic Server SPL exception blocks to
functionally equivalent PL/SQL, you must manually convert the generated
PL/SQL code.

If you have to maintain control within the executable commands section of the
PL/SQL stored procedure, you should use IF statements to check for possible
errors before they occur.

After conversion, it is recommended that you re-write large or complex stored
procedures in a more modular way so that each stored procedure performs one task
and contains all the DML statements required to perform that task. Placing task
related DML statements into logical units enables greater control over both the
transaction model and the error model. This leads to the production of a more
re-usable, maintainable, and stable PL/SQL code base.

For more information on the strategy employed by the Migration Workbench in the
conversion of Informix Dynamic Server exception blocks to PL/SQL, see the
Exception Blocks topic.

DDL Statements in SPL Code
Informix Dynamic Server enables certain DDL statements to reside within stored
procedure code. Oracle does not support the direct inclusion of DDL statements

Stored Procedures

3-48 Reference Guide for Informix Dynamic Server 7.3 Migrations

within PL/SQL code. Oracle offers two ways to dynamically execute DDL
statements: an internal DBMS package named DBMS_SQL (available since Oracle
7.1) and Native Dynamic SQL (available since Oracle 8i).

As the DBMS_SQL package does not support new Oracle8 data types, the Oracle
Migration Workbench uses Native Dynamic SQL to execute any DDL statement
present within the original Informix Dynamic Server SPL code. This is
accomplished by offering a DDL_Manager stored procedure. The Migration
Workbench automatically creates this stored procedure in the destination Oracle
database under the OMWB emulation users schema.

When the converter encounters a DDL statement within the Informix Dynamic
Server stored procedure, the resulting PL/SQL code uses the DDL_Manager
procedure to dynamically execute the DDL statement. For example, the following
Informix Dynamic Server DDL statement is converted into a call to the DDL_
Manager PL/SQL stored procedure:

Informix Dynamic Server SPL

alter table pushprefs modify (preferences_value char(100));

Oracle PL/SQL

/* SPCONV-MSG:(ALTER TABLE) OMWB_Emulation.DDL_MANAGER procedure used
to execute DDL statement. */
 OMWB_Emulation.DDL_Manager(’ALTER TABLE informix.pushprefs MODIFY (
preferences_value CHAR(100))’);

The DDL_Manager procedure is created with invokers_rights permissions.
This means that any person who executes the procedure executes any DDL
statement within their own schema and not the schema that the DDL_Manager
procedure resides within, in this case, the OMWB_Emulation user’s schema. For
more information on the invokers rights model, see the PL/SQL User’s Guide and
Reference Release 1 (9.0.1).

A code listing of the DDL_Manager procedure is as follows:

Oracle PL/SQL

CREATE OR REPLACE PROCEDURE DDL_Manager(
ddl_statement varchar)
AUTHID CURRENT_USER IS
BEGIN
 EXECUTE IMMEDIATE ddl_statement;
EXCEPTION
 WHEN OTHERS THEN

Stored Procedures

Triggers, Packages, and Stored Procedures 3-49

 RAISE;
END DDL_Manager;

It is recommended that you check all DDL statement strings passed to the DDL_
Manager procedure for errors before the creation of the encapsulating procedure in
the destination Oracle database.

Informix Dynamic Server DDL statements that are not dispatched to the DDL_
Manager procedure for execution are explained in the following sections:

■ Creating Temporary Tables

■ DROP TABLE Statements

Creating Temporary Tables
The Migration Workbench converts temporary tables to Oracle global temporary
tables. Unlike Informix Dynamic Server temporary tables, Oracle temporary table
structures are persistent across sessions, therefore the converted CREATE TEMP
TABLE statement is only ever executed once within the Oracle database.

When the converter encounters an Informix Dynamic Server CREATE TEMPORARY
TABLE <table name> statement, it generates the DDL to create an equivalent
Oracle global temporary table. It then inserts a PL/SQL DELETE FROM <table
name> statement into the converted stored procedure. This ensures that the table is
void of data before it is used within the PL/SQL code. The CREATE GLOBAL
TEMPORARY TABLE DDL statement generated by the converter is executed before
the stored procedure is created in the destination Oracle database. This ensures that
referential integrity constraints are met during the creation of the stored procedure
within the destination Oracle database.

An example of an Informix Dynamic Server CREATE TABLE statement and the
generated Oracle DDL statement that is executed before the stored procedure is
created within the destination Oracle database is as follows:

Informix Dynamic Server SPL

CREATE TEMP TABLE temp_table AS
 SELECT emp_num, emp_name
 FROM emp;

Oracle PL/SQL

CREATE GLOBAL TEMP TABLE temp_table AS
 SELECT emp_num,
 emp_name

Stored Procedures

3-50 Reference Guide for Informix Dynamic Server 7.3 Migrations

 FROM emp
ON COMMIT PRESERVE ROWS;

Additionally, the following DELETE FROM statement appears within the converted
PL/SQL code.

Oracle PL/SQL

DELETE FROM temp_table;

The previous statement that appears within the converted PL/SQL code clears the
temp table of all data. This leaves the Oracle table in a state consistent with the
original Informix Dynamic Server table at this point within the procedures
execution.

DROP TABLE Statements
When the Migration Workbench converts Informix Dynamic Server temporary
tables to Oracle temporary tables, any DROP TABLE statement within an Informix
Dynamic Server stored procedure becomes redundant within the converted
PL/SQL code. Oracle temporary tables are created once. The definition is persistent
across sessions although the data held within the tables is not persistent.

The following actions occurs when a DROP TABLE statement is encountered by the
stored procedure converter.

■ A warning message outputs to the log window. If you selected the Display
parser warnings option from the Parser Options tab within the Migration
Workbench, a warning message is placed into the converted PL/SQL code.

■ The original Informix Dynamic Server DROP TABLE statement is displayed
within the converted PL/SQL code as a single line comment.

■ An executable NULL statement is also added to the PL/SQL code.

The following shows the DROP TABLE statement and the converted
equivalent in Oracle:

Informix Dynamic Server SPL

DROP TABLE temp_table;

Oracle PL/SQL

/* SPCONV-WRN:(DROP TABLE) Statements never passed to the DDL_Manager procedure.
*/
--DROP TABLE temp_table;
NULL

Stored Procedures

Triggers, Packages, and Stored Procedures 3-51

Using Keywords as Identifiers
Informix Dynamic Server SPL allows keywords to be used as identifiers. This can
cause ambiguous SQL statements and unreadable SPL code. An example of a
keyword used as an identifier is as follows:

Informix Dynamic Server SPL

SELECT ordid INTO order FROM table1;

The keyword order is used in this context as a variable name.

Oracle does not enable keywords to be used as identifiers. All keywords within
Oracle are reserved. This eradicates ambiguous PL/SQL code. The preceding
Informix Dynamic Server SELECT statement is not syntactically valid within
PL/SQL and produces a compilation error within the destination Oracle database.

In order to convert Informix Dynamic Server SPL into syntactically correct PL-SQL,
the stored procedure parser needs to recognize keywords used in the context of an
identifier in an Informix Dynamic Server SPL statement. The Migration Workbench
parser handles this by adding a trailing underscore character to the identifier name.
The following table illustrates how the Migration Workbench appends an
underscore to the Informix Dynamic Server SPL reserved word order:

The Migration Workbench stored procedure converter does not support any of the
following list of Informix Dynamic Server keywords as identifiers:

■ INTO

■ WHERE

■ HAVING

■ FROM

■ END: * NEW *

■ LET

■ IF

Informix Dynamic
Server SPL

SELECT ordid INTO order FROM table1;

Oracle PL/SQL SELECT ordid INTO order_ FROM table1;

Stored Procedures

3-52 Reference Guide for Informix Dynamic Server 7.3 Migrations

■ ELSE

■ TRUNC

■ WITH

■ RESUME

■ RETURN

■ INSERT

■ TRIM

■ UPPER

■ LENGTH

■ GLOBAL

■ LIKE

■ NULL

■ OUTER

■ DBINFO

■ WEEKDAY

■ SELECT

■ FOREACH

■ CALL

■ UPDATE

■ DELETE

■ CASE

If the converter encounters an unsupported keyword when an identifier is
expected, one of the following actions occurs:

■ Parsing process fails. This causes an error message to be generated within the
Log window. An example error message is shown as follows:

SPCONV-ERR[23]:(UPDATE) Encounterd the word UPDATE when expecting one of the
following.

■ Produces syntactically incorrect PL/SQL code. This causes the PL/SQL stored
procedure to fail compilation within the destination Oracle database.

Stored Procedures

Triggers, Packages, and Stored Procedures 3-53

Oracle recommends that keyword/identifier issues are removed from the original
Informix Dynamic Server stored procedure code before you initiate the conversion
process. You can manually edit the stored procedure text within the Informix
Dynamic Server Source Model of the Migration Workbench.

Issues with Converting SPL Statements
The Migration Workbench parser may not convert some SPL statements to PL/SQL
code. Generally, this happens when the statement functionality cannot be replicated
in PL/SQL, if the statement is unnecessary within the PL/SQL code, or if the
statement requires manual conversion by the DBA. The following list of statements
are currently not supported:

■ DBINFO(’sqlca.sqlerrd1’)

■ DBINFO(DBSPACE, number)

■ All SET statements with the exception of SET DEBUG FILE

When the parser encounters any unsupported statement, it takes the following
actions:

1. A parser warning (SPCONV-WRN) is produced within the Log window.

2. If you have selected the Display parser Warnings parser option for the current
procedure, the converter places a warning message within the PL/SQL stored
procedure text in the form of a comment.

3. The original Informix Dynamic Server statement is added to the PL/SQL text as
a comment.

4. An executable NULL; statement is added to the PL/SQL text.

An example of and unsupported SET statement and the converted equivalent is as
follows:

Informix Dynamic Server SPL

SET ISOLATION TO DIRTY READ

Oracle PL/SQL

/* SPCONV-ERR:(SET) Statement ignored. Manual conversion may be required. */
--SET ISOLATION TO DIRTY READ
NULL;

Stored Procedures

3-54 Reference Guide for Informix Dynamic Server 7.3 Migrations

Distributed Environments 4-1

4
Distributed Environments

This chapter includes the following sections:

■ Distributed Environments

■ Application Development Tools

Distributed Environments

4-2 Reference Guide for Informix Dynamic Server 7.3 Migrations

Distributed Environments
A distributed environment is chosen for various applications where:

■ The data is generated at various geographical locations and needs to be
available locally most of the time.

■ The data and software processing is distributed to reduce the impact of any
particular site or hardware failure.

Accessing Remote Databases in a Distributed Environment
When a relational database management system (RDBMS) allows data to be distrib-
uted while providing the user with a single logical view of data, it supports loca-
tion transparency. Location transparency eliminates the need to know the actual
physical location of the data. Location transparency thus helps make the develop-
ment of the application easier. Depending on the needs of the application, the data-
base administrator (DBA) can hide the location of the relevant data.

To access a remote object, the local server must establish a connection with the
remote server. Each server requires unique names for the remote objects. The meth-
ods used to establish the connection with the remote server, and the naming con-
ventions for the remote objects, differ from database to database.

Oracle and Remote Objects
Oracle allows remote objects (such as tables, views, and procedures) throughout a
distributed database to be referenced in SQL statements using global object names.
In Oracle, the global name of a schema object comprises the name of the schema
that contains the object, the object name, followed by an at sign (@), and a database
name. For example, the following query selects information from the table named
scott.emp in the SALES database that resides on a remote server:

SELECT * FROM
scott.emp@sales.division3.acme.com

A distributed database system can be configured so that each database within the
system has a unique database name, thereby providing effective global object
names.

Furthermore, by defining synonyms for remote object names, you can eliminate
references to the name of the remote database. The synonym is an object in the local
database that refers to a remote database object. Synonyms shift the responsibility of
distributing data from the application developer to the DBA. Synonyms allow the
DBA to move the objects as desired without impacting the application.

Application Development Tools

Distributed Environments 4-3

The synonym can be defined as follows:

CREATE PUBLIC SYNONYM emp FOR
scott.emp@sales.division3.acme.com;

Using this synonym, the SQL statement outlined above can be changed to the
following:

SELECT * FROM emp;

Informix Dynamic Server and Remote Objects
Informix Dynamic Server requires schema objects throughout a distributed
database to be referenced in SQL statements by fully qualifying the object names.
The complete name of a schema object has the following format:

database_name@server_name:object_owner_name.object_name

The server_name is the name of a remote server. The database_name is the
name of a remote database on the remote server.

Informix Dynamic Server does not allow you to create a database link, but does
allow you to create a synonym. So a remote object can be referred to by a synonym.
A remote object is specified by the database name followed by the at sign (@), the
remote server name, and then the name of the schema and the object. For example,
the following synonym (myemp) is created for the object scott.emp that is in the
sales database on the boston server:

CREATE SYNOYM myemp FOR sales@boston:scott:emp

You can use this synonym to reference a remote object:

SELECT * FROM myemp

You can make a common name refer to remote objects that can work for both Oracle
databases and Informix Dynamic Server databases.

Application Development Tools
Several application development tools that are currently available use specific
features of one of the various database servers; you may have to invest significant
effort to port these products to other database servers. With critical applications, it
is sometimes best to develop and maintain a different set of application

Application Development Tools

4-4 Reference Guide for Informix Dynamic Server 7.3 Migrations

development tools that work best with the underlying database, as ODBC support
is not adequate in such cases.

The majority of applications are written in Informix Dynamic Server 4GL.

If a Visual Basic application is written with ODBC as the connection protocol to
access Informix Dynamic Server, it is possible to modify and fix the Visual Basic
application to work with an Oracle back-end.

The Informix 4GL application development environment does not provide
connectivity to other databases, including Oracle. To overcome this limitation in
Informix 4GL, you must convert or migrate your code. Oracle recommends one of
our partners in converting or migrating your Informix 4GL code:

■ ArtInSoft at the Web site:

http://www.artinsoft.com

■ QueriX at the Web site:

http://www.querix.com

■ 4Js at the Web site:

http://www.4js.com

■ Freesoft at the Web site:

http://www.freesoft.hu/index2.html

http://www.artinsoft.com
http://www.querix.com
http://www.4js.com
http://www.freesoft.hu/index2.html

 The ESQL/C to Oracle Pro*C Converter 5-1

5
The ESQL/C to Oracle Pro*C Converter

This chapter describes the E/SQL to Pro*C Converter, its scope and some of its
limitations in this initial release. The chapter includes the following sections:

■ Introduction to E/SQL and Pro*C

■ Syntactical Conversion Issues

■ Conversion Errors and Warnings

■ Restrictions

■ Using Demonstration Code

Introduction to E/SQL and Pro*C
Oracle and Informix Dynamic Server have similar methods of embedding their SQL
statements into a third generation language, in this case C (or C++). You run a
precompiler that converts the C containing embedded SQL into pure C. High-level
embedded SQL directives are replaced by vendor-specific C code. You can use a
standard C compiler to compile and link with the vendor libraries to produce an
executable.

Oracle Pro*C is easier to write and maintain than a pure C. One reason for this is
that the C and embedded SQL are separated in the source code.

The SQL used in Oracle Pro*C files complies with ANSI standards, as are some of
the embedded SQL commands and techniques. There are some differences,
however, that are resolved manually or by using a tool such as the ESQL/C to
Oracle Pro*C Converter, or a combination of both methods.

Introduction to E/SQL and Pro*C

5-2 Reference Guide for Informix Dynamic Server 7.3 Migrations

Using the ESQL/C to Oracle Pro*C Converter
This section provides an example conversion using the ESQL/C to Oracle Pro*C
Converter, and describes some common conversions handled automatically by the
tool.

Example Capture of ESQL/C Source Files
The following example shows the use of the tool. You capture this code by choosing
Action->Capture ESQL/C Source Files in the Migration Workbench.

For details beyond the core code, refer to "Conversion Errors and Warnings" on
page 5 -14 and "Using Demonstration Code" on page 5 -24.

Example Code:

 /*
 * esqlproc1.ec
 *
 * This program connects to the database, declares and opens a cursor,
 * fetches the names, salaries, and commissions of all
 * salespeople, displays the results, then closes the cursor.
 */

#include <stdio.h>
#include <string.h>
#include <sqlca.h>
#include <stdlib.h>

#define UNAME_LEN 20
#define PWD_LEN 11

EXEC SQL BEGIN DECLARE SECTION;
 char username[20]="informix";
 char password[20]="inform9";
 char emp_name[11];
 float salary;
 float commission;
EXEC SQL END DECLARE SECTION;

void sql_error(msg)
 char *msg;
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;

Introduction to E/SQL and Pro*C

 The ESQL/C to Oracle Pro*C Converter 5-3

 printf("\n%s\n", msg);

 EXEC SQL ROLLBACK;
 exit(EXIT_FAILURE);
}

void main()
{

/* Connect to the database. */

 EXEC SQL WHENEVER SQLERROR GO TO connecterror;

 EXEC SQL connect to ’turloch@mtg1_tcp’ user :username using :password;
 printf("\nConnected to the database as user: %s\n", username);

 EXEC SQL WHENEVER SQLERROR GO TO declareerror;
/* Declare the cursor. All static SQL explicit cursors
 * contain SELECT commands. ’salespeople’ is a SQL identifier,
 * not a (C) host variable.
 */
 EXEC SQL DECLARE salespeople CURSOR FOR
 SELECT ENAME, SAL, COMM INTO
 :emp_name,
 :salary,
 :commission
 FROM EMP
 WHERE JOB LIKE ’SALES%’;

 EXEC SQL WHENEVER SQLERROR GO TO openerror;
/* Open the cursor. */
 EXEC SQL OPEN salespeople;

/* Get ready to print results. */
 printf("\n\nThe company’s salespeople are--\n\n");
 printf("Salesperson Salary Commission\n");
 printf("----------- ------ ----------\n");

/* Loop, fetching all salesperson’s statistics.
 * Cause the program to break the loop when no more
 * data can be retrieved on the cursor.
 */
 EXEC SQL WHENEVER SQLERROR GO TO fetcherror;
 EXEC SQL WHENEVER NOT FOUND go to breakout;

Introduction to E/SQL and Pro*C

5-4 Reference Guide for Informix Dynamic Server 7.3 Migrations

 for (;;)
 {
 EXEC SQL FETCH salespeople ;
 printf("%s %9.2f %12.2f\n", emp_name,
 salary, commission);
 }

breakout:
/* Close the cursor. */
 EXEC SQL WHENEVER SQLERROR GO TO closeerror;
 EXEC SQL CLOSE salespeople;

 EXEC SQL WHENEVER SQLERROR GO TO freeerror;
 EXEC SQL FREE salespeople;

 printf("\nArrivederci.\n\n");

 EXEC SQL WHENEVER SQLERROR GO TO disconnecterror;
 EXEC SQL disconnect current;
 exit(EXIT_SUCCESS);
 freeerror:
 sql_error("free error--");
 connecterror:
 sql_error("connect error--");
 declareerror:
 sql_error("declare error--");
 openerror:
 sql_error("open error--");
 fetcherror:
 sql_error("fetch error--");
 closeerror:
 sql_error("close error--");
 disconnecterror:
 sql_error("disconnect error--");
}

Oracle Pro*C Conversion
To pass the code through the converter choose Action->Convert E/SQL to Pro*C.
To generate the files created by this action, and save them on to the file system,
choose Action->Generate PRO*C Source Files.

The following example Oracle Pro*C file is generated:

Introduction to E/SQL and Pro*C

 The ESQL/C to Oracle Pro*C Converter 5-5

/*
 * esqlproc1.ec
 *
 * This program connects to the database, declares and opens a cursor,
 * fetches the names, salaries, and commissions of all
 * salespeople, displays the results, then closes the cursor.
 */

#include <stdio.h>
#include <string.h>
#include <sqlca.h>
#include <stdlib.h>

#define UNAME_LEN 20
#define PWD_LEN 11

EXEC SQL BEGIN DECLARE SECTION;
 char username[20]="informix";
 char password[20]="inform9";
 char emp_name[11];
 float salary;
 float commission;
EXEC SQL END DECLARE SECTION;

void sql_error(msg)
 char *msg;
{
 /* ESQL-CONV-MSG:(WHENEVER) Oracle supports additional directives. */
 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf("\n%s\n", msg);
 /* ESQL-CONV-MSG:(ROLLBACK) Statement automatically closes all cursors
referenced in a CURRENT OF clause when compilation mode = ORACLE. */
 /* ESQL-CONV-MSG:(ROLLBACK) Extra ROLLBACK option available in Oracle.
Please see the Oracle 8i users guide for more information. */
 EXEC SQL ROLLBACK WORK;
 exit(EXIT_FAILURE);
}

void main()
{

/* Connect to the database. */

 /* ESQL-CONV-MSG:(WHENEVER) Oracle supports additional directives. */

Introduction to E/SQL and Pro*C

5-6 Reference Guide for Informix Dynamic Server 7.3 Migrations

 EXEC SQL WHENEVER SQLERROR GOTO connecterror;

 /* ESQL-CONV-ERR:(CONNECT) Manual conversion of the username, password and
database required. */
 {
 char oracleid = ’/’;
 EXEC SQL CONNECT :oracleid;
 }
 printf("\nConnected to the database as user: %s\n", username);

 /* ESQL-CONV-MSG:(WHENEVER) Oracle supports additional directives. */
 EXEC SQL WHENEVER SQLERROR GOTO declareerror;
/* Declare the cursor. All static SQL explicit cursors
 * contain SELECT commands. ’salespeople’ is a SQL identifier,
 * not a (C) host variable.
 */
 /* ESQL-CONV-MSG:(INTO) Clause removed from cursor definition and integrated
into FETCH statement. */
 EXEC SQL
 DECLARE salespeople CURSOR FOR
 SELECT ENAME,
 SAL,
 COMM
 FROM EMP
 WHERE JOB LIKE ’SALES%’;
 /* ESQL-CONV-MSG:(WHENEVER) Oracle supports additional directives. */
 EXEC SQL WHENEVER SQLERROR GOTO openerror;
/* Open the cursor. */
 EXEC SQL
 OPEN salespeople;

/* Get ready to print results. */
 printf("\n\nThe company’s salespeople are--\n\n");
 printf("Salesperson Salary Commission\n");
 printf("----------- ------ ----------\n");

/* Loop, fetching all salesperson’s statistics.
 * Cause the program to break the loop when no more
 * data can be retrieved on the cursor.
 */
 /* ESQL-CONV-MSG:(WHENEVER) Oracle supports additional directives. */
 EXEC SQL WHENEVER SQLERROR GOTO fetcherror;
 /* ESQL-CONV-MSG:(WHENEVER) Oracle supports additional directives. */
 EXEC SQL WHENEVER NOT FOUND GOTO breakout;

Introduction to E/SQL and Pro*C

 The ESQL/C to Oracle Pro*C Converter 5-7

 for (;;)
 {
 /* ESQL-CONV-MSG:(INTO) Clause originally declared within cursor
declaration. */
 EXEC SQL
 FETCH salespeople
 INTO :emp_name,
 :salary,
 :commission;
 printf("%s %9.2f %12.2f\n", emp_name,
 salary, commission);
 }

breakout:
/* Close the cursor. */
 /* ESQL-CONV-MSG:(WHENEVER) Oracle supports additional directives. */
 EXEC SQL WHENEVER SQLERROR GOTO closeerror;
 /* ESQL-CONV-MSG:(CLOSE) Statement not required when compilation mode =
ORACLE. */
 /* EXEC SQL CLOSE salespeople */

 /* ESQL-CONV-MSG:(WHENEVER) Oracle supports additional directives. */
 EXEC SQL WHENEVER SQLERROR GOTO freeerror;
 /* ESQL-CONV-MSG:(FREE) Statement not required in ORACLE. */
 /* EXEC SQL FREE salespeople; */

 printf("\nArrivederci.\n\n");
 /* ESQL-CONV-MSG:(WHENEVER) Oracle supports additional directives. */
 EXEC SQL WHENEVER SQLERROR GOTO disconnecterror;
 EXEC SQL COMMIT WORK RELEASE;
 exit(EXIT_SUCCESS);
 freeerror:
 sql_error("free error--");
 connecterror:
 sql_error("connect error--");
 declareerror:
 sql_error("declare error--");
 openerror:
 sql_error("open error--");
 fetcherror:
 sql_error("fetch error--");
 closeerror:
 sql_error("close error--");
 disconnecterror:
 sql_error("disconnect error--");

Introduction to E/SQL and Pro*C

5-8 Reference Guide for Informix Dynamic Server 7.3 Migrations

}

Manual Changes to the Oracle Pro*C File
In the "Oracle Pro*C Conversion" example on page 5 -4 you must add the
CONNECT details, as shown in the following table:

The executable relies on a database populated by data. Refer to "Using
Demonstration Code" on page 5 -24 for an example of how to populate the
database. The following example shows how to produce an executable:

1. Precompile the code from Oracle Pro*C to a C file using the Oracle Pro*C
executable proc esqlproc1.pc.

2. Compile the C code using a suitable development environment. The Oracle
Pro*C example shipped by with Oracle contains project files for the Visual C++
development environment. The project contains details of the libraries and
include files required to build a small executable based on Oracle Pro*C. The
project file used is %ORACLE_HOME%\precomp\demo\proc\sample.dsp.
You have to add the C file esqlproc1.c to the project.

For more information on Oracle Pro*C/C++ refer to the Pro*C/C++ Precompiler
Programmer’s Guide.

The following shows sample output from the executable.

The following is sample output from the executable:

The company’s salespeople are--
Salesperson Salary Commission
----------- ------ ----------
ALLEN 1600.00 300.00
WARD 1250.00 500.00

Code Generated by ESQL/C to
Oracle Pro*C Converter

{
 char oracleid = ’/’;
 EXEC SQL CONNECT :oracleid;

}

Oracle Pro*C Code {
EXEC SQL BEGIN DECLARE SECTION;
 char *oracleid = "examp/examp";
EXEC SQL END DECLARE SECTION;
 EXEC SQL CONNECT :oracleid;
}

Syntactical Conversion Issues

 The ESQL/C to Oracle Pro*C Converter 5-9

Arrivederci.

Syntactical Conversion Issues
This section provides information about the Informix Dynamic Server ESQL/C
constructs and the equivalent Oracle constructs generated by the Migration
Workbench. Examples of how to resolve syntactical conversion issues are provided
where relevant. The following constructs are described in detail:

■ EXEC SQL Statement

■ INCLUDE Files

■ UPDATE Statement

■ ANSI Compliance

■ Double equal sign in WHERE Clause

■ OUTER JOIN Syntax

■ FETCH Clause

■ Header Files SQLNOTFOUND

■ CURSOR Declaration

■ DECLARE CURSOR Statement

■ FOR UPDATE Option

EXEC SQL Statement
In all programs you replace the dollar ($) sign preceding the SQL sign with EXEC
SQL and replace all the dollar signs before host variables with a colon (:). The
following table compares the dollar sign in Informix Dynamic Server and the EXEC
SQL Statement in Oracle:

Database Language Example

Informix Dynamic
Server ESQL/C

$
SELECT login_no
INTO $login_no;

Syntactical Conversion Issues

5-10 Reference Guide for Informix Dynamic Server 7.3 Migrations

INCLUDE Files
The INCLUDE files for Informix Dynamic Server ESQL/C and Oracle are different.,
You must replace Informix Dynamic Server ESQL/C INCLUDE files with Oracle
INCLUDE files.

UPDATE Statement
The UPDATE statement works similarly in Informix Dynamic Server and Oracle,
but they have different syntax. The Oracle syntax is clearer, and the resulting code
is easier to maintain. The following table compares the UPDATE statement in
Informix Dynamic Server and Oracle:

ANSI Compliance
The Oracle precompiler can generate the C code in either ANSI or non-ANSI
compliant code. The default is non-ANSI.

Double equal sign in WHERE Clause
Check the WHERE clause in the SELECT, UPDATE, and DELETE statements in
Informix Dynamic Server ESQL/C for double equal signs (==). An equal operator
can be a single or a double equal sign. Oracle supports the ANSI standard single
equal sign. The following table compares the WHERE clause equal operator in the
SELECT, UPDATE, and DELETE statements in Informix Dynamic Server and
Oracle:

Oracle Pro*C
EXEC SQL
SELECT login_no
INTO :login_no;

Database Language Example

Informix Dynamic
Server ESQL/C

EXEC SQL UPDATE employees
SET (emp_no, emp_name) =
(:emp_no, :emp_name)
WHERE emp_no == :old_emp_no;

Oracle Pro*C

EXEC SQL UPDATE employees
SET emp_no = :emp_no,
emp_name = :emp_name
WHERE emp_no = :old_emp_no;

Database Language Example

Syntactical Conversion Issues

 The ESQL/C to Oracle Pro*C Converter 5-11

OUTER JOIN Syntax
The Informix Dynamic Server ESQL/C OUTER JOIN syntax is different from
Oracle Pro*C. The following table compares the OUTER JOIN syntax in Informix
Dynamic Server and Oracle:

FETCH Clause
The Informix Dynamic Server ESQL/C FETCH clause allows the NEXT keyword in
the statement. The following table compares the FETCH clause in Informix
Dynamic Server and Oracle:

Database Language Example

Informix Dynamic
Server ESQL/C

EXEC SQL SELECT login_no
INTO :login_no
FROM users
WHERE user_name == ’PAM’;

Oracle Pro*C

EXEC SQL SELECT login_no
INTO :login_no
FROM users
WHERE user_name=’PAM’;

Database Language Example

Informix Dynamic
Server ESQL/C

EXEC SQL SELECT login_no
INTO :login_no
FROM users a , OUTER logins b
WHERE a.user_name = b.user_name;

Oracle Pro*C

EXEC SQL
SELECT login_no
INTO :login_no
FROM users a, logins b
WHERE a.user_name =
b.user_name (+);

Note: In release 9.2.0.1.0 of the Migration Workbench, you must
manually add the plus sign.

Syntactical Conversion Issues

5-12 Reference Guide for Informix Dynamic Server 7.3 Migrations

Header Files SQLNOTFOUND
Informix Dynamic Server ESQL/C header files define SQLNOTFOUND. In Oracle,
you must explicitly define SQLNOTFOUND as either +100 (ANSI mode) or +1403
(Oracle mode) depending on the mode being used in the Oracle precompiler.

CURSOR Declaration
In Informix Dynamic Server ESQL/C, the CURSOR can be declared with WITH
HOLD options, so that a CURSOR is not closed by COMMIT or ROLLBACK. This
does not comply with the ANSI standard, but Oracle supports it provided you
select the MODE=ORACLE precompiler option. For this reason, you modify the
program to COMMIT after closing the CURSOR.

DECLARE CURSOR Statement
Informix Dynamic Server ESQL/C DECLARE CURSOR statements can have INTO
clauses. You can specify the host variables in which to fetch the data in the
DECLARE CURSOR statement, and then use the cursor name in the FETCH
statement. This does not comply with the ANSI standard, and is not supported by
Oracle. As a result, you change all DECLARE statements with INTO clauses to have
the INTO clause in the FETCH statement. The following table compares the
DECLARE CURSOR statement in Informix Dynamic Server and Oracle:

Database Language Example

Informix Dynamic
Server ESQL/C

EXEC SQL FETCH NEXT cur
INTO :emp_no;

Oracle Pro*C
EXEC SQL
FETCH cur1
INTO :emp_no;

Database Language Example

Informix Dynamic
Server ESQL/C

FETCH statement.
EXEC SQL DECLARE CURSOR cur1 FOR
SELECT login_no
INTO :login_no
FROM users
WHERE user_name = ’PAM’;

EXEC SQL FETCH cur1;

Syntactical Conversion Issues

 The ESQL/C to Oracle Pro*C Converter 5-13

FOR UPDATE Option
Informix Dynamic Server ESQL/C cannot lock individual rows. To prevent a row
from being modified, the existing code must declare a cursor with the FOR
UPDATE option, open the cursor, fetch it, and then close it. Oracle can lock a
selected row by using the FOR UPDATE option, without requiring an explicit
cursor declaration. You must change the logic of some programs to take advantage
of the Oracle method. The following table compares the FOR UPDATE option in
Informix Dynamic Server and Oracle:

Application Conversion Issues
Oracle and Informix Dynamic Server use temporary tables. The difference being
that Oracle creates temporary tables once, and the data is kept separate between

Oracle Pro*C

EXEC SQL
DECLARE CURSOR cur1 FOR
SELECT login_no
FROM users
WHERE user_name=’PAM’;

EXEC SQL FETCH cur1
INTO :login_no;

Database Language Example

Informix Dynamic
Server ESQL/C

EXEC SQL DECLARE CURSOR cur1 FOR
SELECT login_no
INTO :login_no
FROM users
WHERE user_name = ’PAM’;
FOR UPDATE;
EXEC SQL OPEN cur1;
EXEC SQL FETCH cur1;
EXEC SQL CLOSE cur1;

Oracle Pro*C

EXEC SQL
SELECT login_no
INTO :login_no
FROM users
WHERE user_name = ’PAM’
FOR UPDATE;

Database Language Example

Conversion Errors and Warnings

5-14 Reference Guide for Informix Dynamic Server 7.3 Migrations

sessions. You must manually create temporary tables in Oracle, and separate from
the application. The Migration Workbench marks instances of this detected by the
converter as errors.

The following table compares the TEMP TABLE statement option in Informix
Dynamic Server and Oracle:

The Oracle Pro*C Preprocessor
For more information on Oracle Pro*C including command line options for the
preprocessor refer to the Pro*C/C++ Precompiler Programmer’s Guide.

Conversion Errors and Warnings
The ESQL/C to Oracle Pro*C Converter shares most of the errors and warnings it
generates with the stored procedure parser. For more information on stored
procedures refer to the "Triggers, Packages, and Stored Procedures" chapter.
Additional errors and warnings are explained in "ESQL/C to Oracle Pro*C
Converter Errors" on page 5 -14 and ESQL/C to Oracle Pro*C Warnings on page
5 -15.

ESQL/C to Oracle Pro*C Converter Errors
The cause of the Informix Dynamic Server ESQL/C to Oracle Pro*C converter
errors require manual investigation and correction by the user. Table 5–1 lists
details of possible error messages.

Database Language Example

Informix Dynamic
Server ESQL/C

EXEC SQL CREATE TEMP TABLE tab2 (fname CHAR(15), lname
CHAR(15)) WITH NO LOG;

Oracle Pro*C

/* SPCONV-WRN:(TEMP TABLE): It will be more performant
to create the temporary table separately. */
EXEC SQL CREATE GLOBAL TEMPORARY TABLE tab2(fname
CHAR(15), lname CHAR(15)) ON COMMIT PRESERVE ROWS;

Note: In Table 5–1 SPCONV refers to errors shared with the stored
procedure parser. ESQL refers to errors specific to the embedded
SQL parser.

Conversion Errors and Warnings

 The ESQL/C to Oracle Pro*C Converter 5-15

ESQL/C to Oracle Pro*C Warnings
Warning messages are for information purposes and may not require intervention.
Table 5–2 lists possible warning messages.

Table 5–1 ESQL to Oracle Pro*C Converter Errors

Error Message Description

ESQL-CONV-ERR:(EXEC SQL ..) The
converter will not parse this
expression correctly.

The converter failed to understand this
statement. It places it in a comment. You
must manually convert it.

SPCONV-ERR:(**) Statement
ignored. Manual conversion
required.

The (**) statement (for example the dynamic
PUT statement) is not automatically
converted. You must manually convert it.

Most Set statements also require manual
conversion.

ESQL-CONV-ERR:(CONNECT) Manual
conversion of the username,
password and database required.

The CONNECT string changes when you
move it from Informix Dynamic Server to
Oracle.

ESQL-CONV-ERR:(DATABASE) Manual
conversion of the username,
password and database required.

The CONNECT string changes when you
move it from Informix Dynamic Server to
Oracle.

SPCONV-ERR:(ALTER INDEX)
Statement ignored. Manual
conversion may be required.

The ALTER statement clause is unlikely to
occur in ESQL/C and Oracle Pro*C. If it
occurs, you must manually add it.

/* SPCONV-MSG:(EXEC SQL ..) The
converter will not parse this
expression correctly. */
/**********************
ERROR STATEMENT COMMENTED

exec sql <Statement not parsed
goes here>
*******************************/

The converter has failed on this statement
and has continued with the next statement.

/* ESQL-CONV-ERR:(DYNAMIC SQL)
Conversion not supported in this
release. Manual conversion may
be required. */

Release 9.2.0.1.0 of the Migration Workbench
does not support Dynamic SQL. However,
some commands do work in ANSI mode.

Conversion Errors and Warnings

5-16 Reference Guide for Informix Dynamic Server 7.3 Migrations

Note: In Table 5–2 SPCONV refers to errors shared with the stored
procedure parser. ESQL refers to warnings specific to the
embedded SQL parser.

Table 5–2 ESQL/C to Oracle Pro*C Warnings

Warning Description

ESQL-CONV-MSG:(CLOSE) Statement
not required when compilation
mode = ORACLE.

Oracle mode is the default Oracle Pro*C setting
so the close statement is not required. It places
it in a comment.

ESQL-CONV-MSG:(WHENEVER) Oracle
supports additional directives.

An informational message to note that the
Oracle WHENEVER statement has additional
options that may be of use.

ESQL-CONV-MSG:(INTO) Clause
removed from cursor definition
and integrated into FETCH
statement.

A reminder that the INTO clause has moved,
as shown in the syntax of the "DECLARE
CURSOR Statement" example.

ESQL-CONV-MSG:(DYNAMIC SQL)
Unsupported in this release.
Manual conversion may be
required.

Most commands for dynamic SQL statements
are similar in Oracle and Informix Dynamic
Server. The generated SQL statements should
be similar, but the converter makes no attempt
to convert the dynamic SQL statements,
however simple commands are converted.

/* SPCONV-MSG:(**) Statement
passed to DDL file. */

Some commands may be executed before
running the new Oracle Pro*C application. For
example, you create Oracle temporary tables
before running the application. The data is
saved separately each time a session is run.

/* SPCONV-WRN:(=>) Oracle
requires Positional parameter
notation to precede Named
parameter notation. Manual
conversion required.*/

This warning indicates complications and
variations in the CALL statement syntax.

/* ESQL-CONV-MSG:(CLOSE)
Statement not required when
compilation mode = ORACLE. */

You should close a cursor before reopening it.
However, if you specify the Oracle mode
(default), you do not need to close the cursor.
Choosing the oracle mode can increase
performance.

Conversion Errors and Warnings

 The ESQL/C to Oracle Pro*C Converter 5-17

/* ESQL-CONV-MSG:(COMMIT)
Statement will automatically
close all cursors referenced in
a CURRENT OF clause when
compilation mode = ORACLE. Other
cursors are unaffected. */

Statement automatically closes all cursors
included in a CURRENT OF clause when
compiled in Oracle mode.

"/* ESQL-CONV-MSG:(COMMIT)
Statement will automatically
close all explicit cursors when
compilation mode = ORACLE. */

Informational message about the behaviors of
cursors on COMMIT. Refer to the Oracle Pro*C
documentation for more details.

/* SPCONV-MSG:(CONTINUE **)
Statement emulated using GOTO
statement and LABEL
definition.*/

An informational message about how Oracle
emulates Informix Dynamic Server behavior.

/* SPCONV-MSG:(WITH RESUME)
Collating results for REF CURSOR
return.*/

An informational message referring to the use
of REF CURSOR. For further information refer
to the "Triggers, Packages, and Stored
Procedures"chapter.

/* SPCONV-MSG:(WITH RESUME)
Initialising GLOBAL TEMPORARY
TABLE used to store Procedures
interim results. */

An informational message about the use of
temporary tables in the emulation of the
Informix Dynamic Server WITH RESUME
option.

/* ESQL-CONV-MSG:(SCROLL) Scroll
cursors not available in Oracle.
Manual conversion may be
required. */

Oracle does not have SCROLL cursors. You can
manually move the data from a cursor into a
PL/SQL table.

/* ESQL-CONV-MSG:(WITH HOLD)
Unsupported in Oracle. Manual
conversion may be required. */

The WITH HOLD option is not available in
Oracle. You must manually convert it.

/* ESQL-CONV-MSG:(INTO) Clause
removed from cursor definition
and integrated into FETCH
statement. */

An informational message. Move the INTO
clause to the FETCH statement in Oracle.

/* ESQL-CONV-MSG:(SELECT FIRST
n) Emulated using FOR clause in
FETCH statement. Manual
conversion may be required. */

An informational message. Additional declare
cursor facilities not available in Oracle.

Table 5–2 ESQL/C to Oracle Pro*C Warnings (Cont.)

Warning Description

Conversion Errors and Warnings

5-18 Reference Guide for Informix Dynamic Server 7.3 Migrations

/* ESQL-CONV-MSG:(MODE=ANSI)
ANSI compliant variable
declaration generated. */

EXEC SQL BEGIN DECLARE SECTION; and
EXEC SQL END DECLARE SECTION;
statements added.

/*ESQL-CONV-MSG:(MODE=ORACLE)
Non ANSI compliant variable
declaration generated. */

Declare section header and footer not required
in Oracle mode.

/* SPCONV-MSG:(GLOBAL **) Global
Variable definition moved to
globalPkg Package.*/

Global variables moved to the OMWB_
EMULATION user package GLOBALPKG.

/* SPCONV-MSG:(DROP DATABASE)
Statement ignored. */

Oracle databases are seldom dropped in
embedded SQL. If a database is dropped it is
ignored.

/* SPCONV-MSG:(DROP **) OMWB_
Emulation.DDL_MANAGER procedure
used to execute DDL statement.*/

Release 9.2.0.1.0 of the Migration Workbench
does not support DROP ** statements. These
statements are ignored.

/* ESQL-CONV-MSG:(BEGIN .. END)
Embedded PL/SQL code block
generated for Stored Procedure
call. */

An informational message describing how
Oracle code contains an embedded PL/SQL
code block.

/* ESQL-CONV-MSG:(SELECT)
Statement illegal as a procedure
parameter in Oracle. */

Statement illegal as a procedure parameter in
Oracle.

/* ESQL-CONV-MSG:(SELECT)
Statement removed from procedure
call. */

Statement removed from procedure call.

/* ESQL-CONV-MSG:(*) Manual
conversion of the generated
variable TYPE may be required.*/

SELECT statement in Informix Dynamic Server
converted into a SELECT variable, which may
have the wrong type. Manual conversion may
be required.

/* ESQL-CONV-MSG:(INTO)
Procedure call converted to
function call as only one value
returned. */

An Informix Dynamic Server procedure
returning one value converts to an Oracle
function. PL/SQL functions must return a
value into a variable, for example
a:= func(); just func(); will create an
error.

Table 5–2 ESQL/C to Oracle Pro*C Warnings (Cont.)

Warning Description

Conversion Errors and Warnings

 The ESQL/C to Oracle Pro*C Converter 5-19

/* ESQL-CONV-MSG:(**) Statement
emulated using Oracle FOR syntax
within cursor declaration. */

An informational message describing
emulation in Oracle.

/* ESQL-CONV-WRN:(**) Oracle has
no equivalent cursor action.
Manual conversion required.*/

Oracle does not have various cursor actions.
You can manually move the data from a cursor
into a PL/SQL table.

/* ESQL-CONV-MSG:(INTO) Clause
originally declared within
cursor declaration. */

The INTO clause was originally in the
DECLARE section but was moved to the
FETCH statement.

/* ESQL-CONV-MSG:(FREE)
Statement not required in
ORACLE. */

EXEC SQL FREE CURSORID statement placed
in a comment.

/* ESQL-CONV-MSG:(DYNAMIC SQL)
Unsupported in this release.
Manual conversion may be
required.*/

Release 9.2.0.1.0 of the Migration Workbench
does not support Dynamic SQL, but simple
SQL and simple ANSI dynamic SQL are
supported. Convert substitution variables to
:var1.

/* ESQL-CONV-MSG:(GET
DIAGNOSTICS) Manual conversion
required.*/

This call is significantly different between
Oracle and Informix Dynamic Server. You
must manually convert it.

/* SPCONV-MSG:(SUBQUERY)
Subquery within IF statement
emulated by using Boolean
variable.*/

An informational message describing
emulation in Oracle.

/* SPCONV-MSG:(LOCK TABLE)
Please see ’Oracle 8i Server SQL
reference’ for details of other
LOCK options.*/

An informational message. Refer to the Oracle
8i Server SQL documentation for more
information.

/* SPCONV-MSG:(WITH RESUME)
Statement emulated through use
of GLOBAL TEMPORARY TABLES.*/

Oracle does not support the WITH RESUME
statement. It is emulated using temporary
tables. Manual conversion may be required.

/* SPCONV-MSG:(RETURNING)
Informix RETURNING clause
parameters converted to Oracle
OUT parameters.*/

If an Informix Dynamic Server function has
more than one returning parameter, these are
converted into Oracle OUT parameters.

Table 5–2 ESQL/C to Oracle Pro*C Warnings (Cont.)

Warning Description

Conversion Errors and Warnings

5-20 Reference Guide for Informix Dynamic Server 7.3 Migrations

/* ESQL-CONV-MSG:(ROLLBACK)
Statement expanded to utilise
Oracle SAVEPOINTS. */

An informational message describing how the
ROLLBACK statement is used to go to the
previous SAVE‘POINT, if that parser option is
used.

/* ESQL-CONV-MSG:(ROLLBACK)
Statement automatically closes
all cursors referenced in a
CURRENT OF clause when
compilation mode = ORACLE. */

An informational message describing how
cursors are closed in Oracle mode.

/* ESQL-CONV-MSG:(ROLLBACK)
Statement closes all explicit
cursors when compilation mode =
ANSI. */

An informational message describing how
cursors are closed in ANSI mode.

/* ESQL-CONV-MSG:(ROLLBACK)
Extra ROLLBACK option available
in Oracle. Please see the Oracle
8i users guide for more
information. */

An informational message. Refer to the Oracle
8i Server SQL documentation for more
information.

/* ESQL-CONV-MSG:(OUTER) Simple
OUTER joins may not be fully
converted. Manual conversion may
be required. */

Simple OUTER joins may not be automatically
converted.

/* ESQL-CONV-MSG:(MATCHES)
Complex search patterns not
fully converted. Manual
conversion may be required. */

An informational message describing how
complex search patterns are not fully
converted. Manual conversion may be
required.

/* ESQL-CONV-MSG:(NOWAIT)
Keyword added to emulate
Informix SET LOCK MODE
statement. */

Informix Dynamic Server sets NOWAIT in a
SET statement, but Oracle places it in the
SELECT FOR UPDATE statement.

/* ESQL-CONV-MSG:(GROUP BY)
Oracle does not enable literal
numbers to be used in the GROUP
BY clause. Manual conversion may
be required. */

Replace GROUP BY 1,3; with GROUP BY
col1, col3;

Table 5–2 ESQL/C to Oracle Pro*C Warnings (Cont.)

Warning Description

Conversion Errors and Warnings

 The ESQL/C to Oracle Pro*C Converter 5-21

/* SPCONV-MSG:(SET DEBUG FILE)
OMWB_emulation.utilities Package
introduced to mimic Informix
functionality.*/

Debugging enabled by use of the OMWB_
EMULATION.UTILITIES package.

/* ESQL-CONV-MSG:(NOT WAIT)
Option may be emulated by
implementing the Oracle NOWAIT
SELECT statement option. */

Informix Dynamic Server sets NOWAIT in a
SET statement, but Oracle places it in the
SELECT FOR UPDATE statement.

/* SPCONV-MSG:(SYSTEM) Emulating
Informix SYSTEM statement by
using OMWB_emulation.SHELL
Procedure.*/

The OMWB_EMULATION.SHELL procedure can
emulate the system command, along with a
small C program.

/* SPCONV-MSG:(TRACE) OMWB_
emulation.utilities Package
introduced to mimic Informix
functionality.*/

Trace facilities are provided by the OMWB_
EMULATION.UTILITIES.DEBUG()procedure.

/* ESQL-CONV-MSG:(ONLY) No
equivalent available in Oracle.
Statement ignored. */

ONLY statement is not supported in Oracle.
You must manually convert it.

/* SPCONV-MSG:(UPDATE
STATISTICS) Statement ignored.*/

UPDATE statistics statement is not supported
in Oracle. You must manually convert it.

/*ESQL-CONV-MSG:(WHENEVER)
Oracle supports additional
directives. */

An informational message.

/*SPCONV-WRN:(ALTER TABLE)
Unable to convert ALTER TABLE
statement. Manual conversion
required*/

The ALTER TABLE options used do not
directly convert to Oracle syntax. You must
manually convert it.

/* SPCONV-WRN:(TEMP TABLE): It
will be more performant to
create the temporary table
separately .*/

Remove the CREATE TABLE statement and
run separately, before running the Oracle
Pro*C application. Oracle temporary tables
hold per-session information but they cannot
be separately created for each session.

/* SPCONV-WRN:(**) Conversion of
remote Database links not
supported. Manual conversion
required. */

Use Oracle database links to simulate remote
database links. Refer to the Oracle9i
documentation for more details.

Table 5–2 ESQL/C to Oracle Pro*C Warnings (Cont.)

Warning Description

Conversion Errors and Warnings

5-22 Reference Guide for Informix Dynamic Server 7.3 Migrations

/* SPCONV-WRN:(REFERENCES BYTE)
Converted to Oracle BLOB
datatype. Restrictions apply.*/

Informix Dynamic Server BLOB and CLOB
datatype support differs from Oracle BLOB
and CLOB datatype support. Manual
conversion required. In this example, the BYTE
datatype is converted to BLOB.

/* SPCONV-WRN:(REFERENCES TEXT)
Converted to Oracle CLOB
datatype. Restrictions apply.*/

Informix Dynamic Server BLOB and CLOB
datatype support differs from Oracle BLOB
and CLOB datatype support. Manual
conversion required. In this example, the TEXT
datatype is converted to CLOB.

/* SPCONV-MSG:(DROP **)
Statement passed to DDL file.*/

One-off statements that are best used in a SQL
script.

/* SPCONV-WRN:(DBINFO) Unable to
convert function call. Manual
conversion required.*/

Some DBINFO calls cannot be directly
converted to Oracle.

/* SPCONV-WRN:(**) Manual
conversion required if the
procedure returns more than one
value.*/

An informational message.

/* SPCONV-WRN:(EXCEPTION)
Emulation of Informix Exceptions
incomplete.*/

Refer to Informix Dynamic Server
documentation for more information.

/* ESQL-CONV-WRN:(RECOVER)
Statement Ignored. */

RECOVER table statement is ignored.

/* SPCONV-WRN:(RETURN) Collating
results for REF CURSOR return.*/

Results collated into temporary table are
selected out in a single result set.

/* SPCONV-WRN:(FOR READ ONLY)
Statement Ignored. */

Default Oracle behavior is FOR READ ONLY.

/* SPCONV-WRN:(SYSTEM) Statement
Ignored. Parse option turned
off.*/

The SYSTEM emulation option switched off so
SYSTEM is ignored. You must manually
convert it.

/* SPCONV-WRN: (TRACE **)
Currently not supported. Manual
conversion required.*/

Some TRACE options are not converted by the
converter. Refer to the Oracle documentation
for an overview of the Oracle tracing facilities.

Table 5–2 ESQL/C to Oracle Pro*C Warnings (Cont.)

Warning Description

Restrictions

 The ESQL/C to Oracle Pro*C Converter 5-23

Restrictions
There are some restrictions with the Informix Dynamic Server ESQL/C to Oracle
Pro*C Converter. The following converter restrictions apply:

Renaming Reserved Words
The converter adds an underscore after reserved words so EXEC SQL INCLUDE
datetime.h becomes EXEC SQL INCLUDE datetime_.h, which in this case is
not useful. This behavior is useful where a column name is an Oracle reserved word
and the Migration Workbench schema conversion renames the column by adding
an underscore. Then COLUMN YEAR becomes YEAR_ in both the embedded SQL
and schema creation part of the Migration Workbench.

Header Files
There may be differences between header files used in Informix Dynamic Server
ESQL/C and Oracle Pro*C. You must remove Informix Dynamic Server specific
files and replace them with the Oracle equivalent.

Using multiple connections for different transactions
The converter does not support multiple connections. It replaces more complicated
Informix Dynamic Server CONNECT statements with a simple Oracle CONNECT
statement. For information on how to manage multiple contexts in Oracle, refer the
following commands in the Oracle Pro*C documentation:

EXEC SQL CONTEXT ALLOCATE :ctx;
EXEC SQL CONTEXT USE :ctx;
EXEC SQL CONTEXT FREE :ctx;

/* SPCONV-WRN:(MATCHES)
Converted to an Oracle LIKE,
BETWEEN or IN statement. Manual
conversion of the search pattern
may be required.*/

The MATCHES statement is not precisely
converted to Oracle. You must manually
convert the search pattern.

Table 5–2 ESQL/C to Oracle Pro*C Warnings (Cont.)

Warning Description

Using Demonstration Code

5-24 Reference Guide for Informix Dynamic Server 7.3 Migrations

Using Demonstration Code
To create a user in Oracle, enter the following commands:

>sqlplus SYSTEM/MANAGER
SQL>CREATE USER examp IDENTIFIED BY examp;
SQL>GRANT CONNECT, RESOURCE TO examp;
SQL>CONNECT examp/examp
SQL>CREATE TABLE emp (EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2),
 DEPTNO NUMBER(2));
SQL>INSERT INTO EMP VALUES
 (7499, ’ALLEN’, ’SALESMAN’, 7698,
 SYSDATE, 1600, 300, 30);
SQL>INSERT INTO EMP VALUES
 (7521, ’WARD’, ’SALESMAN’, 7698,
 SYSDATE, 1250, 500, 30);
SQL>INSERT INTO EMP VALUES
 (7566, ’JONES’, ’MANAGER’, 7839,
 SYSDATE, 2975, NULL, 20);
SQL>INSERT INTO EMP VALUES
 (7839, ’KING’, ’PRESIDENT’, NULL,
 SYSDATE, 5000, NULL, 10);
SQL>COMMIT;

The executable relies on a database populated by data. The following example
shows how to produce an executable:

1. Precompile the code from Oracle Pro*C to a C file using the Oracle Pro*C
executable proc esqlproc1.pc.

2. Compile the C code using a suitable development environment. The Oracle
Pro*C example shipped by with Oracle contains project files for the Visual C++
development environment. The project contains details of the libraries and
include files required to build a small executable based on Oracle Pro*C. The
project file used is %ORACLE_HOME%\precomp\demo\proc\sample.dsp.
You have to add the C file esqlproc1.c to the project.

For more information on Oracle Pro*C/C++ refer to the Pro*C/C++ Precompiler
Programmer’s Guide.

 Disconnected Source Model Loading 6-1

6
Disconnected Source Model Loading

The Disconnected Source Model Load feature of the Migration Workbench allows
consultants to work on a customer’s database migration without having to install
and run the Migration Workbench at the customer site.

To perform the disconnected source model load option a customer must generate
delimited flat files containing schema metadata from the database to be migrated.
You generate the flat file by running a predefined Migration Workbench script
against the source database. The flat files are sent to a consultant who uses the
Migration Workbench to load the metadata files into a source and Oracle model.
You can then map this schema to Oracle.

Generating Database Metadata Flat Files
Informix Dynamic Server databases use the Bulk Copy Program (BCP) to generate
delimited metadata flat files. Predefined scripts installed with the Migration
Workbench invoke the BCP, and generate the flat files for each database. The BCP
outputs delimited metadata files from the database with a .dat extension.
However, for a successful migration of a database the .dat metadata files are
converted into XML files by the Migration Workbench. The Migration Workbench
converts the .dat files when the source metadata files are selected during the
capture phase of the migration, and outputs the generated .xml files to the same
root directory as the source .dat files.

Flat File Generation Scripts
The predefined script file for Informix Dynamic Server is in the %ORACLE_
HOME%\Omwb\DSML_Scripts\informix7 directory.

Generating Database Metadata Flat Files

6-2 Reference Guide for Informix Dynamic Server 7.3 Migrations

Running the Script
To run the script file from the %ORACLE_HOME%\DSML_scripts\informix7
directory, use the following command line:

IDS7_DSML_SCRIPT <root dir> <servername>

Code Samples A-1

A
Code Samples

This appendix contains a sample of an Oracle package used to convert TRACE
statements.

OMWB_Emulation Utilities Package
For release 9.2.0.1.0 of the Migration Workbench a user has to be added manually,
or the OMWB_emulation references in the generated code should be removed:

REM
REM Message : Created User :omwb_emulation
REM User :
CREATE USER omwb_emulation IDENTIFIED BY oracle
;
GRANT CONNECT,RESOURCE TO omwb_emulation
;
CREATE TABLE OMWB_emulation.debug_table(log_date DATE,log_user VARCHAR(100),log_
message
VARCHAR(4000));

CONNECT Omwb_emulation/oracle
REM
REM Message : Created Package : UTILITIES_1
REM User : omwb_emulation
CREATE OR REPLACE PACKAGE utilities AS
 DebugFile VARCHAR2(20) DEFAULT ’trace.log’;
 /* The following variable DebugDir should be edited to
 DEFAULT to a valid UTL_FILE_DIR entry within the
 destination databases init.ora initialization file. */
 DebugDir VARCHAR2(50); /* DEFAULT ’’; */
 DebugOut INTEGER DEFAULT 3;

OMWB_Emulation Utilities Package

A-2 Reference Guide for Informix Dynamic Server 7.3 Migrations

 PROCEDURE DEBUG(debug_statement VARCHAR2);
 PROCEDURE DEBUG_TO_TABLE(debug_statement VARCHAR2);
 PROCEDURE DEBUG_TO_DBMS(debug_statement VARCHAR2);
 PROCEDURE DEBUG_TO_FILE(debug_statement VARCHAR2);
 PROCEDURE RESET_DEBUG_TABLE;
 PROCEDURE RESET_DEBUG_FILE;

 FUNCTION HEX (n pls_integer)
 RETURN VARCHAR2;
 FUNCTION MDY (month_in pls_integer,
 day_in pls_integer,
 year_in pls_integer)
 RETURN DATE;
 FUNCTION DAY (date_in DATE)
 RETURN INTEGER;
 FUNCTION MONTH (date_in DATE)
 RETURN INTEGER;
 FUNCTION YEAR(date_in DATE)
 RETURN INTEGER;
 FUNCTION WEEKDAY(date_in DATE)
 RETURN INTEGER;
END utilities;

/

REM
REM Message : Created Package : GLOBALPKG_1
REM User : omwb_emulation
CREATE OR REPLACE PACKAGE globalPkg AUTHID CURRENT_USER AS
/* The following are T/SQL specific global variables. */
 identity INTEGER;
 trancount INTEGER;
 TYPE RCT1 IS REF CURSOR;/*new weak cursor definition*/
 PROCEDURE incTrancount;
 PROCEDURE decTrancount;
END globalPkg;
/

REM
REM End Packages for omwb_emulation
REM

REM
REM Start Stored Procedures for omwb_emulation
REM

OMWB_Emulation Utilities Package

Code Samples A-3

REM
REM Message : Created Procedure : UTILITIES
REM User : omwb_emulation
CREATE OR REPLACE PACKAGE BODY utilities AS

PROCEDURE DEBUG (debug_statement IN VARCHAR2) IS
BEGIN
 /* Call the appropriate sub procedure depending on the
 value of the utilities.DebugOut variable.
 This variable should be set within the utilities
 package header. */
 IF(debug_statement IS NULL) THEN
 RETURN;
 END IF;
 IF (utilities.DebugOut = 1) THEN
 DEBUG_TO_FILE(debug_statement);
 ELSIF (utilities.DebugOut = 2) THEN
 DEBUG_TO_DBMS(debug_statement);
 ELSE
 DEBUG_TO_TABLE(debug_statement);
 END IF;
END DEBUG;

PROCEDURE DEBUG_TO_TABLE (debug_statement IN VARCHAR2) IS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO OMWB_emulation.debug_table
 VALUES(SYSDATE,
 USER,
 debug_statement);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20108,’utilities.DEBUG_TO_TABLE : Error raised when
attempting to insert row into OMWB_Emulation.debug_table table.’);
END DEBUG_TO_TABLE;

PROCEDURE DEBUG_TO_DBMS(debug_statement VARCHAR2) IS
BEGIN
 DBMS_OUTPUT.PUT_LINE(debug_statement);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.ENABLE(1000000);
 DBMS_OUTPUT.PUT_LINE(debug_statement);

OMWB_Emulation Utilities Package

A-4 Reference Guide for Informix Dynamic Server 7.3 Migrations

END DEBUG_TO_DBMS;

PROCEDURE DEBUG_TO_FILE(debug_statement VARCHAR2) IS
fileID UTL_FILE.FILE_TYPE;
BEGIN
 fileID := UTL_FILE.FOPEN(utilities.DebugDir,
 utilities.DebugFile,
 ’a’);
 UTL_FILE.PUT_LINE(fileID,
 SYSDATE
 || ’ ’
 || USER
 || ’ ’
 || debug_statement);
 UTL_FILE.FCLOSE(fileID);
EXCEPTION
 WHEN UTL_FILE.INVALID_OPERATION THEN
 RAISE_APPLICATION_ERROR(-20100,’utilities.DEBUG_TO_FILE raised : Invalid
operation.’);
 WHEN UTL_FILE.INVALID_FILEHANDLE THEN
 RAISE_APPLICATION_ERROR(-20101,’utilities.DEBUG_TO_FILE raised : Invalid
file handle.’);
 WHEN UTL_FILE.WRITE_ERROR THEN
 RAISE_APPLICATION_ERROR(-20102,’utilities.DEBUG_TO_FILE raised : Write
Error.’);
 WHEN UTL_FILE.INVALID_PATH THEN
 RAISE_APPLICATION_ERROR(-20103,’utilities.DEBUG_TO_FILE raised : Invalid
path.’);
 WHEN UTL_FILE.INVALID_MODE THEN
 RAISE_APPLICATION_ERROR(-20104,’utilities.DEBUG_TO_FILE raised : Invalid
mode.’);
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20105,’utilities.DEBUG_TO_FILE raised : Unhandled
Exception.’);
END DEBUG_TO_FILE;

PROCEDURE RESET_DEBUG_TABLE IS
BEGIN
 DELETE FROM OMWB_Emulation.debug_table;
EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20107,’utilities.RESET_DEBUG_TABLE : Error raised
when attempting to clear the OMWB_Emulation.debug_table table.’);
END RESET_DEBUG_TABLE;

OMWB_Emulation Utilities Package

Code Samples A-5

PROCEDURE RESET_DEBUG_FILE IS
fileID UTL_FILE.FILE_TYPE;
BEGIN
 fileID := UTL_FILE.FOPEN(utilities.DebugDir,
 utilities.DebugFile,
 ’w’);
 UTL_FILE.PUT_LINE(fileid,
 ’Log file creation :’
 || SYSDATE);
 UTL_FILE.FCLOSE(fileID);
EXCEPTION
 WHEN UTL_FILE.INVALID_OPERATION THEN
 RAISE_APPLICATION_ERROR(-20100,’utilities.RESET_DEBUG_FILE raised : Invalid
operation.’);
 WHEN UTL_FILE.INVALID_FILEHANDLE THEN
 RAISE_APPLICATION_ERROR(-20101,’utilities.RESET_DEBUG_FILE raised : Invalid
file handle.’);
 WHEN UTL_FILE.WRITE_ERROR THEN
 RAISE_APPLICATION_ERROR(-20102,’utilities.RESET_DEBUG_FILE raised : Write
Error.’);
 WHEN UTL_FILE.INVALID_PATH THEN
 RAISE_APPLICATION_ERROR(-20103,’utilities.RESET_DEBUG_FILE raised : Invalid
path.’);
 WHEN UTL_FILE.INVALID_MODE THEN
 RAISE_APPLICATION_ERROR(-20104,’utilities.RESET_DEBUG_FILE raised : Invalid
mode.’);
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20105,’utilities.RESET_DEBUG_FILE raised :
Unhandled Exception.’);
END RESET_DEBUG_FILE;

FUNCTION HEX(n pls_integer)
RETURN VARCHAR2 IS
BEGIN
 IF n > 0 THEN
 RETURN HEX (TRUNC (n / 16)) || SUBSTR (’0123456789ABCDEF’, MOD (n, 16) + 1,
1);
 ELSE
 RETURN NULL;
 END IF;
END HEX;

FUNCTION MDY(month_in pls_integer,
 day_in pls_integer,
 year_in pls_integer)

OMWB_Emulation Utilities Package

A-6 Reference Guide for Informix Dynamic Server 7.3 Migrations

RETURN DATE IS
bad_day EXCEPTION;
bad_month EXCEPTION;
bad_year EXCEPTION;
BEGIN
 IF month_in < 0 OR month_in > 12 THEN
 RAISE bad_month;
 END IF;
 IF day_in < 0 OR day_in > 31 THEN
 RAISE bad_day;
 END IF;
 IF year_in < 999 THEN
 RAISE bad_year;
 END IF;
 RETURN TO_DATE(TO_CHAR(month_in)
 || ’-’
 || TO_CHAR(day_in)
 || ’-’
 || TO_CHAR(year_in),
 ’MM-DD-YYYY’);
EXCEPTION
 WHEN bad_day THEN
 RETURN NULL;
 WHEN bad_year THEN
 RETURN NULL;
 WHEN bad_month THEN
 RETURN NULL;
END MDY;

FUNCTION DAY(date_in DATE)
RETURN INTEGER IS
BEGIN
 IF date_in IS NULL THEN
 RETURN NULL;
 END IF;
 RETURN TO_NUMBER(TO_CHAR(date_in,’DD’));
END DAY;

FUNCTION MONTH(date_in DATE)
RETURN INTEGER IS
BEGIN
 IF date_in IS NULL THEN
 RETURN NULL;
 END IF;
 RETURN TO_NUMBER(TO_CHAR(date_in,’MM’));

OMWB_Emulation Utilities Package

Code Samples A-7

END MONTH;

FUNCTION YEAR(date_in DATE)
RETURN INTEGER IS
BEGIN
 IF date_in IS NULL THEN
 RETURN NULL;
 END IF;
 RETURN TO_NUMBER(TO_CHAR(date_in,’YYYY’));
END YEAR;

FUNCTION WEEKDAY(date_in DATE)
RETURN INTEGER IS
BEGIN
 IF date_in IS NULL THEN
 RETURN NULL;
 END IF;
 RETURN TO_NUMBER(TO_CHAR(date_in,’D’));
END WEEKDAY;

END utilities;

/
REM
REM Message : Created Procedure : SHELL
REM User : omwb_emulation
CREATE OR REPLACE PROCEDURE SHELL(os_command VARCHAR)
AUTHID CURRENT_USER AS
BEGIN
/* This is a dummy stored procedure added by the migration
 workbench. Please see the Migration Workbench users
 guide for information on how to configure this procedure
 for use. */
 NULL;
END SHELL;
/

REM
REM Message : Created Procedure : GLOBALPKG
REM User : omwb_emulation
CREATE OR REPLACE PACKAGE BODY globalPkg AS
/* This is a dummy package body added by the migration
 workbench in order to emulate T/SQL specific global variables. */
PROCEDURE incTrancount IS
BEGIN

OMWB_Emulation Utilities Package

A-8 Reference Guide for Informix Dynamic Server 7.3 Migrations

 trancount := trancount + 1;
END incTrancount;
PROCEDURE decTrancount IS
BEGIN
 trancount := trancount - 1;
END decTrancount;
END globalPkg;
/

REM
REM Message : Created Procedure : DDL_MANAGER
REM User : omwb_emulation
CREATE OR REPLACE PROCEDURE DDL_Manager(ddl_statement VARCHAR)
AUTHID CURRENT_USER IS
BEGIN
 EXECUTE IMMEDIATE ddl_statement;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END DDL_Manager;
/

REM
REM End Stored Procedures for omwb_emulation
REM

GRANT EXECUTE ON utilities TO public;

 GRANT SELECT, INSERT ON Omwb_emulation.debug_table TO PUBLIC;

GRANT EXECUTE ON SHELL TO public;

GRANT EXECUTE ON globalPkg TO public;

GRANT EXECUTE ON DDL_Manager TO public;

Index-1

Index

Symbols
%

wildcard operators, 3-17
?

wildcard operators, 3-17
^

wildcard operators, 3-17
_

wildcard operators, 3-17

A
accessing remote databases, 4-2
Application Conversion Issues, 5-13
application development tools, 4-3
Arithmetic, 2-23

B
BEGIN WORK

statements, 3-40
BLOBs, 2-7
built-in functions, 3-30

C
Capture of ESQL/C Source Files, 5-2
Capture Wizard, 1-3
check constraints, 2-8
clauses

DOCUMENT, 3-13

when MATCHES are not converted, 3-18
column names, 2-4
column-level CHECK constraint, 2-8
Common Outstanding Issues

Header Files, 5-23
Renaming Reserved Words, 5-23
Using multiple connections for different

transactions, 5-23
comparison conditions

LIKE, 3-17
MATCHES, 3-17

compound LET
statements, 3-24

constructs, 3-20
FOR EACH LOOP, 3-20
FOR LOOP, 3-18

CONTINUE
statements, 3-26

converting, 3-53
CREATE TEMP TABLE

statements, 3-49
creating temporary tables, 3-49

D
data storage concepts, 2-32
data type mappings, 2-11
data types, conversion considerations, 2-5
DATETIME data type, 2-5
DDL statements, 3-47
DEBUG procedure

configuring, 3-37
DEBUG proedure

overview, 3-37

Index-2

destination database, 1-3
Disconnected Source Model Load, 6-1
distributed environments, 4-2
DOCUMENT

clause, 3-13
DROP TABLE

statements, 3-50
DUAL tables, 3-41

E
error handling

stored procedures, 3-47
E/SQL, an Introduction to, 5-1
ESQL/C to Oracle Pro*C Parser Errors, 5-14
ESQL/C to Oracle Pro*C Warnings, 5-15
ESQL/C to Pro*C Converter, Using the

Converter, 5-2
exception blocks, 3-42

F
features, 1-2
Flat File Generation Scripts, 6-1
FOR EACH LOOP, 3-20
FOR LOOP

constructs, 3-18
FOREACH . . SELECT. . INTO

statements, 3-21
FOREACH CURSOR

statements, 3-22
FOREACH execute procedure

statements, 3-23

I
IMAGE data type, 2-7
Informix 4GL, 4-4

K
keywords

not supported by the Migration
Workbench, 3-51

used as identifiers, 3-51

L
LIKE

comparing, 3-17

M
mapping

triggers, 3-2
MATCHES

comparing, 3-17
metadata flat files

generating, 6-1
Migration Wizard, 1-3
modes

IN, 3-8
IN OUT, 3-8
OUT, 3-8
parameter passing, 3-7

mutating tables, 3-4

N
NULL

executable statement, 3-6

O
object names, 2-4
Oracle Model, 1-3
Oracle Pro*C Conversion, 5-4
overview, 3-2, 3-5

triggers, 3-2

P
packages, 3-4

utilities, 3-30
paragraph tags

PT PrefaceTitle, ix
parameter passing

logical parts, 3-7
Oracle modes, 3-7

parameters
input, 3-8
output, 3-9

Index-3

Pro*C, an Introduction to, 5-1
product description, 1-1
PT PrefaceTitle, ix

R
RAISE EXCEPTION

statements, 3-45
remote objects

Informix Dynamic Server, 4-3
Oracle, 4-2

repository, 1-4
RETURN WITH RESUME

statements, 3-27
returning section, 3-10
ROLLBACK WORK

statements, 3-41

S
savepoints, 3-40
schema migration, 2-3
SELECT

statements, 3-41
SET DEBUG FILE

statements, 3-39
SHELL stored procedures, 3-32

set-up tasks for configuring, 3-32
source database, 1-3
Source Model, 1-4
SPL statements, 3-10, 3-53
statement

NULL, 3-6
statements

BEGIN WORK, 3-40
compound LET, 3-24
CONTINUE, 3-26
converting TRACE, 3-35
CREATE TEMP TABLE, 3-49
DDL statements, 3-47
DROP TABLE, 3-50
FOREACH execute procedure, 3-23
issues with converting SPL statements, 3-53
RAISE EXCEPTION, 3-45
RETURN WITH RESUME, 3-27

ROLLBACK WORK, 3-41
SELECT, 3-41
SELECT within IF condition, 3-41
SET DEBUG FILE, 3-39
SPL statements, 3-10
SYSTEM, 3-31
TRACE, 3-35
WITH RESUME, 3-11

statements, FOREACH . . SELECT. . INTO, 3-21
statements, FOREACH CURSOR, 3-22
stored procedures, 3-5

error handling, 3-47
overview, 3-5
SHELL, 3-32

subprograms, 3-2
Syntactical Conversion Issues, 5-9

ANSI Code, 5-10
CURSOR Declaration, 5-12
DECLARE CURSOR Statement, 5-12
Double ’=’ in WHERE Clause, 5-10
EXEC SQL Statement, 5-9
FETCH Clause, 5-11
FOR UPDATE Option, 5-13
Header Files SQLNOTFOUND, 5-12
INCLUDE Files, 5-10
OUTER JOIN Syntax, 5-11
UNIQUE Keyword in the SELECT Clause, 5-11
UPDATE Statement, 5-10

SYSTEM
statements, 3-31

T
table design considerations, 2-5
table-level CHECK constraint, 2-8
tables

DUAL, 3-41
temporary table usage, 5-1
temporary tables

creating, 3-49
TEXT data type, 2-7
The Pro*C Preprocessor, 5-14
TRACE

statements, 3-35
Triggers, 3-2

Index-4

triggers
mapping, 3-2
mutating tables, 3-4
overview, 3-2

U
Using Demo Code, 5-24
utilities package, 3-30

V
variables, global, 3-14

W
wildcard operators

, 3-17
%, 3-17
?, 3-17
^, 3-17
_, 3-17
enclosed characters, 3-17

WITH RESUME
procedure contains, 3-12
procedure does not contain, 3-11

	Contents
	Send Us Your Comments
	Preface
	Audience
	What You Should Already Know
	How This Reference Guide is Organized
	How to Use This Reference Guide
	Documentation Accessibility
	Accessibility of Code Examples in Documentation
	Related Documentation
	Conventions

	1 Overview
	Introduction
	Product Description
	Features
	Glossary

	2 Oracle and Informix Dynamic Server Compared
	Database Security
	Database Authentication
	Database as a Logical Partition
	Users

	Schema Migration
	Schema Object Similarities
	Schema Object Names
	Informix Dynamic Server Database-level Privileges
	Migrating Multiple Databases
	Table Design Considerations
	Data Types
	DATETIME Data Types

	IMAGE and TEXT Data Types (Binary Large Objects)
	Check Constraints
	Schema Migration Limitations for Informix Dynamic Server
	Dbspaces
	Mapping for Informix Dynamic Server Database Level Privileges to Oracle System Privileges
	Defaults
	Indexes
	Check Constraints
	Check Constraint Owners

	Data Types
	BYTE
	CHAR(n)
	Collation Order
	Multibyte Character Sets
	Comparison Sematics
	Empty Strings

	CHARACTER(n)
	NCHAR(n)
	Collation Order
	Aside

	VARCHAR(m,r)
	Comparison Semantics
	Collating VARCHAR
	Aside

	CHARACTER VARYING(m,r)
	NVARCHAR(m,r)
	DATE
	DATETIME
	Oracle DATE Arithmetic

	INTERVAL
	Manipulating Oracle DATE with Informix Dynamic Server INTERVAL Values

	DECIMAL
	DECIMAL(p) floating point
	DECIMAL(p,s) fixed-point

	MONEY(p,s)
	INTEGER
	Range Boundaries
	Storage
	Inserting Fractions

	INT
	SMALLINT
	Range Boundaries
	Storage
	Inserting Fractions

	SERIAL
	Additional Oracle Sequence Options for Informix Dynamic Server SERIAL Migrations
	Resetting the Start Value
	Some Exceptional Cases
	How to examine current Informix Dynamic Server SERIAL values

	Data Storage Concepts
	Recommendations
	Data Storage Concepts Table

	3 Triggers, Packages, and Stored Procedures
	Introduction
	Triggers
	Mapping Triggers
	Mutating Tables

	Packages
	Stored Procedures
	NULL as an Executable Statement
	Parameter Passing
	Oracle Parameter Passing Modes
	Input Parameters
	Output Parameters

	Individual SPL Statements
	Returning Section
	Informix Dynamic Server Procedures Containing no WITH RESUME Clause
	Informix Dynamic Server Procedures Containing a WITH RESUME Clause

	DOCUMENT Clause
	GLOBAL Variable Declarations
	LIKE and MATCHES Comparison Conditions
	FOR LOOP Constructs
	FOREACH LOOP Constructs
	FOREACH .. SELECT .. INTO Statement
	FOREACH CURSOR Statement
	FOREACH Execute Procedure Statement

	Compound LET Statements
	Using SELECT Statements in LET Assignment Statements
	Calling Procedures in LET Assignment Statements

	Converting CONTINUE Statements
	Converting RETURN WITH RESUME Statements
	Built-in Functions
	Converting the SYSTEM Statement
	Converting TRACE Statements
	Set Up Tasks for the DEBUG Procedure
	Using the DEBUG Procedure
	SET DEBUG FILE Statement
	BEGIN WORK Statement
	ROLLBACK WORK Statement

	SELECT Statements as Conditions
	Exception Blocks
	RAISE EXCEPTION Statements

	Error Handling within Stored Procedures
	DDL Statements in SPL Code
	Creating Temporary Tables
	DROP TABLE Statements

	Using Keywords as Identifiers
	Issues with Converting SPL Statements

	4 Distributed Environments
	Distributed Environments
	Accessing Remote Databases in a Distributed Environment
	Oracle and Remote Objects
	Informix Dynamic Server and Remote Objects

	Application Development Tools

	5 The ESQL/C to Oracle Pro*C Converter
	Introduction to E/SQL and Pro*C
	Using the ESQL/C to Oracle Pro*C Converter
	Example Capture of ESQL/C Source Files
	Example Code:

	Oracle Pro*C Conversion
	Manual Changes to the Oracle Pro*C File

	Syntactical Conversion Issues
	EXEC SQL Statement
	INCLUDE Files
	UPDATE Statement
	ANSI Compliance
	Double equal sign in WHERE Clause
	OUTER JOIN Syntax
	FETCH Clause
	Header Files SQLNOTFOUND
	CURSOR Declaration
	DECLARE CURSOR Statement
	FOR UPDATE Option
	Application Conversion Issues
	The Oracle Pro*C Preprocessor

	Conversion Errors and Warnings
	ESQL/C to Oracle Pro*C Converter Errors
	ESQL/C to Oracle Pro*C Warnings

	Restrictions
	Renaming Reserved Words
	Header Files
	Using multiple connections for different transactions

	Using Demonstration Code

	6 Disconnected Source Model Loading
	Generating Database Metadata Flat Files
	Flat File Generation Scripts
	Running the Script

	A Code Samples
	OMWB_Emulation Utilities Package

	Index

