
HOWTO - amavisd-new + sophie + Kolab

History
Version 1.0 Stephan Buys (s.buys@codefusion.co.za) 15 July 2003

Version 1.1 Stephan Buys (s.buys@codefusion.co.za) 21 July 2003

Add eval `/kolab/etc/rc --eval all env` to sophos_pattern_update.sh script

Version 1.2 Stephan Buys (s.buys@codefusion.co.za) 21 July 2003

Add $QUARANTINEDIR = undef; to amavisd.conf section

Fix user_prefs file section for spamassassin

Version 1.3 Stephan Buys (s.buys@codefusion.co.za) 09 September 2003

- Add tweaks and improvements, thanks to Patrick Ammann, this adds the bayesian filter to
SpamAssassin.

Introduction
This document outlines how to integrate Anti-Spam and Anti-Virus measures into a
Kolab server. The components used to accomplish this is amavisd-new which
integrates well into postfix, using Spam-assasin and Sophos (through sophie).

Software

amavisd-new
http://www.ijs.si/software/amavisd/

sophie
http://www.vanja.com/tools/sophie/

opa
Opa is a script which eases the adminitration of any Openpkg machine. It sets the
environment in such a manner that your user will access the “Kolab” tools. Installing
software, modifying permissions, etc. it is easier (and sometime necesarry) to use the
root user.

You can download opa somewhere at www.openpkg.com or use the code listing
below:

#OpenPKG Add Environment
opa () {
root="$1"
if [! -d $root]; then
 echo "opa:ERROR: OpenPKG root directory $root not found"
 return 1
fi
if [! -f "$root/etc/rc"]; then
 echo "opa:ERROR: does not contain OpenPKG hierarchy"
 return 1
fi
eval `$root/etc/rc --eval all env`
}

Copy the above script into .bashrc or similar and call the function opa like this:

#opa /kolab

This will set up your environment to be in Kolab.

The output of the which rpm command should now look as follows:

which rpm
/kolab/bin/rpm

Important. You need to assure that you are in the Kolab environment when you do
the steps in this howto. I am going to assume that you are.

Alternative ways to get into the Kolab environment as root:

(from the root user)
#su – kolab
(will drop you into the Kolab user)
>su
(you will be prompted to give the root password)

Install amavisd-new
Recommended: Read the INSTALL and AAAREADME.first files that is included in
the amavisd-new distribution. This will give you insight into why you are doing the
steps I list.

Download and Install prerequisites
Download the necesarry tarballs and patches from the amavisd-new website and
extract them. This example assumes you are in the same folder as the archive.

#tar -xzf amavisd-new-<version>.tar.gz
#cd amavisd-new-<version>

Patch the software if necesarry:

#patch < amavisd-new-<version>-1.patch

Check that you have the necesarry software installed:

File 3.41 or later is recommended for security reasons.

#file -v
file-4.02
magic file from /usr/share/misc/file/magic

Here is a little script file that will attempt to include all the perl modules necesarry for
amavisd-new to work. If it reports any errors you need make sure that the correct
software is installed.

checkmodules.pl

#!/kolab/bin/perl -w
use strict;

use Archive::Tar;
use Archive::Zip;
use Compress::Zlib;
use Convert::TNEF;
use Convert::UUlib;
use MIME::Base64;
use MIME::Parser;
use Mail::Internet;

use Net::Server;
use Net::SMTP;
use Digest::MD5;
use IO::Stringy;
use Time::HiRes;
use Unix::Syslog;
use Mail::SpamAssassin;

Note that I used the correct version of perl (the Kolab one) in the first line of the
code-listing. On my test-server I received the error:

#perl checkmodules.pl
Can't locate Compress/Zlib.pm in @INC ...

This means that I need to install the Compress::Zlib library for Perl.

Important: It is essential that you install the libraries into the correct perl folders, ie.
the Kolab perl folders.

First, confirm that you are using perl in the Kolab tree.

#which perl
/kolab/bin/perl

Important: If the above command does not tell you give same output as I have listed
above you are not within the Kolab environment. Do not attempt to do any further
steps, please read the section called opa above.

An easy and convenient way to install perl modules is through the use of the CPAN
module. To activate the CPAN module type the following:

#perl -MCPAN -e shell

If this the first time that you run the CPAN module you will be prompted to
configure your system. Just follow the prompts until you see the prompt:

cpan >

Now install the modules that you need for amavisd-new to work. In my case I need
the Compress::Zlib module, so I execute:

cpan >install Compress::Zlib
...

To test that it is installed correctly verify the output of:

cpan >test Compress::Zlib
...
 /kolab/bin/make test – OK
cpan >quit

At this stage rerun the checkmodules.pl script to see if it loads correctly.

 #perl checkmodules.pl
Can't locate Mail/SpamAssassin.pm in @INC...

I now repeat the above procedure to install Maill::Spamassassin

#perl -MCPAN -e shell
cpan >install Mail::SpamAssassin
cpan >test Mail::SpamAssassin
#perl checkmodules.pl
#

If the checkmodules.pl script just returns it means that it successfully loaded all the
required modules.

To be able to scan compressed attachments you need to install the following

programs:

 compress, gzip, bzip2, nomarch (or arc), lha, arj (or unarj), rar (unrar),

 zoo, cpio, lzop, freeze (or unfreeze or melt).

As long as they are reachable by your script during runtime it does not matter if the
program is provided by your distribution or by the Kolab OpenPKG packages.

Setup amavisd-new
We will use the kolab-r (restricted Kolab) user and group to run our daemons in.

First we create the amavisd-new home directory and set appropriate permissions:

#mkdir /kolab/var/amavis
#chown kolab:kolab-r /kolab/var/amavis
#chmod 770 /kolab/var/amavis

Now we copy the executable into the Kolab tree and also set correct permissions

(change directory to where you extracted amavis-new)
#cp amavisd /kolab/local/sbin/
#chown kolab:kolab-r /kolab/local/sbin/amavisd
#chmod 775 /kolab/local/sbin/amavisd

Fix the amavisd script to use the correct version of perl. With your text editor edit:

/kolab/local/sbin/amavisd

#!/kolab/bin/perl -T

#--
This is amavisd-new.
....

Create a folder for the amavisd configuration

#mkdir /kolab/etc/amavisd
#chown kolab:kolab-r /kolab/etc/amavisd
#chmod 775 /kolab/etc/amavisd

Copy the amavisd.conf file to the configuration folder:

(change directory to where you extracted amavis-new)
#cp amavisd.conf /kolab/etc/amavisd/
#chown kolab:kolab-r /kolab/etc/amavisd/amavisd.conf

Optional. Use steps similar to the above to create a folder into which you want to
quarantine virus mails. This did not fit our requirements, we just delete virus mails.

Configure the amavisd.conf file as per your requirements.

From the INSTALL quide, the important parts are:

edit file /etc/amavisd.conf and adjust variables $daemon_group
and $daemon_user to match the chosen group and user name,
adjust variables $MYHOME, $TEMPBASE and $QUARANTINEDIR to match
the directories just created, then check/adjust other variables,
especially those in 'Section I', including $mydomain.

Important. For our Kolab server we set the following:

/kolab/etc/amavisd/amavisd.conf

$MYHOME = '/kolab/var/amavis';
$daemon_user = 'kolab-r';
$daemon_group = 'kolab-r';

$QUARANTINEDIR = undef; #delete virus/spam mails

(Uncomment the sophie section, search for
http://www.vanja.com/tools/sophie/)
['Sophie',
 \&ask_daemon, ["{}/\n", '/kolab/var/sophie/sophie'],

To be clear, make sure you set the above mentioned variables if you want to use
this install guide, also uncomment the sophie section and set the ask_daemon
variable. There are other variables you need to set, this I leave up to you own
judgement.

Create the SpamAssassin user_prefs file:

#mkdir /kolab/var/amavis/.spamassassin
#chown kolab:kolab-r /kolab/var/amavis/.spamassassin
#chmod 770 /kolab/var/amavis/.spamassassin
#touch /kolab/var/amavis/.spamassassin/user_prefs
#chown kolab:kolab-r /kolab/var/amavis/.spamassassin/user_prefs
#chmod 664 /kolab/var/amavis/.spamassassin/user_prefs

Before we install sophie, we will test that amavisd initializes:

#su - kolab-r -c '/kolab/local/sbin/amavisd -c \
/kolab/etc/amavisd/amavisd.conf debug'

This will execute the daemon in debug/verbose mode using the kolab-r user. Check
the output carefully for any errors. You can terminate the daemon with ctrl-c.

Install Sophos Anti-Virus
Extract the sophos distribution that is suited for your machine. I used the linux libc6
version of Sophos.

From the sav-install folder issue the following to install Sophos into Kolab:

(from sav-install folder)
#./install.sh -d /kolab/local/ -ni -nidc -so
Sophos Anti-Virus installation utility [Linux/Intel]
Copyright (c) 1998,2001 Sophos Plc, Oxford, England

The options meaning: -ni (no interscan) -nidc (no interscan diskless) -so (add a
libsavi.so symlink in the /kolab/local/lib folder)

Install sophie
Extract the sophie distribution and from within source distribution issue:

(from the sophie distribution)
#./configure --with-savilib=/kolab/local/lib/ --enable-net
...
#make

This will create the sophie executable.

Copy the sophie executable into the Kolab tree:

(from the sophie distribution)
#cp sophie /kolab/local/sbin

Create a sophie configuration folder and set appropriate permissions:

(from the sophie distribution)
#mkdir /kolab/etc/sophie
#chown kolab:kolab /kolab/etc/sophie

Copy the sophie configuration file to the sophie folder and set permissions.

(from the sophie distribution)
#cp sophie.cfg /kolab/etc/sophie
#chown kolab-r:kolab-r /kolab/etc/sophie/sophie.cfg

Copy the sophie savi configuration file to the sophie folder and set permissions.

(from the sophie distribution)
#cp etc/sophie.savi /kolab/etc/sophie
#chown kolab-r:kolab-r /kolab/etc/sophie/sophie.savi

Important: This file determines the behaviour of the scanner. You should verify that
it has settings that suite your needs.

Edit the sophie configuration file and assure of the following:

/kolab/etc/sophie/sophie.cfg

saviconfig: /kolab/etc/sophie/sophie.savi
pidfile: /kolab/var/sophie/sophie.pid
socketfile: /kolab/var/sophie/sophie
user: kolab-r
group: kolab-r

Create a sophie home folder and set the correct permissions:

#mkdir /kolab/var/sophie
#chown kolab:kolab-r /kolab/var/sophie/
#chmod 775 /kolab/var/sophie/

Test if sophie starts with the following command:

#su - kolab-r -c '/kolab/local/sbin/sophie -C \
/kolab/etc/sophie/sophie.cfg -d'

This will execute the daemon in debug/verbose mode. Check the output carefully
for any errors. You can terminate the daemon with ctrl-c.

Configure SpamAssassin
To added Bayesian filter support to SpamAssassin add the following text to
/kolab/var/amavis/.spamassassin/user_prefs.

/kolab/var/amavis/.spamassassin/user_prefs

Path to Bayes
bayes_path /kolab/var/amavis/.spamassassin/bayes

Construct the Bayes files needed for the scanner:

#su kolab-r
#/kolab/bin/sa-learn -p
#/kolab/var/amavis/.spamassassin/user_prefs --rebuild

To set SpamAssassin to learning mode:

#/kolab/bin/sa-learn -p
#/kolab/var/amavis/.spamassassin/user_prefs --spam

Configure amavisd-new
So far we have installed all the components that we will be using, now we will begin
with the final configuration for production use.

Start sophie.

#su - kolab-r -c '/kolab/local/sbin/sophie -C \
/kolab/etc/sophie/sophie.cfg -D'

Start the amvisd-new daemon.

#su - kolab-r -c '/kolab/local/sbin/amavisd -c \
/kolab/etc/amavisd/amavisd.conf'

This time we did not specify debug, so amavisd will load and fork into the
background.

To test that the daemon is running as expected issue the following:

#telnet 127.0.0.1 10024
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
220 [127.0.0.1] ESMTP amavisd-new service ready
#quit
221 2.0.0 [127.0.0.1] (amavisd) closing transmission channel
Connection closed by foreign host.

Kolab Postfix master.cf Configuration
Kolab uses template files to manage changes that occur in LDAP. It is critical that
you update the correct template files as any change in the LDAP directory will
override the main configuration files with their templates.

Important: To be clear about it: Dont change the /kolab/etc/postfix/master.cf file. It
will be overwritten by /kolab/etc/kolab/master.cf.template.

We add the following lines to master.cf.template.

/kolab/etc/kolab/master.cf.template

smtp-amavis unix - - n - 2 smtp
 -o smtp_data_done_timeout=1200
 -o disable_dns_lookups=yes
127.0.0.1:10025 inet n - n - - smtpd
 -o content_filter=
 -o local_recipient_maps=
 -o relay_recipient_maps=
 -o smtpd_restriction_classes=
 -o smtpd_client_restrictions=
 -o smtpd_helo_restrictions=
 -o smtpd_sender_restrictions=
 -o smtpd_recipient_restrictions=permit_mynetworks,reject
 -o mynetworks=127.0.0.0/8
 -o strict_rfc821_envelopes=yes

To propogate the changes to our postfix configuration files:

#/kolab/etc/kolab/kolab -v -o

This runs the kolab backend in verbose (-v) mode once (-o) – in other words it
does not go into daemon mode. We most probably already have a kolab daemon
running.

To verify that your changes were propogated, issue the following.

#tail -14 /kolab/etc/postfix/master.cf

It should show the lines above.

Reload the postfix daemon:

#postfix reload

This is one of those commands that depend on you being in the Kolab environment.
Check the opa section if you dont know what I mean.

Verify that the daemon reloaded successfully:

#tail -20 /kolav/var/postfix/log/postfix.log

To check that postfix added a listener for us on the correct port we telnet to the new
listener on the local host.

#telnet 127.0.0.1 10025
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
220 mail-router1.internal.adtza.co.za ESMTP Postfix
#quit
221 Bye
Connection closed by foreign host.

Testing amavis-new, sophie and postfix
First we will send a normal, untainted message via the amavis listener and check that
it gets delivered to the end-user.

#telnet 127.0.0.1 10024
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
220 [127.0.0.1] ESMTP amavisd-new service ready
#MAIL FROM:<test@example.com>
250 2.1.0 Sender test@example.com OK
#RCPT TO:<postmaster>
250 2.1.5 Recipient postmaster OK
#DATA
354 End data with <CR><LF>.<CR><LF>
#Subject: test1
#
#test1
#.
250 2.6.0 Ok, id=26807-01, from MTA: 250 Ok: ...

This will send a message with the subject test1 to postmaster. If you inspect the
contents of the file there should be an entry:

X-Virus-Scanned: by amavisd-new at mydomain.com

While still connected to the port, we will check sophie with the Eicar.org test pattern.

#MAIL FROM:<test@example.com>
250 2.1.0 Sender test@example.com OK
#RCPT TO:<postmaster>
250 2.1.5 Recipient postmaster OK
#DATA
354 End data with <CR><LF>.<CR><LF>
#Subject: test2
#
#X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-
FILE!$H+H*
#.
250 2.5.0 Ok, but 1 BOUNCE

As you can see I set amavisd-new to reject mail and bounce it. You might want to
ensure that the MAIL FROM: command is from a valid user, this will assure that
you can verify the amavisd-new message.

Kolab Postfix main.cf Configuration
Now that we have verified that the scanner is working according to expectations we
will set postfix to always forward messages to the amavisd-new scanner.

Edit the main.cf.template file and add the following line:

/kolab/etc/kolab/main.cf.template

content_filter = smtp-amavis:[127.0.0.1]:10024

Ensure that the template file change is propogated to the postfix configuration files:

#/kolab/etc/kolab/kolab -v -o

Verify that the change was properly propogated:

#grep content_filter /kolab/etc/postfix/main.cf
content_filter = smtp-amavis:[127.0.0.1]:10024

Reload the postfix daemon's configuration with:

#postfix reload

Mail coming through your server should now be content scanned by amavisd-new and
sophos (through) sophie. You can verify this by sending a message through the server
and verifying that it contains the X-Virus-Scanned tag mentioned above.

Startup and shutdown
We need to assure that we can properly start and stop these services as well as reload
them when needed. To this extent I have created the necesarry files for startup and
shutdown of the services.

Aquire the files rc.amavisd, rc.sophie and rc.kolab.diff from either Apendix A or from
a better download location.

Set up the rc.sophie script:

#cp rc.sophie /kolab/etc/rc.d/
#chown kolab:kolab /kolab/etc/rc.d/rc.sophie
#chmod 755 /kolab/etc/rc.d/rc.sophie

Set up the rc.amavisd script:

#cp rc.amavisd /kolab/etc/rc.d/
#chown kolab:kolab /kolab/etc/rc.d/rc.amavisd
#chmod 755 /kolab/etc/rc.d/rc.amavisd

Patch the rc.kolab script to call the new scripts

#cd /kolab/etc/rc.d/
#patch < /path/to/rc.kolab.diff

You can test the scripts by restaring Kolab:

#/kolab/etc/rc.d/rc.kolab stop
stopping kolab backend ...
stopping postfix ...
postfix/postfix-script: stopping the Postfix mail system
stopping amavisd...
stopping sophie...
stopping apache ...

/kolab/sbin/apachectl stop: httpd stopped
stopping cyrus imapd ...
stopping saslauthd ...
stopping openldap ...
stopping proftpd (if running) ...

#/kolab/etc/rc.d/rc.kolab start
starting openldap ...
starting sasl ...
starting cyrus imapd ...
starting apache ...
/kolab/sbin/apachectl start: httpd started
starting sophie
/kolab/local/sbin/sophie placed in the background
starting amavisd
starting postfix ...
postfix/postfix-script: starting the Postfix mail system
starting kolab backend (please wait)

Maintaining Amavisd-new
It is necessary to clean up amavis temporary files every now and then. To this end
Patrick Ammann has contributed the following cleanup script:

/kolab/local/bin/amavis_cleanup.sh

#!/bin/sh

delete not used/forgotten temporary data
find /kolab/var/amavis -type d -name 'amavis-20??????T*' \
 -prune -mtime +1 -exec rm -rf {} \;

See the section, “Scheduling Tasks” for instructions on how to automate the process.

Updating Sophos
There are two aspects to keeping Sophos up to date. Firstly you need to keep the
Sophos engine up to date. For this we will be using the sophos_full_update.sh script
which can be obtained from Appendix A.

Sophos scan engine
Install the sophos_full_update.sh script as follows:

#cp /path/to/sophos_full_update.sh /kolab/local/bin/
#chown kolab:kolab /kolab/local/bin/sophos_full_update.sh
#chmod 755 /kolab/local/bin/sophos_full_update.sh

You will need to edit the script and set the username and password fiels.

/kolab/local/bin/sophos_full_update.sh

username='yoursophosid'
password='yoursophospassword'

The script downloads the latest version of the engine, installs it under /kolab/local
and restarts sophie.

To test the update script we will first check the version of the currently installed
sophos engine.

#/kolab/local/bin/sweep -v
SWEEP virus detection utility
Copyright (c) 1989,2003 Sophos Plc, www.sophos.com

System time 12:35:33, System date 16 July 2003

Product version : 3.69

Engine version : 2.14
User interface version : 2.05.034
Platform : Linux/Intel
Released : 05 May 2003
Total viruses (with IDEs) : 81434

As you can see on the “Product version” line this demo has version 3.69 of Sophos.

Now we execute the script and monitor the output of the logfile.

#/kolab/local/bin/sophos_full_update
#cat /var/log/sophos_update.log

After execution your syslog file should also report that Sophie has reloaded
successfully with the updated engine.

/var/log/syslog

NOTICE : Reloading virus patterns/engine
NOTICE : Virus patterns/engine reloaded
NOTICE : Setting configuration options - please
wait...
NOTICE : Configuration options set
Sophos engine : Sophos engine version 2.14
Sophie IDE : Sophos IDE version 3.71 (detects 82916
viruses)

Sophos pattern (IDE) files
For the pattern file updates we will use a script called sophos_pattern_update.sh.

Install the sophos_pattern_update.sh script as follows:

#cp /path/to/sophos_pattern_update.sh /kolab/local/bin/
#chown kolab:kolab /kolab/local/bin/sophos_pattern_update.sh
#chmod 755 /kolab/local/bin/sophos_pattern_update.sh

To test if the script is performing as expected we execute:

#/kolab/local/bin/sophos_pattern_update.sh
#cat /var/log/sophos_pattern_update.log

After execution your syslog file should also report that Sophie has reloaded
successfully with the updated engine.

/var/log/syslog

NOTICE : Reloading virus patterns/engine
NOTICE : Virus patterns/engine reloaded
NOTICE : Setting configuration options - please
wait...
NOTICE : Configuration options set
Sophos engine : Sophos engine version 2.14
Sophie IDE : Sophos IDE version 3.71 (detects 82916
viruses)

You can also verify that the IDE files were loaded by running:

#/kolab/local/bin/sweep -v
...
Information on additional data files:

Data file name : /kolab/local/sav/coconuta.ide
Data file type : IDE
Data file date : 16 July 2003, 12:22:53
Data file status : Loaded
...

Scheduling Tasks
It is critical that the Sophos pattern files keep up to date and that the engine stays
current. To this extent it is highly recommended that you schedule a task to run the
update scripts regularly, also Amavis temp files need to be cleaned up.

To edit cron:

#crontab -e

Add the entries for a hourly pattern file update and a monthly engine update:

crontab

1 * * * * /kolab/local/bin/sophos_pattern_update.sh
0 0 1 * * /kolab/local/bin/sophos_full_update.sh
0 23 * * * /kolab/local/bin/amavis_cleanup.sh

Conclusion
At this point you should have a proper anti-virus and anti-spam solution integrated
into your Kolab server.

Please report any comments, errors or improvements to kolab@codefusion.co.za

Enjoy!

Apendix A – Supporting files
/kolab/etc/rc.d/rc.amavisd

#!/kolab/lib/openpkg/bash /kolab/etc/rc
##
rc.amavisd
##
Copyright (c) 2003 Stephan Buys <s.buys@codefusion.co.za>
adopted from: rc.kolab
rc.kolab:
Copyright (c) 2002 Martin Konold <martin.konold@erfrakon.de>
Copyright (c) 2002 Tassilo Erlewein
<tassilo.erlewein@erfrakon.de>

%config
 amavisd_enable="yes"

%start -p 200 -u root
 opServiceEnabled amavisd || exit 0

 echo "starting amavisd"
 if [-f /kolab/var/amavis/amavisd.pid]; then
 PID=`cat /kolab/var/amavis/amavisd.pid | awk '{print
$1}'`
 AMAVISS=`ps -p $PID 2>/dev/null | grep -c amavisd | awk
'{print $1}'`
 if [$AMAVISS -gt 0]; then
 echo "Warning: amavisd is already running under pid
$PID!"
 else
 /kolab/local/sbin/amavisd -c
/kolab/etc/amavisd/amavisd.conf
 fi
 else
 /kolab/local/sbin/amavisd -c
/kolab/etc/amavisd/amavisd.conf
 fi

%stop -p 200 -u root
 opServiceEnabled amavisd || exit 0

 echo "stopping amavisd..."
 if [-f /kolab/var/amavis/amavisd.pid]; then
 kill `cat /kolab/var/amavis/amavisd.pid` 2>/dev/null
 fi
 sleep 1
 killall -9 amavisd 2>/dev/null
 exit 0

%reload -u root
 opServiceEnabled amavisd || exit 0

 echo "reload amavisd (if running) ..."
 if [-f /kolab/var/amavis/amavisd.pid]; then

 kill -HUP `cat /kolab/var/amavis/amavisd.pid` 2>/dev/null
 fi

%restart -u root
 opServiceEnabled amavisd || exit 0
 /kolab/etc/rc.d/rc.amavisd stop
 sleep 1
 /kolab/etc/rc.d/rc.amavisd start

/kolab/etc/rc.d/rc.sophie

#!/kolab/lib/openpkg/bash /kolab/etc/rc
##
rc.sophie
##
Copyright (c) 2003 Stephan Buys <s.buys@codefusion.co.za>
adopted from: rc.kolab
rc.kolab:
Copyright (c) 2002 Martin Konold <martin.konold@erfrakon.de>
Copyright (c) 2002 Tassilo Erlewein
<tassilo.erlewein@erfrakon.de>

%config
 sophie_enable="yes"

%start -p 200 -u root
 opServiceEnabled sophie || exit 0

 echo "starting sophie"
 if [-f /kolab/var/sophie/sophie.pid]; then
 PID=`cat /kolab/var/sophie/sophie.pid | awk '{print $1}'`
 SOPHIES=`ps -p $PID 2>/dev/null | grep -c sophie | awk
'{print $1}'`
 if [$SOPHIES -gt 0]; then
 echo "Warning: sophie is already running under pid
$PID!"
 else
 /kolab/local/sbin/sophie -C
/kolab/etc/sophie/sophie.cfg -D
 fi
 else
 /kolab/local/sbin/sophie -C /kolab/etc/sophie/sophie.cfg
-D
 fi

%stop -p 200 -u root
 opServiceEnabled sophie || exit 0

 echo "stopping sophie..."
 if [-f /kolab/var/sophie/sophie.pid]; then
 kill `cat /kolab/var/sophie/sophie.pid` 2>/dev/null
 fi
 sleep 1

 killall -9 sophie 2>/dev/null
 exit 0

%reload -u root
 opServiceEnabled sophie || exit 0

 echo "reload sophie (if running) ..."
 if [-f /kolab/var/sophie/sophie.pid]; then
 kill -HUP `cat /kolab/var/sophie/sophie.pid` 2>/dev/null
 fi

%restart -u root
 opServiceEnabled sophie || exit 0
 /kolab/etc/rc.d/rc.sophie stop
 sleep 1
 /kolab/etc/rc.d/rc.sophie start

rc.kolab.diff

--- rc.kolab 2003-07-04 14:31:26.000000000 +0200
+++ rc.kolab-new 2003-07-15 15:23:45.000000000 +0200
@@ -57,6 +57,10 @@
 echo "starting apache ..."
 /kolab/sbin/apachectl start

+ /kolab/etc/rc.d/rc.sophie start
+
+ /kolab/etc/rc.d/rc.amavisd start
+
 echo "starting postfix ..."
 /kolab/sbin/postfix start

@@ -87,6 +91,10 @@
 echo "stopping postfix ..."
 /kolab/sbin/postfix stop

+ /kolab/etc/rc.d/rc.amavisd stop
+
+ /kolab/etc/rc.d/rc.sophie stop
+
 echo "stopping apache ..."
 /kolab/sbin/apachectl stop

@@ -153,6 +161,10 @@
 kill -HUP `cat /kolab/var/imapd/imapd.pid` 2>/dev/null
 fi

+ /kolab/etc/rc.d/rc.sophie reload
+
+ /kolab/etc/rc.d/rc.amavisd reload
+
 echo "reload postfix ..."
 /kolab/sbin/postfix reload

sophos_full_update.sh

#!/bin/sh

username='yoursophosid'
password='yoursophospassword'
sav_installation_dir='/kolab/local'
tar_location='/bin/tar'
wget_location='/usr/bin/wget'
log_file='/var/log/sophos_update.log'
temp='/tmp'
sophie_rc='/kolab/etc/rc.d/rc.sophie'
download_location='http://www.sophos.com/sophos/products/full/'

downloadfile='linux.intel.libc6.tar.Z'

check_if_file_already_exists ()
 {
 echo "Checking for old files" > $log_file
 if [-f $temp/$downloadfile]; then
 echo "File already exists. Removing
$temp/$downloadfile" >> $log_file
 rm -rf $temp/$downloadfile
 fi
 }

download ()
 {
 echo "Downloading engine" >> $log_file
 $wget_location -P$temp --http-user=$username --http-
passwd=$password $download_location/$downloadfile >> $log_file
2>&1
 }

check_download ()
 {
 echo "Check for $temp/$downloadfile..."
 if [-f $temp/$downloadfile]; then
 echo "File collected."
 else
 echo "WARNING!! Download was not successful. Check your
connection to ww
w.sophos.com" >> $log_file
 error_exit
 fi
 }

untar_sav ()
 {
 echo "Extracting sav-install in $temp" >> $log_file
 $tar_location -C $temp -zxvf $temp/$downloadfile >>
$log_file || error_e
xit
 }

install_sav ()
 {
 echo "Installing from in $temp..." >> $log_file
 cd $temp/sav-install/
 ./install.sh -ni -nidc -so -rm -v -d
$sav_installation_dir >> $log_file
|| error_exit
 }

clean_up ()
 {
 echo "Cleaning up in $temp..." >> $log_file
 rm -rf $temp/$downloadfile
 rm -rf $temp/sav-install
 }

restart_sophie ()
 {
 $sophie_rc reload
 }

error_exit ()
 {
 echo "WARNING!! Sophos Anti virus was not updated!" >>
$log_file
 exit 2
 }
#
Run the functions from here
check_if_file_already_exists
download
check_download
untar_sav
install_sav
clean_up
restart_sophie

sophos_pattern_update.sh

#!/bin/sh
eval `/kolab/etc/rc --eval all env`
sav_installation_dir='/kolab/local'
unzip_location='/usr/bin/unzip'
wget_location='/usr/bin/wget'
log_file='/var/log/sophos_pattern_update.log'
temp='/tmp'
download_location='http://www.sophos.com/downloads/ide/'
sophie_rc='/kolab/etc/rc.d/rc.sophie'
sophos_version=''
downloadfile=''

get_sophos_version ()
 {
 sophos_version=`$sav_installation_dir/bin/sweep -v |

grep "Product version" | awk 'BEGIN { FS = " +: +" } ; { print
$2 }' | sed "s/\.//"`
 downloadfile="${sophos_version}_ides.zip"
 }

check_if_file_already_exists ()
 {
 echo "Checking for old files" > $log_file
 if [-f $temp/$downloadfile]; then
 echo "File already exists. Removing
$temp/$downloadfile" >> $log_file
 rm -rf $temp/$downloadfile
 fi
 }

download ()
 {
 echo "Downloading patterns" >> $log_file
 $wget_location -P$temp --http-user=$username --http-
passwd=$password $download_location/$downloadfile >> $log_file
2>&1
 }

check_download ()
 {
 echo "Check for $temp/$downloadfile..." >> $log_file
 if [-f $temp/$downloadfile]; then
 echo "File collected." >> $log_file
 else
 echo "WARNING!! Download was not successful. Check your
connection to www.sophos.com" >> $log_file
 error_exit
 fi
 }

clear_ide ()
 {
 echo "Removing old ide files in
$sav_installation_dir/sav" >> $log_file
 rm -f $sav_installation_dir/sav/*.ide
 }

unzip_ide ()
 {
 echo "Extracting ides in $sav_installation_dir/sav" >>
$log_file
 cd $sav_installation_dir/sav
 $unzip_location $temp/$downloadfile >> $log_file
 }

clean_up ()
 {
 echo "Cleaning up in $temp..." >> $log_file

 rm -rf $temp/$downloadfile
 }

restart_sophie ()
 {
 $sophie_rc reload
 }

error_exit ()
 {
 echo "WARNING!! Sophos Anti virus was not updated!" >>
$log_file
 exit 2
 }
#
Run the functions from here
get_sophos_version
check_if_file_already_exists
download
check_download
clear_ide
unzip_ide
clean_up
restart_sophie

