
www.linuxformat.co.uk72 LXF40 MAY 2003

TutorialPHP

TAILOR-MADE GUIs

lmost ten issues ago, in issue 30 of this very magazine,

two momentous events took place: firstly, it was the first

part of Practical PHP Programming, and secondly,

Charlie Stross wrote an excellent tutorial on how to

lever the Tk graphical toolkit to create applications using Perl.

Having covered command-line applications last issue, this

issue we’re going to move onto a fairly similar topic to Charlie’s,

with the important exception that we shall, of course, be working

with PHP. Yep, you guessed it: the topic of this monster eight-

page tutorial is how to create graphical applications using PHP.

This is quite a jump from all other sorts of PHP programming, so

you may find you need to read through this article a few times to

get the hang of things!

Getting started
In order to create graphical PHP applications, you first need to

install the PHP-GTK module – read the box titled Installing PHP-

GTK for guidance.

PHP-GTK, as can be guessed from the name, is the

combination of our favourite programming language and the

GTK+ GUI toolkit. GTK, incidentally, stands for GIMP Tool Kit, as it

was originally developed for use in the GIMP software. Since its

creation, GTK+ has come a long way and is now used as a central

part of GNOME and has been ported to Windows.

This cross-platform ability works perfectly with PHP’s cross-

platform nature, and the end result is that, as long as care is

taken, you can create attractive and powerful applications that

run on a wide variety of machines.

Important warning
Working with PHP-GTK, as already mentioned, is entirely unlike

writing PHP in other situations; a solid grasp of object-oriented

programming is a must, and also you should be prepared for

quite a bit of theory before you get to dig in with the code. I’m

not kidding about the OOP requirement!

That being said, I have specifically tried to simplify matters as

much as possible, at least to begin with, so that you get to

implement cool things using PHP-GTK as quickly as possible.

Graphical User Interfaces
GUIs form the core computing experience for the majority of

users – even many Linux people today find themselves using

KDE or GNOME for tasks that only a few years ago would have

been done from a shell out of necessity. The key reason for this

is that GUIs are, generally speaking, designed to be easy to use,

with the goal of allowing users to spend more time thinking

about what they wish to achieve and less about how it actually

needs to be achieved.

In order to minimise the learning curve required for new users

to get to grips with an environment, GUIs use shared code to

implement the graphical components that make it up; for

example, the code to generate a toolbar would be the same

across all programs written using a given GUI toolkit in order that

all the programs share the same look and feel. Several GUI

toolkits, including GTK and Trolltech’s Qt (used in KDE) are

written using C++ classes and objects, which means each

graphical element of a program, known in the *nix world as a

widget, has its own class which inherits properties and methods

from various ancestor classes.

For example, the GtkButton classes inherits from the GtkBin

class, which in turn inherits from the GktContainer class, then the

GtkWidget class, which inherits from the GtkObject class. Each

sub-class adds new methods and properties to do a specific task

for that widget, and if a programmer wished to create a specific

kind of GtkButton – for example, a button that automatically

played a sound when clicked – they would probably find it easiest

to inherit from the GtkButton class.

After you’ve been using GTK for some time, you will likely

come to appreciate its fine-grained class inheritance structure, as

it allows you to create your own objects at all levels, and also

provides you with some very powerful objects, like the

GtkCalendar widget, which provides fairly good calendar

functionality just by instantiating the class.

Beyond inheriting class variables (‘properties’) and class

functions (‘methods’), GTK widgets also inherit signals, which is a

core topic in GTK. Simply put, signals are emitted when things

happen in your GUI; usually this is the user interacting with your

widgets. GtkButtons, to take the preceding example, emit a signal

when the mouse moves over them, a signal when the mouse

clicks them, a signal when the mouse is released from clicking

them, and a signal when the mouse moves away from them,

amongst other signals.

So each signal, as you can see, is sent out when a particular

occurrence happens to a widget, and each widget has its own set

of signals that it will emit as a result of user interaction. The

magic comes when you tie a given signal, eg ‘clicked’ for a

GtkButton, to a function you have written; this function is then

called every time your user clicks the button you chose.

This month, take your PHP to an all-new level by creating
GUI applications. Paul Hudson shows you how...

Practical PHP
Programming

LXF40.tut_php 4/2/03 7:10 PM Page 72

www.linuxformat.co.uk LXF40 MAY 2003 73

TutorialPHP

All clear on the theory aspect? Excellent; if so, then it’s time

to demonstrate the first piece of code...

A Basic GUI
<?php
function doshutdown() {

gtk::main_quit();
}

function btnClick($button) {
echo “Hello, console!\n”;

}

$window =& new GtkWindow();
$window->connect(“destroy”, “doshutdown”);

$button =& new GtkButton(“Hello, GTK!”);
$button->connect(“clicked”, “btnClick”);

$window->add($button);
$window->show_all();

gtk::main();
?>

Our first program, which you should save as gtk1.php in your

home directory, is simply the “Hello, World!” of PHP-GTK. Yes, I

realise that it’s twelve lines longer than a simple echo ‘Hello,
World!’; would have been; this is because working with graphical

interfaces requires a great deal more work: you must create and

assign properties to widgets, set up signal handlers, and more.

However, don’t be put off by the length of the script – I want to

go through it line by line in order to show quite how easy it is.

Ignore the two functions near the beginning for the time

being; we will come to them shortly. Beyond them lies $window
=& new GtkWindow(), which is probably something quite new

to you, depending on your experience with the language.

If you didn’t know already, =& means ‘assign to equals’ rather

than ‘copy to equals’. When new GtkWindow() is called, PHP

creates a new object of the class GtkWindow. If we just had

$window = new GtkWindow() then PHP creates the

GtkWindow, then copies it into the $window variable. So, behind

the scenes, this process involves two GtkWindows, one that is

created using new and one that is created using =. Using =&
rather than = circumvents this problem; $window becomes a

reference to the same GtkWindow() created by the new operator,

so the process involves only one GtkWindow being created. You’re

quite able to rewrite the line as $window = &new GtkWindow()
if you prefer; it’s all down to your coding style.

The class GtkWindow() itself is a general-purpose application

window, and it descends from the class GtkBin. I mention this

specifically because descendants of the GtkBin container widget

are only allowed to have one child widget inside them. For

GtkWindow, this means that you are only allowed one widget (eg

one button, one combo box) in your window, which may sound a

little restrictive at first, but all will be revealed later on.

GtkBin itself descends from GtkContainer – it is a specific

kind of container in that it allows only one child widget – and

this provides it with GtkContainer’s automagic resizing of child

widgets. This means that any widget created inside a GtkBin will

take up all the free space inside the GtkBin, and will resize as

the GtkBin is resized.

On the next line, we again use &= new to create a new

widget: this time it’s a GtkButton. When you create your button,

you can pass in as a parameter the caption you wish to give the

button; that is, what text you wish to appear upon it. In the

above example, “Hello, GTK!” is passed for the caption of the

button, and internally this is used to create a GtkLabel inside the

button, to which the caption is assigned – this will become

important if you later wish to change the caption of the button

to something different.

Again, the connect() function is called, this time we

connect the ‘clicked’ signal of our new GtkButton to the PHP

function btnClick. This works in the same way as our previous

called to connect().
The add() method of our GtkWindow is native to all

descendants of GtkContainer, and works as you would expect: the

widget passed in as the first parameter is added to the container

and placed where available. In the situation of GtkWindow, which,

remember, is a descendant of GtkBin, this means that the widget

being passed (our new GtkButton) will automatically take up all

free space in the window.

The next line, $window->show_all() translates to “Show

this window, and all its child widgets”. An alternate method here

is show(), which would have displayed the GtkWindow but not

the GtkButton.

Finally, we come to the call to gtk::main();. If this line looks

a little odd to you, don’t worry: it’s a remnant of PHP’s mantra of

“If we want to do something complicated, at least make it look

like C++; that way at least some people will understand it”.

Technically speaking, gtk::main() is a call to the static member

function main of class gtk. In normal circumstances, one

creates an object of a class before calling a function of that

class. However, sometimes it’s not necessary or indeed it is

counter-productive to use an object on some occasions, and so

these functions are ‘static’: always in the same place.

Debian users, type apt-get
install php-gtk as root, and
you’re done. For everyone else,
here’s a step-by-step guide:

1) Pop over to www.gtk.org/
download/ to download and
install GTK+ 1.2. You may have
this already installed for you by
your system, depending on your
particular distribution

2) Download the PHP-GTK
source from http://gtk.php.
net/download.php and extract
it locally

3) Run from the directory you
extracted PHP-GTK into, run
./buildconf, then ./configure

4) Run make, then make
install to install the extension
into your default PHP extension
directory

5) Make sure you have the line
extension=php_gtk.so in your
php.ini file

To test your installation, try some
of the scripts from the test
directory. My favourite is
gtk.php, which shows off a
wide selection of widgets to get
you started. If you’re interested
in installing the Glade interface
builder, then, if you’re a Debian
user, type apt-get install glade
as root. Note that the glade-2
package is for GTK+ 2
development, which is as yet
unsupported.

For other distros, grab the
source code from http://glade.
gnome.org/download.html, then
run ./configure, make, and
make install to compile and
install the program. You can run
Glade by simply typing glade
from the command prompt.

Installing PHP-GTK
The easiest part of it all

>>

LXF40.tut_php 4/2/03 7:10 PM Page 73

www.linuxformat.co.uk74 LXF40 MAY 2003

If this all seems complicated, don’t worry about it – it really

is quite complicated, but you needn’t understand any more

about how it works other than that it’s a function call you can

use like any other.

What it does, though, is quite important, and I’m sorry but it

includes even more theory! Put simply, owing to the fact that

GUIs are signal-based – that is, they wait until told what to do –

your control over the program ceases once you’ve finished

creating your GUI and performing any startup tasks. Instead of

running everything yourself, control gets passed onto GTK, which

enters what’s known as its message loop, which internally looks

something like this:

while (1) {
if user moves over widget {

if widget has signal handler set {
send signal to program that mouse is over widget

} else {
do nothing

}
}

if user terminates program {
send signal to program that it is being killed
break out of while(1) loop

}

...
}

Granted, that’s quite a big simplification, however you should

get the gist: GTK gets control of your GUI and does all the

processing for it such as resizing buttons, dropping down combo

boxes, highlighting buttons when the mouse is over, etc, and only

passes control back to you by sending a signal which in turn calls

your signal handler functions. While these functions are running,

you are back in control, and you may run all the PHP code you

like, including calling other functions. However control will

eventually be passed back to GTK, again leaving you waiting for a

signal to be passed.

So, calling gtk::main() instructs GTK that you’re done setting

up, and that you’re ready for it to take control. Now, onto our two

functions: doshutdown() and btnClick().
doshutdown() was passed to our first call to connect() to tie

it to the signal destroy. The end result of this is that when the

GtkWindow $window is being destroyed, that is, closed by the

user, it will be sent the event destroy by GTK causing it to emit

the signal destroy, which in turn will call the doshutdown()
function. doshutdown() has just one line inside it: a call to

another static member function, gtk::main_quit().
gtk::main_quit() only has any use when gtk::main() has

been called, because it instructs GTK that you’re ready to exit its

message loop and resume control of the application. Generally

speaking, this is the end of your application, as control is passed

back to you after gtk::main_quit() has been called, PHP

continues to execute any code that lies after your original

gtk::main() call.

Our btnClick() function was tied to the ‘clicked’ signal of our

GtkButton, and so it will be called every time a user clicks Hello,
GTK!. The ‘clicked’ signal is often sent part-way between two

other signals, ‘pressed’ and ‘released’, which correspond to a

mouse button being pressed on a button and a mouse button

being released on a button. The ‘clicked’ signal is also sent when

the button is activated by way of the keyboard (pressing Enter,

etc), as is common in many programs.

Inside btnClick(), we again only have one line, which calls

some relatively simple PHP. However, it’s important to realise

that calling echo from inside your PHP-GTK scripts allows you

to write to the console just as easily as if this were a standard

PHP script. A helpful bonus is that one signal can execute several

functions simply by calling connect() multiple times with varying

second parameters.

There you have it! Although it may seem like an awful lot of

explanation is required for what is actually quite a short piece of

script, the large percentage has been the theory behind how the

script works. Go ahead and run your script with the following

command line:

php4 -q gtk1.php
If your PHP CGI is named differently, you shall need to make

the appropriate change. However, as long as you have installed

PHP-GTK correctly, the end result is the same - all being well,

you should see something similar to screenshot 1, above left. -q,

as you may know, is ‘quiet mode’ for the PHP CGI, and it forces

PHP not to emit its standard HTTP headers. You can exclude this

parameter if you are using the PHP CLI SAPI.

Multiple Windows
Once you are feeling confident with the whole situation so far,

you can move onto a slightly more complicated script – here’s

the source code:

<?php

function doshutdown() {
gtk::main_quit();

}

function btnClick($button) {
$window =& new GtkWindow();
$window->set_title(“Spawning Windows 2”);
$window->set_default_size(300, 100);

$label =& new GtkLabel(“This is a new window.”);

$window->add($label);
$window->connect(“destroy”,”doshutdown”);
$window->show_all();

return false;
}

$window =& new GtkWindow();
$window->set_title(“Spawning Windows 1”);
$window->set_default_size(300, 100);
$window->set_border_width(10);
$window->connect(“destroy”, “doshutdown”);

TutorialPHP

<<

All the hard work is over, and we finally have a simple GUI
application. It’s all easy from here – sort of…

LXF40.tut_php 4/2/03 7:10 PM Page 74

www.linuxformat.co.uk LXF40 MAY 2003 75

TutorialPHP

$button =& new GtkButton(“Click Here”);
$button->connect(“clicked”, “btnClick”);
$button->set_relief(GTK_RELIEF_NONE);
$window->add($button);

$window->show_all();

gtk::main();
?>

You should recognise about half of the code from the

previous script. For now, again, ignore the two functions near the

top and concentrate on the main body of code.

We create our GtkWindow in the same way as last time,

however this time we follow up with three new methods:

set_title(), set_default_size(), and set_border_width().
These methods are all named quite clearly, but just to make sure

we’re on exactly the same wavelength, set_title() sets the

titlebar caption for this window, set_default_size() sets the

initial width and height of this window, and set_border_width()
sets the amount of margin space in pixels on each edge of the

window that is unavailable to child widgets.

If set_border_width() had been used with a positive value

in the prior example, the GtkButton being used would not have

taken up all of the space in the window, just what was left after

the border.

For all intents and purposes, the rest of the script is pretty

much similar, with the most notable exception being the function

btnClick(). This time the function is much longer, and also has a

return value. If your signal handlers send back false as their

return value, PHP-GTK fires the default signal handler as soon

as your function finishes, whereas if you return true, it is

assumed that you wish no more processing to take place for this

signal beyond any other signal handlers you have defined.

At the start of btnClick(), a new GtkWindow is created with a

new caption and a default size. Also, a new GtkLabel is created,

which is a basic widget that allows you to display short amounts

of text. As with GtkButtons, GtkLabels take the string they should

display as a parameter when being created, and you can change

this string at a later date by using the method set_text().
Continuing on in the function, the label is added to the

window, our shutdown function is connected to the ‘destroy’

signal, and the new window is shown. Attaching doshutdown() to

the destroy signal of each window being created means that if

the user closes any window, the application will terminate - you

may want a different situation in your own programs.

The other change that you’ll notice in this script is the call to

the set_relief() method of our GtkButton. Like the set_title(),
set_default_size(), and set_border_width() calls in this script,

this method isn’t necessary, but I’ve included it to show you more

of the GTK functionality. This method takes one of three special

constants: GTK_RELIEF_NORMAL (the default setting),

GTK_RELIEF_HALF (much lighter shading for buttons), and

GTK_RELIEF_NORMAL (no shading for buttons unless mouse is

over the button).

Now you understand what’s going on in the script, go ahead

and save it as gtk2.php and run it. I’ve included another

screenshot at the top of this column of how this should look

when your mouse is over the button, although my mouse cursor

is invisible in the screenshot. >>

A slightly more
complicated PHP-GTK
script, this time with
multiple windows being
created.

The PHP-GTK documentation itself is a
good enough place for some pieces of
information, but, to be honest, it’s rather
weak on the whole; large chunks of
code are left unexplained, various
function calls are entirely
undocumented, etc. However, it’s a good
place to start, so take a look at
http://gtk.php.net/manual/en/.

http://gtk.miester.org is a fairly good
website with regards to PHP-GTK, but
there isn’t much there, yet. This isn’t
terribly surprising because the GTK
interaction with PHP is still working its
way into the community. However, we
anticipate this site will continue to grow
healthily over time.

There is a long-running PHP-GTK
mailing list available online at
http://marc.theaimsgroup.com/?l=php-
gtk. There’s a lot of worthwhile
information to be had here, but a great
deal of it is repeated time and time
again. However, you can search for
particular terms, which increases its
usefulness somewhat.

What I believe will be the best
resource for PHP-GTK in six months or
so is the PHP-GTK Wiki. If you’re new
to the wiki phenomenon, then you’ve
been missing out! “Wiki wiki” is
Hawaiian for “quick”, and it’s basically a
set of online documents that anyone –
by default, absolutely everyone – can

add to, edit, and delete from. The PHP-
GTK Wiki is an online FAQ where
visitors can easily add and amend
entries to make the best
documentation available, and it is
picking up pace as this is being written.

If you find yourself confounded to
get the information you’re looking for

about a particular widget or other GTK-
related item, then you may find you
have to bite the bullet and read the
GTK C documentation available online
at http://developer.gnome.org/doc/
API/gtk/. This documentation is very
thorough, however it’s clarity leaves a
little to be desired in places.

Get more out of GTK
Online resources to make your GTK code fly

The GTK+ C documentation. “It’s documentation, Jim, but not as we know it.”

LXF40.tut_php 4/2/03 7:10 PM Page 75

www.linuxformat.co.uk76 LXF40 MAY 2003

Handling popup menus
With over a hundred different widgets supported, GTK+ makes

for a very rich programming environment. However, there is a

generally accepted set of ‘standard’ widgets that are most

commonly used in applications, one of which is the popup menu.

If you’re a long-time shell person who really doesn’t know

much about GUIs, then you should understand that popup

menus are also known as context-sensitive menus and generally

appear close to the mouse pointer when the right mouse button

is pressed. Anyway, here’s the next script:

<?php

function doshutdown() {
gtk::main_quit();

}

function show_popup($event, $menu) {
if ($event->button == 3)

$menu->popup(null, null, null, $event->button, $event->time);
}

function mnunew_click($new) {
echo “New clicked!\n”;

}

function mnuopen_click($new) {
echo “Open clicked!\n”;

}

function mnuexit_click($new) {
echo “Exit clicked!\n\n”;
doshutdown();

}

$menu =& new GtkMenu();
$new =& new GtkMenuItem(“New”);
$open =& new GtkMenuItem(“Open”);
$sep =& new GtkMenuItem(“”);
$sep->set_sensitive(false);
$exit =& new GtkMenuItem(“Exit”);

$menu->append($new);
$menu->append($open);
$menu->append($sep);
$menu->append($exit);
$menu->show_all();

$window =& new GtkWindow();
$window->set_title(“Using menus”);
$window->set_default_size(300, 100);
$window->connect(“destroy”, “doshutdown”);

$window->add_events(GDK_BUTTON_PRESS_MASK |
GDK_BUTTON_RELEASE_MASK);
$window->connect_object(‘button-press-event’, ‘show_popup’,
$menu);

$new->connect(“activate”, ‘mnunew_click’);
$open->connect(“activate”, ‘mnuopen_click’);
$exit->connect(“activate”, ‘mnuexit_click’);

$window->show_all();

gtk::main();

?>
If you’re wondering at the length of that script, don’t worry –

it’s the longest in this article! You already know quite a bit of what

goes on in there also, so it’s probably not all that fearsome.

Starting at the line $menu =& new GtkMenu(), a new class

is introduced: GtkMenu. This widget is solely designed to host a

popup menu, but it intertwines cleverly with GtkMenuBar, the

widget designed to host the horizontal-style menu bar, and we’ll

discuss that later.

TutorialPHP

<<

PHP is cross-platform. GTK is
cross-platform. So, surely it’s
easy to transfer your code
from one platform to another,
right? Well, sort of. In order to
get PHP-GTK working, you
need, unsurprisingly, PHP and
GTK installed. Furthermore, if
you wish to use Glade, you will
also need libglade installed.
Naturally, very few Windows
users fit this criteria, so you
have two options: either you
provide very (very!) detailed
installation instructions, or you
package up the PHP
interpreter, any DLLs you want
to use, a pre-written php.ini
file, and include it all in your
installation. This is actually
quite a good option, as you can

be sure it will work with no
hassle for your users, and it
only adds around 2MB to your
package once compressed.

For Unix users, generally
speaking we’re used to
software having a few
installation requirements, so
generally noting on your
website and in the docs
“Requires PHP4.x, GTK 1.x” etc
should be fine.

However, as you can see in
the screenshot below, our
Glade script runs perfectly well
on Windows. Skins are
unavailable in the existing
Windows port of GTK, however,
so sadly Windows users have
to live with a less-than-
beautiful interface.

Distributing your applications
Platform-independent code?

Cross-platform coding in action. Yes, it’s Microsoft
Windows. Yes, you’re still reading Linux Format…

LXF40.tut_php 4/2/03 7:10 PM Page 76

www.linuxformat.co.uk LXF40 MAY 2003 77

TutorialPHP

Each GtkMenu contains several GtkMenuItems, and these are

created similarly to GtkButtons and GtkLabels in that you passed

the string you wish them to display.

Just before creating the last GtkMenuItem, I slipped a blank

GtkMenuItem in there that some of you may not have noticed.

This item, upon which I call the set_sensitive() method that is

universal to all GTK widgets, is there to act as a separator

between New/Open and Exit. Creating a GtkMenuItem with no

text results in a blank menu item that may still be selected by

users. Calling set_sensitive() on that widget and passing in false

disables the widget.

Through the use of the append() method of GtkMenu we

add our GtkMenuItems to our popup menu then create and set-

up the GtkWindow itself. Two new methods are called here:

add_events() and connect_object().
add_events() is a peculiar but very helpful function that

allows you to modify which events a given object captures. In

essence, you can make a widget listen to an event it ignores by

default. The method takes one parameter (we OR two

parameters into one in the example), which is a bit mask of

constants from the GdkEventMask list. In the long piece of script

on the preceding page, GDK_BUTTON_PRESS_MASK and

GDK_BUTTON_RELEASE_MASK are combined into one bitmask

before being passed in, which makes the widget calling

add_events, our GtkWindow, respond to mouse buttons being

pressed and released. In turn, our GtkWindow will emit the

signal button-press-event, which we bind a function to in the

next line.

Similar to the connect() method we’ve been using so far, the

connect_object() method also connects signals to functions,

with the key difference that the object passed into the handler

function isn’t the object you used to call the method on. Instead,

the object passed in is the one you set as parameter three to

connect_object().
You might not think this is particularly helpful, but in the

example we set $menu as the object to be passed to our

show_popup() function. If connect() had been used as

opposed to connect_object() we would have had to try to get a

handle to $menu, because a pretty useless reference to the

GtkWindow would have been passed in. Whilst this can be

overcome with custom parameters (see the box about Using

Custom Parameters overpage for more information), it’s more

logical to use connect_object().
So, at the end of the day, we tie our GtkWindow’s button-

press-event signal to our show_popup function. Note that the

first parameter in show_popup() is of the type GdkEvent, which

at the time of writing sadly seems entirely undocumented in the

PHP-GTK documentation (please correct me if I’m wrong).

However, it is documented in the GDK developer documentation,

albeit in C++, which can be found at:

http://developer.gnome.org/doc/API/gdk/gdk-event-
structures.html#GDKEVENT.

The particular GdkEvent type we’re interested in in this

situation is GdkEventButton, documented at

http://developer.gnome.org/doc/API/gdk/gdk-event-
structures.html#GDKEVENTBUTTON. This event is sent when

buttons are clicked and released, which is what we’re looking to

handle. If your C is sketchy, never fear – here’s a quick

breakdown of some of the data included in this event:

button – the mouse button press (left=1, middle=2, right=3)

time – the time, in milliseconds, that the event occurred

x, y – the x and y coordinate of the mouse

state – a bitmask of GdkModifierTypes (see the main PHP-GTK

documentation) that describes whether Control was held down, etc

pressure – generally only used for graphics tablets, this is a

floating point value from 0 to 1 describing how “hard” the button

was clicked. This defaults to 0.5 for mouse clicks

So, the first line of the function checks which button was

pressed to generate the event, and, if it was button 3 (the right

mouse button), we call the popup() method of our GtkMenu.

popup() takes a total of five parameters: the first two are

generally null as they are only used when tying menus to

GtkMenuItems. Parameter three is null in the example, but can

be the name of a function to call to return the x and y

coordinates at which you wish your menu to appear as an array.

So, for example:

function mnupos() {
return array(50, 200);

}

$menu->popup(null, null, ‘mnupos’, $event->button, $event-
>time);

When the third parameter is null, the current mouse

coordinates are used, which is usually the desired result.

Parameter four is the button that was pressed to generate the

event, and finally parameter five is the time the event took place,

in milliseconds. As seen above, even though there are five

parameters for the method, you’ll see that it’s actually quite

straightforward to use.

The mnuexit_click() function could have been removed

entirely because, as well the fact that multiple functions can be

connected to a single signal, multiple signals can be connected to

a single function. If there were no special processing to be run

when Exit was clicked (in our example we echo to the console),

then the activate GtkMenuItem signal could have been connected

to doshutdown() as well as the GtkWindow destroy signal.

Save this script as gtk3.php and run it as before. Again,

check my screenshot at the top of this column to make sure you

got everything right.

As promised earlier in this tutorial, I want to briefly mention

how GtkMenu bar works. A menu created with GtkMenu can be

used as seen above, where it is activated in a floating space. It

can also be used to provide the contents of a horizontal-style

menu bar item, for example ‘New, Open, Save, Exit’ would be

the GtkMenu that was attached to the ‘File’ GtkMenuItem of a

GtkMenuBar widget.

Does this make sense? If not, here’s a quick piece of code to

demonstrate what I mean:

$mainmenu =& new GtkMenuBar();
$filemenu =& new GtkMenuItem(“File”);
$mainmenu->append($filemenu); >>

Popup menus are easy
to create, and very
powerful.

LXF40.tut_php 4/2/03 7:10 PM Page 77

www.linuxformat.co.uk78 LXF40 MAY 2003

$filemenuoptions = &new GtkMenu();
$open =& new GtkMenuItem(“Open”);
$filemenuoptions->append($open);
$save =& new GtkMenuItem(“Save”);
$filemenuoptions->append($save);
$filemenu->set_submenu($filemenuoptions);

So, a GtkMenuBar is the menu strip along the top of your

window. The top level items (eg: File, Edit, Document, Bookmarks,

etc, in KDE’s Kate 2.1) are GtkMenuItems, which each contain a

GtkMenu of their contents. The ‘Document’ GtkMenuItem in Kate

would contain a GtkMenu which itself contained GtkMenuItems

for Back, Forward, and any open files.

Advanced GUIs
There are so many possibilities using PHP-GTK that, sadly, I’ve

had to pick and choose what I can cover here owing to space

reasons – and that’s despite the fact that this tutorial is extra

long! So far we’ve looked at windows, buttons, labels, menus,

and menuitems.

What we’re going to look at now is an easy way to use all

sorts of GTK widgets, perfectly lined up where you want them to

be, with many widgets in the same window, and, surprisingly

enough, with almost no work. This is the power of Glade.

Available from http://glade.gnome.org, Glade is a GPLed

GTK+ user interface builder designed to allow you to design and

build your GUI, including defining signal handler functions, with

little work.

Take a look at the screenshot at the top of this column to see

Glade in action. As you can see in the picture, you have a big

toolkit available to you under the ‘GTK+ Basic’, and another large

toolkit available under ‘GTK+ Additional’. When you want to make

use of a particular widget, you simply have to select from the

toolbox and ‘draw’ on your window. Properties can be set from a

property editor which is partly offscreen to the left. Once you’re

finished designing the parts of your GUI, you can even instruct

Glade to generate source code for you, although sadly, this is not

yet available in PHP.

However, there is still a way Glade can be used with PHP. Take

a look at this final script:

<?php

function doshutdown() {
gtk::main_quit();

}

$layout = &new GladeXML(‘complex_interface.glade’);
$layout->signal_autoconnect();

$window = $layout->get_widget(‘window1’);
$window->connect(“destroy”, “doshutdown”);

Gtk::main();
?>

Here, there is a new class available if you have libglade

installed. That takes the .glade project file that Glade saves for its

own purposes and translates that into a GUI. This GUI, stored in

$layout in the example above, can then have its signals

connected using the GladeXML method signal_autoconnect().
In order to provide a clean shutdown of the script, I have used

the GladeXML method get_widget() to grab the main window.

Note that you may need to change this line if you have used a

particular name for your window in Glade. get_widget() takes

just the one parameter, which is the name of the widget you wish

to get from the layout, and returns the widget for you to use.

With our GtkWindow reference, I have connected the destroy

signal to our usual doshutdown() function, and that’s the end of

the script.

If you save that as gtk4.php, you can then go experiment

with Glade to see what you can make. You can see my interface

live in action in the screenshot below, though you’ll see that some

bits are still labelled ‘something’. As you can see, using Glade

takes all the hard work away from designing a GUI. All that’s left

to do now is to write handlers for all the signals you wish to work

with, and your interface is done.

TutorialPHP

With Glade,
interface design
is a snap.

<<

Here is the script running, and it looks just like it did when it
was being built in Glade. Magic.

LXF40.tut_php 4/2/03 7:10 PM Page 78

www.linuxformat.co.uk LXF40 MAY 2003 79

TutorialPHP

Themes
Some people say that unthemed GNOME looks a little unsightly,

and they might be right. However, luckily all applications made

using PHP-GTK happily work with GTK+ 1.x themes with no

additional work. I myself have GNOME 2.2 installed, and so I

needed to specifically install a GTK1 theme as GTK2 themes do

not work with PHP-GTK or other GTK1 apps.

Anyhow, themes are all transparent to your scripts – you can’t

tell whether a particular theme is enabled or not, and neither

should you need to as your scripts will adapt to whatever the user

has selected.

Take a look at screenshots on this page to see the same

Glade GUI interface themed in different ways.

Conclusion
If you’ve made it this far, the chances are the sun will be rising

outside shortly and you had best get some sleep before morning!

However, hopefully you will have learned a great deal about the

coolest – and probably least-exploited – alternative use for PHP.

Creating graphical applications for PHP may, at first, not seem

“right”, which is quite true to some extent. After all, PHP was

designed to be a language for general web use, and not for GUIs.

However, once you get over the initial, and indeed inevitable

shock of switching to signal-based programming, it is normally a

pleasant experience.

The GTK version used with PHP-GTK is quite old, and recent

releases have been far superior, with a lot of work done to GTK to

make it more flexible, with more intuitive interaction between

objects. While GTK2 support is not currently on the cards for

PHP-GTK, I shan’t imagine it will be long. Until then, there’s more

than enough information to help you get to grips with using the

current release of PHP-GTK - good luck! `LXF

Next month we’ll be
looking at potentially the
most complicated aspect
of PHP, and that is
creating your own
modules for the language.
If you thought this month’s
topic was tricky, you’ve
got another think coming
– next month, knowledge
of C is strongly
recommended.

If you have any
comments or suggestions
about this series, please
be sure to write in.

NEXT
MONTH

When you’re connecting signals to functions, it is
possible to add one or more custom parameters
to the signal handler. As seen earlier,
connect_object() can be used to pass a
particular widget into a function, however an
alternative is to use connect() with extra
parameters for the information you wish to use
inside the function.

So, connect() could have been called like this:
$window->connect(‘button-press-event’,
‘show_popup’, $menu);

The handler function would then need to
have accepted three parameters - the event, the
GtkWindow object that emitted the signal, and
the custom parameter $menu. The only
difference here is that behind the scenes a little
more data needs to be passed around for the
handler function to be called with the extra
parameter.

Here’s a complete code example you can try
out to get the idea:

<?php

function btnClick($button, $window) {
$window->destroy();
gtk::main_quit();

}

$window =& new GtkWindow();
$btnquit =& new GtkButton(“Quit”);
$btnquit->connect(“clicked”, “btnClick”,
$window);
$window->add($btnquit);
$window->show_all();
gtk::main();

?>

As you can see, the parameter $button isn’t
being used inside btnClick(), however that’s
hardly a major speed hit.

Using Custom Parameters
Get connected

Our Glade-built GUI doing a KDE impression.

And again, this time doing a Microsoft Windows impression.

Would you like to get your name in the mag and learn about stuff
you're most interested in?
We're looking out for ideas for new Linux Format Practical PHP
tutorials, and where better to look than to you, the reader? If, while
reading past issues of Practical PHP, you've thought “I wish they’d
covered XYZ in more depth...”, or “I really want to know how to
use...”, then now’s the time to get your voice heard!
Send an email to paul.hudson@futurenet.co.uk with your ideas –
all the good ideas that you send in will be covered in future issues.
So far, the topics we have covered in some depth include MySQL,
XML, CLI, GUIs, media generation, templates, and more.
If you're short of ideas, you’re certainly welcome to write in with
comments about prior issues – we're always looking to improve the
overall quality of tutorials.

Make your mark
Brainstorms ’R’ Us

LXF40.tut_php 4/2/03 7:10 PM Page 79

