
www.linuxformat.co.uk70 LXF54 JUNE 2004

TUTORIAL GIMP

GIMP PROGRAMMING

or the past year, the tutorials in this GIMP series have

presented readers with creative ideas and solutions for

use with The GIMP. Most tutorials followed a step-by-step

format with accompanying images for clarification. This

month, we’re starting to take a more traditional approach to

learning, to cover a more technical topic: GIMP scripting with Perl.

This tutorial is part one of two on that subject.

Scripting is a means to automate common and/or repetitive

tasks with The GIMP. Examples might be the generation of certain

styles of logos, or processing directories of images in a uniform

manner. The GIMP has a native scripting language called Script-

FU, but this language has all the friendliness of a rabid dog.

Script-FU is based on the Scheme language (related to the Lisp

language, if you care about such things) and the lack of available

documentation for that language – not to mention its technical

orientation – makes it more suited to the tech-only crowd.

Perl, on the other hand, is a language that is widely

understood. There is a wealth of printed material on the subject.

Unlike Scheme, Perl is not a truly difficult language to learn. It

provides both procedural and object-oriented APIs and doesn’t

abuse curly braces the way Script-FU does. That means that

once you learn the GIMP specifics, you need only pick up a few

extras of the language to start your own set of power tools.

Scripts written in Perl for use with The GIMP are referred to as

GIMP Perl scripts. GIMP Perl is also used to refer to the

extensions to Perl that allow these scripts to work with GIMP.

This tutorial will be of most interest to those that do a lot of

image processing, as opposed to those who just use The GIMP to

create a holiday card or two. But even if you only use The GIMP

to manage your scanned photos, scripting in The GIMP can make

your graphics work far more productive. You need not be a Perl

expert to follow along, but you should have at least a little

background in programming: such as knowing what functions are,

or how to do assignment and loop statements. Specifics to the

Perl language can be found at the http://perl.com website.

Installation is an apt-snap
The Perl extension to The GIMP is not included with the

application by default, and getting all the prerequisite software to

build it manually can be difficult. Fortunately, this issue is moot if

On the

CD and DVD

PART 1 The magic of The GIMP lies not just in what Wilbur
can show you, but in what Wilbur can be taught.

Writing GIMP Plug-ins in Perl

LXF54.tut_gimp_grb 23/4/04 1:32 pm Page 70

www.linuxformat.co.uk LXF54 JUNE 2004 71

TUTORIAL GIMP

you use apt-get to update your GIMP packages. A quick search of

some common RPM-based apt-get repositories shows the

following packages:

■ gimp – The GNU Image Manipulation Program.

■ gimp-data-extras – Extra files for The GIMP.

■ gimp-devel – The GIMP plug-in and extension

development kit.

■ gimp-perl – Perl extensions and plug-ins for The GIMP.

The names on the left are the names of the available GIMP

packages. This list was generated using:

apt-cache search gimp
There are other GIMP-related packages, but for scripting with The

GIMP this is all you need. To find out which packages you already

have, simply use rpm:

rpm -qa | grep gimp
The results will look something like this:

gimp-1.2.3-16
gimp-devel-1.2.3-16
gimp-data-extras-1.2.0-8
In this case only the gimp-perl package is missing. To install the

missing packages, you need to have apt-get installed. If you were

able to run apt-cache, then you already have apt-get. If not,

check out www.freshrpms.net to find a version that will work

with your system. Once apt-get is installed, you can retrieve the

missing packages:

apt-get install gimp-perl
Because apt uses RPM to install packages in system directories,

this command will need to be run as the root user.

Meat and garnish, hold the taters.
The basic structure of a GIMP Perl script looks like this:

#!/usr/bin/perl

use Gimp;
use Gimp::Fu;

register();

sub my_script {
}

exit main;

The script is composed of two bits of meat and some garnish.

The meat of the script consists of a call to the registration

function and a subroutine that does the real work. Before we

look at those, we need to look at the garnish – the first three

lines of the script.

#!/usr/bin/perl
use Gimp;
use Gimp::Fu;
The first two lines are required for all GIMP Perl scripts. The third

is used by nearly all GIMP Perl scripts except for those that

require complex user interfaces. Line 1 tells the system to run this

as a Perl script. Line 2 tells Perl to use a Perl module called

Gimp that is the glue between scripts and GIMP functions. The

third line is used to automate creation of the user interface. We’ll

look more in depth at what happens in the third line in next

month’s concluding episode of this two-part series.

When a GIMP-Perl script starts, the first thing it must do is let

The GIMP know it’s available and where it will be found in the

menus. The script does this by calling a function provided by the

GIMP Perl module (ie the module referenced by use Gimp at the

top of the script) called register().
Here’s an example piece of code using the register() function

with GIMP Perl:

register (
“gfxoffset”,
“Find all layer offsets”,
“Find all layer offsets”,
“Michael J. Hammel”,
“Copyright 2004 Michael J. Hammel”,
“V1.0”,
“<Image>/Filters/GFXMuse/GFXOffsets”,
“*”,
[

[PF_STRING, “filename”,
“Where should the output be saved?”,
“/tmp/offsets.txt”

]
],
\&OffsetGFX_Run

);
The call to register() includes many arguments. The first is the

name of the script. GIMP Perl doesn’t like it if you use uppercase

for this name, so use the same name as the script but in all

lowercase. This name is used internally by GIMP Perl and is not

displayed to the user except possibly in the window title bar

(depending on your window manager). The second argument is a

short description while the third is a longer one. The only

difference here is that the short description must be no more

than one line long. The next two arguments are used to specify

the author of the script and any copyright information. After that

comes the version number.

Now we get to the truly important parts of the call to

register(). The seventh argument is a menu path. The first part

of this path is used to define where in the GIMP menus to place

your script. Normally you’ll put your scripts under the Image

menu, usually in the Filters submenu though that is not required.

To put the script in the Image menu, you prefix your menu path

with <Image>. The only other option is <Toolbox>, which puts

your script under one of the menus in the Toolbox. In the

preceding example, the script is destined to be found in the

Image menu under Filters>GFXMuse>GFXOffsets. ‘GFXMuse’ is a

new submenu under Filters, which shows you that you can create >>

GIMP 2.0 does not include GIMP Perl by default.
Python has been selected as the default
language (beyond Script-FU). Users of GIMP 1.2
may wonder if learning GIMP Perl for that
release is of any value now that GIMP 2.0 is here
and doesn’t appear to actively support Perl. The
answer is a resounding “Yes!” – it is of value.

GIMP Perl for GIMP 2.0 will be released as its
own add-on package at some point after GIMP
2.0 is released. Don’t be alarmed. This change in
packaging is not unique to GIMP Perl. The GAP
plug-ins (GIMP Animation Plug-ins) are also being
moved to their own package separate from The
GIMP. This has happened in the past as well,

when GIMP-Print moved out on its own, not to
mention the eldest brethren of The GIMP’s
offspring, the GTK+ toolkit.

GIMP Python will not have nearly as much
public support initially, since many script writers
grew up on GIMP Perl. Additionally, it will take
some time before GIMP 2.0 is actively included
in distributions. Perl is also not terribly different
than Python in its syntax (the look of the
language), which means learning one helps in
learning the other. Finally, many example scripts
already exist for GIMP Perl while few exist for
Python. For these reasons, learning GIMP Perl
now definitely has long-term value.

GIMP 2.0
Perl vs Python

LXF54.tut_gimp_grb 23/4/04 1:32 pm Page 71

www.linuxformat.co.uk72 LXF54 JUNE 2004

your own submenu this way, perhaps grouping all your personal

scripts in a single menu.

The eighth argument determines the types of images the

script can work on. The GIMP understands RGB, Greyscale and

Indexed images, either with or without transparency. An asterisk

can be used as a wildcard. So RBG* would mean both RGB and

RGB with transparency (aka RGBA) would be supported. In this

example, all image types are supported. You can also use GRAY,

and INDEXED (with a trailing A for transparency – the A means

“includes an Alpha channel”).

The next argument is a set of Perl arrays that define the

layout of the window used to configure the script prior to running

it. This section can get complex so for now we’ll use this simple

example that only provides a text entry field to query the user for

where the output from this script (which will be ordinary text, not

image data) should be saved. In next month’s tutorial, we’ll dive

into this part of GIMP Perl a bit deeper.

Finally, the last argument to register() tells GIMP Perl the

name of the function we wrote that does the actual work. After

the user fills in the window presented by the script and clicks the

‘OK’ button, GIMP Perl will call the function named here (which is

in our script) to do whatever work we require.

On to the code
GIMP Perl is so easy to learn that we can start by showing the

complete code for a real-world example script now, leaving the

details for later. At I company for whom I periodically do some

work, a recent requirement arose to produce a set of images

from a single photograph. The images produced would be

overlaid onto a background, one image at a time, by a web-

based backend graphics processor. To make this work easier, the

photograph was first manually broken into its component pieces

as individual layers, using a common naming scheme for the

layers. Then, a script was written to output the offsets of the

layers so that the layers, once saved to separate image files,

could be overlaid properly by the backend.

There were actually two scripts for this project, one for saving

each layer to a separate file, and one for creating a single file with

all the layer offsets. The first we called GFXLayerSave.pl and the

latter GFXOffsets.pl. Note that the work of creating the layers was

manual – if the bits of the photograph to convert to layers were

uniform in location and shape (which they were not), this too

could have been automated. Both of these script files are

available on our website at www.linuxformat.co.uk/
gimp/54.zip

We start by looking at the smaller of the two scripts,

GFXOffsets.pl:

#!/usr/bin/perl
use Gimp;

use Gimp::Fu;

Our function - get the list of layers and print their offsets to
a file.
sub OffsetGFX_Run {

my($img, $drawable, $filename) = @_;

my @layers = $img->get_layers();

my $count = scalar(@layers);
Gimp->progress_init(“GFXLayerSave is working...”);
my $progress_increment = 1 / $count;
my $progress = 0.0;

open (FD, “>$filename”) || die “GFXOffsets: Can’t open
$filename\n”;

print FD “ X Y Layername\n”;
print FD “---- ---- --

----\n”;
foreach (@layers)
{

my ($xoffset, $yoffset) = $_->drawable_offsets();
my $layername = $_->layer_get_name();
printf(FD “%4d %4d %s\n”, $xoffset, $yoffset,

$layername);

Update the progress bar.
$progress += $progress_increment;
Gimp->progress_update ($progress);

}
close(FD);
return();

}

Register this script with the Gimp’s PDB.
register (

“gfxoffset”,
“Find all layer offsets”,
“Find all layer offsets”,
“Michael J. Hammel”,
“Copyright 2004 Michael J. Hammel”,
“V1.0”,
“<Image>/Filters/GFXMuse/GFXOffsets”,
“*”,
[

[PF_STRING, “filename”,
“Where should the output be saved?”,
“/tmp/offsets.txt”

]
],
\&OffsetGFX_Run

);

exit main();
Here we see the register() function follows a function called

OffsetGFX_Run(). Functions in Perl are prefixed by the keyword

sub, which means ‘subroutine’, that happens to also be a

synonym for ‘function’. Note also that the order of the two

TUTORIAL GIMP

<<

The user interface for
GFXOffsets – simplicity

is a built-in feature with
GIMP Perl.

LXF54.tut_gimp_grb 23/4/04 1:32 pm Page 72

www.linuxformat.co.uk LXF54 JUNE 2004 73

TUTORIAL GIMP

functions doesn’t matter – GIMP Perl will find either function and

call them when needed. The meat of our code is in our

subroutine, OffsetGFX_Run(). Let’s put in plain English what

we’re doing in our code:

1 Retrieve important values passed to us by GIMP Perl

2 Retrieve the set of layers in our image

3 Run through that set to

a retrieve the pixel offset of the current layer

b print the relevant data to a file

In addition, we also update the display to let the user know

that something is happening. For images with a small number of

layers, this isn’t very important. For images with a very large

number layers – as was the case for our selection of images –

then this helps let the user know something is really happening

and, just as important, when its done.

GIMP Perl passes in three values to our script: A value used

to identify the image being worked on (ie the Canvas), a value

used to identify a ‘drawable’ (which would be the currently active

layer), and the name of the file as provided by the user via the

window created using argument 9 of the register() function.

my($img, $drawable, $filename) = @_;
The $img value is important to us because we’ll use it to find all

the layers in the image on which we’re working. The $drawable
value isn’t used here because we aren’t interested in just the

current active layer, we’ll be iterating over all the layers in the

image. But many (if not most) other GIMP Perl scripts work

primarily on the active drawable and use this value extensively.

The name of the file to save to, as provided by the user, is passed

in as the $filename argument.

The subroutine specified in the register() call will be passed

the values supplied by the user in the order they are listed in the

register() function in argument 9. Again, we’ll cover developing

user interfaces in part two of this tutorial next issue.

Now that we have these values, we can start to do real work.

my @layers = $img->get_layers();
The next thing to be done is get that list of layers. The Perl

language can be used either with a procedural (like the C

language) or object oriented (like C++) interface. These two

methods can even be mixed. Here we use the object methodology

to ask the $img object to run the get_layers() method and save

the layer ids to an array called @layers. How did we know about

get_layers()? We used The GIMP’s Procedural Database.

The DB Browser (found in the Toolbox menus as Xtns>DB

Browser) lists all functions that can be called by a GIMP Perl

script. We’ll cover this next month as well, but until then, you

should know that anything that is prefixed with gimp-image in

the procedural database can be accessed using the object-

oriented syntax, minus that prefix. Alternatively, you can call

gimp_image_get_layers() – the dashes in the database name

are replaced with underscores. This is the procedural interface.

Arguments provided differ between the procedural and object

interface. The object interface doesn’t need image or drawable

ids depending on the class the function belongs to.

my $count = scalar(@layers);
Gimp->progress_init(“GFXLayerSave is working...”);
my $progress_increment = 1 / $count;

my $progress = 0.0;
These lines are all used to provide feedback to the user. The first

line assigns the count of layers to the variable $count. The next

line prints a message at the bottom of the image window. The

next two lines are used to initialise a progress bar – a horizontal

scrollbar that fills in as we do our work. When the scrollbar runs

end to end, we’re done.

open (FD, “>$filename”) || die “GFXOffsets: Can’t open
$filename\n”;
print FD “ X Y Layername\n”;
print FD “---- ---- --
----\n”;
The next three lines open the output file and print a header to it.

If the file can’t be opened for some reason, the script will exit (ie

die) and print a message.

my ($xoffset, $yoffset) = $_->drawable_offsets();
my $layername = $_->layer_get_name();
printf(FD “%4d %4d %s\n”, $xoffset, $yoffset, $layername);
If the subroutine is the crispy, griddled meat of this scripting

steak, then these next three lines must be the moist and bloody

red meat at the centre. The first line grabs the offsets for our

layer. The foreach() loop inside which we find these lines sets the

$_ variable to each layers object. So the call to $_->drawable
_offsets() is how we get a single layers offsets.

The next line grabs the layer name and that, along with the

offsets, is then written to our output file.

$progress += $progress_increment;
Gimp->progress_update ($progress);
These lines print visible status changes to the progress bar,

incrementing it an equal amount for each layer we process.

Where to go from here
The output from this script is very basic. It could be parsed

manually or fed to a parser that feeds the graphics processor

that builds dynamic images for the web. LXF

IN the concluding part of
our examination of The
GIMP and Perl, we’ll look
at the other script,
GFXLayerSave.pl, which is
a little more complex (but
barely) and dig deeper
into creating user
interfaces and using the
DB Browser to find the
functions we need for
our scripts.

NEXT
MONTH

The DB Browser allows you to search the procedural
database quickly and easily.

The output is simple, but formatted for easy parsing.

LXF54.tut_gimp_grb 23/4/04 1:32 pm Page 73

