
www.linuxformat.co.uk80 LXF59 NOVEMBER 2004

IMAGES FOR WEB

Feeling motivated and organised, I recently completed a

ground-up redesign of one of my websites. The inspiration

for the new layout came from the wondrous designs I

found at the CSS Zen Garden www.csszengarden.com/. CSS

stands for Cascading Style Sheets, a web standard for page layout

that is finally – after a far too long waiting period – well supported

by most popular web browsers.

In the process of learning CSS, I discovered a few important

things about browser support of Web standards. Most importantly,

Internet Explorer doesn’t understand standards; it consistently

gets the box model wrong. The box model defines where and

how sections of the document will be presented. Internet Explorer

also doesn’t understand transparency in PNG images. Because of

that, layout design for IE is fairly limited. Your design options are

far greater with Mozilla-based browsers, such as Firefox.

Unfortunately, until the new revolution arrives, we’re all stuck with

dealing with Internet Explorer for many visitors to our sites.

Despite this, there is one area where browser support has

recently reached an equal footing – Flash. Macromedia’s Flash is

a highly popular animation format; which, while not strictly an

official standard, is very popular indeed. Macromedia has provided

browser plugins and players for many platforms: in the past year,

Macromedia has not only released a supported Flash player for

Linux, it hired someone to maintain it! So, while not an official

standard or Open Source by nature, Linux users can at least live

on par with their Mac and Windows brethren.

Unfortunately, there is still one part of this picture that is

missing: Flash MX for Linux: the tool for creating Flash animations.

Late in 2003 a version of Flash MX was certified to run with

CrossOver Office, the Wine-based package that lets you run

Windows applications on Linux. Macromedia has said that, if there

was enough developer interest, a native port of Flash MX for

Linux would be the next step. So far, news of such a port has not

been made public: but as always in Linux, there is an alternative.

Building Flash animations
with PHP and Ming

TUTORIAL Flash Animation

Linux is on par with other platforms for displaying Flash animations; all that is missing is an easy way to
create them. Michael J Hammel shows us how the Ming library fills that gap for developers.

ON DISCth
e

If you try to load your
PHP script directly into
your browser through
your website, you’ll need
to make sure the the PHP
module for Apache has
been loaded. Check the
webserver documentation
for some more specific
information on configuring
PHP with Apache.

TIP

LXF59.tut_gimp 14/9/2004 10:25 AM Page 80

www.linuxformat.co.uk LXF59 NOVEMBER 2004 81

TUTORIAL Flash Animation

Ming is a library of functions, complete with multiple language

APIs, for generating Flash files. A Flash file is similar to a graphics

image – it lives outside of your HTML and is referenced using a

specific HTML tag. Ming supports much of the Flash file format

specification, up to and including support for Flash Player 7, and

can be used with programs written in C/C++, PHP, Perl, Python

and Ruby. You can use Ming and ffmpeg together to convert an

AVI video into a Flash FLV format and include it in your Flash

animation. Flash ActionScript data can be compiled on-the-fly as

well, allowing import of existing ActionScript programs. The

potential here is limitless.

This article will look at using the PHP API with Ming, from

installation and configuration to your first animation. I’ll also cover

basic requirements for referencing your animation from HTML.

Specific language constructs will be covered briefly, but for a

more detailed introduction to Flash you should consult the Ming

websites or one of the many printed texts on Flash animation.

There are also numerous tutorial sites for learning Flash

ActionScript programming.

Grab, configure and go!
PHP is a scripting language developed primarily for the web,

although in this project we’ll use it on the command-line. The

PHP interpreter uses a configuration file to load extensions to the

base language. Ming is one such extension. To add the extension

you need to compile the source code, drop the .so file into the

correct directory and edit the PHP configuration file.

Ming requires PHP 4.0.2 or later (we used 4.2.2). Note that

the newly released PHP5 will probably not work – yet, any way.

You’ll also need the development package for PHP. For users of

apt (which I highly recommend); you can install these from just

about any apt repository:

apt-get install php php-devel
apt is not just an application for Debian users, it’s also available

for Fedora, Red Hat and Yellow Dog distributions from

http://apt.freshrpms.net/). You’ll also need to get the bison,

flex and libungif development packages:

apt-get install bison flex libungif
You’re now ready to download the source from the Ming website.

The release used for this project is 0.3Beta1. Unpacking the

source will create a package directory. From within the package

directory, build the Ming libraries:

tar xvzf ming-0.3beta1.tar.gz
cd ming-0.3beta1
make && make static
This will produce both shared (libming.so) and static (libming.a)

libraries in the current directory. Next task to undertake is to

change directories to the PHP extension directory and build the

Ming PHP extension.

cd php_ext
make
From the same directory, and as the root user (to get access to

system directories), install the PHP extension.

make install
The default location for PHP 4 extensions is /usr/lib/php4. You

can change this in the PHP configuration file, /etc/php.ini. You

also need to edit this file to add a reference to the newly installed

extension. Add the following line to the section for extensions.

extension=php_ming.so
Red Hat users may want to copy one of the extension

configurations that distribution uses that are in the directory

/etc/php.d, but that particular configuration is beyond the scope

of this article.

To verify the configuration works, try this command:

php -i | grep module_ming
This should return some text wrapped in HTML. If it returns

nothing, verify you have installed the php_ming.so file in the

PHP extensions directory specified in the /etc/php.ini file. >>

The official site for Ming is
http://ming.sourceforge.n
et/. Documentation is
thorough, if not always
easy to follow. Sections
include language-specific
API references and
examples. There’s
additional documentation
for using Ming with PHP at
http://us3.php.net/ming.
The official Macromedia
Flash Player for Linux can
be downloaded from
www.macromedia.com/sh
ockwave/download/altern
ates/. A wealth of CSS
(Cascading Style Sheets)
information can be had
from Zen Garden
www.csszengarden.com/
– click through some of
the ‘Select a Design’
options for a great demo
of the power and
flexibility of CSS.

RESOURCES

1/ A simple Flash example
Firefox displays the simple, single frame animation as this large yellow box.

LXF59.tut_gimp 14/9/2004 10:25 AM Page 81

www.linuxformat.co.uk82 LXF59 NOVEMBER 2004

A simple example
The process for creating Flash animations is simple: write some

code and run the code to produce SWF content. This content can

be output directly to the web or to a file for later embedding in

HTML. To illustrate this process, we’ll start with an example that

draws a plain yellow box. We’d begin with something akin to the

traditional “Hello World” programming example, but as handling

fonts in Ming makes working with text a bit more complex than

drawing simple shapes, we’ll display a yellow box instead.

<?

$movie=new SWFMovie();
$movie->setBackground(0,0,0);
$square = new SWFShape();
$square->setRightFill(0xff,0xff,0);
$square->drawLine(50,0);
$square->drawLine(0,50);
$square->drawLine(-50,0);
$square->drawLine(0,-50);
$squarepos = $movie->add($square);
header(‘Content-type: application/x-shockwave-flash’);
$movie->output();

?>
The example starts as all Flash animations do, by defining a

movie object. If you don’t know object programming, just think of

a movie as a series of frames to which we’ll add other objects,

such as shapes or imported animations. For example, the line

$squarepos = $movie->add($square);
adds a object called square to the current frame of the movie

object. We create a SWFShape object and tell Ming that this

shape will be filled with yellow.

$square = new SWFShape();
$square->setRightFill(0xff,0xff,0);

The method setRightFill() tells Ming that when it draws pixels,

from left to right, that the color specified will be used when ever

it has crossed an odd number of defined line. We draw a square

in this object like so:

$square->drawLine(50,0);
$square->drawLine(0,50);
$square->drawLine(-50,0);
$square->drawLine(0,-50);

The lines defined here determine when the yellow colour will be

applied. Note that drawing with Ming is pen-based, which means

the offsets specified in the drawLine() method are from the

current pen location, with the origin (X,Y = 0,0) being the upper

left corner. This example draws a line from X=0 to X=50 with

Y=0, then draws a line from that point to y=50, then from that

point back to X=0, then back to 0,0. That outline defines a shape

inside which the yellow color is displayed.

After the SWFShape object called square is added to the

movie object, we display the results directly to standard output.

header(‘Content-type: application/x-shockwave-flash’);
$movie->output();

This method would be used if you placed this PHP file in your

webserver to be loaded directly by visitors to your site. Another

method would be to generate an .swf file that can then be referenced

by HTML. In this latter case you’d replace these last two lines with:

$movie->save(“simple.swf”);
where “simple.swf” is the name of the output file. This file is

then referenced with HTML code that would look similar to this:

<object>
<param name=”movie” value=“simple.swf”>
<embed src=”simple.swf”></embed>
</object>

This particular code should work with just about any browser

that has a Flash plugin installed – including those that seem a bit

vague in their observance of standards, like Internet Explorer!

TUTORIAL Flash Animation

<<

The png2dbl program may
not compile correctly on
Linux systems due to a
known minor bug in
png2dbl.c. To fix this you
need to add a missing
line. First, find the
following line:
#include <zlib.h>

and then add this line:
#define byte int

The program should then
compile without error.

TIP

2/ Compare dimensions
Without setting dimensions we get one size, and with
Ming dimensions set we get another. If the Ming
dimensions match the HTML, the square animates
around the edges of the displayed block the way you’d
expect. Note also that in our HTML we’ve referenced
the PHP script directly – instead of the SWF file. This
allows us to make changes to our code without having
to recompile the SWF file or change between direct
display and output to a file.

LXF59.tut_gimp 14/9/2004 10:25 AM Page 82

www.linuxformat.co.uk LXF59 NOVEMBER 2004 83

TUTORIAL Flash Animation

A simple animation
Animation is a series of individual frames played at a certain

speed. First, we need to tell Flash how fast to play frames. We use

a standard 60 frames per second rate:

$movie->setRate(60);
To animate the square we drew earlier, we will need only add a

set of four loops – one each to move the square right, down, left,

and up. Each loop adds a frame to the movie with the square

moved to a new location. This code is added to our original code

just after we call movie->add().
for($i=0; $i<25; ++$i)
{

$movie->nextFrame();
$squarepos->move(8,0);

}
for($i=0; $i<25; ++$i)
{

$movie->nextFrame();
$squarepos->move(0,8);

}
for($i=0; $i<25; ++$i)
{

$movie->nextFrame();
$squarepos->move(-8,0);

}
for($i=0; $i<25; ++$i)
{

$movie->nextFrame();
$squarepos->move(0,-8);

}
At this point we need to talk about scaling. The PHP code introduced

here does not specify the size of the animation. When we used the

code that embedded the animation in HTML, we could have specified

the size of the area to hold the animation, as in this example:

<object width=”250” height=”250”>
<param name=”movie” value=”simple.php”>
<embed src=”simple.php” width=”250”
height=”250”></embed>
</object>
But the size of the animation itself is only bounded by this. It is

scaled to fit inside this region. Note the difference between our

code and what happens when you add the line

$movie->setDimension(800,600);
immediately after the line that calls setRate().

Scaling issues will likely be one of the harder issues you try to

resolve when learning Ming. For the time being, we will use the

default (ie unspecified) scaling to prevent clouding the issue.

A Slide Show
We can use extend this simple animation to create a slightly more

interesting one: a set of images shown and hidden by a sliding

window. The first thing to do is add two images to our code. An

image object in Ming is called an SWFBitmap. The image file

must be in a special format called ‘DBL’. There is a utility program

in the Ming source called png2dbl that will convert PNG images to

DBL format. You need to build this tool manually. From the main

Ming source directory, change into the util directory.

cd util
make png2dbl

Once built, you simply run the program against any PNG image to

generate its DBL equivalent.

png2dbl misc0018.png
The .png suffix is replaced with .dbl for the output image file.

Having created your DBL image files, you can load them into your

SWFBitmap object with a single line of code:

$image1 = new SWFBitmap(fopen(“misc0018.dbl”, “rb”));
Now add the image to the movie and position it at the display origin.

$image1pos = $movie->add($image1);
$image1pos->moveTo(0,0);
Repeat this process for a second image. Note that adding the

second image after the first places it on top of the first. The

yellow box is added after this. That means when we move the box

up and out of the way the second image is exposed. To simulate

the slide show, we simply move the second image out of the way

while the yellow box is down and, when we raise the box again,

the first image is exposed!

for($loop=0; $loop<2; ++$loop)
{

$movie->nextFrame();
if ($loop == 1) $image2pos->moveTo(0,-250);
if ($loop == 2) $image2pos->moveTo(0,0);

for($i=0; $i<25; ++$i)
{

$movie->nextFrame();
$squarepos->move(0,-10);

}
sleep(5);
for($i=0; $i<25; ++$i)
{

$movie->nextFrame();
$squarepos->move(0,10);

}
}
We only add enough frames to the movie to run through this

process once. We’ll let the Flash player/plugin handle looping the

animation for us. That helps reduce the code size and lets the

user decide how long the animation should run.

Our new PHP script can now generate our animation on the

fly. But there is a catch: the image files have to be in the correct

directory if we run the PHP directly from our webserver. If we

compiled the program (using the output() method shown earlier)

to generate an .swf file we would not need to include the image

files and the code – we would just have the single .swf file.

Which method you use depends on what you want to

accomplish. Having the image files on the webserver allows you to

change them on the fly so visitors can see different images over

time. This could be used to present different ads on a website, for

example. But if managing multiple images and their associated PHP

scripts is potentially difficult, then a single .swf file might be in order.

These simple examples are only meant to introduce you to

programming with Ming. To see the real power of Ming and Flash

you should check out the online examples. Text input, interactive

drawing, and streaming audio are all possible with these tools. LXF

Is there any aspect of Linux-based art that you’d like to see
covered in a future issue of Linux Format? Whether you’d like a
more advanced recap of the subjects that we’ve already covered,
or there’s something that you’d like clarified, or think that there’s
perhaps something we’ve missed, then please email us at
linuxformat@futurenet.co.uk with ‘Art tutorial suggestion’ as the
subject-line. The whole LXF GIMP tutorial series will soon be
available on the coverdiscs and online, so watch this space!

FEEDBACK
Tell us what you want!

Next issue, we’ll be even
more Merciless. We’ll
dive a little deeper into
Ming by looking at
integrating fonts and
text into our animations.

NEXT
MONTH

LXF59.tut_gimp 14/9/2004 10:25 AM Page 83

