
www.linuxformat.co.uk86 LXF60 DECEMBER 2004

TUTORIAL Flash Animation

IMAGES FOR WEB

Building Flash animations with
PHP and Ming: text effects
 PART 2 Programming Flash effects is a simple process that requires nothing more than
modest looping, a drop of maths and your own creative ideas, says Michael J Hammel.

Last month we introduced Ming, the Flash library with
multiple language bindings. In that article, we covered
the concept of Flash movies, frames and shapes, and

how to combine them inside loops to create simple animations.
This month we’ll dig into text animations. Ming handles text as
objects, just as it does graphic images. A Ming program will
establish one or more font objects and uses those objects in
individual text objects. Once the text object characteristics –
font, height, spacing and so on – are configured, the text object
can be manipulated just like the graphic objects discussed last

month. This means you can position them any way you want in
successive frames, producing animated text.

Ming fonts
Text in Ming is a little more difficult than other tools under Linux
because you have to carry around your own set of font files –
you can’t simply use the fonts that you already have on your
system. Instead, you have to convert them to a special format
and keep them close at hand to your Ming program, either by
compiling them into your .swf file or by referencing them in a

All the code listings required
for this tutorial can be found
on your coverdisc.

ON THE DISC

LXF60.tut_gimp 86LXF60.tut_gimp 86 11/10/04 9:45:52 am11/10/04 9:45:52 am

www.linuxformat.co.uk LXF60 DECEMBER 2004 87

TUTORIAL Flash Animation

path accessible to your PHP script and your web server. Ming
fonts have their own special format called fdb. To get this
format, you first convert a TrueType font to an intermediate
format called fft. The tool to do this is ttf2fft and source for it
can be found on the Ming SourceForge download page.

After the file is in fft format, you can pass it to Ming’s
makefdb program to convert it to fdb format. Listing 1 shows
the output from running this command to convert an existing
TrueType font file to fft, and then to fdb formats.
<Listing 1 – Convert TrueType fonts to FDB format>
% ./ttf2fft /usr/local/fonts/TrueType/xfiles-3
Converting font /usr/local/fonts/TrueType/xfiles-3.ttf
 family: X-Files
 style: Regular
using charmap: 0: platform: Macintosh, encoding: Roman
retrieving chars from current charmap … found 100 chars
using 1-byte char codes
retrieving glyphs outlines … done.
generating glyph outlines … done.
using short glyph offsets
generating layout
 writing advance table
 writing bbox table
 no kerning table found!

% ./makefdb X-Files.fft
Found DefineFont2 block at offset 23
Block length: 11810
Writing X-Files.fdb, 11812 bytes

The resulting file should be placed in a directory called fdb, in
the same directory as the source for these examples. This
means all fonts can be referenced relative to the local directory.

Ming includes the makefdb tool in its source package in the
util directory. Although this isn’t built by default, it’s easily built.
All you have to do is run
 make makefdb
in that directory.

A single-frame text movie
The first example this month consists of a single-frame
animation. This is just like last month’s, but this time it has a text
message. The Ming environment is set up first. A movie object is
created and its frame rate and dimensions set. The background
is then initialised to grey. Listing 2 shows this configuration.
<Listing 2 - Example 2 Source>
<?php

 // Ming requirements
 Ming_setScale(20.0);
 ming_useswfversion(6);

 // Initialise our environment.
 $movie = new SWFMovie();
 $movie->setRate(20.000000);
 $movie->setDimension(550, 400);
 $movie->setBackground(0xcc,0xcc,0xcc);

 // Setup the string and font to use.
 $str=“Linux Format and PHP/Ming”;
 $font=“fdb/Bitstream Vera Sans-B-I.fdb”;

 // Create font and text objects
 $f = new SWFFont($font);
 $t = new SWFText();
 $t->setFont($f);
 $t->setColor(0xff, 0x33, 0x33);

 // Set some text characteristics
 $t->setHeight(40);
 $t->setSpacing(1.0);

 // Add the string to the movie.
 $t->addString($str);
 $i = $movie->add($t);
 $i->moveTo(275-$t->getWidth($str)/2, 200+$t-
>getAscent()/2);

 // Output directly to server
 header(‘Content-type: application/x-shockwave-flash’);
 $movie->output();

?>
After the environment is established, a font file is loaded into

a Font object. A text object is created and the font object is set
as the font to use for this text. The colour of the text is set using
the setColor() method. Remember, the background of the
entire movie has been set to grey.

Next, specify what string to use in this text object. A text
object’s string, font, height, spacing and other characteristics are
used to render the text into the movie. The height and spacing
are explicitly set in this example, along with the dimensions of
the movie. Some experimentation may be necessary to find a fit
between the dimensions of the movie and the size of the text,
as will be shown in our last example.

The string is added using the text object’s addString()
method and the text object is inserted into the movie’s current
(and only) frame. We then move the text object within that
frame to a location that’s centred on the dimensions of the
movie. Finally, the movie is displayed.

Text effects
As you can see, the only real difference between handling an
image and handling text with Ming is that text requires two
objects: an SWFFont object and an SWFText object. Once the
text object is configured with its font properties, the text can be
distorted using any of Ming’s numerous built-in text functions.

In the next example, shown in Listing 3 on the coverdisc, a
library of distortion functions – infuncs.php, which is shown in
Listing 4 – is included in the main script. This library is a
modified version of the same functions in the Flashdot example
from the Ming website. The modifications are primarily to allow
for more flexible centring of the text.

The text in this example remains constant, but a series of
transformations are applied to it, such as skewing, fading in or
out, sliding in from the left or right, and so on. Each distortion
function produces a series of 35 frames, followed by a series of

>>

■ Ming: http://ming.sourceforge.net/
■ Ming Source Downloads:

http://sourceforge.net/project/showfiles.php?group_id=18365
■ Ming Font package, containing the Bitstream Vera font family

in FDB file format: http://prdownloads.sourceforge.net/ming/
ming-fonts-1.00.tar.bz2?download

■ Examples from this article:
www.ximba.org/articles/phpming2/article.html

■ Ming Function Reference: http://ming.sourceforge.net/docs/

Note that all of the methods (also known as functions) that
are used in the examples in this article are detailed in the Ming
Function Reference online documentation.

WEB RESOURCES
Minging URLs

LXF60.tut_gimp 87LXF60.tut_gimp 87 11/10/04 9:45:54 am11/10/04 9:45:54 am

TUTORIAL Flash Animation

>> 20 unchanged frames via the pause() function, and finally a
series of 20 blank frames (no text) via the blankSpace()
function. Both pause() and blankSpace() are functions in the
included distort function library and are not part of Ming.

The calls to add() are Ming functions that return a
SWFDisplayItem object, and this is saved in the $i variable in
each distort function. In each function, you can find the built-in
Ming functions by finding a function referenced from the $i
variable, such as $i->scaleTo() in the zoomin() distort function.

Most of these functions take either X,Y co-ordinate pairs or
Red/Green/Blue/Alpha colour values. The multColor() function
is especially interesting. It’s used to multiply the current colour
by various amounts specified as arguments to that function. In
the distort functions, the Red, Green and Blue values to
multColor() are set to 1, meaning the colour doesn’t change.
However, the Alpha value is varied from 0 (transparent) to 1
(opaque), which is how fade in and fade out effects are made.

One important thing to note for the next example is that all
of the function names are placed in an array at the end of the
distortion functions library. This enables us to pick one of the
functions in a random order.

The examples on your disc call the distort functions in a
defined order and don’t loop or change the string used in the
text object. The script only changes the shape of that text when
it’s displayed over a series of frames.

Using random effects on multiple
text strings
While those effects are interesting, you might wonder what they
could be used for. The most obvious answer is as a scrolling
headline. Place an animated text movie inside a DIV block in

your HTML and position it at the top or bottom of your page.
Now modify Example 2 to read in a text file of headlines, such
as an RSS feed. As it turns out, the Flashdot example does
exactly this. However, the code there is much more complex
than I need to get in this tutorial, so I’ll settle for a simple text
file that lives right in our local directory for Example 3. Wrap
this code inside a simple HTML file that references a simple
CSS file, both of which are shown in Listing 7.

The CSS is pretty blunt, telling the browser that any
embedded or object tag will be 16 pixels tall and will cover the
width of the display. That’s fine for this example, but you’ll
probably want something that’s not quite so specific.

The first big change from Example 2 is that I create a series
of SWFText objects from the headlines. These are saved in an
array for later reference. Each line from the Headlines file is
then processed with a random distort function using the array
of function names mentioned earlier, followed by the
blankSpace() frames.

See your scripts in action
If you look at the source files on your coverdisc together, you
can see how each example builds upon the last. Example 3
adds more strings and picks a random function, but other than
that it’s pretty much the same as Example 2. PHP and Ming
are like that – it’s easy to build one piece on top of another.

Screenshots are nice for applications but they don’t really
tell the whole story behind a movie, so you should really take a
look at these scripts in action. You’ll find them at the Ximba site
(www.ximba.org/articles/phpming2/article.html). All the
code from the examples featured in this month’s tutorial can be
downloaded in a single compressed tar file from there too. LXF

LXF60.tut_gimp 88LXF60.tut_gimp 88 11/10/04 9:45:56 am11/10/04 9:45:56 am

