
www.linuxformat.co.uk88 LX61 CHRISTMAS 2004

TUTORIAL Gallery Design

DESIGN AN IMAGE GALLERY

Gallery design using
GIMP, PHP and CSS
Michael J Hammel guides you through a complete task flow – from design to
product – to see how to choose, mix and integrate tools to get the job done.

Reading over some of the reader mail for the past
few issues I realised that this column is best received
when it stays in tutorial format. Being as much a

developer as I am an artist, I still like to talk about coding, a
subject that is a bit more dry and, let’s be honest, not really
suited to the ‘step 1: open a new file, step 2: select whizbang
feature’ style of commentary.

Fortunately for me (and for you, I hope), this conflict of
interests has an obvious resolution: web design. Nowhere can
an artist more easily expose their talent while at the same time
be challenged by the intricacies of page layout mixed with

interactivity. This mix is idea - all we need is a project.
Some time back, I wrote a book on creating web graphics

with GIMP called GIMP for Web Professionals. In that text I
showed how to write a GIMP Perl script to generate thumbnail
images from larger originals. One reader took it upon himself
to modify this script to generate an entire series of thumbnails
from a directory of images. This idea can be expanded further
to create a system for automatically generating gallery pages
on a website. We have our project idea, but we also need to go
in a little deeper.

One place software developers and graphic artists often run

LXF61.tut_gimp 88LXF61.tut_gimp 88 4/11/04 6:05:09 pm4/11/04 6:05:09 pm

www.linuxformat.co.uk LXF61 CHRISTMAS 2004 89

TUTORIAL Gallery Design

into walls is with the idea that software is written or layout begun
immediately after the project is defined. But there are many
issues that you need to be clear on before even one line of code
or image is created. We have to think through what our end
product should be and how it should work. We have to design.

The design process
Our project definition – a gallery of images – is too vague of a
description. What kind of images? How should they be
presented? The images could be artwork to display, products for
sale or even members of a club. We need to identify what our
visitors will want to do with those images. Define this right away
or else your implementation efforts later may take you
completely in the wrong direction.

We've decided (after too much coffee and a coin toss) that
our visitors are coming to see images simply for review
purposes. That means we want to show thumbnail collections
where each thumbnail is a link to a larger, clearer version of
the image. This differs from product images because we don't
need to tie in pricing, sizing or purchasing features to our web
pages. It might differ from member portfolios in that our
images need not be tied to audio clips or personal data. In
other words, we aren't going to need to link our pages to any
databases. This simplifies our design greatly and leaves us free
to focus on the creative aspects.

Despite being simple by nature, we still have requirements
that need to be met:

1. We must be able to handle any number of images in a
single directory.

2. The images must be sorted alphabetically by filename
when displayed.

3. We must handle landscape, portrait or square images,
and no thumbnail should ever be taller or wider than
100 pixels.

4. Each thumbnail must reference a page with a full size
original of the image.

5. We must provide a 3x3 layout.
6. The interface must provide a ‘film slide’ presentation

with image names listed on each slide frame.
7. For interactivity, we want hover images in colour, while

default images are displayed in grayscale.

The first four requirements are extensions to the original
script that let us automate the display of the images. The
extension actually comes in two parts: part one will be changes
to the GIMP Perl script which we'll discuss later in this article,
and part two will be new code written in PHP that handles page
display. The PHP issues will be covered in next month’s tutorial.

The last three are arbitrary requirements to add some style
to our pages. We don't have anything in our project definition
that says these things are required, but we added them with the
right side of the brain: our artsy side.

This set of requirements has dependencies. For example,
the ability to produce a slide frame means either clever CSS/
DHTML or the use of a special background image (we'll opt for
a little of both). Hover images definitely depend on CSS design.
An implied dependency is a naming scheme for associating a
thumbnail with its full size original and its greyscale cousin. The
size of the slide frame is also dependent on the size
requirement of the thumbnails.

As you can see there is a lot of design required for this
simple project. A well-known saying for software developers is
that coding is easy but design is hard. You will spend more time

>>

An original image and its much smaller cousins generated with our modified GalleryGFX script.

LXF61.tut_gimp 89LXF61.tut_gimp 89 4/11/04 6:05:13 pm4/11/04 6:05:13 pm

www.linuxformat.co.uk90 LX61 CHRISTMAS 2004

TUTORIAL Gallery Design

>> thinking through what you want to accomplish than actually
implementing it. For our project, the detail we currently have in
place should suffice.

Generating thumbnails
While our web server setup could allow us to resize images on
the fly, image processing is CPU-intensive work and we don't
want our site to appear to be slow to visitors. So we'll process
all our images first, upload them to the server, then manage
those images using PHP via the web server.

We start with a set of images. What format should they be
in? Ah! Our design didn't cover that – see how thinking things
through first can be useful? We'll limit our images to JPEG for
now, though it wouldn't be considerably more difficult to add
other file formats.

The original GalleryGFX script had lots of unneeded features.
Listing 1 shows the stripped down version that will process a
single image into a colour thumbnail that is no more than 100
pixels wide. We first want to modify this to meet our design
requirements for a single image, then to extend it to process
the entire directory.
<Listing 1>
#!/usr/bin/perl
use Gimp qw(:auto);
use Gimp::Fu;

sub GalleryGFX_Run {
 my($img, $drawable, $filename) = @_;
 my $th_width = 100;

 my $img_width = $img->gimp_image_width();
 my $img_height = $img->gimp_image_height();
 my $height = int(($th_width/$img_width)*$img_
height);
 my $width = int($th_width);
 gimp_image_scale($img,$width,$height);

 $drawable = gimp_image_get_active_layer($img);
 gimp_image_flatten($img);
 gimp_displays_flush();
 $drawable = gimp_image_get_active_layer($img);
 file_jpeg_save($drawable,
 $filename, $filename, 0.30, 0, 1, 0, "", 0,
1, 0, 0);

 return();
}

register (
 "gallerygfx",
 "Thumbnail gallery", "Thumbnail gallery",
 "Michael J. Hammel", "GPL", "V1.0",
 "<Image>/Filters/GFXMuse/GalleryGFX",
 "RGB*",
 [[PF_STRING, "filename",
 "Full pathname of file", ""
]],
 \&GalleryGFX_Run
);
exit main();

The code for the original GalleryGFX is included in the
Graphics Muse Tools as is the version created here, which has
been given the name FullGalleryGFX. The Graphics Muse Tools
are available from http://ximba.org.

This first version assumes we want 100-pixel wide images,
no matter what the original images’ dimensions might be.
Requirement #3 of our list says our thumbnails are either to be
100 pixels wide or 100 pixels tall, but no more than 100 pixels
in either direction. So our first change is to test which dimension
will be scaled to 100 pixels and which needs to be scaled to
some other amount. Listing 2 shows this change, with the lines
before and after so you can see where it would fit in the original.
<Listing 2>
 my $img_height = $img->gimp_image_height();
 my $width, $height;
 if ($img_height == $img_width) {
 $width = 100;
 $height = 100;
 }
 elsif ($img_height > $img_width) {
 $height = 100;
 $width = int((100/$img_height)*$img_
width);
 }
 else {
 $width = 100;
 $height = int((100/$img_width)*$img_
height);
 }
 gimp_image_scale($img,$width,$height);

Scaling an image to smaller dimensions will blur it a bit so
we'll add a little sharpening. This isn't one of our requirements
but something we learn from experience working with scaling of
images. There is no way to know exactly how much sharpen to
apply but at 100 pixels it's a good bet that a setting between 10
and 20 per cent is plenty.
//code//
<Listing 3>
 gimp_image_flatten($img);
 plug_in_sharpen($img, $drawable, 10);
 sleep(2);
 gimp_displays_flush();

The sleep() call is required because calling external plug-ins
(ie features not internal to GIMP itself) causes a separate
process to be run and we need to wait for it to finish before
moving on. Unfortunately, there is no easy way to know when
it’s done. In this case it's easy to guess that, for a 100x100 pixel
image, two seconds is an eternity to the sharpen plug-in. If you
want other processing of the image done by plug-ins (including
those provided by Script FU) before saving you'll need to

Slide shows are
popular gallery tools.
We'll be able to
handle portrait and
landscape images
when we're done
with this project.

LXF61.tut_gimp 90LXF61.tut_gimp 90 4/11/04 6:05:15 pm4/11/04 6:05:15 pm

www.linuxformat.co.uk LXF61 CHRISTMAS 2004 91

TUTORIAL Gallery Design

NEXT
MONTH
This part of our project was
easy. Our next part isn't much
harder, but there is more
coding to come. If you are
trying to be artistic with your
designs, you can't help but
learn some coding. Especially,
as we'll learn next month,
with Cascading Style Sheets
or CSS. We'll also put
together a quick background
image that will act as our
slide border.

experiment to see if sleep() calls are necessary.
The image is scaled to its thumbnail size and it's still a colour

image. We also need a greyscale image. We'll save this version
then desaturate the image and save it to a new file. Listing 4
shows how to do this. Desaturating removes the visible colour
content but keeps the image as an RGB image. This is
necessary so we can continue to save the images in the JPEG
format. A true grayscale image is physically different from a
desaturated RGB image, but visually they look the same.
<Listing 4>
 $drawable = gimp_image_get_active_layer($img);
 $filename =~ s/\.jpg/-tn\.jpg/;
 file_jpeg_save($drawable,
 $filename, $filename, 0.75, 0, 1, 0, "", 0,
1, 0, 0);
 gimp_desaturate($drawable);
 $filename =~ s/-tn\./-gs\./;
 file_jpeg_save($drawable,
 $filename, $filename, 0.75, 0, 1, 0, "", 0,
1, 0, 0);

The filename munging is a clever Perl trick. We take the
input file name (which we assume is the name of the original
image) and tack on -tn for the thumbnail and -gs for the
grayscale version between the filename and its format extension.
This naming scheme is part of requirement's number 2,4,6, and
7 of our original design. We could also add the filename in as a
comment as well (in between the empty double quotes) but
we'll leave that as an exercise.

So that's it for a single image. You can see the results in the
screenshot on page 89. Now let's look at extending this to
process a complete directory.

Thumbnail directories
The stripped down original version only prompted us for a file
name. The script also assumes that it is being run against an
open image. We're going to drop both of those features. We
need the directory name instead. And we want to process that
directory whether we started from an open image or not. In fact,
we want to be able to run in GIMP batch mode so that we can
run from the command line, making processing a directory of
images very quick indeed.

The first change is to switch to using a directory instead of a
filename. We'll prompt for a directory and save the value passed
to us in a different variable name. We also change the menu
location. This causes the script to be called with fewer
arguments, as we'll see in the next section.
<Listing 5>
sub GalleryGFX_Run {
 my $dirname = shift;
 ...

register (
 "gallerygfx",
 "Thumbnail gallery", "Thumbnail gallery",
 "Michael J. Hammel", "GPL", "V1.0",
 "<Toolbox>/Xtns/GFXMuse/GalleryGFX",
 "RGB*",
 [[PF_STRING, "directory",
 "Full pathname of directory to process",

""
]],
 \&GalleryGFX_Run

We then need to open the directory and process all files in
it. It's important that we check each filename to be certain the
file is of a type we can handle (based on its extension, which is
far from optimal but good enough for this article). Notice in

listing 6 that nearly all the code from the original is now
enclosed in a while() loop, plus we added some code to test
the file type and open the file. We've also reduced the number
of input parameters to just the single directory name. We can
do this because we're going to run this from the command line
in batch mode.
<Listing 6>
sub GalleryGFX_Run {
 my $dirname = shift;
 my $th_width = 100;

 opendir(DIR, "$dirname") || die "Can't open
$dirname\n";
 while ($file = readdir(DIR))
 {
 ($file =~ /\.jpg/) || next;
 my $filename = $dirname . "/" . $file;
 my $img = file_jpeg_load($filename,
$filename);
 ...

 }
 closedir(DIR);
 return();

Once an image has been opened, the processing remains
the same – scale and sharpen. We'll also keep the desaturation
processing. We don't even need to change the way we save the
file because we've already tacked on the full directory path. So
that's it. Except for one thing: how do we run this from the
command line?

GIMP batch mode is easy with GIMP Perl. You simply run
this script manually, passing in two arguments, like so:
 ./GalleryGFX.pl -o /tmp/file.jpg -directory <filespec>

The -o option tells GIMP Perl to run without a user interface.
GIMP Perl will find and run GIMP without opening the toolbox
window. The argument to -o is meaningless for this operation,
although when the script finishes it will save an image to that
file. This argument is required even though we aren't using the
file specified for our script.

The -directory option comes from our script via the
register() function. Just pass in the directory name you want
GalleryGFX.pl to process. It's interesting to note that if you use

-help as the only argument to the script in batch mode it will tell
you the arguments required by the script! GIMP Perl is quite
smart about that, as it can get that information from the
register() function. LXF

We want 3 rows and 3
columns, centered on the
display with a link that
allows visitors to see the
next set of slides.

LXF61.tut_gimp 91LXF61.tut_gimp 91 4/11/04 6:05:16 pm4/11/04 6:05:16 pm

