
www.linuxformat.co.uk80 LXF62 JANUARY 2005

TUTORIAL Gallery design

In last month’s tutorial we started in on a project to
build an online, dynamic gallery. We began by laying
out a set of seven design requirements for the project,

which were as follows:
1 We must be able to handle any number of images in a

single directory.
2 The images must be sorted alphabetically by filename

when displayed.
3 We must handle landscape (wide), portrait (tall) or square

images, and no thumbnail should be taller or wider than
100 pixels.

4 Each thumbnail must reference a page with a full size
original of the image.

5 We must provide a 3 x 3 Layout.

The gallery created here will work fine under the Firefox browser,
but may not work as expected in other browsers. Fine tuning the
CSS for cross-browser support is a big topic. There are many good
texts on the subject such as those by Eric Meyer, whose More on
Eric Meyer on CSS offered the basic premise for this project.

The complete code and a working version of this two-part
tutorial is available online at the author's web site
www.ximba.org/articles/lf/63

TUNING FOR BROWSERS

DESIGN AN IMAGE GALLERY

Gallery design using
Gimp, PHP and CSS
 PART 2 In Part I, Michael J Hammel took us part way through a Gimp online
gallery design. But online systems make use of a variety of tools...

LXF62.tut_gimp 80LXF62.tut_gimp 80 1/12/04 5:14:57 pm1/12/04 5:14:57 pm

www.linuxformat.co.uk LXF62 JANUARY 2005 81

TUTORIAL Gallery design

For a good taste of what
CSS can do, check out the
CSS Zen Garden,
www.csszengarden.com/.
This is a collection of designs
that all use exactly the same
content but display it
differently using nothing but
modified CSS style sheets.

DIG AROUND

6 The interface must provide a 'film slide' presentation, with
image names listed on each slide frame.

7 For interactivity, we want hover images – when the mouse
pointer is over the image – in colour, while default images
are displayed in greyscale.

We built a Gimp Perl script that processed a directory of
images and produced a series of greyscale and colour
thumbnail images. This script enabled us to meet requirements
1 and 7 of our design. Now it's time to add online interaction to
our project.

This month we'll address the other five requirements by
developing a PHP script, an HTML template and a CSS style
sheet. Along the way we'll make one more trip into Gimp to add
a little style to our layout.

The Design: HTML Layout
The first thing we need to do is create a page layout in HTML.
Our gallery will be a 3 x 3 sheet of images. Because we'll be
using Cascading Style Sheets (CSS) to define the page layout,
our HTML is rather terse. It consists of a header section, a body
with one external and three internal blocks, and some
placeholders for our gallery images. Each block is a row
surrounded by <DIV> tags. Each row will have three cells.
Figure 1 shows the basic layout.

The HTML we've created is a template. When visitors come
to our site they'll cause our PHP script to be run. The script will
read in the HTML template and replace the place holders
(which we call template tags) with the HTML needed to insert
one of our nine images.

The HTML on its own doesn't do much. Figure 2 shows how
it would look with the template tags replaced with coloured
blocks when no CSS is used to control the layout (though a
little CSS is used to provide colour to the cells).

The HTML for this is extremely simple and will require few
changes as the project evolves. Code listing 1 shows the code
inside our sheet of rows and columns. What is important to
note here is that the outside block is called 'sheet' and the
inside blocks are called 'row' and 'cell'. The id and class
notations will be used in our CSS later to describe how the
sheet, rows and cells should be displayed. We'll also replace all
the cell code in the HTML template with a template tag that
looks like this
 [--divN--]

There will be nine of these, and the 'N' will be replaced by
the appropriate number. Our PHP script will replace these with
the code for a cell that includes the images and any in line
styles we need.
Listing 1
<div id=sheet>
 <div class=row>
 <div class=cell> Cell 1 </div>
 <div class=cell> Cell 2 </div>
 <div class=cell> Cell 3 </div>
 </div>
 <div class=row> ... </div>
 <div class=row> ... </div>
</div>

The Design: CSS Layout
The HTML template is a black box for our gallery – it holds our
content but doesn't show us how it should look. The
appearance of the gallery comes from Cascading Style Sheets,
also known as CSS, which works by providing style to various
elements of a page.

The style includes position and padding on the page, colours,
borders, and even simple visual effects.

A web page uses CSS in one of three ways. It can references
a Style Sheet as an external link within the <HEAD> section of
a page; or by placing Style Sheet information directly inside the
<HEAD> section; or by specifying styles directly aniline with
HTML elements using the STYLE tag. Listing 2 shows how each
of these might be used.
Listing 2
<head>
<link href="my.css" type="text/css" rel="stylesheet"
title="Preferred"/>
<STYLE>
body {
 background: red;
 margin: 2px;
}
</STYLE>
</head>
<html><body>
...
<div STYLE="margin: 2px;">...</div>
...
</body></html>

We're going to use all three of these methods. First we'll
create an external style sheet. This will contain style settings
that are universal and never change no matter what images are
displayed in the gallery. Then we'll use our PHP script to
generate <STYLE> elements and in line styles for each cell on
the sheet.

1/ The layout is a simple
block format – a 3x3 sheet
with titles printed with
each slide.

>>

2/ Our first attempt
displays coloured cells.

LXF62.tut_gimp 81LXF62.tut_gimp 81 1/12/04 5:15:00 pm1/12/04 5:15:00 pm

www.linuxformat.co.uk82 LXF62 JANUARY 2005

TUTORIAL Gallery design

>> The external style sheet is just another file. Listing 2 showed
how we would reference it. In this file we'll specify that the page
should go all the way to the edge of the browser, specify a default
font for the page and provide a default background colour.
Listing 3
body, html {
 margin: 0; padding: 0;
 font: 10pt/12pt verdana, times;
 color: black;
 background: #7D775C;
}

Next we need to centre the big sheet within the browser
window (Listing 4). We do this by first defining how big the sheet
is: 480 pixels wide (the rows will also cause it to be exactly 480
pixels tall, but we'll get to that in a moment). To centre this we
first tell CSS to put the top left corner of the sheet in the
middle of the page by telling it the left and top offsets are 50%.
Then we move back from there half the width and height to
cause the sheet to be centred. Finally we add borders to make
the sheet appear to be raised from the background.
Listing 4
#sheet {
width: 480px;
position: absolute;
left: 50%;
top: 50%;
margin-left: -243px;
margin-top: -243px;
border-bottom: 2px solid black;
border-right: 2px solid black;
border-top: 1px solid #444;
border-left: 1px solid #444;
background: #4A4A4A;
}

The rows and cells come next (Listing 5). Each row is exactly
three times the width of a cell (150 px plus 10 px of margin,
total) and the same height as all cells (which are square). Cells
are forced to line up left to right by using the "float:left" tag.
Additionally, in order to force a rows to start on the next line we
add a "clear" tag. Without this the rows would line up side by
side. The last thing to note is that the cells each use the (yet to
be created) slide image as a background.

Note that the slide is given a relative path (actually, no path
is specified) which means it must be in the same directory as
the CSS style sheet that references it.

Listing 5
.cell {
width: 150px;
height: 150px;
margin: 5px 5px 5px 5px;
float: left;
background: transparent url(slide.png);
}

.row {
width: 480px;
height: 160px;
clear: both;
}

All of the images we'll use will get a border that makes the
image appear to be set back within the slide image. CSS lets us
add this border easily – it's a cute trick. Below the images will
be an image title, which we will centre, and for which we
provide a small font.
Listing 6
img {
border: 2px solid;
border-color: #444 #AAA #AAA #444;
}
#title {
font: bold italic 8pt/9pt Arial, Verdana, Times;
text-align: center;
margin: 0px;
padding: 0px;
}

In all this CSS you notice that the HTML elements IDs and
Classes are named and then enclose their style inside curly
braces. Those elements that are IDs have a # as a prefix (such
as the #title element) and those that are classes are prefixed
with a period. The difference between an ID and a class is that
any page can use an ID just once, but classes can be used
multiple times. So there is just one sheet in our page, but
multiple rows and cells.

More images: The Slide Frame
Now we're ready for our slide image. This one is very simple.
We create a 150x150 square canvas with a transparent
background layer. Then we create a new transparent layer that
is 140x140 and position it five pixels from the top and left of
the canvas.

Make a rectangular selection of this layer. If you're using
Gimp 1.2 you can use the Gimp Perl ‘Select->Round...’ option to
round the corners of your selection. Feather the selection two
pixels just to soften the image a little. Set the background colour
to #efefda and fill the selection.

We centre the sheet
and set the row and cell
dimensions. The cells are
coloured red to show
how they are aligned in
the rows.

Our frame has a slight drop shadow.

LXF62.tut_gimp 82LXF62.tut_gimp 82 1/12/04 5:15:02 pm1/12/04 5:15:02 pm

www.linuxformat.co.uk LXF62 JANUARY 2005 83

TUTORIAL Gallery design

Finally, add a drop shadow that is offset by three pixels and
has a blur radius of three pixels. Save the image as a PNG file
(and save it as an XCF if you want to edit the layers again later!)
in the same directory as your CSS file.

One other image is necessary for this project: a transparent
GIF. Keep it small – perhaps 10 x 10. Save it in the same
directory as the CSS file. Call the file "clear.gif". We'll use it in the
next section when we create our PHP file.

Putting it all together with PHP
The HTML template, CSS style sheet and slide image are all
ready to go. Now we need to dig into the PHP. Fortunately, this
isn't all that difficult either.

Our PHP starts by reading in the HTML template and saving
it as one long string. This makes it easier to replace our
template tags later. We also start building our <STYLE> section
that will add the HTML template as well. Other setup includes
specifying the directory for our gallery images, and creating an
empty array for our images.
Listing 7
$html = implode('', file('gallery.template'));
$css = "<STYLE TYPE=\"text/css\">\n";
$gallerydir = "./gallery";
$images = array();

Next we read in our images. We want to skip the "dot"
directories as well as the thumbnails – we only want the names
of the full size images, since we'll use that to build the cells for
each image. When we're done reading all the filenames we
sort them.
Listing 8
if (($DIR = @opendir($gallerydir)) == FALSE) return;
while (($file = readdir($DIR)) !== false)
{
if (preg_match("/^\./", $file)) continue;
if (preg_match("/-tn\./", $file)) continue;
if (preg_match("/-gs\./", $file)) continue;
array_push($images, $file);
}
closedir($DIR);
sort($images);

With the image names in hand, we need to process them
one at a time to build a <DIV> that defines the cell in our
gallery. Remember the divN template tag in our HTML? Here is
where we replace it with the <DIV> that defines a specific
image.

To process the image we first pull just the image name from
the file name (removing the .jpg at the end of the name). We
then calculate the size of a thumbnail for this image (remember
they can be either portrait or landscape according to our design
specification) and compute the margins to centre this image in
a cell.

Next a cell entry is built as one long string. We play a trick
here by using a transparent GIF image as the image in our
HTML and use CSS to specify background images for normal
and hover states (more on that in a moment). The image links
to the larger version and an online STYLE is set to specify the
margins (which we just computed) to centre the images. The
trick here is making the transparent GIF the same size as the
thumbnails – this makes a window that the background images
(the thumbnails) will show through!

After building the cell entry we update the HTML string by
replacing the appropriate divN template tag. We add two CSS
styles to our STYLE string: one specifying the greyscale
thumbnail for the background when the mouse pointer is not
over the image, and one specifying the coloured thumbnail for
when the mouse is positioned (re: hovering) over the image.

The code in Listing 9 shows how we build the cell entry (all the
code for this project is available online).
Listing 9
$entry =
 "" .
 "<img id=\"pic$id\" " .
 "STYLE=\"margin-left:$margin_left; " .
 "margin-top:$margin_top;\" ".
 "width=\"$width\" height=\"$height\"".
 "src=\"clear.gif\" />".
 "";

We add some code to clean out any unused template tags
and add the <STYLE> entries to your HTML by replacing its
template tag as well. Last of all, we print out the HTML string.
Voila! Your gallery is ready for viewing!

Where to go from here
This article hasn't spelt out all the code you need, but it's all
there in the online code, which also contains some added
features such as a "More" link in case you have more than nine
images – this was a requirement from our design specification,
but we're leaving it to you to read the code and understand how
it was accomplished.

In the end, we've learned that a good design specification
up front helps keep us pointed in the right direction, and that
elegant web layouts are primarily based on good use of
Cascading Style Sheets. All of this is pulled together by the
great flexibility of PHP, a programming language built specifically
for the web.

Try the code and play with the CSS. Try adding background
images to the main sheet and to the body of the page. Try
adding some new <DIV> entries that place images around the
page but always behind the sheet, such as a logo in the upper
left corner. None of this is particularly hard to do once you learn
a little CSS. So dig in! Open Source makes it easy! LXF

The greyscale thumbnail
shows by default, until you
place the mouse pointer
over an image.

LXF62.tut_gimp 83LXF62.tut_gimp 83 1/12/04 5:15:04 pm1/12/04 5:15:04 pm

