
N
etworks are pervasive. No sooner are two devices

networked together than someone will establish a

need for a further half a dozen to join the throng.

Any network is really about sharing information. It

could simply be your desktop PC and a PDA sharing

calendar information, or it could be sharing a

complete system so that you can control one device remotely.

Of course, there are many ways to network different

devices together, from the constraining but super-fast cable-

based systems of Ethernet and USB to the wireless ways of

Bluetooth and WiFi. But more important than how you connect

devices together is what you can actually do with this newly

found empowerment. Over the next 16 pages, that’s exactly

what we’ll deal with, demystifying some of the technology as

we go. The network is important, but what travels over the

network is even more so…

NETWORK
EVERYTHING
From simple X connections to building multifunctional WiFi
routers, there’s no end of fun to be had with a network…

COVER
FEATURE

AUTHORS
Andy Channelle, David Coulson, Richard
Drummond, Graham Morrison, Roger
Burton-West, Nick Veitch

CONTENTS
BLUETOOTH PAGE 45

DOING IT WITHOUT WIRES PAGE 46

NETWORK SERVICES PAGE 48

SSH .. PAGE 50

REMOTE X APPLICATIONS PAGE 52

SECURITY PAGE 54

REMOTE DESKTOPS PAGE 56

DISTRIBUTED COMPILING PAGE 58

PARALLEL COMPUTING PAGE 59

NETWORK EVERYTHING

44 LXF63 FEBRUARY 2005 www.linuxformat.co.uk

LXF63.netwk 44LXF63.netwk 44 16/12/04 7:23:06 pm16/12/04 7:23:06 pm

www.linuxformat.co.uk LXF63 FEBRUARY 2005 45

The KDE Bluetooth software is well integrated into Konqueror, at least as
far as browsing devices and services available.

B
luetooth has so far had an

uninspiring existence.

Originally designed as a

more effective replacement

to IrDA, the short-range, low-

power wireless standard is

also low cost, meaning it can be

included in lots of handheld devices.

Bluetooth itself is pretty flexible

and can carry all sorts of protocols,

which is where some of the problems

with integrating Bluetooth devices start

to occur. Many devices won’t

implement or be able to handle the

full gamut of protocols or datatypes –

after all, there’s not much point in

being able to connect your handsfree

set with your printer.

However, some devices don’t

bother to implement all the systems

to handle data that they should be

able to accept. For instance, there are

plenty of mobile phones – picture

phones at that – which only

implement a basic Bluetooth dialout

connection, meaning that if you want

to send images from your laptop, you

still need to use the cable.

So in the confusing world of

Bluetooth, the nascent Linux software

isn’t completely to blame when things

go awry – your mileage may vary.

OBEX Push
The OBEX Push protocol was designed

to make it easy to send files from one

device to another. It even works,

depending on what type of device

you’re trying to connect to.

On the Linux side, the KDE

kbtobexclient is one of the more

reliable pieces of software. This

enables the browsing of connections

and has a simple file navigator for the

sending of files.

This is primarily a one-way

communication – you can send a file,

but there’s no way of reading the

remote files on a device.

This is one of the Bluetooth

services that works the most reliably

under Linux, but it can depend a lot

on what kind of device you’re

attempting to connect with. Because

Bluetooth is most commonly found in

PDAs and phones, for some reason

device designers seem to think that

you would only ever want to send

messages or virtual business cards in

this way, so if you send your phone a

picture, you may find that it doesn’t

know what to do with it.

Even Pocket PC devices, which you

might expect to be a bit smarter, try to

open everything you send them with

Pocket Outlook.

OBEX Transfer
OBEX Transfer is a step up from the

push method because it enables two-

way communication and therefore the

ability to browse the destination device

(or at least its storage), and read, as

well as write, data. On handheld

devices, this usually enables file access

to a particular folder. Most handheld

devices treat this protocol just for file

transfer, which means that they’ll just

store whatever files are sent, rather

than trying to make sense of them.

BlueChat
Most of the Bluetooth chat programs

effectively just use a straightforward

serial connection to transmit ASCII

data. Various chat clients are available,

often on simple devices because, to

be honest, there isn’t a lot to it. On

Linux, kbtserialchat will do the job.

Why you actually need a text chat

program on a device with a range of

only a few feet is open to question…

Other stuff
There are plenty of other things to be

done. The KDE Bluetooth Tools project

is still pretty active, so check it out at

http://kde-bluetooth.sourceforge.
net. This contains a number of tools,

including all the stuff mentioned so far

and with plenty more are in the offing.

For audio, there’s kbemused, a

Linux implementation of a system

originally designed to act as a remote

control for media players. Another

project of note is Bluetooth-als

(http://bluetooth-alsa.sourceforge.
net), which aims to create an alsa

device for Bluetooth headsets,

meaning you can stream audio from

your computer to a headset.

There’s a slight problem with audio

on Linux at the moment. The SCO

protocol used for transmitting audio

seems to fluctuate between working

and not working, depending on which

version of the kernel you’re using.

The OBEX Transfer method is the most seamless way of browsing and
transferring files between devices, if your hardware supports it.

>>

Bluetooth commonly uses a simple PIN
system for security, and encrypts the
data travelling between two devices.
The PIN on many devices can be of any
length or can be a password containing
alphanumeric data. While this is more
secure, many more simple devices opt
for a four-digit pin, as specified as the
minimum requirement.

It’s worth checking the devices you
intend to use beforehand because
some of the more primitive ones also
only allow you to enter a four-digit
pin when trying to connect elsewhere,
which may you some cause problems
if you’ve set up a 27-character
passphrase instead!

In any event, it’s wise to implement
some sort of security in case your
device gets bluejacked.

SECURITY

BLUETOOTH
Virtually every tiny device seems to have a Bluetooth connection, but is it worth it?

NETWORK EVERYTHING BLUETOOTH

LXF63.netwk 45LXF63.netwk 45 16/12/04 7:25:45 pm16/12/04 7:25:45 pm

www.linuxformat.co.uk46 LXF63 FEBRUARY 2005

W
ires are for squares, and

going wireless can change

the way you use a

computer. It’s just not

possible, for instance, to

carry your laptop down a

flight of stairs to show off some photos

if you’re tethered to an unravelling

cat5 cable. The use of wireless is fairly

widespread now, and the good news

for Linux is that most hardware is

supported by stock kernels.

However, you can do more with

wireless than just connect up your

laptop to the Internet. Get to grips with

the basics and you can turn that

redundant old PC into a wireless router

with bells, whistles and loads of other

streaming media.

Pick a card
There’s an old saying that says if

standards weren’t good, we wouldn’t

have so many of them. In the wireless

space, these standards are formulated

by the Institute of Electrical and

Electronics Engineers (IEEE). We’re

concerned with 802.11, the standard

for local area networks (LANs).

802.11b is a protocol that provides

up to 11Mbps (megabits per second)

and operates in the 2.4GHz band. This

is the standard WiFi product and is

currently the most popular format for

wireless connections. Products

available include network cards in PCI,

PC Card and USB form, plus factors,

routers, bridges (to join wired and

wireless networks), access points,

hubs/switches and print servers.

Support for this protocol is now

pretty mature in Linux, and as most

cards contain chipsets from one of

just a few vendors, there’s little

chance that whatever you

purchase won’t work. That said,

I would recommend

sticking with the

more established

vendors (such as

Netgear,

Actiontec and

Belkin) simply

because of critical

mass. If you have a problem

with some obscure generic PC Card,

you may struggle to find help. By using

an established brand, there’s more

chance that someone else in the Linux

community may have encountered a

similar issue and found a solution.

As with any hardware purchase, it’s

worth doing a quick Google search or

combing through some hardware lists

to find out whether others have had

success (or not) with your potential

purchase before you actually part with

your cash.

802.11g theoretically offers

55Mbps in the same band as 802.11b.

In addition to faster speeds, 54g, as it

has been branded by some, is also

capable of communicating over

greater distances. A wide range of

devices and cards is available for both

desktop and notebook machines.

Recent kernels have added support

for many 802.11g chipsets, but again,

don’t buy anything until you’ve

checked out the usual sources of

hardware information. However, with

this more up-to-date hardware, you

will find available data a little less

comprehensive. For instance, the

Prism54 website, a space devoted to

the drivers for cards based on the

Prism series chipsets, designates as

‘untested’ a PCMCIA card (an

Actiontec 54g PC Card) that LXF has

had lying around for the best part of a

year. We popped it into a laptop

running Ubuntu Linux and it associated

with a 54G access point, using

network details already provided for an

802.11b card with no need for any

configuration at all.

As with everything else, do your

research before buying. Start at

http://prism54.org/supported_
cards.php. Look down the list, find

one designated ‘Perfect’ and start

finding prices. Some of those that have

achieved the Perfect rating include:

■ D-Link Air Plus Extreme (PC Card)

■ Netgear WG511 (PC Card)

■ SMC EXConnect G (PCI)

■ Z-Com XG900 (PCI)

■ Linksys WRT54G (miniPCI)

For unsupported cards, it’s possible

to use ndiswrapper (http://ndis
wrapper.sourceforge.net), which

allows for the use of native Windows

XP drivers. It’s a little more

complicated to use and requires

compiling against kernel sources, so, in

terms of support, it’s probably better

to demonstrate to manufacturers that

demand for native drivers exists.

A Linux router
The big advantage of running a PC-

based router/access point with Linux is

that it can do more than just one job.

For example, our wireless expert’s

router doubles up as a media server –

streaming MP3s and radio to

DOING IT WITHOUT WIRES

Remote access to LiveCD Router is basic unless you buy the Pro version.

Get to grips with wireless protocols and build your own router from everyday household items…

Like most distros, Mandrake has a hardware guide.

The D-Link G520 is probably the
fastest WiFi card on the planet.

NETWORK EVERYTHING WIRELESS

LXF63.netwk 46LXF63.netwk 46 16/12/04 7:28:07 pm16/12/04 7:28:07 pm

www.linuxformat.co.uk LXF63 FEBRUARY 2005 47

computers around the house – and a

testing web server. It can also, should

the need arise, be pressed into service

as an extra or emergency desktop.

It’s possible to set up a router using

a very basic, stripped, system. You

don’t need, for example, a hard disk,

CD/DVD or sound system. In fact, if

you use something like Freesco

(www.freesco.org) you can set up a

router, complete with firewall and a

range of different servers, on a

machine with as little as 8MB RAM

and a 486 processor, though if you

want to run without a hard disk, you’ll

need at least 17MB.

The machine we’ve set aside for

this project has a CD drive, which is

bootable, so we’re opting for a more

fully-featured product – in this case a

Live CD firewall/router. There are a

number of these available and we’ve

chosen Linux LiveCD Router, available

from www.wifi.com.ar/english/
cdrouter.html. This is a live

distribution based on Slackware and a

custom 2.4.24 kernel. The ISO clocks

in at 88MB.

You’ll need to ensure that the PC

designated for this job is CD-bootable.

You can check this by hitting the DEL

key at the start of the boot process to

peek into the PC’s BIOS settings. Look

for an entry for the primary boot

device, select this and change it to CD.

If the BIOS doesn’t support CD

booting, the distro features a floppy

disk image that can be used to

bootstrap into the CD.

Linux LiveCD Router supports a

range of WiFi cards, including those

based on Prism2 or Lucent cards via

the linux-wlan-ng and Orinoco drivers,

as well as dial-up support for a variety

of modems with PPP.

Once the CD has been created,

you can put it into the router machine

and boot up. You can log in with the

username ‘root’ and the password

‘cdrouter’. The chances are that your

network cards have been found

automatically, but it’s wise to do some

manual configuration. Use:

netconfig eth0
to begin a console-based configuration

tool for the network card. Simply

follow the commands and enter the

information (IP address, netmask and

so on) as you would in any normal

network setup. In this case, you would

probably use DHCP for most options.

Next, do the same for the internal

network card. If it’s a wired card

(connected to a wireless access point),

it’s simply a case of inserting the

correct IP address (usually 192.168.0.1)

and netmask (255.255.255.0).

Now set up the routing so requests

from the internal network get sent out

through the external connection:

ifconfig eth1 192.168.0.1
route add 192.168.0.1 eth1
iptables -t nat -A POSTROUTING-o
eth0 -j MASQUERADE

Finally, you can restart the network

system to put the changes into effect:

/bin/sh /etc/rc.d/rc.inet1
The developers of Linux LiveCD

Router claim that most wireless cards

will be picked up automatically, and

this was borne out by our (necessarily)

limited testing. However, there are

some options that need to be set for

the smooth running of the WLAN. All

of the configuration options are stored

in /etc/wlan/wlan.conf.

The first job that’s required is to

set up the ESSID (we’re calling ours

‘LXFNet’) by doing the following:

cp /etc/wlan/wlancfg-DEFAULT /etc/
wlan/wlancfg-LXFNet
You then need to add this line:

edit /etc/wlan/wlan.conf
Add the name of the network

(LXFNet) to the SSID_wlan0= line.

Now edit /etc/wlan/wlancfg-LXFNet to

add other network details, such as

WEP keys and you’re done!

A network is more than just two or more
computers. It’s also defined by a number
of steps in between that are either
designed for simplifying management
or for the purposes of security, and
it helps, especially when it comes to
troubleshooting problems, to know
what’s what. These options will all be
configured in your distribution’s Wireless-
Tools frontend.

In Fedora, these are accessible via
Menu > System Settings > Network;
in SUSE, it’s through YaST > Network
Devices; in Mandrake it’s in the Control
Centre under Network; while in
Ubuntu/Gnome distributions, you’ll find
the options under Computer > System
Configuration > Network.

Firstly, the ESSID (or sometimes
just SSID) is the Extended Service Set
Identifier. In common parlance, that’s
simply the network name. As wireless
networks becomes more and more
popular, the ESSID is also becoming
increasingly important.

For instance, within range of the
author’s house are a couple of networks
that are called WORKGROUP – one of
which is usually left ‘open’ with Windows
file and printer sharing active – because
the users haven’t customised their
setups. This identifying name can be a
text string including up to 32
alphanumeric characters.

The Channel is, as you might expect,
the frequency on which communications

take place. There are 11 available, which
is useful if your network is in close range
with other WLANs and there’s a danger
of crosstalk or interference.

It is also possible to configure the
transmission rate, although it’s usually
best left at its highest setting. Occasions
when you may need to hamper the
speed of your network are those when
you find you’re getting an unusually high
level of interference.

Sending data through the air,
especially private data, is fraught with
danger. Fortunately, the Wired Equivalent
Protocol (WEP) can help secure
communications from casual crackers.
WEP requires the input of a string of
characters before a client can connect

to the WLAN. These are either 64-bit,
which requires a key of 10 hexadecimal
digits, or 128-bit, which needs a 26-digit
key. Remember that hexadecimal digits
are the numbers 0-9 and the letters A-F.
It may also be possible to use an ASCII
key or a passphrase to generate the WEP
key, depending on how your distribution
is configured.

The sequel to WEP, not yet ratified
by the IEEE but expected to be, is the
WiFi Protected Access (WPA), which gets
around the WEP problem of having static
keys (especially in public networks and
widespread client distribution) by using
a Temporal Key Integrity Protocol (TKIP)
in tandem with 802.1x technologies to
provide dynamic key assignment.

PARTS OF A NETWORK
Networking jargon and terms explained

>>

Ubuntu’s wireless GUI is quite simple. Well, it is the standard Gnome one!

The Prism 54 website should be
your first stop before purchasing
an 802.11g network card.

NETWORK EVERYTHING WIRELESS

LXF63.netwk 47LXF63.netwk 47 16/12/04 7:29:58 pm16/12/04 7:29:58 pm

www.linuxformat.co.uk48 LXF63 FEBRUARY 2005

NETWORK SERVICES

A
ccessing devices on other

systems over a network is

probably the most common

use for any home or office

LAN and can often help to

save a significant amount of

money. Being able to share one printer

across five or six machines, or store

files on a shared storage device for

easy access, quickly becomes second

nature to even the

most blissfully

ignorant of users.

Also, not having to

worry about users

blowing away their

workstations,

because their

important data is

stored on a shared

system well out of

their reach, solves

many problems.

This architecture

does require a little

behind the scenes

configuration and

administration but,

once done, it can be

left to run itself and

doesn’t need its

hand held, leaving time for important

things, such as helping users figure out

where My Computer is on the desktop.

For Unix systems, the standard

method for sharing storage is through

the Network Filesystem (NFS), which

for many years was considered the

most unstable piece of software in

existence. However, with the current

NFSv3 and NFSv4 implementations,

the reliability of NFS has increased

significantly, as has its ability to recover

from network failure, making it usable

on a variety of environments.

NFS, because of its implementation

and the need to access certain

resources, is particularly insecure – it

isn’t something we would ever want to

dream of running in plain IP over the

Internet. On a LAN, or over a VPN, it

does make for easy access to other

systems, particularly as it doesn’t care

at all what we’re connecting to, or

what we’re connecting from. We can

NFS mount a directory containing a

mounted CD-ROM over to a Solaris

box, or share the /home directory on

our fileserver across multiple

workstations without a great amount

of reconfiguration.

One thing to remember when

using NFS is that, because it’s a Unix

filesystem, it’s heavily dependent on

the UID/GID structure across the

server and client being the same. If we

have the UID 500 on one box, and

UID 1000 on the other, don’t expect to

be able to write to files without making

some changes to /etc/passwd first.

While this may seem annoying, it does

fit with the structure of NFS when

used to share home directories on

Unix boxes where the UID of each

user would be the same on each.

Configuring an NFS server is as

simple as editing one file because all

we need to do is add the appropriate

directory and permissions to /etc/

exports. Within the permissions, we

can set specific rights to individual IP

addresses or network blocks so that,

for example, if a general workstation

mounts the filesystem, the root user

on it can’t access or modify files on

the NFS mount as if it were the root

user on the server.

Securing the NFS mounts is a

particularly important part of building

an NFS server, and taking some time

to understand all of the /etc/exports

options before throwing it out into

the world is a good start. As always,

‘man 5 exports’ provides detailed

information on all of the options.

If we wanted to share /home on

our local network, we would add the

following line to our /etc/exports:

/home 192.168.1.0/255.255.255.0
(no_root_squash,rw,sync)

Note that there should be no

spaces between the netmask or IP

and the first parenthesis, otherwise we

will give default mount access to

192.168.1.0/24 and allow the whole

world to mount it with r/w permissions.

This is, of course, somewhat insecure,

and should be avoided at all costs.

Once /etc/exports is modified, we can

refresh our NFS server with the

changes, known as ‘reexporting’, using:

exportfs -r
We can test our current export list

using the following, to ensure that our

changes are active:

exportfs -v
/home 192.168.1.0/255.255.25
5.0(rw,wdelay,root_squash)

We can now head over to our

client and attempt to mount the /home

directory from the server, using the

standard mount command.

Assuming our server has the IP

192.168.1.2, we would do:

mkdir /home-nfs
mount 192.168.1.2:/home /home-
nfs

This will mount /home from

192.168.1.2 onto /home-nfs on the

local system. We can also add NFS

mounts to our /etc/fstab file to have

them mount at boot time:

192.168.1.2:/home /home-nfs nfs
defaults 0 0

To share a directory between a

Linux server and a Windows box

requires a little more imagination

because the popular Samba package

is required. Samba provides all of the

Windows file and print sharing

capabilities to a Linux system, enabling

us to share a Linux filesystem on a

Windows box, mount a Windows share

under Linux, or access a printer

connected to a Linux system from

Windows. Any distribution that comes

with more than ‘cat’ will have Samba,

so if it isn’t installed already, it will be

Shared storage and printing facilities can save on resources and, ultimately, money.

While numerous methods for accessing
remote files have popped up over the
last decade, including Samba and
WebDAV, good old FTP is still the most
popular way to get a file from A to B
over a network with the least amount of
hassle. Nearly all Linux software is
distributed via FTP, and it’s not
uncommon for vendors and support
companies to provide FTP services to
distribute software to users.

Building an FTP server is easy, and
there’s quite a choice of FTP software
available. ProFTPd and wu-ftpd are
popular. The former has a wider feature
set, including authentication through
SQL or LDAP, as well as virtual hosting.
wu-ftpd, on the other hand, supports
basic authentication using the local /etc/
passwd system, which is more than
enough for general FTP installations.
Once authenticated – or connected as

‘anonymous’, which will often map to
‘ftp’ – the FTP client will see the home
directory for the user and have the
appropriate download and upload
permissions as defined by the directory.

FTP uses Plain Text authentication, so
user authentication should be avoided
over a public network where the
passwords can provide access to internal
services. Sniffing passwords from a
switch or router is easy, and there’s no
standard, secure FTP system. Both sftp,
provided by the ever-popular SSH
package, and ftp-ssl do encryption and
authentication in different ways, and
some clients support sftp and some
support ftp-ssl.

If security is a concern, using sftp and
avoiding FTP altogether is a good
option, and clients will have no choice
but to use an sftp-capable client to
connect to their FTP services.

FTP SERVICES
For basic file sharing, nothing beats FTP for public or private access.

CUPS has a web-based
administration tool, avoiding the
need to hack at text files manually
to make the printer work.

NETWORK EVERYTHING SERVICES

LXF63.netwk 48LXF63.netwk 48 16/12/04 7:31:48 pm16/12/04 7:31:48 pm

www.linuxformat.co.uk LXF63 FEBRUARY 2005 49

>>

sitting on the CD or FTP server in

package format, ready to go.

The Samba configuration is more

complex because it has to provide all

of the authentication capabilities that

Windows uses. However, on a small

installation, this can all be done

through text files.

Within Samba, the smb.conf file

specifies all the shares we want to

provide on the network, as well as

defining general configuration options

for authentication and other

preferences. Both file and print sharing

are configured here, although for

printing, Samba will look upon the /etc/

printcap file to examine what local

printers are available under Linux.

A typical smb.conf file would

contain the following items, although

the smb.conf file from most

distributions will have presets for all

these options”

[global]
 socket options = TCP_
NODELAY
 remote announce =
10.2.4.255 10.2.3.255
 printcap name = /etc/
printcap
 load printers = yes
 username map = /etc/
smbusers

[homes]
 comment = Home
Directories
 browseable = no
 read only = no
 create mask = 0700
 directory mask = 0700
 public = no
 printable = no

With this configuration, we would

allow Unix users to come in and

access their home directories through

Samba, which is very similar to what’s

done with NFS. Rather than using the

standard /etc/passwd database, we can

maintain a separate Samba user

database in /etc/smbusers, which helps

to secure the Unix passwords.

smbusers can be created using

something as simple as htpasswd from

Apache, or by using the conversion

scripts that ship with the Samba

packages.

Printing using Samba is very

simple, because all we need to do is

define a ‘printers’ section in smb.conf

and Samba will share out whatever

printers it can find. When we access

these through Windows, the specific

Windows printer driver will be required

on the client, so no further

configuration is needed. The printers

section would look like this:

[printers]
 comment = All Printers
 browseable = no
 path = /tmp
 printable = yes
 public = no
 writable = no
 create mode = 0700

Samba is a very complex package

and provides capabilities well beyond

the needs of most users. It effectively

bridges the gap between Windows and

Linux systems and can even provide

some network capabilities that are

unavailable under Windows. However,

Microsoft and the Samba team are

currently playing a fairly humorous

game of trying to

see who owns the

NetBIOS protocol…

For many years, lpr was the standard
printing process used by Linux systems
and was installed by default by the
majority of distributions. While lprng is
faster, bigger and better than lpr, a
completely different print management
system has taken over the Unix print
world. CUPS provides all the capabilities
traditionally delivered via lpr yet with
lots of additional functionality, making it
far more useful on modern Linux boxes.

CUPS can be managed through the
web interface on http://localhost:631 or
by using one of the many GUI tools that

exist for desktops, such as KDE or
Gnome. None of the file hacking, or
creating shell scripts to pipe Postscript
through GhostScript, is necessary with
CUPS, because it will do everything we
need smoothly and magically. Well,
almost magically – we still have to tell it
which printer filter to use and set up the
various spools for printing. However, as
CUPS support the Internet Printing
Protocol (IPP), it will pretty much work
with any printer because most vendors
support IPP now that it’s in Windows.
IPP also allows the print spool to be

reviewed over a web browser, avoiding
the need for users to question where
their print job went, even though they
sent it to the printer half an hour ago.

Nearly every distribution installs with
CUPS as default, so the chances are that
if you have a printer under Linux, you’re
already using CUPS. However, anyone
who battled with lpd back in the old
days, and spent hours making their
printers work smoothly using scripts, will
be sickened by the ease with which
CUPS allows administrators to manage
the printing resources on their network.

CUPS
Printing with Linux is easy when using CUPS for spooling and processing

/etc/exports contains the directories we choose to permit NFS
clients to mount, as well as a number of more cryptic options.

FTP is used to distribute nearly all Open
Source software, including the Linux kernel.

The Samba project enables
Windows and Linux to share
storage and printers, without
any additional software being
installed on Windows systems.

smbclient is
comparable to an
FTP client.
However, we can
access Windows
shares from Linux
devices, enabling
both file transfers
and printing.

NETWORK EVERYTHING SERVICES

LXF63.netwk 49LXF63.netwk 49 16/12/04 7:33:34 pm16/12/04 7:33:34 pm

www.linuxformat.co.uk50 LXF63 FEBRUARY 2005

SSH: THE SECURE SHELL
Telnet is dead. For a more secure environment, you should be using SSH. It’s easier, too!

S
SH (Secure SHell) is a

replacement for the Telnet and

rsh systems commonly found

in older Unix installations. It

also goes further by providing

solid cryptographic protection

to all data, allows other protocols to be

tunnelled through its encrypted

channel, and it supports passwordless

logins too.

There are two parts to the SSH

system: a client program, also known

as SSH, and a server, sshd, to which

the client connects, normally on port

22. There are also two versions of the

protocol. Version 1 is rather less CPU-

intensive than version 2, but cannot be

considered secure in some cases, so

don’t use it unless you have a very old

machine that can’t handle version 2.

Setting up keys
One of the biggest advantages of SSH

is key-based login. This uses public-

key cryptography to allow the user to

log in to remote machines with a key

(stored on the local machine, or even

on an add-on pen drive or key fob)

rather than a password. The key is kept

encrypted; the user enters the

passphrase once, when he logs in, and

all other logins can then be done

automatically. As always with public-

key cryptography, you generate a pair

of keys – the secret key, which you

keep to yourself, and the public key,

which you distribute to the machines

you want to log into.

Generate a keypair on your

desktop machine with this code:

$ ssh-keygen -t dsa -C your.
email@ddress

Enter a passphrase for your key so

that it can’t be used by anyone else

with access to the machine. For

advanced use, you can set up

a key without a password.

This is best kept to machines

that are on secure networks,

although it can also be useful

for automatic file transfers.

This procedure puts the secret

key in ~/.ssh/id_dsa and the public key

in ~/.ssh/id_dsa.pub. Now see if you

have an ssh-agent running:

$ echo $SSH_AGENT_PID
Most window managers will run it

automatically if it’s installed. If not, start

one up with this code:

$ eval $(ssh-agent)
Now tell the agent about your key:

$ ssh-add
and enter your passphrase. You’ll need

to do this each time you log in. If

you’re using X, try adding:

SSH_ASKPASS=ssh-askpass ssh-add
to your .xsession file to get prompted

for the key’s passphrase each time you

log in. You may need to install the

ssh-askpass program as well.

Now for each server you want to

log in to, create the directory ~/.ssh

(for your username on that server)

and copy the file ~/.ssh/id_dsa.pub into

it as ~/.ssh/authorized_keys . Once

that’s done, you should be able simply

to enter the following line:

ssh username@remote-box
and all the authentication will be

handled automatically.

If you started the ssh-agent by

hand, kill it with ssh-agent -k when

you log out (for example, in the

~/.bash_logout script).

Configuration
Most of the configuration of an SSH

client happens on the command line –

see the SSH man page for a full list of

options, but bear in mind that the

defaults will work almost all the time.

One exception, though, is the choice

of compression. This adds latency –

even on a fast machine, it takes more

CPU cycles – but saves bandwidth. It’s

particularly useful if you’re transferring

easily-compressed data, such as log

files. You should use the -C flag to the

SSH command.

SSH host configuration is done in

the sshd_config file (typically in

/etc/ssh/). The installed default is

usually reasonable, though you may

want to set PermitRootLogin according

to your root access policy, and possibly

turn on X11Forwarding.

You can also add special options to

the authorized_keys file to allow some

keys only to run specific commands.

This isn’t as flexible as might be

Many server operators have noticed
a rise in SSH brute-force password
cracking attempts in recent months.
A password is intrinsically less secure
in the face of brute-force searching
than a key, since it’s usually up to 16
typeable characters (about 53 bits), as
opposed to the 1024 bits or more of
an RSA or DSA key. To tell the server
not to allow password logins and only
accept keyed logins for root, set the
rather counter-intuitive:
PermitRootLogin without-password

in the sshd_config file. To turn it off for
every account, set:
PasswordAuthentication no

in the same file.

LOCKING OUT
PASSWORDS
Block out password crackers
with these simple changes

Key generation in action.

The sshd_config file: it looks more complicated than it is.

NETWORK EVERYTHING SSH

LXF63.netwk 50LXF63.netwk 50 16/12/04 7:35:21 pm16/12/04 7:35:21 pm

www.linuxformat.co.uk LXF63 FEBRUARY 2005 51

Lightning

Vision

22

80

Untrusted
internet

22

10080

>>

wished, but it’s handy for automated

system maintenance setups. See the

sshd man page for more details.

Port forwarding
One of the most powerful features of

SSH, and also one of the most

misunderstood, is its port-forwarding

(also known as ‘tunnelling’) ability. This

enables you to push any TCP

connection (not UDP) through the

encrypted SSH connection to a remote

machine. There are two different

modes in which this can work:

(1) Local port-forwarding. This

forwards a local port to a specific

machine and port on the remote end.

For example, say you pick up your mail

by POP3 (from a box on which you

also have an SSH login) but would like

to encrypt the connection. Easy: just

forward your port 10110 (or any other

port you’re not using) to port 110 on

the remote machine, then point your

POP3 client at localhost, port 10110.

ssh -L 10110:localhost:110
username@remote-box

The first part of the argument to

the -L parameter is the local port. The

second is the machine name (in the

context in which the remote machine

will see it – so you can forward to

machines inside a private LAN, as long

as you can get access to one machine

to SSH into in the first place). The third

is the port on that remote machine.

As a more complex example, you

have an account on Vision, which is

inside a restrictive firewall but allows

SSH connections in. You want to

access the web server on

Lightning – which is also

inside the firewall and can

be seen by Vision, but has

no outside access – and

to let other people on your

LAN see it, too. Just use:

ssh -g -L 10080:
lightning:80
username@vision

People pointing their

web browsers at port

10080 of your machine

will get transparent access

to Lightning’s web server.

Note that SSH will run

in the foreground as usual,

and give you a command

prompt. Closing this will close all the

tunnels as well.

(2) Remote port-forwarding. This is

essentially the opposite of local port-

forwarding – you use it to expose a

port on a local machine to the outside

world. This is rarely useful, but can be

handy for low-cost and low-effort VPN

setups, where you want to expose a

mail server or something similar to a

group of machines on the other side

of an untrusted network. Let’s say the

SMTP server is Widget and the host at

the other end is Phoenix. Use:

ssh -R 10025:widget:25
username@phoenix

Users in the network with Phoenix

then use port 10025 as their SMTP

host. If you log in as root, you can even

make this port 25.

If you’re using SSH for remote
administration, there are two ways to
get root access: either log in directly as
root, or log in as a user and then use su
or sudo to get root privileges.

Both methods have their advantages.
Direct root login makes it easier to
automate tasks with scripts and removes
the need to set up accounts for every
administrator on every server in the

network. Using su leaves a clearer audit
trail (though it is of little help against a
malicious insider), and encourages
administrators to use root privileges
only when necessary.

Pick the solution that seems best for
your network. If you do want to disable
root logins completely, set
PermitRootLogin no

in the sshd_config file.

ROOT OR USER?
You need root access. There are two ways to get it.

This is really a special case of local port-
forwarding, but since the internals of X
are somewhat complex to set up, it has
its own configuration. The server’s
sshd_config needs to have
X11Forwarding yes
X11DisplayOffset 10

(or some other number greater than the
number of concurrent conventional X
servers; 10 is almost always sufficient).
Then, on the client, run:
ssh -X username@remote-box

You should then be able to run
graphical programs on the remote

machine, and have them appearing on
your X desktop just as if you’d run them
locally. Note that this isn’t as bandwidth-
efficient as a protocol such as VNC,
which was explicitly designed for
congested links, but it can be very useful
across a LAN. It’s also possible to use it
securely over the Internet if you’re
prepared to put up with some delays.

Note that since X was designed before
the concept of malicious code became
popular, you shouldn’t use X-forwarding,
other than to a box you trust. Suitable
software on the remote machine could

request any information available to your
local X-server. This is just as much a risk
as with xauth.

One specialised use of this is to run X
programs as root on your own machine.
This is mainly for simplicity. It’s easier to
ssh -X root@localhost

particularly if you’ve set up a key to
allow this to happen automatically, than
to su to root and then run
xauth -f /home/user/.Xauthority extract
- :0.0 |xauth merge -

export DISPLAY=:0.0

X-FORWARDING
Run graphical programs on remote machines from the convenience of your desktop

Local port forwarding.

Remote port forwarding.

Widget

Origin host

Untrusted
internet25

10025

22

Phoenix

NETWORK EVERYTHING SSH

LXF63.netwk 51LXF63.netwk 51 16/12/04 7:37:12 pm16/12/04 7:37:12 pm

www.linuxformat.co.uk52 LXF63 FEBRUARY 2005

REMOTE X APPLICATIONS
Sometimes there’s no other way and you just have to run
desktop applications from a remote client. Enter X…

T
he X Windowing System

(commonly known as X)

appears to offer roughly the

same functionality as other

graphical platforms, such as

Microsoft’s Windows. It displays

windows for a start, and you can move

a cursor around the screen. What may

not be immediately obvious is that X is

quite a different approach from simply

rendering graphics on a display, and

the visual frontend hides a wealth of

functionality just under the surface.

From the start, X was developed to

be a platform-independent windowing

system with the intent of making

computing resources easily accessible

across a network of students. The

implementation of X that most Linux

users are familiar with is XFree86,

although recently most distributions

have switched to using X.org X11

Server, which is a fork of XFree86

taken before changes to the licence

made it incompatible with most GPL-

adherent distributions.

It’s only a small conceptual step

from platform independence to

network transparency, and that’s

exactly what distinguishes X from

other graphical platforms. X is built

around a client-server architecture,

which may seem odd at first, but

makes more sense when you make a

distinction between the hardware and

the software that drives it. The X server

is responsible for managing the display

hardware and input devices, while the

graphical rendering and interaction is

handled by what are called ‘X clients’.

With this simple abstraction, it’s

easy to see how X clients can connect

to an X server across a network,

although the actual mechanics of the

process aren’t quite so simple.

Master and servant
The client communicates with the

server through a protocol called X

wire. This is a two-way, error-free byte

stream that can be implemented in

many different ways. With XFree86

and X.org the X wire protocol can be

found in the shared xlib library, which

has the ability to communicate across

TCP/IP among other protocols.

The protocol is therefore device-

independent and allows the client to

control basic geometric and textual

rendering without consideration for the

hardware involved or the distance

between the client and the server. This

means that a local connection would

simply take advantage of using Unix

sockets, while you could just as easily

use TCP/IP for remote access.

One of the downsides with this

approach to network transparency is

its inherent bandwidth requirements.

The server is responsible for updating

all of the graphics that appear within a

window. That means that if a window is

obscured by another, the server needs

to continually update the display

(through the network), which, on

anything other than a local LAN, will

become extremely unresponsive.

For example, moving a window

over a remote xclock running on a

local display generates a continual

stream of information as the local

client communicates with the remote

server, as well as peaks of traffic when

parts of the window are occluded.

Hopefully, with the recent addition of

XDamage to X.org’s X11 6.8 release,

this inefficiency will become redundant.

The first thing to bear in mind with

remote X applications is security. It’s

too easy to forget that all your

keyboard and mouse movements are

being sent over what is basically an

insecure protocol. It’s therefore

inadvisable to use X remotely without

third-party security unless you are

working on a trusted network. There

are, however, two security procedures

built into the remote X system that can

make it more difficult for any malicious

user to break into a remote session.

Simple security
The simplest method of security is

configured through the xhost

command, which allows you to grant

and deny access on a host name basis

only. For example, on the local

machine you could use:

$ xhost +remote_client
This will allow connections from the

remote_client host.

$ xhost -remote_client
This can be used to deny access to

the remote_client, something that can

Resizing a remote xclock generates
thousands of packets a second.

NETWORK EVERYTHING REMOTE X APPLICATIONS

LXF63.netwk 52LXF63.netwk 52 16/12/04 7:39:05 pm16/12/04 7:39:05 pm

www.linuxformat.co.uk LXF63 FEBRUARY 2005 53

>>

be safely done after you’ve opened

your remote display to narrow the

window of opportunity. Removing the

host name entirely will either allow all

connections or deny them, depending

on whether you use a + or a -.

This may not seem like the most

secure method of protecting your

system from unauthorised access, and

it’s not. Not only does it allow any user

on the desination_client domain to

make a connection, but it also opens

the door wide open to domain name

spoofing attempts. The only

advantages to using xhost are that it’s

easy to configure and widely available.

As the problems associated with

xhost became all too apparent, it was

obvious that a better method was

needed, based around individual

access. As you’d normally only need to

grant access for yourself rather than

all users of a system, this new system

was built on personal authentication.

Authentication
Xauth is built around a system of

sharing a secret passkey called an

authorisation record. This is nowhere

near as secure as a public and private

key system, but it’s still a lot more

secure than xhost. The authorisation

record is called MIT-MAGIC-COOKIE-1

reflecting the original developers from

the MIT/X Consortium.

The first thing you need to do to

get xauth to work is set the

environment variable DISPLAY on the

remote host. This needs to reflect the

destination display you want the

remote X applications to appear on.

For the first display on the host

machine, use bash and enter:

$ export DISPLAY=remote_host:0
Other shells treat environmental

variables differently, of course.

Authorisation records, or cookies, are

randomly generated by xdm (or

equivalent) when the X server is

started, and reside in the .Xauthority

file. You can list the cookies currently

stored by using xauth list:

$ xauth list
remote_host/unix:0 MIT-MAGIC-
COOKIE-1 b077fade7e4d63fe08d8
0bc09ec1f5e0
local_client/unix:0 MIT-MAGIC-
COOKIE-1 40c2cb38b12e54e06d4
721bb488609c2

The first column of the output lists

the display names as they would

appear in the DISPLAY environment

variable; this is composed of the inet

domain followed by the UNIX domain.

The inet part is the one needed when

setting the DISPLAY variable. The

second column is the type of

authentication scheme that needs to

be used, and the third column is the

‘secret’ cookie itself.

This cookie is required on the

remote_host to enable a two-way

connection and also to prohibit

programs that aren’t directly controlled

by you getting access to your display. If

for some reason xdm didn’t create the

cookie, it can be generated using the

following command:

$ mcookie|sed -e ‘s/^/add :0 .
/’|xauth -q
xauth: creating new authority file /
home/user/.Xauthority

The next stage is to transfer the

contents of the cookie to the

destination host. You could copy the

key to the remote machine using

something like rsh, or enter the key

directly at the command prompt. The

following command adds the key from

the local_client, as used earlier:

$ xauth add local_client:0 MIT-
MAGIC-COOKIE-1 40c2cb38b12e5
4e06d4721bb488609c2

If all has gone well, you should now

be able to execute X applications on

the remote host that automatically

authenticate themselves and open on

your local display. Despite being

significantly more secure than xhost,

xauth still has a couple of obvious

vulnerabilities. The authorisation

records are transmitted over the

network without encryption, making it

theoretically possible for the cookies to

be intercepted and used to make

unauthorized connection. The cookie

can also be ‘guessed’ if the key is

created using a poor pseudo-random

number generator.

It’s also possible to run an entire

remote desktop on your local machine.

This is a good way of making the most

out of older hardware that doesn’t

perhaps have the power to run things

such as KDE or Mozilla directly. The

remote desktop is configured through

the display manager, which is the

graphical interface that asks for a

username and password when the

machine boots. Traditionally, this

program was xdm, but on recent

systems it’s been replaced with either

kdm for KDE or gdm for Gnome.

Xdm manages the connections

through XDMCP, which is the display

manager control protocol. With xdm

being responsible for generating the

same authorization keys that xauth

uses, you get the same high level of

security. The configuration files for xdm

are usually located in /etc/X11/xdm

with corresponding locations for kdm

and gdm. In terms of configuration, a

couple of files need to be changed to

allow remote access. The request port

needs to be commented out in xdm-

config, and the remote system needs

to be added to Xaccess to enable

remote XDMCP queries.

The most obvious candidate for

strengthening remote X security is

SSH, which can tunnel the entire

remote X protocol through its own

secure encryption. On commencing a

connection with SSH, the remote sshd

server automatically generates the

environment variable DISPLAY as well

as configuring the xauth authorisation

cookies to allow access to the SSH

tunnel. Once created, the DISPLAY

variable on the remote machine

should read something like

DISPLAY=localhost:10.0, which

represents a safe value placed after

the usual array of virtual consoles. As

this is done automatically, interfering

with the preconfigured settings can

compromise security.

If you’re using entire X sessions

managed with xdm, you can’t easily

configure the same level of security

that you get with SSH and remote X

application. This is because XDMCP is

using UDP port 117 as opposed to X

using TCP port 6000, and UDP port

forwarding is not currently supported

with either SSH1 or SSH2.

There are a couple of additions to

using SSH that can improve efficiency.

Choosing a low-overhead cipher

reduces the CPU usage without adding

too much risk. Secondly, using SSH’s

built-in compression can reduce the

significant demands that are placed on

the bandwidth from the resource-

hungry X protocol.

In the end, using a bandwidth-

hungry protocol may not seem like

the best way of running remote

applications. This is especially true

when you can use other protocols,

such as VNC, that are especially

designed for use across a network with

constrained bandwidth. However, it can

be effective as a quick fix, especially

across a trusted network, and it

certainly works more transparently

than running a whole remote desktop

on a local machine.

Give your friends access to a
remote desktop.

NETWORK EVERYTHING REMOTE X APPLICATIONS

LXF63.netwk 53LXF63.netwk 53 16/12/04 7:40:55 pm16/12/04 7:40:55 pm

www.linuxformat.co.uk54 LXF63 FEBRUARY 2005

SECURITY
If you really are going to network everything, you need to secure it all too!

B
ecause Linux developed at

around the same time as the

Internet became popular, the

kernel supports a wide range

of infrastructure capabilities.

Since the 2.0 series of

kernels, Linux has supported IP packet

filtering, more commonly known as a

firewall, without the need for third-

party tools or software. This makes

Linux a great alternative to an

expensive, and often restrictive,

commercial firewall product from Cisco

or CheckPoint, and in true Linux style,

there are numerous patches and tools

available for all kinds of options. Of

course, crazy patches often come with

stability warnings, and changes not in

the main kernel tree probably aren’t in

there for a good reason.

Building a Linux firewall from

scratch is extremely simple, particularly

for anyone who is comfortable with

the command line and using console-

based text editors. A router or firewall

is no place for X, so manually changing

the configuration is the only way to go

in this world. Most distributions have

basic configuration tools that work

from a terminal, although many of

the modern and friendly distros lack

a nice way to change things from the

command line.

Picking a distribution
Debian is a great distribution for a

firewall, because doing a basic install

uses less than 500MB of disk space,

and it’s extremely simple to limit the

software installed to the bare minimum

for security purposes. The most recent

installer for Debian supports every NIC

and storage controller you can shake a

stick at, as well as being able to do a

fresh install on to a software RAID-1

array. Software RAID, if a hardware

controller is unavailable or outside of

the budget, is a must on a firewall,

because no one wants to spend hours

rebuilding a box from scratch if a disk

fails. With a pair of cheap disks, a lot

of time can be saved using Software

RAID to maintain a mirrored copy of

the firewall installation on both disks.

Firewall basics
In both 2.4 and 2.6, firewalling is

provided by the iptables tool, which

hooks into the networking stack on the

kernel using Netfilter. Often, the terms

iptables and Netfilter are used

interchangeably, but they each have a

specific use and function within the

Linux kernel. Netfilter is the system in

the kernel that allows packet filtering

kernel modules to hook into the layers

of the stack without having to modify

massive amounts of kernel code each

time. Netfilter modules exist for both

ipfwadm and ipchains, the firewalling

systems used on 2.0 and 2.2 kernels,

as well as for iptables.

iptables is a combination of kernel

modules, to provide the filtering and

NAT capabilities, as well as user-space

tools for configuration and

management. Nearly every distribution

comes complete with iptables support,

so there is no need to recompile the

kernel manually. However, there are

lots of patches for iptables using the

‘patch-o-matic-ng’ package found at

www.iptables.org, which some may

want to compile into their kernel. In

most cases these are unnecessary, but

for more complex configurations with a

wide range of applications and

services, the additional modules often

come in very useful.

As iptables is a user-space tool, it’s

provided as a package by distributions,

and again, most of the time this is

installed as part of a basic distribution

install. We can check iptables is

available and everything is working by

running iptables –nL from the

command line, which will list all of the

rules presently loaded into the filtering

part of our firewall:

iptables -nL
Chain INPUT (policy ACCEPT)
target prot opt source
destination
Chain FORWARD (policy ACCEPT)
target prot opt source
destination
Chain OUTPUT (policy ACCEPT)
target prot opt source
destination

As much as we may long for a perfect
world, free from buffer overflows and
other careless coding techniques,
running services that represent a
potential security risk against a network
are a part of life. To be a completely
self-sufficient environment, without
depending upon an outside ISP for
services, more often than not requires
the use of a service that can open the
network up to an attack. However, these
services can often be run on a network
within a ‘jail’, so if they are exploited or
compromised, there is little anyone can
actually do with the system.

Jailing processes in Linux is carried
out with a tool called chroot’ which
changes the root filesystem to a sub-

directory of our real server. Essentially,
this means we have two separate Linux
installations – one being the complete
distribution with everything we need
and the other being the bare minimum
to run a binary, such as ‘named’ from
BIND. The second root directory
generally only contains the required
configuration files and libraries, and
even in the latter case, it’s usually easier
to simply statically compile a binary so it
doesn’t require any separate libraries to
be loaded.

Should anyone break into the system
through the chrooted service, all they
can do is run whatever we provide
within the chroot filesystem, which is
generally next to nothing.

CHROOT JAILS
When you have no choice but to run insecure services.

Dumping packets from a network interface is
not particularly useful unless you’re using
promiscuous mode.

The ‘filter’ table within iptables is split into a
number of separate chains, which enables
comprehensive configuration.

iptables has a wide range of options, and all
but the latest matches and targets are covered
in the manual pages.

NETWORK EVERYTHING SECURITY

LXF63.netwk 54LXF63.netwk 54 16/12/04 7:42:44 pm16/12/04 7:42:44 pm

www.linuxformat.co.uk LXF63 FEBRUARY 2005 55

>>

As default, the firewall is empty and

will allow packets to flow in, out and

through the firewall. Within the kernel,

there are three filtering processes,

each of which impacts packets at a

specific part of the routing process.

For packets that are destined for

an IP address bound to the local

system – for example network services

such as SSH or Apache – the INPUT

chain is used to match and filter

packets. Packets that originated on the

local system are filtered in OUTPUT,

and anything that is being routed in

one interface and out through another

is managed through the FORWARD

chain. There’s also a ‘nat’ table

containing additional rule lists, where

packets are modified rather than

filtered, most commonly used to

provide IP Masquerading capabilities

where multiple hosts are located

behind a single public IP address.

A typical firewall configuration that

limits inbound packets and provides

NAT capabilities would look something

similar to the following:

iptables –A INPUT -i lo –j ACCEPT
iptables –A INPUT -i eth1 –j
ACCEPT
iptables –A INPUT –m state –state
RELATED,ESTABLISHED –j ACCEPT
iptables –A INPUT –j DROP
iptables –t nat –A POSTROUTING
–s 192.168.1.0/24 –o eth0 –j
MASQUERADE

Each of the above commands adds

a rule to iptables, which immediately

becomes active in the kernel. We

permit traffic from the loopback

interface and eth1, our internal LAN,

on to the firewall for maintenance, as

well as allowing any outbound

connections from the network to

return into the firewall. This also takes

care of nasty protocols such as ftp,

which have multiple connections going

in either direction, as we can track

them using the ‘RELATED’ state match.

Anything else entering the firewall is

dropped to the ground, although it’s

often useful to log these packets using

a ‘LOG’ target for analysis.

We also allow any system on our

internal network, 192.168.1.0, to access

the Internet through the firewall and

use the firewall’s public IP address. This

is useful for situations where an ISP

only permits one host to be connected

to the Internet, or where IP addresses

are in short supply.

Even with a firewall, there are often

cases where potentially vulnerable

network services have to be accessible

to the outside world. There are always

network services that have a poor

reputation for security, and until the

last few years the popular and widely

deployed DNS server BIND was one of

the worst processes to have running

on a host. Unfortunately, if we’re

running a DNS server, we can’t simply

firewall it, so managing the risk and

ensuring we’re up to date with package

changes and vulnerabilities is an

important start.

Managing risk
Tools such as nmap and nessus give us

a good overview of what we’re running

and what may cause problems,

particularly as the latter contains a

database of known vulnerabilities and

exploits for services. Running each of

these against a network quickly alerts

administrators to packages that may

expose the internal network to security

risks, as well as providing a list of

everything we’re actually running that

is network accessible.

Firewall configuration flaws aren’t

completely unheard of, and opening

up port 8080 rather than 80, if 8080

is running a proxy server, quickly

causes problems on the network and

allows a security hole to be opened.

You can also make use of the

popular package Snort to manage

traffic on the network by analysing the

data structure of packets to look for

exploits and attacks against vulnerable

services. Snort can be run on the

same device to monitor traffic inbound

from the Internet. There is always a

very fine line between what is open

and what is blocked on a firewall, and

Snort can be used to plug many of the

holes in the firewall model.

As standard, Snort

simply reports on

packets and connections

associated with attacks,

but modified versions of

Snort, such as snort-

inline, will automatically

add firewall rules to

block hosts that attack

the network from being

able to hit any more

ports. While this may

seem like a good idea at

first, it does take some

tuning to avoid someone

who is simply viewing a

website, or trying to

remember which port

the mail server runs on,

from being filtered on

the firewall and having

to be manually removed.

For wireless LANs,

the airsnort application

provides similar

capabilities, but it

includes support for

guessing the key used

by encrypted packets by making use

of the flaws in WEP, which can often

prove very useful.

Managing network security using

Linux is no easy feat, and there are

numerous distributions and packages

available, including Smoothwall and

IPCop, which provide a foolproof

firewall installation for those who are

not comfortable managing the kernel

tools themselves. However, building a

firewall and really understanding how

the routing and packet filtering is

functioning can provide great insight

into where security holes lie within the

infrastructure, as well as making it

easier to track down any attacker.

The Linux kernel is reasonably smart
when it comes to handling IP packets
and Ethernet frames, having kernel-level
configurations to prevent junk or
misdirected packets from entering the
system. Within the IP layer, this is known
as ‘Return Path filtering’, or simply ‘anti-
spoofing’, where the kernel will drop
packets coming in an interface that,
according to the routing table, the
source host does not live on. This can be
turned on and off through /proc/sys/net/
ipv4/conf/<interface>/rp_filter. Unless
the network is handling complex
asymmetric routes, leave it turned on.

Within the Ethernet layer, the kernel
will drop everything not destined for our
MAC address, other than broadcast
traffic, so if we are connected to other
hosts via a hub, the interface will never
see packets for these other hosts.

While this makes perfect sense, for
traffic sniffers and IDS devices,
monitoring packets for other hosts is a
basic function, so the kernel needs to
know we want to see everything on the
internet. We can tell the interface we
want to see everything on the network
by enabling promiscuous mode, and
everything we monitor on the interface

will be actually what touches our wire.
Turning on promiscuous mode is simply
done using ifconfig ethX promisc,
although many tools, such as tcpdump,
will turn it on and off automatically for
us when needed.

Using promiscuous mode is vital when
you’re using a span or a tap from a
network device or uplink, because the
interface won’t have an IP address, and
so it will never actually send out any
traffic. With promiscuous mode turned
off in this environment, other than
broadcast traffic, we’re not going to see
anything exciting.

PROMISCUOUS MODE ETHERNET
See everything that’s happening on your network

Using NAT enables an internal network to be
hidden behind our firewall, avoiding the need
for large, public IP allocations.

The nmap tool, which is bundled with many
distributions, is a great method for reviewing
the open ports on a system.

NETWORK EVERYTHING SECURITY

LXF63.netwk 55LXF63.netwk 55 16/12/04 7:44:33 pm16/12/04 7:44:33 pm

www.linuxformat.co.uk56 LXF63 FEBRUARY 2005

REMOTE DESKTOPS
With remote X Terminals and desktop applications, you can use your local
machine from anywhere. Here’s how you can build an infinite desktop…

C
onnecting to a remote system

through the shell is one of the

many aspects of Linux that

makes it so powerful. Anything

that can be achieved locally,

from reading email to posting

news articles, can also be done from a

remote shell connection using the bare

minimum of bandwidth. However,

despite all this power, it’s sometimes

just easier to use a GUI. While the X

Windows protocol is obviously tailored

for use over a network, it’s particularly

bandwidth hungry and inefficient, and

also requires a version of X to be

installed at both ends of the

connection. There are several

alternatives, all designed to bring

remote applications to a local machine,

either by encapsulating the X protocol

or by implementing their own.

The most widely known remote

desktop protocol is Virtual Network

Computing, better known as VNC. The

origins of the protocol can be traced

back to a piece of hardware that

operated as a very thin client, called a

Videotile. VNC was originally intended

to be a software version of this

hardware, which is where the Virtual

comes from in its name. VNC is a very

simple protocol based around a client-

server model and, in basic terms, it

does nothing more than transfer a

rectangle of pixels from the server’s

framebuffer to the client’s display,

simply transmitting the changes from

one moment to another. This would

take up a large amount of bandwidth,

almost akin to streaming a movie, so

the transmitted data is compressed

using a variety of methods.

Remote persistence
One of the most useful aspects of

VNC is that no state is stored at the

viewer. The viewer really is acting solely

as the display – if it crashes or you

quit, the session is left exactly as you

left it running on the X server of the

remote machine. This means that

when you next connect to the server,

the display is the same as if you’d

simply turned the screen off, even

down to the position of the cursor. This

works well when you need a desktop

to be available from a variety of

locations, either on various machines

on the local LAN, or from the other

side of the world across the Internet.

Another advantage to the VNC

protocol is that because it’s based

around simply transmitting what are

basically screenshots, it isn’t reliant on

any particular graphical environment.

That means you could just as easily

have a remote Linux desktop on a

Windows machine as you could a

Windows desktop on a Linux machine.

The only difference is that thanks to X

Windows, you can launch as many

totally separate X session for VNC,

whereas with Microsoft Windows you

need to share the current root

desktop. The VNC session can also be

shared with other users, either as an

interactive session, or as view-only.

As the protocol is so simple, several

clients have made their way onto a

variety of platforms, from Windows CE

to embedded Java running inside a

web browser. VNC has also become

the default remote desktop protocol

for KDE and, more recently, for the

latest 2.8 release of Gnome.

While the original VNC team can

still be found developing RealVNC,

providing both a commercial version

and a free version, being an Open

Source project has meant that there

has been several forks in the source

code that aim to address some of

VNC’s perceived problems. Of these,

the most popular is called TightVNC, a

version of VNC that successfully

manages to compress the protocol

more effectively, and can even

compress using JPEG, making it more

usable over restricted connections.

Another interesting VNC fork is

called gemsvnc. Instead of starting a

new X Windows session, it shares the

current framebuffer in the same way

that the VNC server for Microsoft

Windows does. This makes it easier to

manage a single session, and also

allows for better remote control.

Security
There are three main security issues

with a standard VNC installation. Firstly,

while the passwords aren’t transmitted

as Plain Text, it’s still possible to

intercept the encrypted version and

attempt a brute force attack on the

server. Strong passwords are the best

defence for this attack, with at least

eight characters recommended.

However, perhaps the biggest

problem with VNC is that, by default,

all network traffic between the client

and the server is also unencrypted,

meaning it has the potential to be

stored and reassembled by a third

party. This can be solved using the

ever-reliable SSH, along with port-

forwarding. To funnel the connection

from the remote server to the local

client through SSH, use:

$ ssh -C -f -L 5901:localhost:5901
remotehost vncviewer :1

This forks an SSH session into the

background (asking for a password,

unless the appropriate keys have been

shared), and tunnels the VNC session

from the external 5901 VNC port,

through SSH (on port 22) and locally

re-attached to port 5901, which is why

vncviewer :1 works by connecting to

the localhost.

A modern development that

competes directly with VNC is called

NX, developed by NoMachine and

recently brought closer to the world of

Open Source with the generous GPL

release of its server component. NX

attempts to make up for the shortfalls

of VNC, and it does both very well.Recursive desktops using VNC: you are feeling veeeeery sleepy…

NETWORK EVERYTHING REMOTE DESKTOPS

LXF63.netwk 56LXF63.netwk 56 16/12/04 7:46:20 pm16/12/04 7:46:20 pm

www.linuxformat.co.uk LXF63 FEBRUARY 2005 57

>>

The best thing about NX is that it

builds on the power of X Windows by

using the same X protocol, but

addressing X’s shortfalls through a

mixture of differential compression and

a proxy X server. The compression is

handled by the NX proxy, which is

responsible for servicing the client and

server requests, and reducing duplicate

and redundant data before it needs to

be transmitted across a network.

Running as a client, the proxy encodes

X client requests and decodes the

corresponding replies; as a server it

does the exact opposite. NX can also

translate and tunnel other protocols,

such as RDP and VNC.

Screen updates are usually

translated into X protocol requests, but

differential compression means that it

doesn’t arbitrarily compress whole

sections of the display, as with VNC,

but can instead stack similar requests

(by comparing MD5 checksums),

drastically reducing their number.

NoMachine claims that after years of

tuning, its proxy cache can handle

60% to 80% of requests, and with

common office tasks such as servicing

fonts and images, cache hits can be as

high as 100%.

Other improvements to protocol

efficiency are made with image

compression and streaming. Image

compression is configured by the NX

agent, and can use JPEG, PNG, RDP,

TIGHT or ZLIB, with the clever part

being the intelligent caching of the

image. The local and remote caches

only update the image data when

there’s no other X protocol messages

that need encoding, in an attempt to

keep the system as responsive as

possible. Images of a certain size are

stored in a persistent cache so that

graphical information that’s common

to each session, such as backdrops,

can load off the local cache. NX has a

limited amount of control over the

bandwidth that can help to avert long

delays in user interaction by manually

reducing the TCP window

when bandwidth

has

become saturated, as often happens

with a screensaver, for example.

Despite there being no official

connection with KDE, the KDE team

have taken this new technology to its

heart. Not only are there ambitious

plans to integrate NX into the heart of

KDE, potentially offering an NX KPart,

‘nx://’ kio-slave and KWallet storage,

but there are also plans to use an NX

server at the core of the development

cycle. Rather than each developer

having to laboriously rebuild the

current CVS version every night, a

single server could be kept continually

up-to-date, providing desktop access

to over 200 sessions.

Generation NX
With the latest major release (1.4) of

NX, NoMachine introduced the much

requested ‘persistent sessions’ feature,

which enables a user to suspend a

session when closing the NX client and

resume from the same point when the

client reconnects. This is similar to

VNC, but while a VNC session

continues as an independent X session

on the server, the NX session is

hibernated, meaning that any

programs running on NX won’t be able

to execute time-dependant code while

the session is hibernated. Security is

based around SSH tunnelling and

encryption, using private and shared

keys to authenticate the client with the

server, making NX as secure as VNC

when tunnelled through SSH.

Another important aspect to a

remote desktop is file sharing and

printing, which is conveniently handled

by using shared folders and printers in

Samba. While it would be easy

enough to configure this manually,

having it easily set-up and piped

through a secure channel is a

great advantage.

While all this sounds

great on paper, it’s

performance in the field

that counts, and that’s where NX

shines. Using KDE over an ordinary

512Kbps connection, the interface is

almost as responsive as sitting at the

actual machine. Hopefully it won’t

be too long until there’s

an open NX client

and server,

making this

powerful

remote system

more accessible

to everyone.

The Linux Terminal Server Project (LTSP)
is an Open Source solution for running
thin terminals connected to a Linux
server. The diskless thin clients can be
machines that were getting old six years
ago, such as a Pentium 133 with 32MB
RAM, PCI video, a decent monitor and a
network card. Obviously, on its own, this
wouldn’t be capable of doing much, but
with the help of LTSP and a properly
configured server, the clients can run
resource hogs. The actual running is
done on the server. Depending on
system load, the clients should be as
responsive as if you were running the
apps while sat at the server’s screen.

Other advantages to LTSP include
lower running costs because there are
far fewer moving parts in diskless
clients, and maintenance is much easier
because all software is installed and
configured from the central server.

One of the most successful areas for
LTSP deployment has been in schools,
where plenty of low-cost or donated
workstations can be run, all connected
to a single server. Not only does this
have the advantage of introducing
students to open standards, but it also
means that they can run the same
software at home, without any of the
licence or cost issues.

LINUX TERMINAL SERVER PROJECT
The king of Linux thin clients

An NX client running inside a VNC session.

NETWORK EVERYTHING REMOTE DESKTOPS

LXF63.netwk 57LXF63.netwk 57 16/12/04 7:48:06 pm16/12/04 7:48:06 pm

www.linuxformat.co.uk58 LXF63 FEBRUARY 2005

DISTRIBUTED COMPILATION
WITH DISTCC
Speed up project development by turbo-charging your build phase. We show you how…

C
ompiling a typical C or C++

program is a task that

generally exhibits some

parallelism: any non-trivial

program will consist of multiple

source code files, most of

which could be independently

compiled to object code. As such, this

is a job ripe for exploiting the power of

distributed, parallel computing.

There’s a well-proven tool for

distributed compilation: distcc (see

http://distcc.samba.org). It’s simple,

effective and already shipped with

many popular distros. distcc is

employed by many high-profile

projects, including Samba, to speed up

compilation, and was even used to

produce id software’s Doom3.

How does it work?
The distcc package consists of a

daemon, distcc, and a compiler-front-

end, called distcc. You install and run

the daemon on each machine that you

wish to take part in your compile farm.

It can be launched from a system’s

start-up scripts, or you can use the

Internet superserver to run it on

demand. Then all you have to do to

distribute compile jobs to the nodes

running distcc is call your compiler

with the distcc wrapper. For instance:

distcc gcc some_code.c -o some_
code.o

The magic is performed by distcc.

What happens is that it recognises that

this is a command to compile a source

file to object code (only compilation

can be performed remotely; linking is

done locally). So, first it calls gcc

locally to pre-process the source file,

which is ‘some_code.c’ here. Then it

looks for a free ‘slot’ in the machines

available to it to do the compilation.

If a slot is available locally, the

pre-processed file is compiled to

object code normally. If the slot is

available remotely, the pre-processed

code is sent to that machine, gcc

invoked remotely (via distccd) to create

the object code, and then the object

code passed back, where distcc writes

it to disk. The end result is the same,

wherever the actual compilation is

done. Here we get an object file called

‘some_code.o’.

Actually, there’s more to it than this.

First note that each node in the

compile farm must have the same

version of gcc available under the

same executable name. Typically,

/usr/bin/gcc will be a symlink to your

default compiler, but this default may

be different on different machines. The

solution is to be more explicit when

naming the compiler to use. Modern

versions of GCC will be available with a

binary name, which unequivocally

identifies the target and version, such

as ‘i386-linux-gcc-3.4’. If this doesn’t

exist, you can easily create a symlink.

The other critical issue with distcc

is with makefiles. To do parallel

compilation with distcc, you employ

GNU make’s ability to execute targets

in parallel (with the -j switch); distcc

knows nothing about parallelism itself.

Therefore, you must be careful about

specifying dependencies when creating

your makefiles. Makefiles generated by

automake will typically parallelise with

no problems.

Using distcc
Once the distcc nodes are ready, the

next step is tell distcc on the compile

host what nodes to use. This is done

with the DISTCC_HOSTS variable. For

example, try this code:

export DISTCC_HOSTS=”localhost
tyr odin/1”

You should see the distcc man

page for details but typically, a

whitespace-separated list of hosts is

enough. By default, distcc will use two

slots (execute two compilation jobs) on

each host. In the above example,

‘odin/1’ tells it to use only one slot on

the host odin (this machine is short on

memory, so I don’t want it compile two

jobs at once). Note that if you want

local compilation to take place, you

must include localhost in the list.

Also remember that the localhost

has extra overheads, so if you have

many machines in your cluster,

omitting localhost may actually be

beneficial. A rule of thumb is that if

the local machine has less than a fifth

of the total computing power of the

cluster, leave it out.

If your project creates makefiles

using a configure script, you should

next call configure, explicitly stating the

compiler to use, prefaced by ‘distcc’.

Pass all other config options as

normal. For example:

CC=”distcc powerpc-linux-gcc-3.3” ./
configure --prefix=/usr --enable-
coolfeature
You should then make with:

make -j5
If you don’t use the -j switch, the

build will proceed sequentially as

normal. The number specified by this

switch is the maximum number of jobs

to execute in parallel. Here we state 5:

we have the default two slots, each on

localhost and tyr, and one slot on odin.

Now for some numbers. Compiling

E-UAE, a version of the Unix Amiga

Emulator that I’ve been developing,

just on my main Linux/PPC

development machine (a lumbering

PowerMac 9500 with a 333MHz G3),

takes a shade over 15 minutes. Adding

tyr, a 600MHz G3-powered Pegasos,

and odin, a Starmax 3000 with a

233MHz G3, brings the compile time

down to just over eight minutes, which

is clearly a significant improvement.

And this is with build scripts that

poorly exploit parallelism! With better-

designed makefiles, I’m sure that this

could be reduced even further.

The graphical distcc monitor
displays the status of each of the
machines in our compile farm.

NETWORK EVERYTHING DISTCC

LXF63.netwk 58LXF63.netwk 58 16/12/04 7:49:56 pm16/12/04 7:49:56 pm

www.linuxformat.co.uk LXF63 FEBRUARY 2005 59

PARALLEL COMPUTING WITH PVM
Discover the best way to build a render farm with PVM and POV-Ray.

P
VM (Parallel Virtual Machine)

is a software framework that

enables a network of

heterogeneous computers to

be bound together as a single,

distributed parallel processor. It

consists of two main components: a

daemon, pvmd, which runs on each of

the nodes in the network and controls

jobs on that node; and libpvm, a

software library that can used to create

software and which can make use of

such a cluster of machines.

PVM can be effectively employed

for many kinds of number-crunching

tasks, but we’re going to illustrate its

use here to do distributed raytracing

with POV-Ray, the popular, freeware

raytracer (see www.povray.org).

There are a number of ways to

distribute rendering with POV-Ray, and

using PVM for this is experimental and

doesn’t technically achieve the best

results. However, PVM is simple to use

and is interesting because it’s portable

and can be employed for many other

types of problem. Note that POV-Ray

doesn’t include PVM support by

default. You must build it with the

PVMPOV patch (available from

http://pvmpov.sourceforge.net).

PVMPOV works by splitting up the

render into chunks and parcelling the

jobs out to the known PVM hosts. It

executes POV-Ray as slaves on the

remote hosts, via the pvmd daemon.

Building the cluster
We aren’t going to dwell on installation

issues or cover how to use POV-Ray

itself. You do need the PVM daemon

installed on or available to each node

of your parallel cluster, and the

PVMPOV-patched version of POV-Ray.

We used Debian while testing, which

has precompiled packages of both.

The PVM cluster can be managed

by the management console, pvm.

Alternatively, you can use the TCL/Tk-

based xpvm GUI. This enables you to

add and inspect hosts, manage jobs,

and so on. You can specify the PVM

nodes to use by passing a Plain Text

file to PVM. For example:

pvm hosts
The ‘hosts’ file can contain just a

list of the hosts to use, separated by

newlines. You can also specify various

options per host. See the pvmd man

page for more details.

When you start PVM, it will launch

pvmd by remote-login on the hosts it

knows about. You can also add hosts

from the PVM console with the add

command. To be able to start pvmd

remotely, you need an account on the

remote machine. Typically, it’ll call rsh,

but on modern set-ups this will most

likely be SSH. Anyway, you should

avoid having to use passwords, so edit

your /etc/hosts.allow file or, if using

SSH, use key-based authentication.

You can test that pvmd is working

on your nodes by issuing the ‘conf’

command from PVM. You’ll see

something like this:

pvm> conf
3 hosts, 2 data formats
 HOST DTID ARCH
SPEED DSIG
 confucius.home.localnet 40000
LINUX 1000 0x00408841
 odin 80000
LINUXPPC 1000 0x0658eb59
 tyr c0000
LINUXPPC 1000 0x0658eb59

To test the running of PVM jobs,

try using the ‘spawn’ command. For

example, to run POV-Ray on odin, you

should execute the following from the

POV-Ray console:

spawn -odin -> povray
If successful, you’ll see the console

output from POV-Ray. If it says ‘No

such file’, it can’t find the executable to

run. pvmd looks for executables

relative to the path $PVM_ROOT/bin/

<ARCH> on each host and you have

to install any executables you want to

run via pvmd in that path (or specify

the path in another way).

$PVM_ROOT is set by default by

your installation – on Debian it’s /usr/

lib/pvm3. The <ARCH> part of the

path identifies the architecture of the

PVM node. For example, ‘LINUX’ for a

x86 Linux box or ‘LINUXPPC’ for a

PowerPC box (this is so you can have

executables for various platforms

installed under the same tree shared

by NFS). On a current Debian/PPC

setup, the install is broken and you’ll

have to rename /usr/lib/pvm3/bin/

LINUX to /usr/lib/pvm3/bin/LINUXPPC.

Render time
If you have your PVM cluster ready

and the patched povray is installed

then it’s almost time to start rendering.

The final step is to make the POV-Ray

data files available to each machine in

the node. Typically, this can be done

by creating a working directory

containing the POV scene description

and any include files, and mounting

that under the same path on each of

the PVM hosts via NFS.

On the master machine, we can

then cd to the working directory and

issue (from a plain shell, not from the

PVM console):

povray +Ibenchmark.pov +Ooutput.
tga +N +NT6 +NW64 +NH64 +v

The +N option enables PVM

support, while the +NT option specifies

the number of PVM jobs to use.

Here we use six, two on each host.

PVMPOV splits the render into blocks.

The +NW and +NH specify the height

and width of each block. Other

standard POV-Ray options are

employed as normal.

The quality of the render isn’t as

high with PVMPOV as with other

methods, and load-balancing is

primitive. Nevertheless, experimenting

with PVM is a lot of fun, and can

drastically speed up test renders of

scenes with POV-Ray. LXF

The most popular distributed
application on your average home
network is network gaming, and there
are dozens to choose from, whether
it’s FPSes such as Doom and Quake,
strategy games such as FreeCiv or
traditional games such as chess.

How you run such a game on your
network depends highly on the game
in question. We’ll examine PrBoom, a
modern version of the classic shooter.
Linux and Windows versions of this are
available, but since it uses SDL, it
should work on just about any modern
OS supported by SDL.

Like many other network games,
PrBoom is separated into server and
client parts. The server is a console
application, which can quite happily
run on any box and takes the role of
co-ordination. For a networked game,
the server is started first and the
client’s machines log in to the server to
play. The server can be run on the
same machine as one of the clients.

The PrBoom server can be started
with the command prboom-game-
server. Options specify what ports to
listen on for client connections and
game level options. Clients must
specify the host to connect to:
prboom -net odin

If the data file (WAD file) for the
level specified by the server isn’t
available to a client, it will download
the necessary files from the URL
specified by the server via wget. This
means that you don’t need to install
the same WAD files on each of the
client machines.

NETWORK GAMING
You can see by the way that the
render is created that the POV-Ray
scene is divided up into blocks.

NETWORK EVERYTHING PVM

LXF63.netwk 59LXF63.netwk 59 16/12/04 7:51:42 pm16/12/04 7:51:42 pm

