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Linux Kernel Debugging on Google-sized clusters

Martin Bligh
Google
mbligh@mbligh.org

Abstract

This paper will discuss the difficulties and methods in-
volved in debugging the Linux kernel on huge clusters.
Intermittent errors that occur once every few years are
hard to debug and become a real problem when running
across thousands of machines simultaneously. The more
we scale clusters, the more reliability becomes critical.
Many of the normal debugging luxuries like a serial con-
sole or physical access are unavailable. Instead, we need
a new strategy for addressing thorny intermittent race
conditions. This paper presents the case for a new set
of tools that are critical to solve these problems and also
very useful in a broader context. It then presents the de-
sign for one such tool created from a hybrid of a Google
internal tool and the open source LTTng project. Real
world case studies are included.

1 Introduction

Well established techniques exist for debugging most
Linux kernel problems; instrumentation is added, the
error is reproduced, and this cycle is repeated until
the problem can be identified and fixed. Good access
to the machine via tools such as hardware debuggers
(ITPs), VGA and serial consoles simplify this process
significantly, reducing the number of iterations required.
These techniques work well for problems that can be re-
produced quickly and produce a clear error such as an
oops or kernel panic. However, there are some types of
problems that cannot be properly debugged in this fash-
ion as they are:

e Not easily reproducible on demand;

e Only reproducible in a live production environ-
ment;

e Occur infrequently, particularly if they occur in-
frequently on a single machine, but often enough
across a thousand-machine cluster to be significant;
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e Only reproducible on unique hardware; or

e Performance problems, that don’t produce any er-
ror condition.

These problems present specific design challenges; they
require a method for extracting debugging information
from a running system that does not impact perfor-
mance, and that allows a developer to drill down on the
state of the system leading up to an error, without over-
loading them with inseparable data. Specifically, prob-
lems that only appear in a full-scale production environ-
ment require a tool that won’t affect the performance
of systems running a production workload. Also, bugs
which occur infrequently may require instrumentation
of a significant number of systems in order to catch the
bug in a reasonable time-frame. Additionally, for prob-
lems that take a long time to reproduce, continuously
collecting and parsing debug data to find relevant infor-
mation may be impossible, so the system must have a
way to prune the collected data.

This paper describes a low-overhead, but powerful, ker-
nel tracing system designed to assist in debugging this
class of problems. This system is lightweight enough to
run on production systems all the time, and allows for an
arbitrary event to trigger trace collection when the bug
occurs. It is capable of extracting only the information
leading up to the bug, provides a good starting point for
analysis, and it provides a framework for easily adding
more instrumentation as the bug is tracked. Typically
the approach is broken down into the following stages:

1. Identify the problem — for an error condition, this
is simple; however, characterization may be more
difficult for a performance issue.

2. Create a trigger that will fire when the problem oc-
curs — it could be the error condition itself, or a
timer that expires.

e 20 o
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e Use the trigger to dump a buffer containing
the trace information leading up to the error.

e Log the trigger event to the trace for use as a
starting point for analysis.

3. Dump information about the succession of events
leading to the problem.

4. Analyze results.

In addition to the design and implementation of our trac-
ing tool, we will also present several case studies illus-
trating the types of errors described above in which our
tracing system proved an invaluable resource.

After the bug is identified and fixed, tracing is also ex-
tremely useful to demonstrate the problem to other peo-
ple. This is particularly important in an open source en-
vironment, where a loosely coupled team of developers
must work together without full access to each other’s
machines.

2 Related Work

Before being used widely in such large-scale contexts,
kernel tracers have been the subject of a lot of work
in the past. Besides each and every kernel program-
mer writing his or her own ad-hoc tracer, a number of
formalized projects have presented tracing systems that
cover some aspect of kernel tracing.

Going through the timeline of such systems, we start
with the Linux Trace Toolkit [6] which aimed primarily
at offering a kernel tracing infrastructure to trace a static,
fixed set of important kernel-user events useful to under-
stand interactions between kernel and user-space. It also
provided the ability to trace custom events. User-space
tracing was done through device write. Its high-speed
kernel-to-user-space buffering system for extraction of
the trace data led to the development of RelayFS [3],
now known as Relay, and part of the Linux kernel.

The K42 [5] project, at IBM Research, included a ker-
nel and user-space tracer. Both kernel and user-space
applications write trace information in a shared memory
segment using a lockless scheme. This has been ported
to LTT and inspired the buffering mechanism of LTTng
[7], which will be described in this paper.

The SystemTAP[4] project has mainly been focused on
providing tracing capabilities to enterprise-level users

for diagnosing problems on production systems. It uses
the kprobes mechanism to provide dynamic connection
of probe handlers at particular instrumentation sites by
insertion of breakpoints in the running kernel. System-
TAP defines its own probe language that offers the se-
curity guarantee that a programmer’s probes won’t have
side-effects on the system.

Ingo Molnar’s IRQ latency tracer, Jens Axboe’s blk-
trace, and Rick Lindsley’s schedstats are examples of
in-kernel single-purpose tracers which have been added
to the mainline kernel. They provide useful information
about the system’s latency, block 1/0, and scheduler de-
cisions.

It must be noted that tracers have existed in proprietary
real-time operating systems for years—for example,
take the WindRiver Tornado (now replaced by LTTng
in their Linux products). Irix has had an in-kernel tracer
for a long time, and Sun provides Dtrace[1], an open
source tracer for Solaris.

3 Why do we need a tracing tool?

Once the cause of a bug has been identified, fixing it
is generally trivial. The difficulty lies in making the
connection between an error conveyed to the user—an
oops, panic, application error—and the source. In a
complex, multi-threaded system such as the Linux ker-
nel, which is both reentrant and preemptive, understand-
ing the paths taken through kernel code can be difficult,
especially where the problem is intermittent (such as a
race condition). These issues sometimes require power-
ful information gathering and visualization tools to com-
prehend.

Existing solutions, such as statistical profiling tools like
oprofile, can go some way to presenting an overall view
of a system’s state and are helpful for a wide class of
problems. However, they don’t work well for all situa-
tions. For example, identifying a race condition requires
capturing the precise sequence of events that occurred;
the tiny details of ordering are what is needed to iden-
tify the problem, not a broad overview. In these situa-
tions, a tracing tool is critical. For performance issues,
tools like OProfile are useful for identifying hot func-
tions, but don’t provide much insight into intermittent
latency problems, such as some fraction of a query tak-
ing 100 times as long to complete for no apparent rea-
son.



Often the most valuable information for identifying
these problems is in the state of the system preceding the
event. Collecting that information requires continuous
logging and necessitates preserving information about
the system for at least some previous section of time.

In addition, we need a system that can capture failures
at the earliest possible moment; if a problem takes a
week to reproduce, and 10 iterations are required to col-
lect enough information to fix it, the debugging process
quickly becomes intractable. The ability to instrument a
wide spectrum of the system ahead of time, and provide
meaningful data the first time the problem appears, is
extremely useful. Having a system that can be deployed
in a production environment is also invaluable. Some
problems only appear when you run your application in
a full cluster deployment; re-creating them in a sandbox
is impossible.

Most bugs seem obvious in retrospect, after the cause
is understood; however, when a problem first appears,
getting a general feel for the source of the problem is
essential. Looking at the case studies below, the reader
may be tempted to say “you could have detected that
using existing tool X;” however, that is done with the
benefit of hindsight. It is important to recognize that in
some cases, the bug behavior provides no information
about what subsystem is causing the problem or even
what tools would help you narrow it down. Having a
single, holistic tracing tool enables us to debug a wide
variety of problems quickly. Even if not all necessary
sites are instrumented prior to the fact, it quickly iden-
tifies the general area the problem lies in, allowing a
developer to quickly and simply add instrumentation on
top of the existing infrastructure.

If there is no clear failure event in the trace (e.g. an
OOM kill condition, or watchdog trigger), but a more
general performance issue instead, it is important to be
able to visualize the data in some fashion to see how
performance changes around the time the problem is ob-
served. By observing the elapsed time for a series of
calls (such as a system call), it is often easy to build an
expected average time for an event making it possible
to identify outliers. Once a problem is narrowed down
to a particular region of the trace data, that part of the
trace can be more closely dissected and broken down
into its constituent parts, revealing which part of the call
is slowing it down.

Since the problem does not necessarily present itself at
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each execution of the system call, logging data (local
variables, static variables) when the system call executes
can provide more information about the particularities
of an unsuccessful or slow system call compared to the
normal behavior. Even this may not be sufficient—if
the problem arises from the interaction of other CPUs
or interrupt handlers with the system call, one has to
look at the trace of the complete system. Only then can
we have an idea of where to add further instrumentation
to identify the code responsible for a race condition.

4 Case Studies

4.1 Occasional poor latency for I/O write requests

Problem Summary: The master node of a large-
scale distributed system was reporting occasional time-
out errors on writes to disk, causing a cluster fail-over
event. No visible errors or detectable hardware prob-
lems seemed to be related.

Debugging Approach: By setting our tracing tool to
log trace data continuously to a circular buffer in mem-
ory, and stopping tracing when the error condition was
detected, we were able to capture the events preceding
the problem (from a point in time determined by the
buffer size, e.g. 1GB of RAM) up until it was reported
as a timeout. Looking at the start and end times for write
requests matching the process ID reporting the timeout,
it was easy to see which request was causing the prob-
lem.

By then looking at the submissions and removals from
the 10 scheduler (all of which are instrumented), it was
obvious that there was a huge spike in IO traffic at the
same time as the slow write request. Through examining
the process ID which was the source of the majority of
the 10, we could easily see the cause, or as it turned out
in this case, two separate causes:

1. An old legacy process left over from 2.2 kernel era
that was doing a full sync () call every 30s.

2. The logging process would occasionally decide to
rotate its log files, and then call f£sync () to make
sure it was done, flushing several GB of data.

Once the problem was characterized and understood, it
was easy to fix.
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1. The sync process was removed, as its duties have
been taken over in modern kernels by pdflush, etc.

2. The logging process was set to rotate logs more of-
ten and in smaller data chunks; we also ensured it
ran in a separate thread, so as not to block other
parts of the server.

Application developers assumed that since the individ-
ual writes to the log files were small, the fsync would
be inexpensive; however, in some cases the resulting
fsync was quite large.

This is a good example of a problem that first appeared
to be kernel bug, but was in reality the result of a user-
space design issue. The problem occurred infrequently,
as it was only triggered by the fsync and sync calls co-
inciding. Additionally, the visibility that the trace tool
provided into system behavior enabled us to make gen-
eral latency improvements to the system, as well as fix-
ing the specific timeout issue.

4.2 Race condition in OOM Killer

Problem summary: In a set of production clusters,
the OOM Kkiller was firing with an unexpectedly high
frequency and killing production jobs. Existing moni-
toring tools indicated that these systems had available
memory when the OOM condition was reported. Again
this problem didn’t correlate with any particular appli-
cation state, and in this case there was no reliable way
to reproduce it using a benchmark or load test in a con-
trolled environment.

While the rate of OOM Kkiller events was statistically sig-
nificant across the cluster, it was too low to enable trac-
ing on a single machine and hope to catch an event in a
reasonable time frame, especially since some amount of
iteration would likely be required to fully diagnose the
problem. As before, we needed a trace system which
could tell us what the state of the system was in the time
leading up to a particular event. In this case, however,
our trace system also needed to be lightweight and safe
enough to deploy on a significant portion of a cluster
that was actively running production workloads. The
effect of tracing overhead needed to be imperceptible as
far as the end user was concerned.

Debugging Approach: The first step in diagnosing
this problem was creating a trigger to stop tracing when
the OOM Kkiller event occurred. Once this was in place
we waited until we had several trace logs to examine. It
was apparent that we were failing to scan or successfully
reclaim a suitable number of pages, so we instrumented
the main reclaim loop. For each pass over the LRU list,
we recorded the reclaim priority, the number of pages
scanned, the number of pages reclaimed, and kept coun-
ters for each of 33 different reasons why a page might
fail to be reclaimed.

From examining this data for the PID that triggered
the OOM killer, we could see that the memory pres-
sure indicator was increasing consistently, forcing us to
scan increasing number of pages to successfully reclaim
memory. However, suddenly the indicator would be set
back to zero for no apparent reason. By backtracking
and examining the events for all processes in the trace,
we were able to determine see that a different process
had reclaimed a different class of memory, and then set
the global memory pressure counter back to zero.

Once again, with the problem fully understood, the bug
was easy to fix through the use of a local memory pres-
sure counter. However, to send the patch back upstream
into the mainline kernel, we first had to convince the ex-
ternal maintainers of the code that the problem was real.
Though they could not see the proprietary application,
or access the machines, by showing them a trace of the
condition occurring, it was simple to demonstrate what
the problem was.

4.3 Timeout problems following transition from lo-
cal to distributed storage

Problem summary: While adapting Nutch/Lucene to
a clustered environment, IBM transitioned the filesys-
tem from local disk to a distributed filesystem, resulting
in application timeouts.

The software stack consisted of the Linux kernel, the
open source Java application Nutch/Lucene, and a dis-
tributed filesystem. With so many pieces of software,
the number and complexity of interactions between
components was very high, and it was unclear which
layer was causing the slowdown. Possibilities ranged
from sharing filesystem data that should have been lo-
cal, to lock contention within the filesystem, with the
added possibility of insufficient bandwidth.



Identifying the problem was further complicated by the
nature of error handling in the Nutch/Lucene applica-
tion. It consists of multiple monitor threads running pe-
riodically to check that each node is executing properly.
This separated the error condition, a timeout, from the
root cause. It can be especially challenging to find the
source of such problems as they are seen only in rela-
tively long tests, in this case of 15 minutes or more. By
the time the error condition was detected, its cause is no
longer apparent or even observable: it has passed out of
scope. Only by examining the complete execution win-
dow of the timeout—a two-minute period, with many
threads—can one pinpoint the problem.

Debugging Approach: The cause of this slowdown
was identified using the LTTng/LTTV tracing toolkit.
First, we repeated the test with tracing enabled on each
node, including the user-space application. This showed
that the node triggering the error condition varied be-
tween runs. Next, we examined the trace from this node
at the time the error condition occurred in order to learn
what happened in the minutes leading up to the error.
Inspecting the source code of the reporting process was
not particularly enlightening, as it was simply a moni-
toring process for the whole node. Instead, we had to
look at the general activity on this node; which was the
most active thread, and what was it doing?

The results of this analysis showed that the most active
process was doing a large number of read system calls.
Measuring the duration of these system calls, we saw
that each was taking around 30ms, appropriate for disk
or network access, but far too long for reads from the
data cache. It thus became apparent that the application
was not properly utilizing its cache; increasing the cache
size of the distributed system completely resolved the
problem.

This problem was especially well suited to an investiga-
tion through tracing. The timeout error condition pre-
sented by the program was a result of a general slow-
down of the system, and as such would not present with
any obvious connection with the source of the prob-
lem. The only usable source of information was the
two-minute window in which the slowdown occurred.
A trace of the interactions between each thread and the
kernel during this window revealed the specific execu-
tion mode responsible for the slowdown.
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4.4 Latency problem in printk on slow serialization

Problem Summary: User-space applications ran-
domly suffer from scheduler delays of about 12ms.

While some problems can be blamed on user-space de-
sign issues that interact negatively with the kernel, most
user-space developers expect certain behaviors from the
kernel and unexpected kernel behaviors can directly and
negatively impact user-space applications, even if they
aren’t actually errors. For instance, [2] describes a prob-
lem in which an application sampling video streams at
60Hz was dropping frames. At this rate, the application
must process one frame every 16.6ms to remain syn-
chronized with incoming data. When tracing the kernel
timer interrupt, it became clear that delays in the sched-
uler were causing the application to miss samples. Par-
ticularly interesting was the jitter in timer interrupt la-
tency as seen in Figure 1.

A normal timer IRQ should show a jitter lower than the
actual timer period in order to behave properly. How-
ever, tracing showed that under certain conditions, the
timing jitter was much higher than the timer interval.
This was first observed around tracing start and stop.
Some timer ticks, accounting for 12ms, were missing (3
timer ticks on a 250HZ system).

Debugging Approach: Instrumenting each 1ocal_
irg_{save, restore,disable, enable} macro
provided the information needed to find the problem,
and extracting the instruction pointer at each call to
these macros revealed exactly which address disabled
the interrupts for too long around the problematic
behavior.

Inspecting the trace involved first finding occurrences
of the problematic out-of-range intervals of the inter-
rupt timer and using this timestamp to search back-
ward for the last irg_save or irg_disable event.
Surprisingly, this was release_console_sem from
printk. Disabling the serial console output made the
problem disappear, as evidenced by Figure 2. Disabling
interrupts while waiting for the serial port to flush the
buffers was responsible for this latency, which not only
affects the scheduler, but also general timekeeping in the
Linux kernel.
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4.5 Hardware problems causing a system delay

Problem Summary: The video/audio acquisition
software running under Linux at Autodesk, while in de-
velopment, was affected by delays induced by the PCI-
Express version of a particular card. However, the man-
ufacturer denied that their firmware was the cause of
the problem, and insisted that the problem was certainly
driver or kernel-related.

Debugging Approach: Using LTTng/LTTV to trace
and analyze the kernel behavior around the experienced
delay led to the discovery that this specific card’s inter-
rupt handler was running for too long. Further instru-
mentation within the handler permitted us to pinpoint
the problem more exactly—a register read was taking
significantly longer than expected, causing the deadlines
to be missed for video and audio sampling. Only when
confronted with this precise information did the hard-
ware vendor acknowledge the issue, which was then
fixed within a few days.

5 Design and Implementation

We created a hybrid combination of two tracing tools—
Google’s Ktrace tool and the open source LTTng tool,
taking the most essential features from each, while try-
ing to keep the tool as simple as possible. The following
set of requirements for tracing was collected from users
and from experience through implementation and use:

e When not running, must have zero effective im-
pact.

e When running, should have low enough impact so
as not to disturb the problem, or impede production
traffic.

e Spooling data off the system should not completely
saturate the network.

e Compact data format—must be able to store large
amounts of data using as little storage as possible.

e Applicability to a wide range of kernel points, i.e.,
able to profile in interrupt context, and preferably
in NMI context.
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e User tools should be able to read multiple differ-
ent kernel versions, deal with custom debug points,
etc.

e One cohesive mechanism (and time ordered
stream), not separate tools for scheduler, block
tracing, VM tracing, etc.

The resulting design has four main parts described in
detail in the sections that follow:

1. alogging system to collect and store trace data and
make it available in user-space;

2. a triggering system to identify when an error has
occurred and potentially stop tracing;

3. an instrumentation system that meets the perfor-
mance requirements and also is easily extensible;
and

4. an analysis tool for viewing and analyzing the re-
sulting logs.

5.1 Collection and Logging

The system must provide buffers to collect trace data
whenever a trace point is encountered in the kernel and
have a low-overhead mechanism for making that data
available in user-space. To do this we use preallocated,
per-CPU buffers as underlying data storage and fast data
copy to user-space performed via Relay. When a “trig-
ger” event occurs, assuming the machine is still in a
functional state, passing data to user-space is done via
simple tools reading the Relay interfaces. If the system
has panicked, we may need to spool the data out over
the network to another machine (or to local disk), as in
the the netdump or crashdump mechanisms.

The in-kernel buffers can be configured to operate in
three modes:

o Non-overwrite — when the buffer is full, drop
events and increment an event lost counter.

e Overwrite — use the buffer as a circular log buffer,
overwriting the oldest data.

e Hybrid — a combination of the two where high rate
data is overwritten, but low rate state information
is treated as non-overwrite.
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Each trace buffer actually consists of a group of per-
cpu buffers, each assigned to high, medium, and low
rate data. High-rate data accounts for the most com-
mon event types described in detail below—system call
entry and exits, interrupts, etc. Low-rate data is gen-
erally static throughout the trace run and consists in
part of the information required to decode the resulting
trace, system data type sizes, alignment, etc. Medium-
rate channels record meta-information about the sys-
tem, such as the mapping of interrupt handlers to de-
vices (which might change due to Hotplug), process
names, their memory maps, and opened file descriptors.
Loaded modules and network interfaces are also treated
as medium-rate events. By iterating on kernel data struc-
tures we can record a listing of the resources present at
trace start time, and update it whenever it changes, thus
building a complete picture of the system state.

Separating high-rate events (prone to fill the buffers
quickly) from lower rate events allows us to use the
maximum space for high-rate data without losing the
valuable information provided by the low- and medium-
rate channel. Also, it makes it easy to create a hybrid
mode system where the last few minutes of interrupt or
system call information can be viewed, and we can also
get the mapping of process IDs to names even if they
were not created within that time window.

Multiple channels can also be used to perform fast
user-space tracing, where each process is responsible
for writing the trace to disk by itself without going
through a system call and Xen hypervisor tracing. The
trace merging is performed by the analysis tool in the
same manner in which the multiple CPU buffers are
handled, permitting merging the information sources at
post-processing time.

It may also be useful to integrate other forms of informa-
tion into the trace, in order to get one merged stream of
data—i.e., we could record readprofile-style data (where
the instruction pointer was at a given point in time) ei-
ther in the timer tick event, or as a periodic dump of the
collated hash table data. Also functions to record mem-
info, slabinfo, ps data, user-space and kernel stacks for
the running threads might be useful, though these would
have to be enabled on a custom basis. Having all the
data in one place makes it significantly easier to write
analysis and visualization tools.

5.2 Triggering

Often we want to capture the state of the system in a
short period of time preceding a critical error or event.
In order to avoid generating massive amounts of data
and the performance impact of disk or network writes to
the system, we leave the system logging into a circular
buffer, then stop tracing when the critical event occurs.

To do this, we need to create a trigger. If this event
can easily be recognized by a user-space daemon, we
can simply call the usual tracing interface with an in-
struction to stop tracing. For some situations, a small
in-kernel trigger is more appropriate. Typical trigger
events we have used include:

e OOM Kkill;
e Oops / panic;

e User-space locks up (processes are not getting
scheduled);

e User application indicates poor response from sys-
tem; or

e Manual intervention from user.

5.3 Instrumentation

When an instrumentation point is encountered, the
tracer takes a timestamp and the associated event data
and logs it to our buffers. Each encountered instrumen-
tation point must have minimum overhead, while pro-
viding the most information.

Section 5.3.1 explains how our system minimizes the
impact of instrumentation and compares and contrasts
static and dynamic instrumentation schemes.

We will discuss the details of our event formats in Sec-
tion 5.3.2 and our approach to timestamping in Sec-
tion 5.3.3.

To eliminate cache-line bouncing and potential race
conditions, each CPU logs data to its own buffer, and
system-wide event ordering is done via timestamps. Be-
cause we would like to be able to instrument reentrant
contexts, we must provide a locking mechanism to avoid
potential race conditions. We have investigated two op-
tions described in Section 5.3.4.



5.3.1 Static vs. Dynamic Instrumentation Points

There are two ways we can insert trace points—at static
markers that are pre-defined in the source code, or dy-
namically insert them while the system is running. For
standard events that we can anticipate the need for in ad-
vance, the static mechanism has several advantages. For
events that are not anticipated in advance, we can either
insert new static points in the source code, compile a
new kernel and reboot, or insert dynamic probes via a
mechanism such as kprobes. Static vs dynamic markers
are compared below:

e Trace points from static markers are significantly
faster in use. Kprobes uses a slow int3 mecha-
nism; development efforts have been made to cre-
ate faster dynamic mechanisms, but they are not
finished, very complex, cannot instrument fully
preemptible kernels, and they are still significantly
slower than static tracing.

e Static trace points can be inserted anywhere in the
code base; dynamic probes are limited in scope.

e Dynamic trace points cannot easily access local
variables or registers at arbitrary points within a
function.

e Static trace points are maintained within the kernel
source tree and can follow its evolution; dynamic
probes require constant maintenance outside of the
tree, and new releases if the traced code changes.
This is more of a problem for kernel developers,
who mostly work with mainline kernels that are
constantly changing.

e Static markers have a potential performance im-
pact when not being used—with care, they can
be designed so that this is practically non-existent,
and this can be confirmed with performance bench-
marks.

We use a marker infrastructure which is a hook-callback
mechanism. Hooks are our markers placed in the ker-
nel at the instrumentation site. When tracing is enabled,
these are connected to the callback probes—the code ex-
ecuted to perform the tracing. The system is designed to
have an impact as low as possible on the system perfor-
mance, so markers can be compiled into a production
kernel without appreciable performance impact. The
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probe callback connection to its markers is done dynam-
ically. A predicted branch is used to skip the hook stack
setup and function call when the marker is “disabled”
(no probe is connected). Further optimizations can be
implemented for each architecture to make this branch
faster.

The other key facet of our instrumentation system is the
ability to allow the user to extend it. It would be im-
possible to determine in advance the complete set of
information that would be useful for a particular prob-
lem, and recording every thing occurring on a system
would be clearly be impractical if not infeasible. In-
stead, we have designed a system for adding instrumen-
tation iteratively from a coarse-grained level including
major events like system calls, scheduling, interrupts,
faults, etc. to a finer grained level including kernel syn-
chronization primitives and important user-space func-
tions. Our tool is capable of dealing with an extensible
set of user-definable events, including merged informa-
tion coming from both kernel and user-space execution
contexts, synchronized in time.

Events can also be filtered; the user can request which
event types should be logged, and which should not. By
filtering only by event type, we get an effective, if not
particularly fine-grained filter, and avoid the concerns
over inserting buggy new code into the kernel, or the
whole new languages that tools like Dtrace and System-
tap invent in order to fix this problem. In essence, we
have chosen to do coarse filtering in the kernel, and push
the rest of the task to user-space. This design is backed
up by our efficient probes and logging, compact logging
format, and efficient data relay mechanism to user-space
(Relay).

5.3.2 Event Formats

It would be beneficial to log as much data about the sys-
tem state as possible, but instrumenting every interrupt
or system call clearly will rapidly generate large vol-
umes of data. To maximize the usefulness of our tool,
we must store our event data in the most efficient way
possible. In Google’s ktrace tool, for the sake of com-
pactness and alignment we chose to make our most com-
mon set of events take up 8 bytes. The best compromise
between data compactness and information complete-
ness within these bytes was to use the first 4 bytes for
type and timestamp information, and the second 4 for an
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5 bits 27 bits
<> <€ >
type tsc_shifted
data
( 32 bits )

8 bytes total

Figure 3: Common event format

event-specific data payload. The format of our events is
shown in Figure 3.

Commonly logged events include:

e System call entry / exit (including system call num-
ber, lower bytes of first argument)

e Interrupt entry / exit

e Schedule a new task

e Fork / exec of a task, new task seen
e Network traffic

e Disk traffic

e VM reclaim events

In addition to the basic compact format, we required a
mechanism for expanding the event space and logging
data payloads larger than 4 bytes. We created an ex-
panded event format, shown in Figure 4, that can be used
to store larger events needing more data payload space
(up to 64K). The normal 32-bit data field is broken into
a major and minor expanded event types (256 of each)
and a 16-bit length field specifying the length of the data
payload that follows.

LTTng’s approach is similar to Ktrace; we use 4-byte
event headers, followed by a variable size payload. The
compact format is also available; it records the times-
tamp, the event ID, and the payload in 4 bytes. It dynam-
ically calculates the minimum number of bits required to
represent the TSC and still detect overflows. It uses the
timer frequency and CPU frequency to determine this
value.

5 bits 27 bits
<> <€ >
type tsc_shifted
major minor length
( 8 bits )( 8 bits N 16 bits )
data

7

Figure 4: Expanded event format

5.3.3 Timestamps

Our instrumentation system must provide an accurate,
low-overhead timestamp to associate with each logged
event. The ideal timestamp would be a high-resolution
fixed frequency counter, that has very low cost to re-
trieve, is always monotonic, and is synchronized across
all CPUs and readable from both kernel and user-space.
However, due to the constraints of current hardware, we
are forced to an uncomfortable compromise.

If we look at a common x86-style architecture (32- or
64-bit), choices of time source include PIT, TSC, and
HPET. The only time source with acceptable overhead is
TSC; however, it is not constant frequency, or well syn-
chronized across platforms. It is also too high-frequency
to be compactly logged. The chosen compromise has
been to log the TSC at every event, truncated (both on
the left and right sides)—effectively, in Ktrace:

ISCrimestamp = (tsc >> 10)&(227)

On a 2GHz processor, this gives an effective resolution
of 0.5us, and takes 27 bits of space to log. LTTng cal-
culates the shifting required dynamically.

However, this counter will roll over every 128 seconds.
To ensure we can both unroll this information properly
and match it up to the wall time (e.g. to match user-space
events) later, we periodically log a timestamp event:

A new timestamp event must be logged:



32 bits

seconds

nanoseconds

tsc_mult

12 bytes total

Figure 5: Timestamp format

1. More frequently than the logged timestamp derived
from the TSC rolls over.

2. Whenever TSC frequency changes.

3. Whenever TSCs are resynchronized between
CPUs.

The effective time of an event is derived by comparing
the event TSC to the TSC recorded in the last timestamp
and multiplying by a constant representing the current
processor frequency.

éwalltime - (eventtsc - timesramptsc) * kt.vc_freq

eventyaiitime = Owalltime + time“ampwalltime

5.34 Locking

One key design choice for the instrumentation system
for this tool was how to handle potential race condi-
tions from reentrant contexts. The original Google tool,
Ktrace, protected against re-entrant execution contexts
by disabling interrupts at the instrumentation site, while
LTTng uses a lock-less algorithm based on atomic op-
erations local to one CPU (asm/local.h) to take
timestamps and reserve space in the buffer. The
atomic method is more complex, but has significant
advantages—it is faster, and it permits tracing of code
paths reentering even when IRQs are disabled (lock-
dep lock dependency checker instrumentation and NMI
instrumentation are two examples where is has shown
to be useful). The performance improvement of using
atomic operations (local compare-and-exchange: 9.0ns)
instead of disabling interrupts (save/restore: 210.6ns) on
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a 3GHz Pentium 4 removes 201.6ns from each probe’s
execution time. Since the average probe duration of
LTTng is about 270ns in total, this is a significant per-
formance improvement.

The main drawback of the lock-less scheme is the
added code complexity in the buffer-space reservation
function. LTTng’s reserve function is based on work
previously done on the K42 research kernel at IBM
Research, where the timestamp counter read is done
within a compare-and-exchange loop to insure that the
timestamps will increment monotonically in the buffers.
LTTng made some improvements in how it deals with
buffer boundaries; instead of doing a separate times-
tamp read, which can cause timestamps of buffer bound-
aries to go backward compared to the last/first events,
it computes the offsets of the buffer switch within
the compare-and-exchange loop and effectively does it
when the compare-and-exchange succeeds. The rest of
the callbacks called at buffer switch are then called out-
of-order. Our merged design considered the benefit of
such a scheme to outweigh the complexity.

5.4 Analysis
There are two main usage modes for the tracing tools:

e Given an event (e.g. user-space lockup, OOM Kkill,
user-space noticed event, etc.), we want to examine
data leading up to it.

e Record data during an entire test run, sift through
it off-line.

Whenever an error condition is not fatal or recurring,
taking only one sample of this condition may not give a
full insight into what is really happening on the system.
One has to verify whether the error is a single case or
periodic, and see if the system always triggers this error
or if it sometimes shows a correct behavior. In these sit-
uations, recording the full trace of the systems is useful
because it gives a better overview of what is going on
globally on the system.

However, this approach may involve dealing with huge
amounts of data, in the order of tens of gigabytes per
node. The Linux Trace Toolkit Viewer (LTTV) is de-
signed to do precisely this. It gives both a global graphi-
cal overview of the trace, so patterns can be easily iden-
tified, and permits the user to zoom into the trace to get
the highest level of detail.
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Multiple different user-space visualization tools have
been written (in different languages) to display or pro-
cess the tracing data, and it’s helpful for them to share
this pre-processing phase. These tools fall into two cat-
egories:

1. Text printer — one event per line, formatted in a way
to make it easy to parse with simple scripts, and
fairly readable by a kernel developer with some ex-
perience and context.

2. Graphical — easy visualization of large amounts of
data. More usable by non-kernel-developers.

6 Future Work

The primary focus of this work has been on creating a
single-node trace tool that can be used in a clustered en-
vironment, but it is still based on generating a view of
the state of a single node in response to a particular trig-
ger on that node. This system lacks the ability to track
dependent events between nodes in a cluster or to follow
dependencies between nodes. The current configuration
functions well when the problem can be tracked to a sin-
gle node, but doesn’t allow the user to investigate a case
where events on another system caused or contributed to
an error. To build a cluster-wide view, additional design
features would be needed in the triggering, collection,
and analysis aspects of the trace tool.

o Ability to start and stop tracing on across an entire
cluster when a trigger event occurs on one node.

e [ow-overhead method for aggregating data over
the network for analysis.

o Sufficient information to analyze communication
between nodes.

o A unified time base from which to do such analysis.

e An analysis tool capable of illustrating the relation-
ships between systems and displaying multiple par-
allel traces.

Relying on NTP to provide said synchronization appears
to be too imprecise. Some work has been started in
this area, primarily aiming at using TCP exchanges be-
tween nodes to synchronize the traces. However, it is re-
strained to a limited subset of network communication:
it does not deal with UDP and ICMP packets.
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