
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Ltrace Internals

Rodrigo Rubira Branco
IBM

rrbranco@br.ibm.com

Abstract

ltrace is a program that permits you to track runtime
library calls in dynamically linked programs without re-
compiling them, and is a really important tool in the de-
bugging arsenal. This article will focus in how it has
been implemented and how it works, trying to cover
the actual lacks in academic and in-deep documenta-
tion of how this kind of tool works (setting the break-
points, analysing the executable/library symbols, inter-
preting elf, others).

1 Introduction

ltrace is divided into many source files; some of
these contain architecture-dependent code, while some
others are generic implementations.

The idea is to go through the functions, explaining what
each is doing and how it works, beginning from the en-
try point function, main.

2 int main(int argc, char **argv) – ltrace.c

The main function sets up ltrace to perform the rest of
its activities.

It first sets up the terminal using the guess_cols()
function that tries to ascertain the number of columns
in the terminal so as to display the information output
by ltrace in an ordely manner. The column count is
initially queried from the $COLUMNS environment vari-
able (if that is not set, the TIOCGWINSZ ioctl is used
instead). Then the program options are handled using
the process_options() function to processes the
ltrace command line arguments, using the getopt()
and getopt_long() functions to parse them.

It then calls the read_config_file() function on
two possible configuration files.

It calls read_config_file() first with
SYSCONFDIR’s ltrace.conf file. If
$HOME is set, it then calls the function with
$HOME/.ltrace.conf. This function opens
the specified file and reads in from it line-by-line,
sending each line to the process_line() function
to verify the syntax of the config file based on the line
supplied to it. It then returns a function structure based
on the function information obtained from said line.

If opt_e is set, then a list is output by the debug()
function.

If passed a command invocation, ltrace will execute
it via the execute_program() function which takes
the return value of the open_program() function as
an argument.

Ltrace will attached to any supplied pids using the
open_pid() function.

At the end of this function the process_event()
function is called in an infinite loop, receiving the return
value of the wait_for_something() function as
its argument.

3 struct process *open_program(char
*filename, pid_t pid) – proc.c

This function implements a number of important tasks
needed by ltrace. open_program allocates a process
structure’s memory and sets the filename and pid (if
needed), adds the process to the linked-list of processes
traced by ltrace, and most importantly initalizes break-
points by calling breakpoints_init().

4 void breakpoints_init(struct process *proc)
– breakpoints.c

The breakpoints_init() function is responsible
for setting breakpoints on every symbol in the pro-
gram being traced. It calls the read_elf() function

• 41 •

42 • Ltrace Internals

which returns an array of library_symbol struc-
tures, which it processes based on opt_e. Then it it-
erates through the array of library_symbol struc-
tures and calls the insert_breakpoint() function
on each symbol.

5 struct library_symbol *read_elf(struct
process *proc) – elf.c

This function retrieves a process’s list of symbols to be
traced. It calls do_init_elf() on the executable
name of the traced process and for each library supplied
by the -l option. It loops across the PLT information
found therein.

For each symbol in the PLT information, a GElf_Rel
structure is returned by a call to gelf_getrel(), if
the d_type is ELF_T_REL and gelf_getrela()
if not. If the return value of this call is NULL, or if
the value returned by ELF64_R_SYM(rela.r_info)
is greater than the number of dynamic symbols or the
rela.r_info symbol is not found, then the function
calls the error() function to exit the program with an
error.

If the symbol value is NULL and the PLTs_
initialized_by_here flag is set, then the need_
to_reinitialize_breakpoints member of the
proc structure is set.

The name of the symbol is calculated and this is passed
to a call to in_load_libraries(). If this re-
turns a positive value, then the symbol address is cal-
culated via the arch_plt_sym_val() function and
the add_library_symbol() function is called to
add the symbol to the library_symbols list of
dynamic symbols. At this point if the need_to_
reinitialize_breakpointsmember of the proc
structure is set, then a pt_e_t structure main_cheat
is allocated and its values are set. After this a loop
is made over the opt_x value (passed by the -x
option) and if the PLTs_initialized_by_here
variable matches the name of one of the values, then
main_cheat is freed and the loop is broken. If no
match is found, then opt_x is set to the final value of
main_cheat.

A loop is then made over the symtab, or symbol table
variable. For each symbol gelf_getsym() is called,
which if it fails provokes ltrace to exit with an error
message via the error() function. A nested loop is

then made over the values passed to opt_x via the -x
option. For each value a comparison is made against
the name of each symbol. If there is a match, then
the symbol is added to the library_symbols list
via add_library_symbol() and the nested loop
breaks.

At the end of this loop a final loop is made over the
values passed to opt_x via the -x option.

For each value with a valid name member a compari-
son is made to the E_ENTRY_NAME value, which rep-
resents the program’s entry point. If this compari-
son should prove true, then the symbol is entered into
the library_symbols list via add_library_
symbol().

At the end of the function, any libraries passed to
ltrace via the -l option are closed via the do_close_
elf() function1 and the library_symbols list is
returned.

6 static void do_init_elf(struct ltelf *lte, const
char *filename) – elf.c

The passed ltelf structure is set to zero and open()
is called to open the passed filename as a file. If this
fails, then ltrace exits with an error message. The elf_
begin() function is then called, following which var-
ious checks are made via elf_kind() and gelf_
getehdr(). The type of the elf header is checked so
as to only process executable files or dynamic library
files.

If the file is not of one of these types, then ltrace exits
with an error. Ltrace also exits with an error if the elf
binary is from an unsupported architecture.

The ELF section headers are iterated over and the elf_
getscn() function is called, then the variable name
is set via the elf_strptr() function (if any of the
above functions fail, ltrace exits with an error message).

A comparison is then made against the section header
type and the data for it is obtained via a call to elf_
getdata().

1This function is called to close open ELF images. A check is
made to see if the ltelf structure has an associated hash value al-
located and if so this hash value is deallocated via a call to free().
After this elf_end() is called and the file descriptor associated
with the image is closed.

2007 Linux Symposium, Volume One • 43

For SHT_DYNSYM (dynamic symbols), the lte->
dynsym is filled via a call to elf_getdata(), where
the dynsym_count is calcuated by dividing the sec-
tion header size by the size of each entry. If the at-
tempt to get the dynamic symbol data fails, ltrace ex-
its with an error message. The elf_getscn() func-
tion is then called, passing the section header sh_link
variable. If this fails, then ltrace exits with an error mes-
sage. Using the value returned by elf_getscn(), the
gelf_getshdr() function is called and if this fails,
ltrace exits with an error message.

For SHT_DYNAMIC an Elf_Data structure data is set
via a call to elf_getdata() and if this fails, ltrace
exits with an error message. Every entry in the sec-
tion header is iterated over and the following occurs:
The gelf_getdyn() function is called to retrieve the
.dynamic data and if this fails, ltrace exits with an er-
ror message; relplt_addr and relplt_size are
calculated from the returned dynamic data.

For SHT_HASH values an Elf_Data structure data
is set via a call to elf_getdata() and if this fails,
ltrace exits with an error message. If the entry size is 4
then lte->hash is simply set to the dynamic data buf
data->d_buf. Otherwise it is 8. The correct amount
of memory is allocated via a call to malloc and the
hash data into copied into lte->hash.

For SHT_PROGBITS, checks are made to see if the
name value is .plt or .pd, and if so, the correct el-
ements are set in the lte->plt_addr/lte->opd
and lte->plt_size and lte->pod_size struc-
tures. In the case of OPD, the lpe->opd structure is
set via a call to elf_rawdata(). If neither the dy-
namic symbols or the dynamic strings have been found,
then ltrace exits with an error message. If relplt_
addr and lte->plt_addr are non-null, the section
headers are iterated across and the following occurs:

• The elf_getscn() function is called.

• If the sh_addr is equal to the relpt_addr and
the sh_size matches the relplt_size (i.e.,
this section is the .relplt section) then lte->

relplt is obtained via a call to elf_getdata()

and lte->relplt_count is calculated as the
size of section divided by the size of each entry. If
the call to elf_getdata() fails then ltrace exits
with an error message.

• If the function was unable to find the .relplt
section then ltrace exits with an error message.

7 static void add_library_symbol(GElf_Addr
addr, const char *name, struct
library_symbol **library_symbolspp, int
use_elf_plt2addr, int is_weak) – elf.c

This function allocates a library_symbol structure
and inserts it into the linked list of symbols represented
by the library_symbolspp variable.

The structure is allocated with a call to malloc(). The
elements of this structure are then set based on the argu-
ments passed to the function. And the structure is linked
into the linked list using its next element.

8 static GElf_Addr elf_plt2addr(struct ltelf
*lte, void *addr) – elf.c

In this function the opd member of the lte structure
is checked and if it is NULL, the function returns the
passed address argument as the return value. If opd is
non-NULL, then following occurs:

1. An offset value is calculated by subtracting the
opd_addr element of the ltr structure from the
passed address.

2. If this offset is greater than the opd_size element
of the lte structure then ltrace exits with an error.

3. The return value is calculated as the base address
(passed as lte->opd->d_buf) plus the calcu-
lated offset value.

4. This calculated final return value is returned as a
GElf_Addr variable.

9 static int in_load_libraries(const char
*name, struct ltelf *lte) – elf.c

This functions checks if there are any libraries passed
to ltrace as arguments to the -l option. If not, then the
function immediately returns 1 (one) because there is no
filtering (specified libraries) in place; otherwise, a hash
is calculated for the library name arguments by way of
the elf_hash() function.

For each library argument, the following occurs:

1. If the hash for this iteration is NULL the loop con-
tinues to the next iteration.

44 • Ltrace Internals

2. The nbuckets value is obtained and the buckets
and chain values are calculated based on this value
from the hash.

3. For each bucket the following occurs:

The gelf_getsym() function is called to
get the symbol; if this fails, then ltrace exits with
an error.

A comparison is made between the passed
name and the name of the current dynamic symbol.
Should there be a match, the function will return a
positive value (one).

4. If the code reaches here, 0 (zero) is returned.

10 void insert_breakpoint(struct process
*proc, void *addr, struct library_symbol
*libsym) – breakpoints.c

The insert_breakpoint() function inserts a
breakpoint into a process at the given address (addr).
If the breakpoints element of the passed proc structure
has not been set it is set by calling the dict_init()
function.

A search is then made for the address by using the
dict_find_entry() function. If the address is
not found a breakpoint structure is allocated using
calloc(), entered into the dict hash table using
dict_enter(), and its elements are set.

If a pid has been passed (indicating that the process is al-
ready running), this breakpoint structure along with the
pid is then passed to the enable_breakpoint()
system-dependent function.

11 void enable_breakpoint(pid_t pid, struct
breakpoint *sbp) –
sysdeps/linux-gnu/breakpoint.c

The enable_breakpoint() function is responsible
for the insertion of breakpoints into a running process
using the ptrace interface.

First PTRACE_PEEKTEXT ptrace parameter is used
to save the original data from the breakpoint loca-
tion and then PTRACE_POKETEXT is used to copy
the architecture-dependent breakpoint value into the
supplied memory address. The architecture-dependent

breakpoint value is found in sysdeps/linux-gnu/*/
arch.h.

12 void execute_program(struct process *sp,
char **argv) – execute-program.c

The execute_program() function executes a pro-
gram whose name is supplied as an argument to ltrace. It
fork()s a child, changes the UID of the running child
process if necessary, calls the trace_me() (simply
calls ptrace() using the PTRACE_TRACEME argument,
which allows the process to be traced) function and then
executes the program using execvp().

13 struct event *wait_for_something(void) –
wait_for_something.c

The wait_for_something() function literally
waits for an event to occur and then handles it.

The events that it treats are: Syscalls, Systets, Ex-
iosts, exit signals, and breakpoints. wait_for_
something() calls the wait() function to wait for
an event.

When it awakens it calls get_arch_dep() on the
proc member of the event structure. If breakpoints
were not enabled earlier (due to the process not yet
being run) they are enabled by calling enable_
all_breakpoints(), trace_set_options()
and then continue_process() (this function sim-
ply calls continue_after_signal()).

In this case the event is then returned as LT_EV_NONE
which does not receive processing.

To determine the type of event that has occurred the fol-
lowing algorithm is used: The syscall_p() function
is called to detect if a syscall has been called via int 0x80
(LT_EV_SYSCALL) or if there has been a return-from-
syscall event (LT_EV_SYSRET). If neither of these is
true, it checks to see if the process has exited or has sent
an exit signal.

If neither of these is the case and the process has not
stopped, an LT_EV_UNKNOWN event is returned.

If process is stopped and the stop signal was not
systrap, an LT_EV_SIGNAL event is returned.

If none of the above cases is found to be true, it is
assumed that this was a breakpoint, and an LT_EV_
BREAKPOINT event is returned.

2007 Linux Symposium, Volume One • 45

14 void process_event(struct event *event) –
process_event.c

The process_event() function receives an event
structure, which is generally returned by the wait_
for_something() function.

It calls a switch-case construct based on the event->
thing element and processes the event using one
of the following functions: process_signal(),
process_exit(), process_exit_signal(),
process_syscall(), process_sysret(), or
process_breakpoint().

In the case of syscall() or sysret(), it calls the
sysname() function.

15 int syscall_p(struct process *proc, int
status, int *sysnum) –
sysdeps/linux-gnu/*/trace.c

This function detects if a call to or return from a system
call occurred. It does this first by checking the value of
EAX (on x86 platforms) which it obtains with a ptrace
PTRACE_PEEKUSER operation.

It then checks the program’s call stack, as maintained
by ltrace and, checking the last stack frame, it sees if
the is_syscall element of the proc structure is set,
which indicates a called system call. If this is set, then
2 is returned, which indicates a sysret event. If not,
then 1 is returned, provided that there was a value in
EAX.

16 static void process_signal(struct event
*event) – process_event.c

This function tests the signal. If the signal is
SIGSTOP it calls disable_all_breakpoints(),
untrace_pid() (this function merely calls the
ptrace interface using a PTRACE_DETACH operation),
removes the process from the list of traced processes
using the remove_proc() function, and then calls
continue_after_signal() (this function simply
calls ptrace with a PTRACE_SYSCALL operation) to al-
low the process to continue.

In the case that signal was not SIGSTOP, the func-
tion calls the output_line() function to display the
fact of the signal and then calls continue_after_
signal() to allow the process to continue.

17 static void process_exit(struct event
*event) – process_event.c

This function is called when a traced process exits. It
simply calls output_line() to display that fact in
the terminal and then calls remove_proc() to re-
move the process from the list of traced processes.

18 static void process_exit_signal(struct event
*event) – process_event.c

This function is called when when a traced program is
killed. It simply calls output_line() to display that
fact in the terminal and then calls remove_proc() to
remove the process from the list of traced processes.

19 static void process_syscall(struct event
*event) – process_event.c

This function is called when a traced program invokes a
system call. If the -S option has been used to run ltrace,
then the output_left() function is called to display
the syscall invocation using the sysname() function
to find the name of the system call.

It checks if the system call will result in a fork or ex-
ecute operation, using the fork_p() and exec_p()
functions which test the system call against those known
to trigger this behavior. If it is such a signal the
disable_all_breakpoints() function is called.

After this callstack_push_syscall() is called,
followed by continue_process().

20 static void process_sysret(struct event
*event) – process_event.c

This function is called when the traced program returns
from a system call. If ltrace was invoked with the -c
or -T options, the calc_time_spent() function is
called to calculate the amount of time that was spent
inside the system call.

After this the function fork_p() is called to test if the
system call was one that would have caused a process
fork. If this is true, and the -f option was set when run-
ning ltrace, then the gimme_arg() function is called
to get the pid of the child and the open_pid() func-
tion is called to begin tracing the child. In any case,
enable_all_breakpoints() is called.

46 • Ltrace Internals

Following this, the callstack_pop() function is
called. Then the exec_p() function tests if the sys-
tem call was one that would have executed another pro-
gram within this process and if true, the gimme_arg()
function is called. Otherwise the event->proc struc-
ture is re-initialized with the values of the new program
and the breakpoints_init() function is called to
initialize breakpoints. If gimme_arg() does not re-
turn zero, the enable_all_breakpoints() func-
tion is called.

At the end of the function the continue_
process() function is called.

21 static void process_breakpoint(struct event
*event) – process_event.c

This function is called when the traced program hits a
breakpoint, or when entering or returning from a library
function.

It checks the value of the event->proc->

breakpoint_being_enabled variable to de-
termine if the breakpoint is in the middle
of being enabled, in which case it calls the
continue_enabling_breakpoint() function
and this function returns. Otherwise this function
continues.

It then begins a loop through the traced program’s call
stack, checking if the address where the breakpoint oc-
curred matches a return address of a called function
which indicates that the process is returning from a li-
brary call.

At this point a hack allows for PPC-specific behavior,
and it re-enables the breakpoint. All of the library func-
tion addresses are retrieved from the call stack and trans-
lated via the plt2addr() function. Provided that the
architecture is EM_PPC, the address2bpstruct()2

function is called to translate the address into a break-
point structure. The value from the address is read via
the ptrace PTRACE_PEEK operation and this value is
compared to a breakpoint value. If they do not match, a
breakpoint is inserted at the address.

If the architecture is not EM_PPC, then the address is
compared against the address of the breakpoint previ-
ously applied to the library function. If they do not
match, a breakpoint is inserted at the address.

2This function merely calls dict_find_entry() to find the
correct entry in proc->breakpoints and returns it.

Upon leaving the PPC-dependent hack, the func-
tion then loops across callstack frames using the
callstack_pop() function until reaching the frame
that the library function has returned to which is nor-
mally a single callstack frame. Again if the -c or -T
options were set, calc_time_spent() is called.

The callstack_pop() function is called one fi-
nal time to pop the last callstack frame and the pro-
cess’ return address is set in the proc structure as the
breakpoint address. The output_right() function
is called to log the library call and the continue_
after_breakpoint() function is called to allow
the process to continue, following which the function
returns.

If no return addresses in the callstack match the break-
point address, the process is executing in, and not re-
turning from a library function.

The address2bpstruct() function is called to
translate the address into a breakpoint structure.

Provided that this was a success, the following occurs:

• The stack pointer and return address to be saved
in the proc stucture are obtained using the
get_stack_pointer() and get_return_
address() functions.

• The output_left() function is called to log
the library function call and the callstack_
push_symfunc() function is called. A check
is then made to see if the PLTs_initialized_
by_here variable is set, to see if the function
matches the called library function’s symbol name
and to see if the need_to_reinitialize_
breakpoints variable is set. If all this is true the
reinitialize_breakpoints() function is
called.

Finally continue_after_breakpoint() is called
and the function returns.

If address2bpstruct() call above was not suc-
cessful, output_left() is called to show that an
unknown and unexpected breakpoint was hit. The
continue_process() function is called and the
function returns.

2007 Linux Symposium, Volume One • 47

22 static void callstack_push_syscall(struct
process *proc, int sysnum) –
process_event.c

This function simply pushes a callstack_element
structure onto the array callstack held in the proc struc-
ture. This structure’s is_syscall element is set to
differentiate this callstack frame from one which repre-
sents a library function call. The proc structure’s mem-
ber callstack_depth is incremented to reflect the
callstack’s growth.

23 static void callstack_push_symfunc(struct
process *proc, struct library_symbol
*sym) – process_event.c

As in the callstack_push_syscall() function
described above, a callstack_element structure is
pushed onto the array callstack held in the proc structure
and the callstack_depth element is incremented
to reflect this growth.

24 static void callstack_pop(struct process
*proc) – process_event.c

This function performs the reverse of the two functions
described above. It removes the last structure from
the callstack array and decrements the callstack_
depth element.

25 void enable_all_breakpoints(struct process
*proc) – breakpoints.c

This function begins by checking the breakpoints_
enabled element of the proc structure. Only if it is
not set the rest of the function continues.

If the architecture is PPC and the option -L was not
used, the function checks if the PLT has been set up by
using a ptrace PTRACE_PEEKTEXT operation. If not,
the function returns at this point.

If proc->breakpoints is set the dict_apply_
to_all() function is called using enable_bp_
cb() function.3 This call will set the proc->
breakpoints_enabled.

3This function is a callback that simply calls the function
enable_breakpoint().

26 void disable_all_breakpoints(struct
process *proc) – breakpoints.c

If proc->breakpoints_enabled is set, this
function calls dict_apply_to_all() with the ar-
gument disable_bp_cb() as the callback func-
tion. It then sets proc->breakpoints_enabled
to zero and returns.

27 static void disable_bp_cb(void *addr, void
*sbp, void *proc) – breakpoints.c

This function is a callback called by dict_apply_
to_all() and simply calls the function disable_
breakpoint() (does the reverse of enable_
breakpoint, copying the saved data from the break-
point location back over the breakpoint instruction using
the ptrace PTRACE_POKETEXT interface).

28 void reinitialize_breakpoints(struct
process *proc) – breakpoints.c

This function retrieves the list of symbols as a
library_symbol linked-list structure from the
proc->list_ofsymbols and iterates over this list,
checking each symbol’s need_init element and call-
ing insert_breakpoint() for each symbol for
which this is true.

If need_init is still set after insert_
breakpoint an error condition occurs, the error
is reported and ltrace exits.

29 void continue_after_breakpoint(struct
process *proc, struct breakpoint *sbp) –
sysdeps/linux-gnu/trace.c

A check is made to see if the breakpoint is enabled
via the sbp->enabled flag. If it is then disable_
breakpoint() is called.

After this, set_instruction_pointer()4 is
called to set the instruction pointer to the address of
the breakpoint. If the breakpoint is still enabled, then
continue_process() is called. If not then if
the architecture is SPARC or ia64 the continue_

4This function retrieves the current value of the instruc-
tion pointer using the ptrace interface with values of PTRACE_
POKEUSER and EIP.

48 • Ltrace Internals

process() function is called or if not the ptrace in-
terface is invoked using a PTRACE_SINGLESTEP op-
eration.

30 void open_pid(pid_t pid, int verbose) –
proc.c

The trace_pid() function is called on the passed
pid, if this fails then the function prints an error mes-
sage and returns.

The filename for the process is obtained using the
pid2name() function and open_program() is
called with this filename passed as an argument.

Finally the breakpoints_enabled flag is set in the
proc structure returned by open process.

31 static void remove_proc(struct process
*proc) – process_event.c

This function removes a process from the linked list of
traced processes.

If list_of_processes is equal to proc (i.e., the
process was the first in the linked list) then there is a
reverse unlink operation where list_of_processes

= list_of_processes->next.

If not and the searched-for process is in the middle of the
list, then the list is iterated over until the process is found
and tmp->next is set to tmp->next->next, sim-
ply cutting out the search for process from the linked
list.

32 int fork_p(struct process *proc, int
sysnum) – sysdeps/linux-gnu/trace.c

This function checks to see if the given sysnum inte-
ger refers to a system calls that would cause a child
process to be created. It does this by checking the
fork_exec_syscalls table using the proc->
personality value and an index, i, to check each
system call in the table sequentially, returning 1 if there
is a match.

If the proc->personality value is greater than the
size of the table, or should there not be a match, then
zero is returned.

33 int exec_p(struct process *proc, int
sysnum) – sysdeps/linux-gnu/trace.c

This function checks to see if the given sysnum in-
teger refers to a system calls that would cause an-
other program to be executed. It does this by checking
the fork_exec_syscalls table using the proc->
personality value and an index, i, to check each
system call in the table sequentially, returning 1 if there
is a match.

If the proc->personality value is greater than the
size of the table, or should there not be a match, then
zero is returned.

34 void output_line(struct process *proc, char
*fmt, ...) – output.c

If the -c option is set, then the function returns im-
mediately. Otherwise the begin_of_line() func-
tion5 is called and the fmt argument data is output to the
output (can be a file chosen using -o or stderr) using
fprintf().

35 void output_left(enum tof type, struct
process *proc, char *function_name) –
output.c

If the -c option was set, then the function returns
immediately. If the current_pid variable is set
then the message <unfinished ...> is output and
current_pid and current_column are set to
zero.

Otherwise current_pid is set to the pid element
of the proc structure, and current_depth is set
to proc->callstack_depth. The begin_of_
line() function is called.

If USER_DEMANGLE is #defined then the function
name is output by way of my_demange(), or else it is
just output plain.

A variable func is assigned by passing the function_
name to name2func() if this failed then a loop is iter-
ated four times calling display_arg() many times
in succession to display four arguments.

5Prints the beginning part of each output line. It prints the pro-
cess ID, the time passed since the last output line and either the
return address of the current function or the instruction pointer.

2007 Linux Symposium, Volume One • 49

At the end of the loop it is called a fifth time.

Should the call to name2func() succeed, then an-
other loop is iterated but over the number of parame-
ters that the function receives—for each of which the
display_arg() function is called.

Finally if func->params_right is set, save_
register_args() is called.

36 void output_right(enum tof type, struct
process *proc, char *function_name) –
output.c

A function structure is allocated via the name2func()
function.

If the -c option was set providing the dict_opt_c
variable is not set it is allocated via a call to dict_
init(). An opt_c_struct structure is allocated
by dict_find_entry(). If this should fail, then
the structure is allocated manually by malloc() and the
function name is entered into the dictionary using the
dict_enter() function.

There are various time calculations and the function re-
turns. If the current_pid is set, is not equal to
proc->pid and the current_depth is not equal to
the process’ callstack_depth then the message
<unfinished>... is output and current_pid
is set to zero. If current_pid is not equal to the
proc structure’s pid element then begin_of_line()
is called and then if USE_DEMANGLE is defined the
function name is output as part of a resumed message
using fprintf() via my_demangle(). If USE_
DEMANGLE is not defined then fprintf() alone is
used to output the message. If func is not set then argu-
ments are displayed using ARGTYPE_UNKNOWN, other-
wise they are displayed using the correct argument type
from the proc structure.

37 int display_arg(enum tof type, struct
process *proc, int arg_num, enum
arg_type at) – display_args.c

This function displays one of the arguments, the arg_
num’th argument to the function the name of which
is currently being output to the terminal by the output
functions.

It uses a switch case to decide how to display the ar-
gument. Void, int, uint, long, ulong, octal char, and

address types are displayed using the fprintf()
stdio function. String and format types are handled
by the display_string, display_stringN()
function (sets the string_maxlength by calling
gimme_arg() with the arg2 variable. It then calls
display_string()) and display_format()
functions respectively.

Unknown values are handled by the display_
unknown() function.

38 static int display_unknown(enum tof type,
struct process *proc, int arg_num) –
display_args.c

The display_unknown() function performs a cal-
culation on the argument, retrieved using the arg_
num variable and uses of the gimme_arg() function.
Should the value be less than 1,000,000 and greater
than –1,000,000 then it is displayed as a decimal inte-
ger value; if not, it is interpreted as a pointer.

39 static int display_string(enum tof type,
struct process *proc, int arg_num) –
display_args.c

The display_string() function uses gimme_
arg() function to retrieve the address of the string to
be displayed from the stack. If this fails then the func-
tion returns and outputs the string NULL.

Memory is allocated for the string using malloc()
and should this fail, the function returns and outputs
??? to show that the string was unknown.

The umovestr() function is called to copy the string
from its address and the length of the string is deter-
mined by either the value passed to -s or the maximum
length of a string (by default infinite). Each character is
displayed by the display_char() function (outputs
the supplied character using fprintf(). It converts
all the control characters such as \r (carriage return), \n
(newline), and EOF (end of file) to printable versions).

Should the string be longer than the imposed maximum
string length, then the string “. . . ” is output to show that
there was more data to be shown.

The function returns the length of the output.

50 • Ltrace Internals

40 static char *sysname(struct process *proc,
int sysnum) – process_event.c

This function retrieves the name of a system call based
on its system call number.

It checks the personality element of the proc structure
and the sysnum values to check that they fit within the
size of the syscalents[] array.

If proc->personality does not, the abort()
function is called. If sysnum does not then a string value
of SYS_<sysnum> is returned.

Provided that both numbers fit within the syscalents ar-
ray the correct value is obtained using the sysnum vari-
able. A string value of SYS_<name of systemcall>

is returned.

41 long gimme_arg(enum tof type, struct
process *proc, int arg_num) –
sysdeps/linux-gnu/*/trace.c

For x86 architecture this function checks if arg_num is
–1, if so then the value of the EAX register is returned,
which is obtained via the ptrace PTRACE_PEEKUSER
operation.

If type is equal to LT_TOF_FUNCTION or LT_TOF_
FUNCTIONR then the arg_num’th argument is re-
turned from the stack via a ptrace PTRACE_PEEKUSER
operation based on the current stack pointer (from the
proc structure) and the argument number.

If the type is LT_TOF_SYSCALL or LT_TOF_
SYSCALLR then a register value is returned based on
the argument number as so: 0 for EBX, 1 for ECX, 2 for
EDX, 3 for ESI, and 4 for EDI.

If the arg_num does not match one of the above or
the type value does not match either of the above cases,
ltrace exits with an error message.

42 static void calc_time_spent(struct process
*proc) – process_event.c

This function calculates the time spent in a system
call or library function. It retrieves a callstack_
element structure from the current frame of the pro-
cess’ callstack and calls gettimeofday() to obtain
the current time and compares the saved time in the
callstack_element structure to the current time.

This difference is then stored in the current_diff
variable.

43 void *get_instruction_pointer(struct
process *proc) – sysdeps/linux-gnu/*/regs.c

This function retrieves the current value of the instruc-
tion pointer using the ptrace interface with values of
PTRACE_PEEKUSER and EIP.

44 void *get_stack_pointer(struct process
proc) – sysdeps/linux-gnu//regs.c

This function retrieves the stack pointer of the traced
process by using the ptrace interface with values of
PTRACE_PEEKUSER and UESP.

45 void *get_return_addr(struct process
*proc, void *stack_pointer) –
sysdeps/linux-gnu/*/regs.c

This function retrieves the current return address of the
current stack frame using the ptrace interface PTRACE_
PEEKTEXT operation to retrieve the value from the
memory pointed to by the current stack pointer.

46 struct dict *dict_init(unsigned int
(*key2hash) (void *), int (*key_cmp) (void
*, void *)) – dict.c

A dict structure is allocated using malloc(), follow-
ing which the buckets array of this structure is iterated
over and each element of the array is set to NULL.

The key2hash and key_cmp elements of the dict
structure are set to the representative arguments passed
to the function and the function returns.

47 int dict_enter(struct dict *d, void *key,
void *value) – dict.c

This function enters a value into the linked list repre-
sented by the dict structure passed as the first argu-
ment.

A hash is calculated by the key2hash() function us-
ing the key argument to the function and a dict struc-
ture new_entry, which is allocated with malloc().
The elements of new_entry are set using key, value,
and hash.

2007 Linux Symposium, Volume One • 51

An index is calculated by rounding the hash value with
the size of the d->bucket array, and the new_entry
structure is entered into this array at this index by linking
it to the start of the linked list held there.

48 void dict_clear(struct dict *d) – dict.c

This function iterates over both the d->buckets ar-
ray and the linked list held in each d->buckets array
element. For each linked list element it frees the en-
try before unlinking it from the list. For each emptied
bucket it sets the d->bucket element to NULL.

49 void *dict_find_entry(struct dict *d, void
*key) – dict.c

A hash is created using the d->key2hash function
pointer and the passed key argument variable.

This hash is then used to index into the d->buckets
array as a dict_entry structure. The linked listed
held in this element of the array is iterated over compar-
ing the calculated hash value to the hash value held in
each element of the linked list.

Should the hash values match, a comparison is made
between the key argument and the key element of this
linked list. If this comparison should prove true the
function returns the entry. Otherwise the function re-
turns NULL if no matches are ultimately found.

50 void dict_apply_to_all(struct dict *d, void
(*func) (void *key, void *value, void
*data), void *data) – dict.c

This function iterates over all the elements in the d->
buckets array, and iterates over the linked list held in
each element of said array.

For each element of each linked list the passed func
function pointer is called using the key, value and data
elements of the supplied dict structure d.

51 unsigned int dict_key2hash_string(void
*key) – dict.c

This function creates a hash value from a character
string passed as the void pointer key.

The key is first cast to a character pointer and for each
character in this string the following is carried out:

• The integer total is incremented by the current
value of total XORd by value of the character
shifted left by the value shift, which starts out as
zero, and is incremented by five for each iteration.

• Should the shift pass the value of 24, it is reduced
to zero.

After processing each character in the supplied string
the function returns the value held in the variable total
as the final hash value.

52 dict_key_* helper functions – dict.c

Ltrace have many simple function to help in the key
comparisions:

• int dict_key_cmp_string(void *key1,

void *key2) -- dict.c

A very simple function that returns the result of a
call to strcmp() using the two supplied pointer
values.

• unsigned int dict_key2hash_int(void

*key) -- dict.c

This is a very simple function that returns the sup-
plied pointer value cast to an unsigned int type.

• int dict_key_cmp_int(void *key1,

void *key2) -- dict.c

This is a very simple function that returns the math-
ematical difference of key2 from key1.

52 • Ltrace Internals

