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Abstract

Cache memory compression (or compressed caching)
was originally developed for desktop and server plat-
forms, but has also attracted interest on embedded sys-
tems where memory is generally a scarce resource, and
hardware changes bring more costs and energy con-
sumption. Cache memory compression brings a consid-
erable advantage in input-output-intensive applications
by means of using a virtually larger cache for the local
file system through compression algorithms. As a result,
it increases the probability of fetching the necessary data
in RAM itself, avoiding the need to make low calls to
local storage. This work evaluates an Open Source im-
plementation of the cache memory compression applied
to Linux on an embedded platform, dealing with the un-
avoidable processor and memory resource limitations as
well as with existing architectural differences.

We will describe the Compressed Cache (CCache) de-
sign, compression algorithm used, memory behavior
tests, performance and power consumption overhead,
and CCache tuning for embedded Linux.

1 Introduction

Compressed caching is the introduction of a new level
into the virtual memory hierarchy. Specifically, RAM
is used to store both an uncompressed cache of pages
in their ‘natural’ encoding, and a compressed cache of
pages in some compressed format. By using RAM to
store some number of compressed pages, the effective
size of RAM is increased, and so the number of page
faults that must be handled by very slow hard disks is
decreased. Our aim is to improve system performance.
When that is not possible, our goal is to introduce no (or

minimal) overhead when compressed caching is enabled
in the system.

Experimental data show that not only can we improve
data input and output rates, but also that the sys-
tem behavior can be improved, especially in memory-
critical cases leading, for example, to such improve-
ments as postponing the out-of-memory activities al-
together. Taking advantage of the kernel swap sys-
tem, this implementation adds a virtual swap area (as
a dynamically sized portion of the main memory) to
store the compressed pages. Using a dictionary-based
compression algorithm, page cache (file-system) pages
and anonymous pages are compressed and spread into
variable-sized memory chunks. With this approach,
the fragmentation can be reduced to almost zero whilst
achieving a fast page recovery process. The size of
Compressed Cache can be adjusted separately for Page
Cache and Anonymous pages on the fly, using procfs
entries, giving more flexibility to tune system to re-
quired use cases.

2 Compressed Caching

2.1 Linux Virtual Memory Overview

Physical pages are the basic unit of memory manage-
ment [8] and the MMU is the hardware that trans-
lates virtual pages addresses into physical pages ad-
dress and vice-versa. This compressed caching imple-
mentation, CCache [3], adds some new flags to help
with compressed pages identification and uses the same
lists used by the PFRA (Page Frame Reclaiming Algo-
rithm). When the system is under a low memory con-
dition, it evicts pages from memory. It uses Least Re-
cently Used (LRU) criteria to determine order in which
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to evict pages. It maintains two LRU lists—active and
inactive LRU lists. These lists may contain both page-
cache (file-backed) and swap-cache (anonymous) pages.
When under memory pressure, pages in inactive list are
freed as:

• Swap-cache pages are written out to swap disks
using swapper_space writepage() (swap_
writepage()).

• Dirty page-cache pages are flushed to filesystem
disks using filesystem specific writepage().

• Clean page-cache pages are simply freed.

2.1.1 About Swap Cache

This is the cache for anonymous pages. All swap cache
pages are part of a single swapper_space. A single
radix tree maintains all pages in the swap cache. swp_
entry_t is used as a key to locate the corresponding
pages in memory. This value identifies the location in
swap device reserved for this page.

type offset

5 bits 27 bits

swp_entry_t for default setup
of MAX_SWAPFILES=32

} swp_entry_t;

typedef struct {

      unsigned long val;

Figure 1: Fields in swp_entry_t

In Figure 1, ‘type’ identifies things we can swap to.

2.1.2 About Page Cache

This is the cache for file-system pages. Like swap cache,
this also uses radix-tree to keep track of file pages. Here,
the offset in file is used as the search key. Each open file
has a separate radix-tree. For pages present in memory,
the corresponding radix-node points to struct page
for the memory page containing file data at that offset.

2.2 Compressed Cache Overview

For compressed cache to be effective, it needs to
store both swap-cache and page-cache (clean and dirty)
pages. So, a way is needed to transparently (i.e., no

changes required for user applications) take these pages
in and out of compressed cache.

This implementation handles anonymous pages and
page-cache (filesystem) pages differently, due to the
way they are handled by the kernel:

• For anonymous pages, we create a virtual swap.
This is a memory-resident area of memory where
we store compressed anonymous pages. The swap-
out path then treats this as yet another swap de-
vice (with highest priority), and hence only mini-
mal changes were required for this kernel part. The
size of this swap can be dynamically adjusted using
provided proc nodes.

• For page-cache pages, we make a corresponding
page-cache entry point to the location in the com-
pressed area instead of the original page. So
when a page is again accessed, we decompress the
page and make the page-cache entry point back
to this page. We did not use the ‘virtual swap’
approach here since these (file-system) pages are
never ‘swapped out.’ They are either flushed to
file-system disk (for dirty pages) or simply freed
(for clean pages).

In both cases, the actual compressed page is stored as
series of variable sized ‘chunks’ in a specially managed
part of memory which is designed to have minimum
fragmentation in storing these variable-sized areas with
quick storage/retrieval operations. All kinds of pages
share the common compressed area.

The compressed area begins as few memory pages. As
more pages are compressed, the compressed area in-
flates (up to a maximum size which can be set using
procfs interface) and when requests for these com-
pressed pages arrive, these are decompressed, and cor-
responding memory ‘chunks’ are put back onto the free-
list.

2.3 Implementation Design

When a page is to be compressed, the radix node point-
ing to the page is changed to point to the chunk_head—
this in turn points to first of the chunks for the com-
pressed page and all the chunks are also linked. This
chunk_head structure contains all the information
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Figure 2: Memory hierarchy with Compressed Caching

required to correctly locate and decompress the page
(compressed page size, compression algorithm used, lo-
cation of first of chunks, etc.).

When the compressed page is accessed/required later,
page-cache/swap-cache (radix) lookup is done. If we
get a chunk_head structure instead of a page structure
on lookup, we know this page was compressed. Since
chunk_head contains a pointer to first of the chunks
for this page and all chunks are linked, we can easily
retrieve the compressed version of the page. Then, us-
ing the information in the chunk_head structure, we
decompress the page and make the corresponding radix-
node points back to this newly decompressed page.

2.3.1 Compressed Storage

The basic idea is to store compressed pages in variable-
sized memory blocks (called chunks). A compressed
page can be stored in several of these chunks. Mem-
ory space for chunks is obtained by allocating 0-order
pages at a time and managing this space using chunks.
All the chunks are always linked as a doubly linked list
called the master chunk list. Related chunks are also
linked as a singly linked list using the related-chunk list;
e.g., all free chunks are linked together, and all chunks
belonging to the same compressed page are linked to-
gether. Thus all chunks are linked using master chunk
list and related chunks are also linked using one of
related-chunk list (e.g. free list, chunks belonging to
same compressed page).

Note that:

4Kb page boundaries

Figure 3: A sample of compressed storage view high-
lighting ‘chunked’ storage. Identically colored blocks
belong to the same compressed page, and white is free
space. An arrow indicates related chunks linked to-
gether as a singly linked list. A long horizontal line
across chunks shows that these chunks are also linked
together as a doubly lifnked list in addition to whatever
other lists they might belong to.

• A chunk cannot cross page boundaries, as is shown
for the ‘green’ compressed page. A chunk is split
unconditionally at page boundaries. Thus, the
maximum chunk size is PAGE_SIZE.

• This structure will reduce fragmentation to a mini-
mum, as all the variable, free-space blocks are be-
ing tracked.

• When compressed pages are taken out, correspond-
ing chunks are added to the free-list and physically
adjacent free chunks are merged together (while
making sure chunks do not cross page boundaries).
If the final merged chunk spans an entire page, the
page is released.

So, the compressed storage begins as a single chunk of
size PAGE_SIZE and the free-list contains this single
chunk.

An LRU-list is also maintained which contains these
chunks in the order in which they are added (i.e., the
‘oldest’ chunk is at the tail).

2.3.2 Page Insert and Delete

Page Insert: The uncompressed page is first com-
pressed in a buffer page. Then a number of free chunks
are taken from free list (or a new page is allocated to get
a new chunk) according to the size of the compressed
page. These chunks are linked together as a singly
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linked related-list. The remaining space from the last
chunk is added back to the free list, and merged with
adjacent free chunks, if present. The entry in the page-
cache radix tree is now made to point to the chunk_
head allocated for this compressed page. Pages that
are not compressible (size increases on compression),
are never added to CCache. The usual reclaim path ap-
plies to them.

Page Delete: When a page is looked up in memory, we
normally get a struct page corresponding to the ac-
tual physical page. But if the page was compressed,
we instead get a struct chunk_head rather than
a struct page at the corresponding node (identified
by the PG_compressed flag set), which gives a link to
first chunk. Since all related chunks are linked together,
compressed data is collected from all these chunks in
a separate page, and then decompression is done. The
freed chunks are merged with adjacent free chunks, if
present, and then added to the free list.

2.4 Compression Methods

In the fundamental work [5], a number of domain-
specific considerations are discussed for compression
algorithms:

1. Compression must be lossless, i.e., one-to-one
mapping from compressed and decompressed
forms, so exactly the same, original data must be
restored.

2. Compression must be in memory, so no kind of ex-
ternal memory can be used. Additionally, the fol-
lowing properties of typical memory data can be
exploited to achieve good compression:

• it is word or double-word aligned for faster
handling by the processor;

• it contains a large number of integers with a
limited range of values;

• it contains pointers (usually with integer
size), mostly to the same memory region, so
the majority of information is stored in the
lower bits;

• it contains many regularity sequences, often
zeros.

3. Compression must incur a low overhead. Speed
matters for both compression and decompression.
A compression algorithm can also be asymmetric
since typically decompression is required for many
read operations, therefore making it important to
have as cheap a decompression as possible. Small
space overhead is also required since this overhead
memory has to be allocated when the system is al-
ready running low on memory.

4. Compressible data, on average, should incur a 50%
size reduction. If a page can not be compressed up
to 50%, it increases the complexity of the proce-
dure for handling compressed pages.

Thus, general purpose compression algorithms may not
be good for our domain-specific compression require-
ments, due to high overhead. In this case we can
choose low overhead compression, which takes into ac-
count the majority of in-memory data regularities and
produces a sufficient compression ratio. We can also
balance between compressibility and overhead by us-
ing several compression algorithms {A1..AN} sequen-
tially. Assuming that probabilities to compress a page
are {P1..PN} and compression times are {C1..CN}, the
average compression time can be estimated as

C = ∑C1 ∗P1 (1)

Note that since non-compressible pages can exist, we
can determine that

∑Pi < 1.0 (2)

Thus, the best result from the speed versus compress-
ibility point of view will be obtained by minimizing C
time at compile- or run-time. The simplest way is to
apply first the fastest algorithm, then the second fastest,
and so on, leaving the slowest as last. Typically this
scheme will work pretty well if C1�CN; nevertheless,
any runtime adoption can be used. Originally the fol-
lowing compression methods were used for cache mem-
ory compression [5]:

• WK in-memory compression family of algorithms
as developed by Paul Wilson and Scott F. Kaplan.
These algorithms are based on the assumption that
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the target system has 32-bit word size, 22 bits of
which match exactly, and 10 bits differ in values
which will be looked for. Due to this assump-
tion, this family of algorithms is not suitable for
64-bit systems, for which another lookup approach
should be used. The methods perform close to real-
life usage:

– WK4x4 is the variant of WK compression
that achieves the highest (tightest) compres-
sion by itself by using a 4x4 set-associative
dictionary of recently seen words. The im-
plementation of a recency-based compression
scheme that operates on machine-word-sized
tokens.

– WKdm compresses nearly as tightly as
WK4x4, but is much faster because of the
simple, direct-mapped dictionary of recently
seen words.

• miniLZO is a lightweight subset of the very
fast Lempel-Ziv (LZO) implementation by Markus
Oberhumer [9], [15]. Key moments can be high-
lighted from the description and make this method
very suitable for our purpose:

– Compression is pretty fast, requires 64KB of
memory.

– Decompression is simple and fast, requires no
memory.

– Allows you to dial up extra compression at a
speed cost in the compressor. The speed of
the decompressor is not reduced.

– Includes compression levels for generating
pre-compressed data, which achieves a quite
competitive compression ratio.

– There is also a compression level which needs
only 8 KB for compression.

– Algorithm is thread-safe.

– Algorithm is lossless.

– LZO supports overlapping compression and
in-place decompression.

– Expected speed of LZO1X-1 is about 4–5
times faster than the fastest zlib compression
level.

3 Experimental Results

This section will describe how the CCache was tested on
an OMAP platform device—the Nokia Internet Tablet
N800 [6]. The main goal of the tests is to evaluate the
characteristics of the Linux kernel and overall system
behavior when CCache is added in the system.

As said before, this CCache implementation can com-
press two types of memory pages: anonymous pages
and page-cache pages. The last ones never go to swap;
once they are mapped on a block device file and writ-
ten to the disk, they can be freed. But anonymous pages
are not mapped on disk and should go to swap when the
system needs to evict some pages from memory.

We have tests with and without a real swap partition, us-
ing a MMC card. Our tests intend to evaluate CCache
against a real swap device. So, we decided to use just
anonymous pages compression. This way we can bet-
ter compare CCache performance against a system with
real swap. For the comparison, we measured the follow-
ing quantities:

• How many pages were maintained in memory
(CCache) and did not go to swap (avoiding I/O
overhead).

• Changes in power requirements.

• Comparison of different compression algorithms:
compress and decompress times, compression ra-
tio.

3.1 Test Suite and Methodology

We used a mobile device with embedded Linux as test-
ing platform. The Nokia Internet Tablet N800 has a
330Mhz ARM1136 processor from Texas Instruments
(OMAP 2420), 128MB of RAM, and 256MB of flash
memory used to store the OS and applications. The
OMAP2420 includes an integrated ARM1136 processor
(330 MHz), a TI TMS320C55x DSP (220 MHz), 2D/3D
graphics accelerator, imaging and video accelerator,
high-performance system interconnects, and industry-
standard peripherals [4]. Two SD/MMC slots, one in-
ternal and another external, can be used to store au-
dio/video files, pictures, documents, etc.
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As we can see on device’s specification, it is focused
on multimedia usage. As we know, multimedia appli-
cations have high processor and memory usage rates.
Our tests intend to use memory intensively, hence we
can measure the CCache impact on system performance.
The tests were divided into two groups: tests with real
applications and tests using synthetic benchmarks. Tests
with real applications tried to simulate a high mem-
ory consumption scenario with a lot of applications be-
ing executed and with some I/O operations to measure
the memory and power consumption behavior when
CCache is running. Synthetic tests were used to evalu-
ate the CCache performance, once they provided a easy
way to measure the time spent on the tests.

Tests with real applications consist of:

• Running 8 or 9 Opera browsers and load some
pages through a wireless Internet connection.

• Playing a 7.5MB video on Media player.

• Opening a PDF document.

We used an application called xautomation [12] to in-
teract with the X system through bash scripts from the
command line. Xautomation controls the interface, al-
lowing mouse movements, mouse right and left clicks,
key up and down, etc. Reading the /proc/meminfo
file, we have the memory consumption, and some graph-
ics related to the memory consumption can be plotted.
They will be shown and commented on in the following
sections.

The tests using synthetic benchmarks were executed us-
ing MemTest [11]. MemTest is a group of small tests to
evaluate the stability and consistency of the Linux mem-
ory management system. It contains several tests, but
we used just one, since our main goal is to measure the
CCache performance: fillmem. This test intends to test
the system memory allocation. It is useful to verify the
virtual memory system against the memory allocation
operation, pagination, and swap usage. It has one pa-
rameter which defines the size of memory allocated by
itself.

All the tests, using real applications or synthetic bench-
marking, were applied using a pre-configured scenarios,
depending on what would be measured. Basically we
have scenarios with different RAM memory sizes, with

or without a real swap partition, and with or without
CCache added to the system.

Memory behavior tests evaluate the memory consump-
tion against time and the OOM killer interaction on
the scenarios discussed before. Performance tests
used MemTest [11] to measure the total time of the
fillmem execution. Power consumption tests evalu-
ate the impact of CCache usage on power consumption,
since it is crucial on mobile devices with embedded sys-
tems.

3.1.1 Tuning for Embedded Linux

One of the most important constraints in embedded sys-
tems is the storage space available. Therefore imple-
menting mechanisms to save some space is crucial to
improve the embedded OS.

The N800’s OS, also known as Internet Tablet OS 2007
(IT OS 2007), is based on the linux-omap [10] kernel
and has some features customized to this device. One of
these, the most relevant in this case, is the swap system
behavior. The Linux kernel virtual memory subsystem
(VM) operation can be tuned using the files included
at /proc/sys/vm directory. There we can configure
OOM-killer parameters, swap parameters, writeout of
dirty data to disk, etc. On this case, just swap-related
parameters were modified, since the evaluation must be
as close as possible to reality—in the other words, the
default system configuration.

The swap system behavior on the device’s kernel is
configured as if a swap partition were not present in
the system. We configured two parameters to make
the test execution feasible under low-memory scenar-
ios: /proc/sys/vm/swappiness and /proc/sys/

vm/min_free_kbytes.

• swappiness [7] is a parameter which sets the ker-
nel’s balance between reclaiming pages from the
page cache and swapping process memory. The de-
fault value is 60.

• min_free_kbytes [7] is used to force the Linux
VM to keep a minimum number of kilobytes free.

If the user wants the kernel to swap out more pages,
which in effect means more caching, the swappiness
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parameter must be increased. The min_free_
kbytes controls when the kernel will start to force
pages to be freed, before out-of-memory conditions oc-
cur.

The default values for swappiness and min_free_
kbytes are 0 and 1280, respectively. During our tests,
we had to modify these values since the CCache uses
the default swap system, and with the default values,
the CCache would not be used as expected. Another
fact is that we added a real swap partition, and the
swappiness must be adjusted to support this con-
figuration. Increasing the swappiness to its default
value, 60, we noticed that more pages were swapped
and the differences between the CCache usage and a real
swap partition could be measured.

During our tests the available memory was consumed
so quickly that CCache could not act. The OOM killer
was called, and the test was killed. To give more time
to CCache, the min_free_kbytes was increased.
Another motivation is that pages taken by CCache are
marked as pinned and never leave memory; this can con-
tribute to anticipating the OOM killer call. It happens
because the CCache pages are taken out from the LRU
list and due to this, the PFRA (Page Frame Reclaiming
Algorithm) cannot select such pages to be freed.

Other parameters that must be adjusted are the max_

anon_cc_size and max_fs_backed_cc_size.
These parameters set the max size for anonymous
pages and the max size for page-cache pages, re-
spectively. The CCache will increase until the max
size is reached. Note that those parameters are set
in number of pages (4KB) and the pages are used
to store the chunks lists and the metadata needed to
manage those chunks. These parameters are exported
by CCache via /proc/sys/vm/max_anon_cc_size

and /proc/sys/vm/max_fs_backed_cc_size. We
have one limitation here: max_anon_cc_size and
max_fs_backed_cc_size can be configured only
one time; dynamic re-sizing is not permitted yet.

As previously mentioned, the tests covered the anony-
mous pages compression; therefore only max_anon_
cc_size was used. After the initialization, the IT OS
2007 has about 50M of free memory available, from a
total of 128M. After making some empirical tests, we
decided to set max_anon_cc_size to about 10% of
device’s total free memory (5 MB), or in other words,
1280 pages of 4 KB each. Since CCache pages are
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pinned in memory and adaptive resizing is not yet im-
plemented, we chose to have only a small percentage of
memory assigned to ccache (10%). With a higher per-
centage, we might end-up calling the OOM killer too
soon.

3.2 Memory Behavior Tests

The main goal of these tests is to see what is happening
with the memory when CCache is compressing and de-
compressing pages. To execute the tests we used real ap-
plication scenarios, using applications provided by the
default installation of the N800’s distribution.

Using a bash script with XAutomation [12], we can
interact with the X server and load some applications
while another program collects the memory variables
present in /proc/meminfo file. Figure 4 shows the
memory consumption against time on a kernel with
CCache and max_anon_cc_size set to 1024 pages
(4MB).

As we can see in Figure 4, the CCache consumption was
very low once the swappiness parameter was config-
ured with default value of 1. Therefore more pages are
cached in memory instead of going to swap, even if the
available free memory is low. Actually this behavior is
expected since the system doesn’t have swap for default.
On Figure 5, we limited the memory to 100M at boot,
which caused increased memory pressure on the system.
The figure shows that the OOM killer was called at 600
ms, and CCache did not have time to react.
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Using the same test but with swappiness and min_
free_kbytes configured with 60 and 3072 respec-
tively, the OOM killer is not called any more, and we
have an increased usage of CCache. See Figure 6.

Figure 6 shows that the CCache size is not enough for
the memory load of the test. But we have a prob-
lem here: if the CCache size is increased, more pages
are taken off the LRU list and cannot be freed. The
best solution here is implementing the adaptive [1, 13]
CCache resizing. We will cover a bit more about adap-
tive CCache in Section 4.

In the tests, the new page size was collected for each
page that was compressed. With this, we can have
measurements using the most common ranges of com-
pressed page size. Figure 7 illustrates the Compression

Page Size Distribution in five ranges, pages sized be-
tween: 0K–0.5K, 0.5K–1K, 1K–2K, 2K–3K and 3K–
4K. About 42% of pages have sizes between 1K and 2K
after compression.
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These results indicate that we have a general system
gain with CCache. Since most of pages sizes are be-
tween 1K–2K, and we adopted a chunk-based approach
with no fragmentation. In general, we have an increase
of 100% of ‘system available memory.’ It is an impor-
tant CCache advantage: applications that before, could
not be executed on the system, now have more ‘visi-
ble available memory’ and can be executed, allowing an
embedded system to support applications that it would
otherwise be unable to run. It is important to remember
that on CCache, compressed pages with size more than
4KB are discarded.

3.3 Performance Tests

Performance tests aim to analyze the CCache overhead:
compression overhead, chunks lists handling overhead,
and page recovery overhead. With these tests we expect
to prove that CCache, even with all those overheads, is
faster than using a swap partition on a block device.

Only anonymous pages are being considered here.
As explained in Section 2.2, there are some steps
when a page is compressed. Table 1 shows the results
when running the fillmem allocating 70MB of mem-
ory (swappiness = 60, min_free_kbytes =

1024KB, max_cc_anon_size = 1280 pages):

The test using WK4x4 triggered the OOM killer and
could not be completed. But taking a look at the other
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Test No-
CCache

CCache
WKdm

CCache
WK4x4

CCache
LZO

Time(s) 14.68 4.64 – 4.25

Table 1: fillmem(70): CCache time x Real Swap time

values, we can conclude that the swap operation using
CCache is about 3 times faster than using a swap parti-
tion on an MMC card. But how about the OOM-killer?

As discussed before, CCache does not have dynamic re-
sizing. It implies that for some use cases, CCache has
no benefits and the memory allocated to the compressed
data becomes prejudicial to the system. Since we do
not have the adaptativity feature implemented, it is very
important to tune CCache according the use case.

3.3.1 Compression Algorithms Comparison

As we wrote above, it is essential to minimize overhead
by using an optimal compression algorithm. To com-
pare a number of algorithms, we performed tests on the
target N800 device. In addition to those algorithms used
in CCache (WKdm, WK4x4, zlib, and miniLZO), we
tested methods used in the Linux kernel (rubin, rtime)
and LZO compression.

Speed results are shown below relative to memcpy
function speed, so 2.4 means something works 2.4
times slower than memcpy. Reported data is the
size of data produced by compiler (.data and .bss
segments). The test pattern contained 1000 4K-pages
of an ARM ELF file which is the basic test data for
CCache. Input data was compressed page-per-page (4
KB slices).

Name

ARM11
code
size
(bytes)

ARM11
data
size
(bytes)

Comp
time
(rela-
tive)

Comp
ratio
(%)

Decomp
time
(rela-
tive)

Speed
asymm.

Wkdm 3120 16 2.3 89 1.4 1.8
Wk4x4 4300 4 3.5 87 2.6 0.9
miniLZO 1780 131076 5.6 73 1.6 3.5
zlib 49244 716 73.5 58 5.6 13.1
rubin_mips 180 4 152 98 37 4.2
dyn_rubin 180 4 87.8 92 94.4 0.9
rtime 568 4 7 97 1 7
lzo1 2572 0 8.8 76 1.6 5.5
lzo2 4596 0 62.8 62 2 31.4

Table 2: Compression Algorithms Comparison

From these tests we can draw the following conclusions
for the target system:

1. zlib is a very slow method, but it provides the best
compression;

2. using WK4x4 makes no practical sense because
the number of pages compressed for 50% or bet-
ter is the same as for WKdm, but in terms of speed,
WK4x4 is about 2 times slower;

3. lzo2 has good compression and very good decom-
pression speed, so it will be used to replace zlib
everywhere.

4. by using WKdm and miniLZO sequentially, we can
obtain good compression levels with small over-
head.

3.4 Power Consumption Tests

In order to evaluate the power consumption using
CCache, we replaced the device’s battery with an Ag-
ilent direct current power supply. This Agilent equip-
ment shows the total current in real time and with this,
the power consumption was calculated using an output
voltage of 4V.

Figure 8 shows the power consumption for the interac-
tive user test used and described in Section 3.2. Steps 1
to 5 can be discarded in an analysis of power consump-
tion since in these steps CCache is active, but it is not
called. The important steps are 5 to 8. In these steps we
have a stress memory situation and CCache is working.
As we can see, we have a gain of about 3% on aver-
age when compression is used. It can be explained for
smaller I/O data rates. Is important to take a look at the
‘Video Play’ step: this kind of application needs more
energy to process the video stream. These results show
that in this situation we have a good gain when CCache
is working. It is important to note that some variation
is accepted since all interactive tests results are use-case
dependent.

4 Related Work

The first implementation of compressed cache was done
by Douglis [2] in 1993 and results were not conclusive.
He achieved speed up for some applications, and slow-
downs for others. Later, in 1999 Kaplan [5] pointed out
that the machine Douglis used had a difference between
the processor speed and the access times on hard disk
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that was much smaller than encountered nowadays. Ka-
plan also proposed a new adaptive scheme, since that
used by Douglis was not conclusive about the applica-
tions’ performance.

Following the same scheme, Rodrigo Castro [1] im-
plemented and evaluated compressed cache and com-
pressed swap using the 2.4.x Linux kernel. He proposed
a new approach to reduce fragmentation of the com-
pressed pages, based on contiguous memory allocated
areas—cells. He also proposed a new adaptability pol-
icy that adjusts the compressed cache size on the fly.
Rodrigo’s adaptive compressed cache approach is based
on a tight compressed cache, without allocation of su-
perfluous memory. The cells used by compressed cache
are released to the system as soon as they are no longer
needed. The compressed cache starts with a minimum
size and as soon as the VM system starts to evict pages,
the compressed cache increases its memory usage in or-
der to store them.

All those implementations are focused on desktop or
server platforms. One implementation which is focused

on embedded devices is CRAMES [14]—Compressed
RAM for embedded systems. CRAMES was imple-
mented as a loadable module for the Linux kernel
and evaluated on a battery-powered embedded system.
CRAMES supports in-RAM compressed filesystems of
any type and uses a chunks approach (not the same de-
scribed in this paper) to store compressed pages.

The compressed cache implementation evaluated in this
paper still does not have the adaptive feature imple-
mented. From previous work, CCache uses the same
compression algorithms used by Rodrigo’s implementa-
tion, but the storage of compressed pages is quite dif-
ferent. The chunks approach reduces the fragmentation
close to zero and speeds up the page recovery. CCache
is the first Open Source compressed cache implementa-
tion for 2.6.x Linux kernel and it is under development,
both for desktop/server platforms and for embedded de-
vices, as presented in this paper.

5 Conclusions and Future Work

Storing memory pages as compressed data decreases the
number of access attempts to storage devices such as, for
example, hard disks, which typically are accessed much
slower than the main memory of a system. As such, we
can observe more benefits when the difference between
the access time to the main memory and the storage de-
vice is considerable. This characteristic is not typical
for embedded Linux systems, and the benefits of stor-
ing pages as compressed data are much smaller than on
an x86 architecture. Storage devices in the embedded
Linux systems are typically flash memory, for instance
MMC cards, and as we know, access times for these de-
vices are much faster than access times for a hard disk.
It allows us to come to the conclusion that wide use of
CCache is not justified in the embedded systems.

On the other hand, embedded systems have limitations
in the available memory. Thus, the experimental tests
results show that CCache can improve not only the input
and output performance but the system behavior in gen-
eral by improving memory management like swapping,
allocating big pieces of memory, or out-of-memory han-
dling. Being that as it may, it is also common knowl-
edge that this scenario has been changing along the de-
velopment of embedded Linux. The best benefit of this
CCache implementation is that developers can adjust it
to its system characteristics. Implementing a software-
based solution to handle the memory limitations is much
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better than hardware changes, which can increase the
market price of a product.

The power tests show that CCache makes a positive im-
pact on power consumption, but for the N800 architec-
ture the overall benefit is minor due to the high level of
system integration which is based on the OMAP 2420.

Finally, we can make some important points which can
improve this CCache implementation:

• use only fast compression methods like WKdm and
minilzo, maybe with lzo2;

• make performance and memory optimization for
compression take into account CPU and platform
hardware-accelerating features;

• enable compression according to instant memory
load: fast methods when memory consumption is
moderated, and slow when high memory consump-
tion is reached.

• compress/decompress pages that go to/from a real
swap partition.

• adaptive size of compressed cache: detection of
a memory consumption pattern and predict the
CCache size to support this load.
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