Proceedings of the
Linux Symposium

June 27th—30th, 2007
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel

Martin Bligh, Google

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.

Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

ACPI in Linux® — Myths vs. Reality

Len Brown
Intel Open Source Technology Center
len.brown@intel.com

Abstract

Major Linux distributors have been shipping ACPI in
Linux for several years, yet mis-perceptions about ACPI
persist in the Linux community. This paper addresses
the most common myths about ACPI in Linux.

1 Myth: There is no benefit to enabling ACPI
on my notebook, desktop, or server.

When users boot in ACPI-mode instead of legacy-mode,
the first thing they notice is that the power button is now
under software control. In legacy-mode, it is a physi-
cal switch which immediately removes power. In ACPI
mode, the button interrupts the OS, which can shutdown
gracefully. Indeed, ACPI standardizes the power, sleep,
and lid buttons and the OS can map them to whatever
actions it likes.

In addition to standardizing power button events, ACPI
also standardizes how the OS invokes software con-
trolled power-off. So a software-initiated power off
removes power from the system after Linux has shut-
down, while on many systems in legacy-mode, the op-
erator must manually remove power.

Users notice improved battery life when running in
ACPI-mode. On today’s notebooks, a key contributor to
improved battery life is processor power management.
When the processor is idle, the Linux idle loop takes
advantage of ACPI CPU idle power states (C-states) to
save power. When the processor is partially idle, the
Linux cpufreq sub-system takes advantage of ACPI pro-
cessor performance states (P-states) to run the processor
at reduced frequency and voltage to save power.

Users may notice other differences depending on the
platform and the GUI they use, such as battery capacity
alarms, thermal control, or the addition of or changes in
the the ability to invoke suspend-to-disk or suspend-to-
RAM, etc.

Users with an Intel® processor supporting Hyper-
Threaded Technology (HT) will notice that HT is en-
abled in ACPI-mode, and not available in legacy-mode.

Many systems today are multi-processor and thus use an
I0-APIC to direct multiple interrupt sources to multiple
processors. However, they often do not include legacy
MPS (Multi-Processor Specification) support. Thus,
ACPI is the only way to configure the IO-APIC on these
systems, and they’ll run in XT-PIC mode when booted
without ACPL

But to look at ACPI-mode vs. legacy-mode a bit deeper,
it is necessary to look at the specifications that ACPI
replaces. The most important one is Advanced Power
Management [APM], but ACPI also obsoletes the Multi-
Processor Specification [MPS] and the PCI IRQ Routing
Specification [PIRQ].

1.1 ACPI vs. Advanced Power Management (APM)

APM and ACPI are mutually exclusive. While a flexible
OS can include support for both, the OS can not enable
both on the same platform at the same time.

APM 1.0 was published in 1992 and was supported by
Microsoft® Windows® 3.1. The final update to APM,
1.2, was published in 1996.

ACPI 1.0 was developed in 1996, and Microsoft first
added support for it in Windows NT®. For a period,
Windows preferred ACPI, but retained APM support to
handle older platforms. With the release of Windows
Vista'", Microsoft has completed the transition to ACPI
by dropping support for APM.

Many platform vendors deleted their APM support dur-
ing this transition period, and few will retain APM sup-
port now that this transition is complete.

e 65 e

66 e ACPI in Linux — Myths vs. Reality

Applications

{}
b

APM Driver

{}
b

APM BIOS

User

Kernel

Platform

Figure 1: APM Architecture

1.1.1 APM overview

The goal of the APM specification was to extend battery
life, while hiding the details of how that is done from the
OS in the APM BIOS.

APM defines five general system power states: Full On,
APM Enabled, APM Standby, APM Suspend, and Off.
The Full On state has no power management. The APM
Enabled state may disable some unused devices. The
APM Standby state was intended to be a system state
with instantaneous wakeup latency. The APM Suspend
was optionally suspend-to-RAM, and/or hibernate-to-
disk.

APM defines analogous power states for devices: De-
vice On, Device Power Managed, Device Lower Power,
and Device Off. Device context is lost in the Device
Off state. APM is somewhat vague about whether it
is the job of the OS device driver or the APM BIOS
to save and restore the device-operational parameters
around Device Off.

APM defines CPU Core control states—Full On, Slow
Clock, and Off. Interrupts transition the CPU back to
Full On instantaneously.

An APM-aware OS has an APM Driver that connects
with the APM BIOS. After a connection is established,
the APM Driver and APM BIOS “cooperatively perform
power management.” What this means is that the OS
makes calls into the BIOS to discover and modify the
default policies of the APM BIOS, and the OS polls the
BIOS at least once per second for APM BIOS events.

The APM BIOS can report events to the APM Driver.
For example, after detecting an idle period, the APM
BIOS may issue a System Standby Request Notification
telling the OS that it wants to suspend. The OS must
answer by calling a Set Power State function within a
certain time. If the OS doesn’t answer within the appro-
priate time, the BIOS may suspend the system anyway.
On resume, APM issues a System Standby Resume No-
tification to let the OS know what happened. This is the
OS’s opportunity to update its concept of time-of-day.

The OS can disable APM’s built-in concept of request-
ing a suspend or standby, and can instead manually ask
APM to perform these transitions on demand.

The OS can instrument its idle loop to call into the APM
BIOS to let it know that the processor is idle. The APM
BIOS would then perhaps throttle the CPU if it appeared
to be running faster than necessary.

The APM BIOS knows about AC/DC status. The APM
Driver can query the BIOS for current status, and can
also poll for AC/DC change events.

The APM BIOS knows about battery topology and sta-
tus. The APM Driver can query for configuration as well
as capacity, and can poll for Battery Low Notification.

APM supports a hard-coded list of devices for power
management including display, disk, parallel ports, se-
rial ports, network adapters, and PCMCIA sockets. The
OS can query for their state, enable/disable the APM
BIOS from managing the devices, and poll for state
changes.

1.1.2 Why APM is not viable

APM is fundamentally centered around the the APM
BIOS. The APM BIOS is entered from OS APM Driver
calls as well as from System Management Interrupts
(SM]) into System Management Mode (SMM). SMM is
necessary to implement parts of APM since BIOS code
needs to run on the processor without the knowledge or
support of the OS.

But it turns out that calling into the BIOS is a really
scary thing for an operating system to do. The OS puts
the stability of the system in the hands of the BIOS
developer on every call. Indeed, the only thing more
frightening to the OS is SMM itself, which is completely

2007 Linux Symposium, Volume One e 67

transparent to the OS and thus virtually impossible to
debug. The largest problem with both of these is that
if the state of the system was not as the BIOS devel-
oper expected it, then it may not be restored properly on
BIOS return to the OS.

So the quality of the “APM experience” varied between
platforms depending on the platform’s APM BIOS im-
plementation.

Further, the APM specification includes hard-coded lim-
itations about the system device configuration. It is not
extensible such that the platform firmware can accom-
modate system configurations that did not exist when
the specification was written.

The philosophy of ACPI, on the other hand, is to put
the OS, not the BIOS, in charge of power management
policy. ACPI calls this OSPM, or “Operating System-
directed configuration and Power Management.” OSPM
never jumps into the BIOS in ACPI-mode. However, it
does access system devices and memory by interpreting
BIOS ACPI Machine Language (AML) in kernel mode.

ACPI reduces the the need for SMM, but SMM is still a
tool available to BIOS writers to use when they see fit.

ACPI's AML is extensible. It can describe resources
and capabilities for devices that the specification knows
nothing about—giving the OS the ability to configure
and power-manage a broad range of system configura-
tions over time.

ACPI 1.0 was published at the end of 1996. It is proba-
bly fair to say that platforms did not universally deploy it
until ACPI 2.0 was published in 2000. At that time, Mi-
crosoft released Windows 2000, and the APM era was
effectively over.

So if you've got a notebook from 1998 or 1999 that
includes both APM and ACPI support, you may find
that its APM implementation is more mature (and bet-
ter tested) than its new ACPI implementation. Indeed,
it is true that the upstream Linux kernel enables ACPI
on all systems that advertise ACPI support, but I recom-
mend that Linux distributors ship with CONFIG_ACPI_
BLACKLIST_YEAR=2000 to disable ACPI in Linux on
machines from the last century.

1.2 Multi-Processor Specification (MPS)

MPS 1.1 was issued in 1994. The latest revision, MPS
1.4, was issued in 1995, with minor updates until May,

1997. The primary goal of MPS was to standard-
ize multi-processor configurations such that a “shrink-
wrap” OS could boot and run on them without cus-
tomization. Thus a customer who purchased an MPS-
compliant system would have a choice of available Op-
erating Systems.

MPS mandated that the system be symmetric—all pro-
cessors, memory, and I/O are created equal. It also man-
dated the presence of Local and I/O APICs.

The Local APIC specified support for inter-processor
interrupts—in particular, the INIT IPI and STARTUP
IPI used to bring processors on-line.

While the specification calls it an “MP BIOS,” the code
is much different from the “APM BIOS.” The MP BIOS
simply puts all the processors into a known state so that
the OS can bring them on-line, and constructs static MP
configuration data structures—the MP tables—that enu-
merate the processors and APICS for the OS.

MPS also specified a standard memory map. However,
this memory map was later replaced by €820, which is
part of the ACPI specification.

The MPS tables enumerate processors, buses, and 10-
APICs; and the tables map interrupt sources to I0-APIC
input pins.

MPS mandated that SMP siblings be of equal capabil-
ity. But when Intel introduced Hyper-Threading Tech-
nology (HT) with the Pentium® 4 processor, suddenly
siblings where not all created equal. What would hap-
pen to the installed base if MPS enumerated HT sib-
lings like SMP siblings? Certainly if an HT-ignorant
OS treated HT siblings as SMP, it would not schedule
tasks optimally.

So the existing MPS 1.4 was not extended to handle
HT,' and today HT siblings are only available to the OS
by parsing the ACPI tables.

But MPS had a sister specification to help machines han-
dle mapping interrupt wires in PIC an IO-APIC mode—
the PIRQ spec.

1.3 ACPI vs. PCI IRQ Routers (PIRQ)

IRQ routers are motherboard logic devices that connect
physical IRQ wires to different interrupt controller in-

ISome BIOSes have a SETUP option to enumerate HT siblings
in MPS, but this is a non-standard feature.

68 e ACPI in Linux — Myths vs. Reality

put pins. Microsoft published [PIRQ], describing OS-
visible tables for PIRQ routers. However, the spec ex-
cludes any mention of a standard method to get and
set the routers—instead stating that Microsoft will work
with the chipset vendors to make sure Windows works
with their chipsets.

ACPI generalizes PIRQ routers into ACPI PCI Interrupt
Link Devices. In real-life, these are just AML wrap-
pers for both the contents of the PIRQ tables, and the
undocumented chipset-specific get/set methods above.
The key is that the OS doesn’t need any chipset-specific
knowledge to figure out what links can be set to, what
they are currently set to, or to change the settings. What
this means is that the ACPI-aware OS is able to route in-
terrupts on platforms for which it doesn’t have intimate
knowledge.

1.4 With benefits come risks

It is fair to say that the Linux/ACPI sub-system is large
and complex, particularly when compared with BIOS-
based implementations such as APM. It is also fair to
say that enabling ACPI—effectively an entire suite of
features—carries with it a risk of bugs. Indeed it carries
with it a risk of regressions, particularly on pre-2000
systems which may have a mature APM implementation
and an immature ACPI implementation.

But the hardware industry has effectively abandoned the
previous standards that are replaced by ACPI. Further,
Linux distributors are now universally shipping and sup-
porting ACPI in Linux. So it is critical that the Linux
community continue to build the most robust and full
featured ACPI implementation possible to benefit its
users.

2 Myth: Suspend to Disk doesn’t work, it must
be ACPTI’s fault.

The suspend-to-disk (STD) implementation in Linux
has very little to do with ACPI. Indeed, if STD is not
working on your system, try it with acpi=off or
CONFIG_ACPI=n. Only if it works better without ACPI
can you assume that it is an ACPI-specific issue.

ACPT’s role during suspend-to-disk is very much like
its role in a normal system boot and a normal system
power-off. The main difference is that when ACPI is

available, STD uses the “platform” method to power off
the machine instead of the “shutdown” method. This
allows more devices to be enabled as wakeup devices,
as some can wake the system from suspend to disk, but
not from soft power-offt.

Many end-users think think that STD and ACPI are
practically synonyms. One reason for this is because in
the past, /proc/acpi/sleep was used to invoke STD.
However, this method is now deprecated in favor of the
generic /sys/power/state interface.

Note that suspend-to-RAM (STR) is more dependent
on ACPI than STD, as the sleep and wakeup paths are
ACPI-specific.

However, the vast majority of both STD and STR fail-
ures today have nothing to do with ACPI itself, but in-
stead are related to device drivers. You can often iso-
late these issues by unloading a device driver before sus-
pend, and re-loading it after resume.

3 Myth: The buttons on my notebook don’t
work, it must be ACPI’s fault.

The ACPI specification standardizes only 3 buttons—
power, sleep, and lid. If these buttons do not work in
ACPI-mode, then it is, indeed, an ACPI issue.

The other buttons on the keyboard are handled in a vari-
ety of platform-specific methods.

First there are the standard keyboard buttons that go di-
rectly to the input sub-system. When these malfunc-
tion, it cannot be blamed on ACPI, because if there is a
problem with them, they’ll have the same problem with
acpi=off.

The “ACPI issues” appear with “hot-keys,” which are
platform-specific buttons that are not handled by the
standard keyboard driver.

When in acpi=off mode, these are sometimes han-
dled in the BIOS with SMI/SMM. But when in ACPI-
mode, this SMM support is disabled by the platform
vendor on the assumption that if ACPI-mode is enabled,
then a modern OS sporting a platform-specific hot-key
driver is available to handle the hot-keys. For Win-
dows, the vendor may be able to guarantee this is true.
However, to date, no platform vendor has volunteered
to create or support the community in the creation of
platform-specific hot-key drivers for Linux.

Sometimes these keys actually do use the ACPI subsys-
tem to get their work done. However, they report events
to vendor-specific ACPI devices, which need vendor-
specific ACPI device drivers to receive the events and
map them to actions.

4 Myth: My motherboard boots with

acpi=off, but fails otherwise, it must
be ACPI’s fault.

With the advent of multi-core processors, SMP systems

are very common, and all modern x86 SMP system have
an [0-APIC.

However, many notebook and desktop BIOS vendors do
not include MPS support in their BIOS. So when booted
with acpi=off, these systems revert all the way back
to 8259 PIC mode. So only in ACPI-mode is the 10-
APIC enabled, and thus any IO-APIC mode issues get
blamed on ACPI.

The real ACPI vs. non-ACPI, apples-versus-apples com-
parison would be acpi=off vs. noapic—for both of
these will boot in PIC mode.

But why do so many systems have trouble with I0-APIC
mode? The most common reason is the periodic HZ
timer. Linux typically uses the 8254 Programmable In-
terrupt Timer (PIT) for clock ticks. This timer is typi-
cally routed to IRQO via either IO-APIC pinO or pin2.

But Windows doesn’t always use the PIT; it uses the
RTC on IRQ8. So a system vendor that validates their
system only with Windows and never even boots Linux
before releasing their hardware may not notice that the
8254 PIT used by Linux is not hooked up properly.

5 Myth: The Linux community has no influ-
ence on the ACPI Specification.

HP, Intel, Microsoft, Phoenix, and Toshiba co-
developed the ACPI specification in the mid-1990s, but
it continues to evolve over time. Indeed, version 3.0b
was published in October, 2006.

Linux plays a role in that evolution. The latest version
of the specification included a number of “clarifications”
that were due to direct feedback from the Linux commu-
nity.

2007 Linux Symposium, Volume One e 69

‘. Open [] Resolved [[] Closed ‘
200 —
180 =
160
140
120
100 I
80
60
40 | |
1] HJ[L
o-‘-‘lH‘I‘ UL H 1 ORH 0 fulill
5 0
7} o s oo o c —= o5 [
8238250555228 28£8
m‘nB‘EOH)EW'{%¢=—‘°SOZOm
2o EYa =9 [= g~
. 8255558022552
D0 T e oL 3Ha0g L
'~‘=9.C_"—,—Cn_°-n_‘va_¢$§§;_
Sa €580 L2 LELEESE
O & 0% < o © (2 b=}
= 0 § e g_*—)
c S) o o
S a %
o a

Figure 2: ACPI sighting profile at bugzilla.kernel.org

Sometimes Linux fails to work properly on a system in
the field and the root cause is that the ACPI specification
was vague. This caused the Linux implementation to do

one thing, while the BIOS vendors and Microsoft did
another thing.

The Linux/ACPI team in the Intel Open Source Tech-
nology Center submits “specification clarifications” di-
rectly to the ACPI committee when this happens. The
specification is updated, and Linux is changed to match
the corrected specification.

6 Myth: ACPI bugs are all due to sub-
standard platform BIOS.

When Linux implemented and shipped ACPI, we ran
into three categories of failures:

1. Linux fails because the platform BIOS clearly vio-
lates the written ACPI specification.

These failures exist because until Linux imple-
mented ACPI, platform vendors had only Windows
OS compatibility tests to verify if their ACPI im-
plementation was correct.

70 o ACPI in Linux — Myths vs. Reality

Unfortunately, an OS compatibility test is not a
specification compliance test. The result is that
many BIOS implementations work by accident be-
cause they have been exercised by only one OS.

Today, the Linux-ready Firmware Developer Kit
[FWKIT] is available so that vendors who care
about Linux have the tools they need to assure their
BIOS implementation is compatible with Linux.

2. Linux fails because the platform BIOS writer and
Linux programmer interpreted the ACPI specifica-
tion differently.

As mentioned in the previous section, we treat
these as Linux bugs, fix them, and update the spec-
ification to match the actual industry practice.

3. Bugs in the Linux/ACPI implementation. These
are simply bugs in Linux, like any other bugs in
Linux.

The myth is that a large number of failures are due BIOS
bugs in category #1. The reality is shown by Figure 2—
under 10% of all Linux/ACPI bugs can be blamed on
broken BIOSes.

The majority of bugs have actually been reported against
category #3, the Linux-specific code.

7 Myth: ACPI code seems to change a lot, but
isn’t getting any better.

When ACPI was still new in Linux and few distributors
were shipping it, there were many times when changes
would fix several machines, but break several others. To
be honest, a certain amount of experimentation was go-
ing on to figure out how to become bug-compatible with
the installed base of systems.

Marcelo Tosatti was maintaining Linux-2.4, and he
walked up to me and in a concerned voice asked why
we’d break some systems while fixing others. It was
clear we needed validation tests to prevent regressions,
but we didn’t have them yet. And before we did, Linux
distributors cut over to Linux-2.6, and almost univer-
sally started shipping ACPI. Suddenly we had a large
installed base running Linux/ACPI.

For a short while we didn’t mend our ways of experi-
menting on the user base. Then Linus Torvalds scolded

us for knowingly causing regressions, insisting that even
if a system is working by mistake, changes should never
knowingly break the installed base. He was right, of
course, and ever since the Linux/ACPI team has made
regressions the highest-priority issues.

But while this was happening, a team at Intel was creat-
ing three test suites that today are used to to verify that
Linux/ACPI is constantly improving.

1. The ACPICA ASL Test Suite (ASLTS) is dis-
tributed in open source along with the ACPICA
source package on intel.com. [ACPICA]
ASLTS runs a suite of over 2,000 ASL tests against
the ACPICA AML interpreter in a simulation envi-
ronment. This is the same interpreter that resides in
the Linux Kernel. During the development of this
test suite, over 300 issues were found. Today there
are fewer than 50 unresolved. ACPICA changes
are not released if there are any regressions found
by this test suite.

2. The ACPICA API Test Suite exercises the inter-
faces to the ACPICA core as seen from the OS.
Like ASLTS, the API tests are done in a simulation
environment.

3. ACPI ABAT—Automated Basic Acceptance
Tests—which run on top of Linux, exercising
user-visible features that are implemented by
ACPI. ACPI ABAT is published in open source on
the Linux/ACPI home page.”

Finally, one can examine the bug profile at bugzilla.
kernel.org and observe that 80% of all sightings are
now closed.

8 Myth: ACPI is slow and thus bad for high-
performance cpufreq governors such as “on-
demand.”

It is true that the BIOS exports AML to the OS, which
must use an AML interpreter to parse it. It is true that
parsing AML is not intended to occur on performance-
critical paths. So how can ACPI possibly be appropriate
for enabling P-state transitions such as those made by
the high-performance “ondemand” P-state governor—
many times per second?

2http://acpi.sourceforge.net

2007 Linux Symposium, Volume One o 71

The answer is that AML is used to parse the ACPI tables
to tell cpufreq what states ondemand has to choose
from. ondemand then implements its run-time policy
without any involvement from ACPI.

The exception to this rule is that the platform may decide
at run-time that the number of P-states should change.
This is a relatively rare event, e.g. on an AC—DC tran-
sition, or a critical thermal condition. In this case, ACPI
re-evaluates the list of P-states and informs cpufreq
what new states are available. Cpufreq responds to this
change and then proceeds to make its run-time governor
decisions without any involvement from ACPI.

9 Myth: Speedstep-centrino is native and thus
faster than ACPI-based ‘acpi-cpufreq.’

To change the processor frequency and voltage, the OS
can either write directly to native, model-specific regis-
ters (MSR), or it can access an IO address. There can
be a significant efficiency penalty for IO access on some
systems, particularly those which trap into SMM on that
access.

So the community implemented speedstep-centrino, a
cpufreq driver with hard-coded P-state tables based on
CPUID and the knowledge of native MSRs. Speedstep-
centrino did not need ACPI at all.

At that time, using acpi-cpufreq instead of speedstep-
centrino meant using the less-efficient IO accesses. So
the myth was true—but two things changed.

1. Speedstep-centrino’s hard-coded P-state tables
turned out to be difficult to maintain. So ACPI-
table capability was added to speedstep-centrino
where it would consult ACPI for the tables first,
and use the hard-coded tables as a backup.

2. Intel published the “Intel Processor Vendor-
Specific ACPI Interface Specification” along with
[ACPICA]. This specification made public the bits
necessary for an ACPI implementation to use na-
tive MSR access. So native MSR access was added
to acpi-cpufreq.

The result was that both drivers could talk ACPI, and
both could talk to MSRs. Speedstep-centrino still had
its hard-coded tables, and acpi-cpufreq could still talk
to 10 addresses if the system asked it to.

Recently, acpi-cpufreq has been anointed the preferred
driver of the two, and speedstep-centrino is scheduled
for removal from the source tree as un-maintainable.

10 Myth: More CPU idle power states (C-
states) are better than fewer states.

Users observe the system C-states in /proc/acpi/
processor/*/power and assume that systems with
more C-states save more power in idle than systems with
fewer C-states. If they look at the data book for an Intel
Core""'2 Duo processor and try to relate those states to
this file, then that is a reasonable assumption.

However, with some limitations, the mapping between
hardware C-states and the ACPI C-states seen by Linux
is arbitrary. The only things that matter with C-states is
the amount of power saved, and the latency associated
with waking up the processor. Some systems export
lots of C-states, others export fewer C-states and have
power-saving features implemented behind the scenes.

An example of this is Dynamic Cache Sizing. This is not
under direct OS or C-state control. However, the pro-
cessor recognizes that when deep C-states are entered,
it can progressively flush more and more of the cache.
When the system is very idle, the cache is completely
flushed and is totally powered off. The user cannot tell
if this feature is implemented in the processor by look-
ing at how many C-states are exported to the OS—it is
implemented behind the scenes in processor firmware.

11 Myth: Throttling the CPU will always use
less energy and extend battery life.

Energy = Power x Time. That is to say, [Watt-Hours] =
[Watts] * [Hours].

Say the processor is throttled to half clock speed so that
it runs at half power, but takes twice as long to get the
job done. The energy consumed to retire the workload
is the same and the only effect was to make the work
take twice as long. Energy/work is constant.

There are, however, some second-order effects which
make this myth partially true. For one, batteries are
not ideal. They tend to supply more total energy when
drained at a lower rate than when drained at a higher
rate.

72 o ACPI in Linux — Myths vs. Reality

Secondly, systems with fans require energy to run those
fans. If the system can retire the workload without get-
ting hot, and succeeds in running the fans slower (or
off), then less energy is required to retire the workload.

Note that processor clock throttling (ACPI T-states) dis-
cussed here should not be confused with processor per-
formance states (ACPI P-states). P-states simultane-
ously reduce the voltage with the clock speed. As
power varies as voltage squared, deeper P-states do take
the processor to a more efficient energy/work operating
point and minimize energy/work.

12 Myth: 1 can’t contribute to improving
ACPI in Linux.

The basis of this last myth may be the existence of
ACPICA.

ACPICA (ACPI Component Architecture) is Intel’s ref-
erence implementation of the ACPI interpreter and sur-
rounding OS-agnostic code. In addition to Linux,
BSD®, Solaris ', and other operating systems rely on
ACPICA as the core of their ACPI implementation. For
this to work, Intel holds the copyright on the code, and
publishes under dual BSD and GPL licenses.

In Linux, 160 ACPICA files reside in sub-directories un-
der /drivers/acpi. When a patch is submitted from
the Linux community to those files, the Linux/ACPI
maintainer asks for their permission to license the
change to Intel to re-distribute under both licenses on
the file, not just the GPL. That way, Intel can share the
fix with the other ACPICA users rather than having the
multiple copies diverge.

The ACPICA license isn’t a barrier for open source con-
tributors, but since it isn’t straight GPL and extra per-
mission is requested, it does generate a false impression
that patches are unwelcome.

Further, it is the 40 pure-GPL files in /drivers/acpi
that are most interesting to the majority of the Linux
community anyway, for those files contain all the Linux-
specific code and ACPI-related policy—treating the
ACPICA core as a “black box.”

But submitting patches is only one way to help.
As described earlier, a lot of the work surrounding
Linux/ACPI is determining what it means to be bug-
compatible with common industry platform BIOS prac-
tice. The more people that are testing and poking at

ACPI-related functions on a broad range of systems, the
easier it is for the developers to improve the subsystem.

Your system should boot as well (or better) in ACPI-
mode using no boot parameters as it does with acpi=
of f or other workarounds. Further, the power manage-
ment features supported by ACPI such as suspend-to-
RAM and processor power management should func-
tion properly and should never stop functioning prop-
erly.

It is a huge benefit to the community and the quality
of the Linux ACPI implementation when users insist
that their machines work properly—without the aid of
workarounds. When users report regressions, file bugs,
and test fixes, they are doing the community a great ser-
vices that has a dramatic positive impact on the quality
of ACPI in Linux.

13 Conclusion

Forget your initial impressions of Linux/ACPI made
years ago. ACPI in Linux is not a myth, it is now uni-
versally deployed by the major Linux distributors, and
it must function properly. Insist that the ACPI-related
features on your system work perfectly. If they don’t,
complain loudly and persistently’ to help the develop-
ers find and fix the issues.

The community must maintain its high standards for
ACPI in Linux to continuously improve into the high-
est quality implementation possible.

References

[ACPI] Hewlett-Packard, Intel, Microsoft, Phoenix,
Toshiba, Advanced Configuration and Power
Interface, Revision 3.0b, October, 2006.
http://www.acpi.info

[ACPICA] Intel, ACPI Component Architecture,
http://www.intel.com/technology/
iapc/acpi/downloads.htm

[APM] Intel, Microsoft Advanced Power Management
BIOS Interface Specification, Revision 1.2,
February, 1996. http://www.microsoft.
com/whdc/archive/amp_12.mspx

3Start with linux-acpi@vger.kernel.org for
Linux/ACPI related issues.

[FWKIT] Linux-Ready Firmware Developer Kit,
http://www.linuxfirmwarekit.org

[MPS] Intel, MultiProcessor Specification, Version
1.4, May, 1997. http://www.intel.com/
design/intarch/MANUALS/242016.htm

[PIRQ] Microsoft, PCI IRQ Routing Table
Specification, Version 1.0, February, 1996.
http://www.microsoft.com/whdc/
archive/pciirg.mspx

2007 Linux Symposium, Volume One e 73

74 o ACPI in Linux — Myths vs. Reality

