
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Asynchronous System Calls
Genesis and Status

Zach Brown
Oracle

zach.brown@oracle.com

Abstract

The Linux kernel provides a system call interface for
asynchronous I/O (AIO) which has not been widely
adopted. It supports few operations and provides asyn-
chronous submission and completion of those opera-
tions in limited circumstances. It has succeeded in pro-
viding cache-avoiding reads and writes to regular files,
used almost exclusively by database software. Main-
taining this minimal functionality has proven to be dis-
proportionately difficult which has in turn discouraged
adding support for other operations.

Recently Ingo Molnar introduced a subsystem called
syslets [3]. Syslets give user space a new system call
interface for performing asynchronous operations. They
support efficient asynchronous submission and comple-
tion of almost every existing system call interface in the
kernel.

This paper documents the path that leads from the limits
of the existing AIO implementation to syslets. Syslets
have the potential to both reduce the cost and broaden
the functionality of AIO support in the Linux kernel.

1 Background

Before analyzing the benefits of syslets we first review
the motivation for AIO and explain the limitations of the
kernel’s current support for AIO.

1.1 Briefly, Why AIO?

AIO can lead to better system resource utilization by
letting a single process do independent work in parallel.

Take the trivial example of calculating the cryptographic
hash of a very large file. The file is read in pieces into

memory and each piece is hashed. With synchronous
read() calls, the CPU is idle while each piece is read
from the file. Then as the CPU hashes the file in memory
the disk is idle. If it takes the same amount of time to
read a piece as it takes to calculate its hash (a bit of a
stretch these days) then the system is working at half
capacity.

If AIO is used, our example process fully utilizes both
the CPU and the disk by letting it issue the read for the
next piece without blocking the CPU. After issuing the
read, the process is free to use the CPU to hash the cur-
rent piece. Once this hashing is complete the process
finds that the next read has completed and is available
for hashing.

The general principles of this trivial example apply
to more relevant modern software systems. Trade a
streaming read from a large file for random reads from
a block device and trade hashing for non-blocking net-
work IO and you have an ISCSI target server.

1.2 KAIO Implementation Overview

The kernel provides AIO for file IO with a set of sys-
tem calls. These system calls and their implementation
in the kernel have come to be known as KAIO. Appli-
cations use KAIO by first packing the arguments for IO
operations into iocb structs. IO operations are initiated
by passing an array of iocbs, one element per IO op-
eration, to io_submit(). Eventually the result of the
operations are made available as an array of io_event
structures—one for each completed IO operation.

In the kernel, the io_submit() system call handler
translates each of the iocbs from user space into a
kiocb structure—a kernel representation of the pend-
ing operation. To initiate the IO, the synchronous file
IO code paths are called. The file IO paths have two
choices at this point.

• 81 •



82 • Asynchronous System Calls

The first option is for a code path to block process-
ing the IO and only return once the IO is complete.
The process calling io_submit() blocks and when
it eventually returns, the IO is immediately available for
io_getevents(). This is what happens if a buffered
file IO operation is initiated with KAIO.

The second option is for the file IO path to note that
it is being called asynchronously and take action to
avoid blocking the caller. The KAIO subsystem pro-
vides some infrastructure to support this. The file IO
path can return a specific error, -EIOCBQUEUED, to
indicate that the operation was initiated and will com-
plete in the future. The file IO path promises to call
aio_complete() on the kiocb when the IO is
complete.

The O_DIRECT file IO path is the most significant
mainline kernel path to implement the second op-
tion. It uses block IO completion handlers to call
aio_complete() after returning -EIOCBQUEUED
rather than waiting for the block IO to complete before
returning.

1.3 KAIO Maintenance Burden

The KAIO infrastructure has gotten us pretty far but its
implementation imposes a significant maintenance bur-
den on code paths which support it.

• Continuation can’t reference the submitting pro-
cess. Kernel code has a fundamental construct for
referencing the currently executing process. KAIO
requires very careful attention to when this is done.
Once the handler returns -EIOCBQUEUED then
the submission system call can return and kernel
code will no longer be executing in the context of
the submitting process. This means that an oper-
ation can only avoid blocking once it has gotten
everything it needs from the submitting process.
This keeps O_DIRECT, for example, from avoid-
ing blocking until it has pinned all of the pages
from user space. It performs file system block off-
set lookups in the mean time which it must block
on.

• Returning an error instead of blocking implies far-
reaching changes to core subsystems. A large num-
ber of fundamental kernel interfaces block and cur-
rently can’t return an error. lock_page() and

mutex_lock() are only two of the most impor-
tant. These interfaces have to be taught to return an
error instead of blocking. Not only does this push
changes out to core subsystems, it requires rewrit-
ing code paths to handle errors from these func-
tions which might not have handled errors before.

• KAIO’s special return codes must be re-
turned from their source, which has promised
to call aio_complete(), all the way
back to io_setup(), which will call
aio_complete() if it does not see the special
error codes. Code that innocently used to overwrite
an existing error code with its own, say returning
-EIO when O_SYNC metadata writing fails, can
lead to duplicate calls to aio_complete() .
This invariant must be enforced through any mid-
level helpers that might have no idea that they’re
being called in the path between io_submit()
and the source of KAIO’s special error codes.

• iocbs duplicate system call arguments. For any
operation to be supported by KAIO it must have its
arguments expressed in the iocb structure. This
duplicates all the problems that the system call in-
terface already solves. Should we use native types
and compatibility translation between user space
and kernel for different word sizes? Should we use
fixed-width types and create subtle inconsistencies
with the synchronous interfaces? If we could re-
use the existing convention of passing arguments
to the kernel, the system call ABI, we’d avoid this
mess.

Far better would be a way to provide an asynchronous
system call interface without having to modify, and risk
breaking, existing system call handlers.

2 Fibrils

2.1 Blame Linus

In November of 2005, Linus Torvalds expressed frus-
tration with the current KAIO implementation. He sug-
gested an alternative he called micro-threads. It built on
two fundamental, and seemingly obvious, observations:

1. The C stack already expresses the partial progress
of an operation much more naturally than explicit
progress storage in kiocb ever will.



2007 Linux Symposium, Volume One • 83

2. schedule(), the core of the kernel task sched-
uler, already knows when an operation blocks for
any reason. Handling blocked operations in the
scheduler removes the need to handle blocking at
every potential blocking call site.

The proposal was to use the call stack as the represen-
tation of a partially completed operation. As an opera-
tion is submitted its handler would be executed as nor-
mal, exactly as if it was executed synchronously. If it
blocked, its stack would be saved away and the stack of
the next runnable operation would be put into place.

The obvious way to use a scheduler to switch per-
operation stacks is to use a full kernel thread for each
operation. Originally it was feared that a full kernel
thread per operation would be too expensive to manage
and switch between because the existing scheduler in-
terface would have required initiating each operation in
its own thread from the start. This is wasted effort if it
turns out that the operations do not need their own con-
text because they do not block. Scheduling stacks only
when an operation blocks defers the scheduler’s work
until it is explicitly needed.

After experience with KAIO’s limitations, scheduling
stacks offers tantalizing benefits:

• The submitting process never blocks

• Very little cost is required to issue non-blocking
operations through the AIO interface

Most importantly, it requires no changes to system call
handlers—they are almost all instantly supported.

2.2 Fibrils prototype

There were two primary obstacles to implementing this
proposal.

First, the kernel associates a structure with a given task,
called the task_struct. By convention, it’s con-
sidered private to code that is executing in the context
of that task. The notion of scheduling stacks changes
this fundamental convention in the kernel. Schedul-
ing stacks, even if they’re not concurrently executing
on multiple CPUs, implies that code which accesses
task_struct must now be re-entrant. Involuntary

preemption greatly increases the problem. Every mem-
ber of task_struct would need to be audited to en-
sure that concurrent access would be safe.

Second, the kernel interfaces for putting a code path to
sleep and waking it back up are also implemented in
terms of these task_structs. If we now have multi-
ple code paths being scheduled as stacks in the context
of one task then we have to rework these interfaces to
wake up the stacks instead of the task_struct that
they all belong to. These sleeping interfaces are some
of the most used in the kernel. Even if the changes are
reasonably low-risk this is an incredible amount of code
churn.

It took about a year to get around to seriously consider-
ing making these large changes. The result was a proto-
type that introduced a saved stack which could be sched-
uled under a task, called a fibril [1].

3 Syslets

The fibrils prototype succeeded in sparking debate of
generic AIO system calls. In his response to fibrils [4],
Ingo Molnar reasonably expressed dissatisfaction with
the fibrils construct. First, the notion of a secondary sim-
pler fibrils scheduler will not last over time as people ask
it to take on more functionality. Eventually it will end
up as complicated as the task scheduler it was trying to
avoid. There were already signs of this in the lack of
support for POSIX AIO’s prioritized operations. Sec-
ond, effort would be better spent adapting the main task
scheduler to support asynchronous system calls instead
of creating a secondary construct to avoid the perceived
cost of the task scheduler.

Two weeks later, he announced [2] an interface and
scheduler changes to support asynchronous system calls
which he called syslets.1

The syslet implementation first makes the assertion that
the modern task scheduler is efficient enough to be used
for swapping blocked operations in and out. It uses full
kernel tasks to express each blocked operation.

The syslet infrastructure modifies the scheduler so that
each operation does not require execution in a dedicated
task at the time of submission. If a task submits a sys-
tem call with syslets and the operation blocks, then the

1The reader may be forgiven for giggling at the similarity to
Chicklets, a brand of chewing gum.



84 • Asynchronous System Calls

scheduler performs an implicit clone(). The submis-
sion call then returns as the child of the submitting task.
This is carefully managed so that the user space regis-
ters associated with the submitting task are migrated to
the new child task that will be returning to user space.
This requires a very small amount of support code in
each architecture that wishes to support syslets.

Returning from a blocked syslet operation in a cloned
child is critical to the simplicity of the syslets approach.
Fibrils tried to return to user space in the same con-
text that submitted the operation. This lead to exten-
sive modifications to allow a context to be referenced
by more than one operation at a time. The syslet infras-
tructure avoids these modifications by declaring that a
blocked syslet operation will return to user space in a
new task.

This is a viable approach because nearly all significant
user space thread state is either shared between tasks
or is inherited by a new child task from its parent. It
will be very rare that user space will suffer ill effects
of returning in a new child task. One consequence is
that gettid() will return a new value after a syslet
operation blocks. This could require some applications
to more carefully manage per-thread state.

4 Implementing KAIO with syslets

So far we’ve considered asynchronous system calls,
both fibrils and syslets, which are accessible through a
set of new system calls. This gives user space a pow-
erful new tool, but it does nothing to address the kernel
maintenance problem of the KAIO interface. The KAIO
interface can be provided by the kernel but implemented
in terms of syslets instead of kiocbs.

As the iocb structures are copied from user space their
arguments would be used to issue syslet operations. As
the system call handler returns in the syslet thread it
would take the result of the operation and insert it into
the KAIO event completion ring.

Since the syslet interface performs an implicit clone we
cannot call the syslet submission paths directly from
the submitting user context. Current KAIO users are
not prepared to have their thread context change under
them. This requires worker threads which are very care-
fully managed so as not to unacceptably degrade perfor-
mance.

Cancellation would need to be supported. Signals could
be sent to the tasks which are executing syslets which
could cause the handler to return. The same accounting
which associated a user’s iocb with a syslet could be
annotated to indicate that the operation should complete
as canceled instead of returning the result of the system
call.

4.1 Benefits

Implementing KAIO with syslets offers to simplify ex-
isting paths which support KAIO. Those paths will also
provide greater KAIO support by blocking less fre-
quently.

System call handlers would no longer need to know
about kiocbs. They could be removed from the file
IO paths entirely. Synchronous file IO would no longer
need to work with these kiocbswhen they are not pro-
viding KAIO functionality. The specific error codes that
needed to be carefully maintained could be discarded.

KAIO submission would not block as often as it does
now. As explored in our trivial file hashing exam-
ple, blocking in submission can lead to resource under-
utilization. Others have complained that it can make
it difficult for an application to measure the latency of
operations which are submitted concurrently. This has
been observed in the field as O_DIRECT writes issued
with KAIO block waiting for an available IO request
structure.

4.2 Risks

Implementing KAIO with syslets runs the risk of adding
significant memory and CPU cost to each operation. It
must be very carefully managed to keep these costs un-
der control.

Memory consumption will go up as each blocked opera-
tion is tracked with a kernel thread instead of a kiocb.
This may be alleviated by limiting the number of KAIO
operations which are issued as syslets at any given time.
This measure would only be possible if KAIO contin-
ues to only support operations which are guaranteed to
make forward progress.

Completion will require a path through the scheduler.
O_DIRECT file IO demonstrates this problem. Previ-
ously it could call aio_complete() from block IO



2007 Linux Symposium, Volume One • 85

completion handlers which would immediately queue
the operation for collection by user space. With syslets
the block IO completion handlers would wake the
blocked syslet executing the IO. The syslet would wake
up and run to completion and return at which point the
operation would be queued for collection by user space.

4.3 Remaining Work

An initial rewrite of the KAIO subsystem has been done
and put through light testing. At the time of this writing
conclusive results are not yet available. There is much
work yet to be done. Results may be found in the future
on the web at http://oss.oracle.com/~zab/
kaio-syslets/.

5 Conclusion

KAIO has long frustrated the kernel community with its
limited functionality and high maintenance cost. Syslets
offer a powerful interface for user space to move to-
wards in the future. With luck, syslets may also ease the
burden of supporting existing KAIO functionality while
addressing significant limitations of the current imple-
mentation.

6 Acknowledgments

Thanks to Valerie Henson and Mark Fasheh for their
valuable feedback on this paper.

References

[1] Zach Brown. Generic aio by scheduling stacks.
http:
//lkml.org/lkml/2007/1/30/330.

[2] Ingo Molnar. Announce: Syslets, generic
asynchronous system call support. http:
//lkml.org/lkml/2007/2/13/142.

[3] Ingo Molnar. downloadable syslets patches.
http://people.redhat.com/mingo/
syslet-patches/.

[4] Ingo Molnar. in response to generic aio by
scheduling stacks.
http://lkml.org/lkml/2007/1/31/34.



86 • Asynchronous System Calls


