Proceedings of the
Linux Symposium

June 27th—30th, 2007
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel

Martin Bligh, Google

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.

Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Breaking the Chains—Using LinuxBIOS to Liberate Embedded x86
Processors

Jordan H. Crouse
Advanced Micro Devices, Inc.
jordan.crouse@amd. com

Abstract

While x86 processors are an attractive option for embed-
ded designs, many embedded developers avoid them be-
cause x86-based systems remain dependent on a legacy
BIOS ROM to set up the system. LinuxBIOS is an
open source solution that replaces the proprietary BIOS
ROMs with a light-weight loader. LinuxBIOS frees the
developer from complex CPU and chipset initialization
and allows a variety of payloads to be loaded, including
the Linux kernel itself.

This presentation reviews the journey of the AMD
Geode™" processors and chipset as they were integrated
into LinuxBIOS to become the centerpoint of the One
Laptop Per Child (OLPC) project. We also discuss how
embedded developers can take advantage of the Lin-
uxBIOS environment for their own x86-based projects.

1 Introduction

Ever since the x86 Personal Computer (PC) architec-
ture was introduced in 1981, it has been accompanied by
bootstrap code known as the Basic Input/Output System
(BIOS) that executes a Power On Self Test (POST). Al-
most every year since the PC’s introduction, hardware
and operating system features have increased in com-
plexity. Each new feature adds complexity to the BIOS,
which must maintain compatibility with older operating
systems and yet also provide support for new ones. The
end result is a convoluted and cryptic combination of old
standards (such as software interrupts for accessing the
display and storage devices) and new standards (such as
Advanced Configuration and Power Interface (ACPI)).

Almost all BIOS implementations are proprietary and
many Open Source developers are in conflict with what
is perceived to generally be a “black magic” box. Due to
the arcane nature of the BIOS, most modern operating

Marc E. Jones
Advanced Micro Devices, Inc.
marc.jones@amd.com

Ronald G. Minnich
Sandia National Labs

systems have abandoned the BIOS hardware interfaces
and access the hardware directly. The desktop computer
focus of the traditional BIOS model frustrates embed-
ded systems designers and developers, who struggle to
get a BIOS that embraces their unique platforms. Due to
the very specific requirements for system boot time and
resource usage, it is difficult to meet embedded stan-
dards with a BIOS designed for two decades of desktop
computers.

The LinuxBIOS project exists to address legacy BIOS
issues. It is licenced under the GNU Public License
(GPL) to promote a transparent and open loader. Lin-
uxBIOS provides CPU and chipset initialization for x86,
x86_64, and Alpha systems and allows the flexibility to
load and run any number of different payloads.

This paper discusses the development and use of Lin-
uxBIOS for embedded x86 platforms based on AMD
Geode processors. The first section examines the history
of LinuxBIOS and the AMD Geode processors. The
next section moves into detail about the system initial-
ization process. The final section discusses integrating
payloads with the LinuxBIOS firmware.

2 History

“History is a guide to navigation in perilous
times. History is who we are and why we are
the way we are.”

—David C. McCullough

2.1 LinuxBIOS History

Ron Minnich started the LinuxBIOS project at Los
Alamos National Lab (LANL) in September 1999 to ad-
dress problems caused by the PC BIOS in large clusters.
The team agreed that the ideal PC cluster node would
have the following features:

e 103 o

104 e Breaking the Chains—Using LinuxBIOS to Liberate Embedded x86 Processors

e Boot directly into an OS from non-volatile RAM,;
e Configure only the network interfaces;

e Connect to a control node using any working net-
work interface;

e Take action only at the direction of the control
node.

At that time, the LANL team felt that Linux® did a bet-
ter job of running the hardware than the PC BIOS. Their
concept was to use a simple hardware bootstrap to load
a small Linux kernel from flash to memory. Leveraging
work from the OpenBIOS project, the LinuxBIOS team
booted an Intel L440GX+ motherboard after approxi-
mately six months of development. Early on, the team
decided that assembly code would not be the future of
LinuxBIOS. OpenBIOS was disregarded because it was
based on a great deal of assembly code and a difficult-to-
master build structure. The team found a simple loader
from STMicroelectronics called STPC BIOS that was
written in C and available to be open sourced, so it be-
came the basis for the first version of LinuxBIOS.!

In 2000, Linux NetworX and Linux Labs joined the
effort. The LinuxBIOS team added Symmetric Multi-
ple Processor (SMP) support, an Alpha port, and cre-
ated the first 13-node LinuxBIOS-based Supercomput-
ing Clusters. Since 2001, the team has added devel-
opers and they continue to port to new platforms, in-
cluding AMD Opteron' processor- and AMD Athlon'"
processor-based platforms. Interestingly enough, Lin-
uxBIOS was originally designed for clusters, yet Lin-
uxBIOS for non-cluster platforms far exceeds the clus-
ter use.

In 2005, some current and past members of the MIT Me-
dia Lab joined together to create the One Laptop Per
Child (OLPC) program, dedicated to making a low-cost
laptop for educational projects around the globe. The
OLPC team designed an x86 platform that incorporates
an AMD Geode solution. As low price and open tech-
nology were part of the core requirements for the lap-
top, the designers decided to use a royalty-free open
source BIOS solution, ultimately choosing LinuxBIOS.
The first two board revisions included the AMD Geode

'Version 2 started after the addition of HypertransportTM technol-
ogy support changed the device model enough to warrant a version
bump.

GX processor based LinuxBIOS loader, originally uti-
lizing a Linux-as-bootloader payload. This later tran-
sitioned to OpenFirmware after it became available in
the middle of 2006. In 2007, AMD Geode LX proces-
sor support was added to the loader, making it a freely
available reference BIOS design for interested develop-
ers of other AMD Geode solutions.

2.2 AMD Geode History

The AMD Geode processor is the offspring of the Me-
diaGX processor released by Cyrix in 1997. The Medi-
aGX saved total system cost by embedding a graphics
engine that used one of the first Unified Memory Ar-
chitecture (UMA) implementations. It also featured an
integrated northbridge memory controller and Sound-
Blaster emulation in the CPU. The MediaGX broke the
sub-$1000, sub-$500, and sub-$200 price barrier on the
Compaq Presario 2100 in 1996 and 1997. In 1997,
Cyrix was purchased by National Semiconductor, who
renamed the MediaGX line to Geode. National Semi-
conductor released the Geode GX2 (today, just called
the GX) and CS5535 companion chip in 2002. In 2003,
the Geode division was sold to AMD. AMD focused
heavily on power, price, and performance, and in 2005
released the AMD Geode LX 800@0.8W processor and
CS5536 companion chip, with the LX 900@1.5W pro-
cessor following in 2007.

The AMD Geode GX and LX processors support the
i586 instruction set, along with MMX and 3DNow!""
extensions. The LX features a 64K instruction and a
64K data L1 cache and 128K L2 cache. Both proces-
sors have on-board 2D graphics and video accelerators.
The LX adds an on-board AES engine and true random
number generator. The CS5536 companion chip pro-
vides southbridge capabilities: IDE, USB 2.0, SMBus,
AC97, timers, GPIO pins, and legacy x86 peripherals.

3 Geode LinuxBIOS ROM image

While the entire image is known as LinuxBIOS, it is
constructed of individual pieces that work together. An
AMD Geode LinuxBIOS ROM image is made up of
three main binary pieces:?

e LinuxBIOS Loader: system initialization code;

2QLPC also adds additional binary code for its embedded con-
troller.

2007 Linux Symposium, Volume One o 105

o VSAZ2: the AMD Geode proccessor’s System Man-
agement Interrupt (SMI) handler;

e Payload: the image or program to be loaded to boot
the OS.

3.1 LinuxBIOS Architecture

LinuxBIOS version 2 is structured to support multiple
motherboards, CPUs, and chipsets. The overall plat-
form configuration is described in Config. 1b in the
mainboard directory. The Config. 1b file contains
important information like what CPU architecture to
build for, what PCI devices and slots are present, and
where code should be addressed. The mainboard also
contains the pre-DRAM initialization file, auto.c.
ROMCC compiles auto.c and generates a stackless
assembly code file, auto.inc. The use of ROMCC
works well for small sections of simple C code, but for
complicated memory controller initialization, there are
some issues with code size and C variable-to-register
space conversion.

To work around the ROMCC issues, Yinghai Lu of
AMD developed support for the AMD64 architecture’s
Cache-as-RAM (CAR) feature [1]. Compiled C code
makes heavy use of the stack. Only a few lines of assem-
bly code are needed to set up the CPU cache controller
to be used as temporary storage for the stack. All the
pre-DRAM initialization (including memory initializa-
tion) is compiled as normal C code. Once the memory
controller is configured the stack is copied to real mem-
ory and the cache can be configured as normal. The
AMD Geode processors are one of two CPUs to use a
CAR implementation in LinuxBIOS version 2.3

3.2 LinuxBIOS Directory Structure

The LinuxBIOS source tree can be a bit daunting to a
newcomer. The following is a short tour of the Lin-
uxBIOS directory structure, highlighting the parts inter-
esting to a systems developer.

The cpu/ directory contains the initialization code for
VSAZ2 and the AMD Geode graphics device.

3See the Future Enhancements section for more details about
CAR in LinuxBIOS version 3.

linuxbios/src

| —— model_gx2
| —— model 1x

The mainboard/ directory contains platform-specific
configuration and code. The platform Config. 1b file
contains the PCI device configuration and IRQ routing.
This directory also contains the source file compiled by
ROMCC.

linuxbios/src
| —— mainboard
| -—— amd
| =— norwich
|-— olpc
|—— rev_a

(Note: ‘Norwich’ is the code name for an AMD Geode
development platform).

The source code in northbridge/ includes memory
initialization and the PCI bridge O configuration and ini-
tialization. In the AMD Geode processor’s architecture,
the northbridge is integrated into the CPU, so the direc-
tory name is the same as the CPU.

linuxbios/src
| -—— northbridge
| —— amd
| -— gx2
| —— 1x

The southbridge/ directory contains the source for
SMBus, flash, UART, and other southbridge device con-
figuration and initialization.

linuxbios/src
| -—— southbridge
| —— amd
| —— cs5536

The target/ directory contains the platform build
directories. These include the configuration files that
specify the build features including ROM size, VSA2

106 e Breaking the Chains—Using LinuxBIOS to Liberate Embedded x86 Processors

binary size, and the desired payload binary. This is
also where the ROM image is built. A script called
buildtarget in the 1inuxbios/target direc-
tory parses the target configuration files and builds the
Makefiles for the ROM image in the platform target di-
rectory.

linuxbios/targets
| -— amd

| —— norwich
| -— olpc

| -—— rev_a

3.3 LinuxBIOS Boot Process

Figure 1 details the process of booting a system with
LinuxBIOS.

1. The AMD Geode processor fetches code from the
reset vector and starts executing noncompressed
(pre-DRAM) LinuxBIOS from the flash ROM. The
early CPU, northbridge, and southbridge initializa-
tion takes place. Once the memory is initialized,
LinuxBIOS decompresses and copies the rest of it-
self to low memory.

2. LinuxBIOS continues system initialization by
walking the PCI tree starting at bus 0. Most of the
AMD Geode device’s internal configuration and
initialization happens at this stage. Cache, system
memory, and PCI region properties are configured.
The VSA2 code is decompressed into low memory
and executed.

3. The VSA?2 initialization makes adjustments to the
UMA for graphics memory and itself. VSA2 is
then copied to the top of RAM and located log-
ically in mid-PCI memory space, 0x80000000.
VSA?2 initializes the runtime components. Upon
completion, control is returned to LinuxBIOS.

4. LinuxBIOS finishes enumeration and initialization
of all the PCI devices in the system. PCI de-
vices are allocated memory and I/O (including the
VSAZ2 virtualized headers) and then enabled. Dur-
ing the southbridge PCI configuration, the presence
of IDE-versus-flash capability and other configura-
tions not controlled directly in PCI space are set
up. The CPU device is the last device to enumerate
and an end-of-POST SMI is generated to signal to
VSA2 that the system is configured.

5. The last stage of LinuxBIOS is to load the payload.
LinuxBIOS copies itself to the top of system mem-
ory and then locates and decompresses the payload
image into memory. Finally, the payload is exe-
cuted. See Section 4 for more details about the
payload.

34 VSA2

Virtual System Architecture (VSA) is the AMD Geode
device’s System Management Mode (SMM) software.
VSAZ2 is the second generation of VSA that supports GX
and LX CPUs and the CS5535 and CS5536 chipsets.
In a traditional BIOS, VSA2 handles normal SMI/SMM
tasks like bug fixes, legacy USB, and power manage-
ment (legacy, APM, and ACPI). VSA2 also handles vir-
tual PCI configuration space for the AMD Geode de-
vice’s internal controllers; graphics, IDE, flash, etc. PCI
virtualization translates PCI configuration-space access
to the internal device’s GeodeLink =~ Model-Specific
Registers (MSRs). PCI configuration access is infre-
quent and virtualization is a good way to save silicon
real-estate with software.

Since Linux manages most hardware devices on its own,
it only requires VSA?2 PCI virtualization.

Linux kernel drivers handle the power management,
USB, and graphic controllers that would normally be
controlled by VSA2 in a legacy BIOS environment. In
the embedded Linux environment, only the PCI virtual-
ization portion of VSA2 is required. Omitting the un-
needed code saves space in the LinuxBIOS ROM im-
age for larger payloads. VSA2 is in the process of be-
ing ported to GNU tools and will be released as open
source. This will enable the open source community
to write Virtual System Modules (VSMs) for additional
features or to replace VSA2 entirely with a new AMD
Geode chipset SMI handler.

The VSA2 image is compressed with NRV2B and con-
catenated to the beginning of the LinuxBIOS (with pay-
load) image.*

4 Payloads

Once LinuxBIOS provides CPU and chipset initializa-
tion for the platform, it passes control to a payload that

4VSA2 is added at the beginning because execution starts at the
end of the ROM image, where LinuxBIOS is located.

2007 Linux Symposium, Volume One o 107

1 LinuxBIOS ROM Image
Payload ROM Image 4 Device PCI Space
VSA?2 graphics
2 | memory
| VSA2
| PCI | |
memory | ‘ PC |
| \ memory |
|
| <« TopofRAM———» — — —
VSA2 <« | |
: — — —
graphics |
memory |
< Top of System Memory——» | ‘
\ LinuxBIOS
‘ system | ‘
AU A system
| memory |
> VSA2 init
Payload
system
| memory
| system
| LinuxBIOS | memory

Figure 1: LinuxBIOS Memory Map

can continue the booting process. This is analogous
to a traditional BIOS ROM, which also handles CPU
and chipset initialization, and then passes control to
code that manages the BIOS services (such as the setup
screen, access to block devices, and ultimately starting
the process that ends up in the secondary bootloader).
The traditional BIOS code is tied closely to the loader
and only provides support for a limited set of features.
By contrast, a LinuxBIOS payload is far more flexible.
In theory LinuxBIOS can load and run any correctly for-
matted ELF file (though in practice, the payload must be
able to run autonomously without any operating system
services). This allows the developer to choose from any
number of available open source options, from simple

loaders to the Linux kernel itself. This flexibility also
allows embedded developers to easily craft custom solu-
tions for their unique platform—for instance, supporting
diskless boot with Etherboot, or loading and running a
kernel from NAND flash or other non-traditional media.

When LinuxBIOS has finished initializing and enumer-
ating the system, it passes control to the ELF loader to
load the payload. The payload loader locates the stream
on the ROM and decodes the ELF header to determine
where the segments should be copied into memory. Be-
fore copying, the loader first moves the firmware to the
very top of system memory to lessen the chance that
it will be overwritten by the payload. LinuxBIOS stays

108 e Breaking the Chains—Using LinuxBIOS to Liberate Embedded x86 Processors

resident in case the ELF loader fails to load the specified
payload. Many “standard” payloads (such as memtest86
and the Linux kernel) are designed to run on a sys-
tem with a traditional BIOS image. Those payloads are
loaded into firmware-friendly memory locations such as
0x100000. After copying and formatting the segments,
the loader passes control to the entry point specified in
the ELF header. System control leaves LinuxBIOS and
passes to the payload.

4.1 Linux Kernel Payloads

While there are many different types of loaders, loading
the Linux kernel directly from the ROM was the origi-
nal goal of the LinuxBIOS project. The kernel can ei-
ther be loaded by itself and mount a local or network-
based filesystem, or it can be accompanied by a small
RAMdisk filesystem that provides additional services
for finding and booting the final kernel image. This is
known as “Linux as Bootloader” or simply, LAB.

The Linux kernel is a very compelling payload for sev-
eral reasons. The kernel already supports a huge num-
ber of different devices and protocols, supporting virtu-
ally any platform or system scenario. The kernel is also
a well known and well supported entity, so it is easy
to integrate and extend. Finally, the great majority of
LinuxBIOS implementations are booting the Linux ker-
nel anyway, so including it in the ROM greatly simpli-
fies and accelerates the boot process. Using Linux as a
bootloader further extends the flexibility by including a
RAMdisk with user-space applications that can access
a network or provide graphical boot menus and debug
capabilities.’

The challenge to using a main kernel in a LinuxBIOS
payload is that it is often difficult to shrink the size of
the kernel to fit in the ROM. This can be mitigated by
using a larger ROM. In most cases the additional cost
of the flash ROM is offset by the improved security and
convenience of having the main kernel in the ROM im-
age. Another concern is the ability to safely and quickly
upgrade the kernel in the ROM image. It is a danger-
ous matter to flash the ROM, since a failed attempt usu-
ally results in a “brick” (an unbootable machine). This
can be avoided in part by increasing the size of the flash
ROM and providing a safe “fallback” image that gets

3Some LinuxBIOS developers have been experimenting with fit-
ting an entire root filesystem into the the ROM. See reference [2].

invoked in case of a badly flashed image. The advan-
tages outweigh the costs for embedded applications that
rarely upgrade the kernel image.

As may be expected, the standard Linux binary files re-
quire some manipulation before they can be loaded. A
tool called mkelfimage® is used to combine the ker-
nel text and data segments and to add setup code and an
optional RAMdisk into a single loadable ELF file.

Table 1 shows the program headers read by readelf
from the loadable ELF file created by mkelfimage
from a vmlinux file and a IMB RAMdisk.

The first segment contains code similar to the Linux
startup code that de-compresses the kernel and prepares
the system to boot. This section also contains setup in-
formation such as the kernel command line string. The
next segment allocates space for a GDT table that is used
by the setup code. Kernel developers will note the famil-
iar . text segment loaded to 0x100000 and the subse-
quent .data segment. Finally, the IMB RAMdisk is
copied to address 0x800000.

4.2 Other Payloads

Several popular Open Source Software (OSS) stan-
dalone applications have been adapted to run as Lin-
uxBIOS payloads. These include the memtest86
memory tester and the et herboot network boot util-
ity. etherboot is particularly interesting since it pro-
vides an open source alternative to the PXE protocol.
It can easily enable any system to boot an image from
a network even with network cards that do not natively
support PXE boot. Another interesting option appeared
during the early days of the OLPC project when Sun
Microsystems unexpectedly released key portions of the
OpenFirmware loader. Also known as OpenBoot, Open-
Firmware is a firmware package programmed in Forth
that serves as the bootloader on SPARC-based worksta-
tions and PowerPC-based systems from Apple and IBM.
When it became available, OpenFirmware was quickly
adapted to load on the OLPC platform as a LinuxBIOS
payload.

4.3 Building Payloads

The payload is integrated with the LinuxBIOS loader
during the LinuxBIOS build process. During configura-

SWritten by Eric Biderman, Joshua Aune, Jake Page, and An-
drew Ip.

2007 Linux Symposium, Volume One o 109

Type Offset VirtAddr PhysAddr FileSiz MemSiz
LOAD 0x000144 0x00010000 0x00010000 0x0561lc Oxlab24
LOAD 0x005760 0x00091000 0x00091000 0x00000 0x00070
LOAD 0x005760 0xc0100000 0x00100000 0x264018 0x264018
LOAD 0x269778 0xc0365000 0x00365000 0x4b086 0xaf000
LOAD Ox2b47fe 0x00800000 0x00800000 0x100000 0x100000

Table 1: ELF Sections from Loadable Kernel

option CONFIG_COMPRESSED_ROM_STREAM_ NRV2B=0
option CONFIG_COMPRESSED_ROM_STREAM_ LZMA=1
option CONFIG_PRECOMPRESSED_ROM_STREAM=1

Need room for VSA

option ROM_SIZE=(1024x1024)-(64x1024)

romimage "fallback"

payload /tmp/payload.elf

end

Figure 2: OLPC LinuxBIOS Configuration

tion, the developer specifies the size of the LinuxBIOS
ROM image and a pointer to the payload binary. Option-
ally, the payload can be NRV2B- or LZMA-compressed
to conserve space at the expense of speed. Figure 2
shows a set of example configuration options for an
AMD Geode processor-based target with a 1MB flash
ROM and a compressed payload.

During the LinuxBIOS build, the payload is compressed
(if so configured), and integrated in the final ROM im-
age as shown previously in Figure 1.

4.4 BuildROM

Constructing a LinuxBIOS ROM image from start to
finish can be a complicated and tedious process involv-
ing a number of different packages and tools. Buil-
dROM is a series of makefiles and scripts that sim-
plify the process of building a ROM image by con-
solidating tasks into a single make target. This pro-
vides a reproducible build that can be replicated as re-
quired. BuildROM was inspired by Buildroot,” and was
originally designed to build Linux-as-bootloader (LAB)
based ROM images for the OLPC project. The OLPC
LAB used a simple RAM filesystem that was based on

"http://buildroot.busybox.org

uClibc and Busybox, and ran a simple graphical
tool that could use kexec to load a kernel from USB,
NAND, or from the network. This involved no less than
six packages and a number of tools—a nightmare for the
release manager, and very difficult for the core team to
duplicate and run on their own platforms. BuildROM
simplified the entire process and makes it easy to build
new ROM image releases as they are required. More
recently, it has been extended to build a number of dif-
ferent platforms and payloads.

5 Advantages and Disadvantages of Lin-
uxBIOS

Like most open source projects, LinuxBIOS continues
to be a work in progress, with both positive and negative
aspects.

Chief among the positive aspects is that LinuxBIOS
is developer-friendly, especially when compared to tra-
ditional BIOS solutions. LinuxBIOS is mostly C-
based, which greatly simplifies development. However,
machine-generated code is almost always larger and
slower than hand-tuned assembly, which is a liability,
especially in the pre-DRAM section where speed and
size are of the essence. As mentioned before, ROMCC
does an amazing job of generating stackless assembly

110 e Breaking the Chains—Using LinuxBIOS to Liberate Embedded x86 Processors

code, but due to the complexity of its task, it is difficult
to optimize the code for minimum size and maximum
efficiency.

Even though the LinuxBIOS code is written in C, the
developer is not freed from having to look through the
generated assembly to verify and debug the solution.
Assembly code in LinuxBIOS is written in the AT&T
format (as are all GNU tools-based projects), but many
traditional BIOS projects and x86 CPU debuggers use
the Intel format. This may cause a learning barrier for
developers transitioning to LinuxBIOS, as well as mak-
ing it somewhat difficult to port existing source code to
LinuxBIOS.

The current AMD Geode LinuxBIOS implementation is
slower then expected. Benchmarks show that decom-
pression and memory copy are slower then other ROM
implementations. More investigation is needed to deter-
mine why this happens.

The positive aspects of LinuxBIOS more than make up
for these minor issues. LinuxBIOS uses a development
environment familiar to embedded Linux developers. It
is written in C and uses 32-bit flat mode. There is no
need to worry about dealing with 16-bit real or big real
modes.

In the end, while LinuxBIOS is backed by a strong open
source community, it cannot exist without the support of
the hardware vendors. The growth of LinuxBIOS will
ultimately depend on convincing hardware companies
that there is a strong business case for developing and
supporting LinuxBIOS ports for their platforms.

6 Future Enhancements

There is still much to be done for the AMD Geode
chipset LinuxBIOS project. LinuxBIOS version 3
promises to to be a great step forward. Among the
changes planned include:

e A new configuration system based on the the kernel
config system;

e Replacing remaining stackless pre-DRAM code
with Cache-as-RAM (CAR) implementations;

e Speed and size optimizations in all facets of the
boot process.

The AMD Geode chipset code will be transitioned to
work with LinuxBIOS version 3, including better inte-
gration with the default CAR mode, and speed optimiza-
tions. Also, more work needs to be done to support a
fallback image to reduce the chance that a failed ROM
flash will break the target machine.

Changes are also in store for VSA2. The code will be
ported to compile with GNU tools, and fully released
so that others can build on the existing SMI framework.
Further VSA2 work will center around power manage-
ment, which will be new ground for LinuxBIOS-based
ROMs. Finally, continuing work will occur to enhance
BuildROM and help make more diagnostic tools avail-
able to validate and verify LinuxBIOS in an open source
environment.

7 Conclusion

LinuxBIOS is an exciting development in the world of
the AMD Geode chipsets and x86 platforms in general.
It facilitates the efforts of developers by avoiding the
pitfalls of a traditional BIOS and provides great flexibil-
ity in the unique scenarios of embedded development.
There is a great advantage for the AMD Geode pro-
cessors in supporting LinuxBIOS because LinuxBIOS
allows designers to consider AMD Geode solutions in
ways they never before thought possible (as evidenced
by the early success story of the very non-traditional
OLPC platform). We look forward to continuing to par-
ticipate with LinuxBIOS as it transitions into version 3
and beyond.

8 Acknowledgements

The authors would like to extend a special thank you to
all the people who helped make the AMD Geode Lin-
uxBIOS image possible: Ollie Lo and the LinuxBIOS
team, Yinghai Lu, Tom Sylla, Steve Goodrich, Tim Per-
ley and the entire AMD Embedded Computing Solu-
tions team, and the One Laptop Per Child core software
team.

9 Legal Statement

Copyright (©) 2007 Advanced Micro Devices, Inc. Permission
to redistribute in accordance with Linux Symposium submis-
sion guidelines is granted; all other rights reserved. AMD,

AMD Geode, AMD Opteron, AMD Athlon, and combina-
tions thereof, and GeodeLink, and 3DNow! are trademarks
of Advanced Micro Devices, Inc. Linux is a registered trade-

mark of Linus Torvalds.

All other trademarks mentioned

herein are the property of their respective owners.

References

[1]

(2]

(3]

[4]

Yinghai Lu, Li-Ta Lo, Gregory Watson, Ronald
Minnich. CAR: Using Cache as RAM in
LinuxBIOS.
http://linuxbios.org/data/yhlu/
cache_as_ram_1b_09142006.pdf

LinuxBIOS with X Server Inside, posted to
LinuxBIOS Developers Mailing List, March 2007.
http:
//www.openbios.org/pipermail/
linuxbios/2007-March/018817.html

Ronald Minnich. LinuxBIOS at Four, In Linux
Journal #118, February 2004. http://www.
linuxjournal.com/article/7170

Ronald Minnich, Porting LinuxBIOS to the AMD
SC520, in Linux Journal #136, August 2005.
http://www.linuxjournal.com/
article/8120

Ronald Minnich, Porting LinuxBIOS to the AMD
SC520: A followup Report, July 2005. http://
www.linuxjournal.com/article/8310

Advanced Micro Devices, Inc. AMD Geode™ LX
Processors Data Book, June 2006.
http://www.amd.com/files/
connectivitysolutions/geode/geode_
1x/33234E_LX_databook.pdf

Advanced Micro Devices, Inc. AMD Geode'"
CS5536 Companion Device Data Book, March
2006. http://www.amd.com/files/
connectivitysolutions/geode/geode_
1x/33238f_cs5536_ds.pdf

Advanced Micro Devices, Inc. AMD Geode" GX
and LX Processor Based Systems Virtualized PCI
Configuration Space, November 2006.
http://www.amd.com/files/
connectivitysolutions/geode/geode_
gx/32663C_1x_gx_pciconfig.pdf

[9]

[10]

(11]

[12]
[13]

2007 Linux Symposium, Volume One o 111

LinuxBIOS, http://linuxbios.org.
svn://openbios.org/repos/trunk/
LinuxBIOSv2

One Laptop Per Child. http://laptop.org

OpenFirmware. http://firmworks.com
svn://openbios.org/openfirmware

Memtest86. http://memtest86.com

Etherboot. http://www.etherboot.org/
wiki/index.php

112 e Breaking the Chains—Using LinuxBIOS to Liberate Embedded x86 Processors

