
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Why Virtualization Fragmentation Sucks

Justin M. Forbes
rPath, Inc.

jmforbes@rpath.com

Abstract

Mass adoption of virtualization is upon us. A plethora
of virtualization vendors have entered the market. Each
has a slightly different set of features, disk formats, con-
figuration files, and guest kernel drivers. As concepts
such as Virtual Appliances become mainstream, soft-
ware vendors are faced with new challenges. Previously,
software vendors had to port their application to multi-
ple operating systems: Solaris, Linux, AIX, etc. The
new “port” becomes one where software vendors will
be expected to produce images that drop-in to VMware,
Xen, Parallels, SLES, RHEL, and even Microsoft Vir-
tual Server.

This paper will explore the state of existing virtualiza-
tion technology in meeting the goal of providing ready-
to-run guest images. This includes: comparing, con-
trasting, and poking fun at virtual disk formats; be-
moaning the assortment of kernel drivers needed to im-
prove performance in a guest (vmware-tools, paravirt
drivers. . . ); dark muttering about incompatibilities be-
tween Xen guests and hosts; and lamenting all the dif-
ferent configuration files that define a guest.

Virtualization has moved into the mainstream of com-
puting. Most businesses are no longer asking if they
should deploy a virtualization solution; they are in-
stead asking which vendors support the technologies
they have already implemented. In many ways, this is
a great new age for software vendors. With virtualiza-
tion technology so common, it makes it possible to re-
duce the costs associated with supporting a product on
a large assortment of operating systems. Software ven-
dors can now bundle just the right amount of operating
system required to support their software application in
a software appliance model. Distributing a software ap-
pliance allows vendors to fully certify one stack, without
the worry about which packages or versions a particular
operating system distribution chooses to ship. The ex-
tensive QA and support models that go along with ship-

ping a separate application are drastically simplified.
Software vendors no longer need to decide which op-
erating systems to support, the new question is “which
virtualization technologies do I support?”

This question should be easy to answer. Unfortunately,
it is becoming increasingly difficult. It does not have
to be. The hypervisor is the new platform, and many
vendors have entered the market, with more vendors on
the way. Each vendor offers products to meet a similar
requirement: Allow fully isolated containers, or virtual
machines, to consume the resources they require, with-
out stepping on other containers.

The advantages of virtualization are many. To the soft-
ware consumer, virtualization takes away much of the
concern surrounding the full stack. The fact that differ-
ent applications may require conflicting library support
is no longer a concern. The ability to better manage
resources, increasing utilization of hardware without in-
creasing risk of multiple applications stepping on each
other is a tremendous benefit. Live migration, the ability
to move virtual machines across physical hosts in real
time, substantially increases availability. It is possible to
maintain both performance and availability with a frac-
tion of the hardware resources that were once required.

In the software appliance model, vendor relationships
are improved as the customer can go to a single vendor
for support, without playing intermediary between the
application vendor, tools vendors, and operating system
vendors. Software consumers need not worry about test-
ing and patching large numbers of security and bug fixes
for software which gets installed with most general pur-
pose operating systems, but is never used or installed
within their virtualized environment.

To the software producer and distributor, virtualization
means simplified development, QA, and testing cycles.
When the application ships with its full stack, all of the
time required to ensure compatibility with any number

• 125 •



126 • Why Virtualization Fragmentation Sucks

of supported platforms goes away. The little compro-
mises required to make sure that applications run reli-
ably across all platforms have a tendency to ensure that
those applications do not run optimally on any platform,
or increase the code complexity exponentially. This pain
goes away when the platform is a part of the applica-
tion, and unnecessary components which exist in a gen-
eral purpose application are no longer present. Software
vendors can distribute fully tested and integrated appli-
ances, and know exactly what components are on the
appliance without concern that a critical component was
updated to fix a bug in some other application unrelated
to what the vendor’s application provides or supports.

With so many benefits to virtualization, and so many
options available to the consumer, what could possibly
go wrong? No one ever likes the answers to that ques-
tion. The proliferation of options in the virtualization
market has brought a new kind of insanity for software
vendors. “Which technologies do I provide ready-to-run
guest images for?” The simple answer should be all of
the major players. Providing choice to customers with
minimal effort is a great thing. Unfortunately, the effort
is not so minimal at the moment.

Each vendor has a business need to distinguish itself by
providing unique features or a unique combination of
features. Unfortunately for the consumer, even generic
features are provided in unique ways by each virtualiza-
tion provider, needlessly complicating life both for the
software vendor and the end user.

This doesn’t have to be so hard.

1 Disk Formats

There are several possibilities for the virtual machine
disk format, none of which is universally supported.
While most of the commonly-used formats offer a sim-
ilar set of features, including sparse allocation and copy
on write or some form of snapshot, they are not directly
interchangeable. VMware’s VMDK and Microsoft’s
VHD are among the most common formats supported.
The QCOW format also offers similar functionality,
though it should be noted that there are now multiple
incompatible versions of the QCOW formats, making
QCOW more of a format family than a format. The disk
format will typically include the raw file systems or hard
disk image, a bit of metadata describing the supported
features, versioning, and creation method, as well as

specific implementation metadata in the case of sparse
allocation or copy on write. It may also contain infor-
mation used to define the characteristics of the virtual
machine associated with the images.

While VMDK, VHD, and QCOW are among the most
commonly supported disk formats, they are far from
universal. Some technologies still require raw file sys-
tem images or other proprietary formats. The good news
here is that conversion utilities exist for most formats
available. If the desire is to have a single reference
image that can be packaged for many different virtual-
ization technologies, perhaps a raw file system or hard
disk image is the best choice, as those can be directly
converted to most other formats with little effort. Still,
the question remains, why does this have to be so com-
plicated? With a similar feature set among the most
popular virtual disk formats, what is it that separates
them? The difference lies in the metadata implementa-
tions. Perhaps in the future, common ground can be es-
tablished and the disk format conversions will no longer
be necessary.

2 Virtual Machine Configuration

When we look at what defines a virtual machine, there
are many of the same pieces we find in stand-alone hard-
ware. Along with the virtual disk or physical file sys-
tems, a virtual machine is allocated the basic resources
required for a machine to function and be useful. This
includes one or more virtual processors, a chunk of
memory, and virtual or physical I/O devices. These are
the core building blocks, and will differ among deploy-
ments of a given appliance based on customer require-
ments and available resources. In addition to these sim-
ple building blocks, there are typically a number of ad-
ditional configuration options which help to define the
virtual machine. These include migration and availabil-
ity options, crash or debugging behavior, and console
or terminal definitions. All of this configuration is spe-
cific to the actual deployment of an image, and should
be defined within the hypervisor, controlling domain, or
management infrastructure.

In addition to these site-specific configuration options,
many virtualization vendors provide options for which
kernel to boot, the initial ram disk or initrd image to
be used, and other typical boot options. While there
are specific circumstances where keeping such config-
uration options separate from the virtual machine con-
tainer itself would be desirable, it is more frequently a



2007 Linux Symposium, Volume One • 127

management headache for the consumer of virtual ap-
pliances. When the boot kernel is defined—or worse,
located—outside of the central image, there is no simple
way for an image to be self-maintained. While mecha-
nisms exist for updating a virtual image similar to those
for updating physical hosts, the guest does not typi-
cally have permission or ability to write to the host’s
file systems for such activities as updating the guest ker-
nel or initrd. Simply put, any effective software appli-
ance must be self-contained, and use standard tools for
managing the contents of the appliance itself. Ideally
the bootloader is also contained in the appliance image,
but at the very minimum, a bootloader installed on the
hypervisor should be able to read and interpret boot con-
figuration information from within a guest image.

3 Paravirtualization vs. Full Virtualization

Both paravirtualized and fully virtualized machines
have been around for quite some time, and each has dis-
tinct advantages. For the paravirtualized machine, the
guest operating system is fully aware that it is operating
under hypervisor control. The kernel has been modi-
fied to work directly with the hypervisor, and as much
as possible to avoid instructions that are expensive to
virtualize. The largest advantage to paravirtualization
is performance. Generally speaking, a paravirtualized
guest will outperform a fully virtualized guest on the
same hardware, often by a substantial margin. With this
being the case, why isn’t every guest paravirtualized?

There are several obstacles to paravirtualization. The
source level changes required to build a paravirtualized
kernel can be large and invasive, in many cases tens of
thousands of lines of code. These changes occur in core
kernel code and can be much more complex than higher
level driver code. While the nature of the changes re-
quired to support a given hypervisor can be very similar,
the implementation details and ABI will vary from ven-
dor to vendor, and even among versions of the hypervi-
sor from the same vendor. It is not uncommon for a par-
avirtualization patch set to be several revisions behind
the latest upstream kernel, or skip upstream revisions all
together. This is unlikely to change until a given imple-
mentation has been accepted into the upstream kernel.
The resources required to maintain such a large patch set
outside of the upstream tree are considerable; maintain-
ing the same code in the upstream kernel requires much
fewer resources. There is also the small matter of guest
operating systems which are not open source, or whose

license does not allow the redistribution of changes. In
these instances, paravirtualization is extremely difficult,
if not impossible.

In the fully virtualized machine, the guest operating
system does not need to know that it is being virtu-
alized at all. The kernel operates exactly as it would
on standard hardware. The hypervisor will trap neces-
sary instructions and virtualize them without assistance
from the guest. Standard devices such as network and
block drivers are typically presented as virtual imple-
mentations of fairly well-supported physical devices to
the guest so that no special drivers are needed. Mod-
ern CPUs include hardware support for virtualization,
which improves performance and compatibility. While
this method is an effective way to ensure compatibility
with a large variety of guest operating systems, there
is a high overhead in trapping all of the necessary in-
structions. To help with this performance problem, it
is common for the hypervisor to support a number of
paravirtualized device drivers. By replacing the com-
mon and well supported device drivers with new devices
which are aware of the hypervisor, certain expensive in-
structions can be avoided and performance is improved
dramatically. Typically, a virtualized guest with paravir-
tualized drivers will achieve performance much closer
to that of a true paravirtualized guest.

This is another area of difficulty for the software ap-
pliance distributor. The vast number of virtualization
vendors each have their own paravirtualized kernels,
drivers, or guest tools. Some of these are open source,
some are not. Regardless of source code availability,
there is the question of which kernel versions these
drivers will build against, or might be supported with.
It is not uncommon for a vendor to have no working
driver or tool set for two or three of the most recent
upstream kernel versions, leaving them outside of the
upstream stable support cycle all together. It is also pos-
sible that upstream kernel versions are skipped over en-
tirely, making it difficult to find a common kernel ver-
sion that can be supported by all of the desired virtual-
ization targets that a software vendor might have. Luck-
ily, it is quite possible to have a user space that supports
a variety of kernel releases, ensuring that only the ker-
nel version and associated virtualization drivers or tools
are the only substantial changes between images. This
leaves most of the QA and testing work intact, and still
provides a substantial support savings over supporting
entirely different general purpose operating systems.



128 • Why Virtualization Fragmentation Sucks

It is hoped that some of these problems can be ad-
dressed generically. Changes to the Linux kernel are
being made which make it possible to eventually build
a single kernel which supports multiple virtualization
solutions. Examples include paravirt_ops which
shipped in the 2.6.20 kernel, and the VMI interface
on top of paravirt_ops which is included in the
2.6.21 Linux kernel. While the initial groundwork for
paravirt_ops and the VMI layer are present in
mainline kernels, there is still a lot of work remaining
to make them beneficial to the vast majority of users. In
the short term, we have simply added another yet op-
tion for building virtualization solutions. Until stable
releases of the majority players in virtualization have
patches or products to support these new kernel inter-
faces available, and the older products are phased out,
these interfaces simply represent one more option that
must be supported. It really does have to get worse be-
fore it gets better.

Another proposal that has been floating around is a set
of common paravirtualized drivers, which could be built
as modules and provide many of the benefits associated
with vendor provided tools and drivers while decreas-
ing the number of configurations which must be built
and supported. Unfortunately this proposal is in early
stages and faces several obstacles. For instance, Xen
provides xenbus instead of relying on the PCI speci-
fication for I/O virtualization. There is also the ques-
tion of finding a common ground for block I/O, as many
virtualization vendors have put considerable effort into
optimizing block I/O for virtualized guests, and these
implementations are not guaranteed to be compatible
with one another. Still, if a agreement could be reached,
the result would be basic paravirtualized drivers which
could be maintained upstream, and present in the major-
ity of Linux vendor kernels without overhead. Virtual-
ization providers would still have the option of further
optimization by using platform-specific drivers, but end
users would see less basic overhead when using an im-
age that for one reason or another could not easily de-
ploy the platform-specific drivers.

4 Architectural incompatibility

Even when dealing with a single virtualization vendor,
there are a few architectural anomalies to keep in mind.
One particularly painful current example is PAE sup-
port. When dealing with 32-bit systems, both guest and
host, there is a question of exactly how much memory is

supported. In order for a 32-bit system to address more
than 4GB of memory, PAE is supported on most modern
x86 processors. In Linux, PAE is support is determined
at kernel build time. Unfortunately a PAE-enabled ker-
nel will not boot on physical or virtual hardware which
does not actually support PAE mode. This is because
PAE mode causes fairly significant changes to the page
table structure regardless of the amount of actual mem-
ory in a system. This is important to know because sev-
eral mainstream virtualization solutions take different
approaches to PAE support. In the VMware case, PAE is
supported on the host in modern versions, meaning the
hypervisor can address more than 4GB of memory, but
the guest does not support PAE mode even in instances
where the host has more than 4GB available. While it
is not a horrible limitation to say that a guest can only
support less than 4GB of memory, it also means that a
guest kernel cannot be built with PAE support and still
work on all VMware deployments. (Whether PAE is
supported in a VMware guest depends on the host ker-
nel and on image-specific configuration settings.)

In the Xen case, the rules are less clear-cut. Xen has es-
sentially three parts: the hypervisor, the domain 0 ker-
nel, and the guest or unprivileged domain kernel. The
hypervisor and the domain 0 kernel must always have
matching PAE support, meaning if the domain 0 ker-
nel is built with PAE support, the xen hypervisor must
be built with PAE support as well. For guest domains,
the situation is split between paravirtualized guests and
hardware virtual machines using the hardware virtual-
ization features of modern CPUs from Intel and AMD.
A hardware virtualized machine can run with PAE either
enabled or disabled, regardless of the domain 0 and hy-
pervisor. For paravirtualized guest domains, the kernel
must be built with the same PAE features of the hyper-
visor and domain 0. It is not possible to mix and match
PAE between paravirtualized guests and the hypervisor
with current releases of Xen. While it would be simple
enough to say that PAE support should always be en-
abled, there are a few obstacles to this. Some hardware
does not support PAE mode, particularly a large number
of laptops with Intel Pentium M CPUs. Additionally,
there are existing Xen hosts which do not support PAE
for one reason or another. It is believed that over time
non PAE implementations of 32-bit Xen will fall out of
use, but the current issue is real and still somewhat com-
mon.

Guest architecture support will also vary according to



2007 Linux Symposium, Volume One • 129

the hypervisor used. While many hypervisors currently
available offer support for both 64-bit and 32-bit guests
under a 64-bit hypervisor, several do not. Although
the hardware transition is nearly complete (it is diffi-
cult to find mainstream desktops or servers which do
not support x86_64 these days), it will still be some
time before older 32-bit hardware is retired from use,
and even longer before 32-bit applications are no longer
supported by many vendors. This means that it may be
necessary for software appliance vendors to offer both
32-bit and 64-bit guest images if they wish to ensure
compatibility with the largest number of virtualization
technologies. For applications which are only available
in 32-bit flavors, it means that guests will have to run
a 64-bit kernel in some circumstances, though a 32-bit
user space is generally supported.

Conclusion

With well over a dozen virtualization solutions in use to-
day, and more on the way, there is a lot of choice avail-
able to the consumer. Choice can be a double-edged
sword. Competition drives innovation, we are seeing re-
sults from this at a rather fast pace today. Competition in
the virtualization space also has the potential of driving
support overhead to painful levels. Differing approaches
to virtualization can ensure that the correct tool is avail-
able for any given job, but if the tool is too difficult to
use, it is (more often than not) simply ignored in favor
of the easier option.

Software vendors can leverage the benefits of virtual ap-
pliances now. While there are certainly obstacles to be
overcome, they are not insurmountable. The advantages
to a software appliance model are great, and the pains
associated with this growth in virtualization technolo-
gies have to be addressed.

As developers, providers, and integrators of virtualiza-
tion technology, we have to address these issues without
allowing things to get out of hand. We need to look be-
yond the the technology itself, and see how it will be
used. We need to make sure that the technology is con-
sumable without a massive amount of effort from the
consumers.



130 • Why Virtualization Fragmentation Sucks


