Proceedings of the
Linux Symposium

June 27th—30th, 2007
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel

Martin Bligh, Google

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.

Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

A New Network File System is Born: Comparison of SMB2, CIFS, and
NFS

Steven M. French
IBM
Samba Team
sfrench@us.ibm.com

Abstract

In early 2007, SMB2 became the first widely deployed
network file system protocol since NFS version 4.
This presentation will compare it with its predecessors
(CIFS and SMB) as well as with common alternatives.
The strengths and weaknesses of SMB/CIFS (the most
widely deployed network file system protocol) and NFS
versions 3 and 4 (the next most popular protocols) and
SMB2 will also be described.

Now that the CIFS POSIX Protocol extensions are im-
plemented in the Linux kernel, Samba, and multiple op-
erating systems, it is a good time to analyze whether
SMB2 would be better for Linux comprared to CIFS
POSIX Protocol extensions. In addition, alternatives
such as HTTP, WebDav, and cluster file systems will be
reviewed. Implementations of SMB2 are included in not
just Vista and Longhorn, but also Samba client libraries
and Wireshark (decoding support). Linux implemen-
tation progress and alternatives for SMB2 clients and
servers will also be described along with recommenda-
tions for future work in this area.

1 Introduction

The SMB2 protocol, introduced in Microsoft Vista this
year, is the default network file system on most new PCs.
It differs from its predecessors in interesting ways.

Although a few experimental network file system pro-
tocols were developed earlier, the first to be widely de-
ployed started in the mid-1980s: SMB (by IBM, Mi-
crosoft and others), AT&T’s RFS protocol, AFS from
Carnegie-Mellon University, NFS version 2—Sun [1]
and Novell’s NCP. The rapid increase in numbers of per-
sonal computers and engineering workstations quickly
made network file systems an important mechanism for

sharing programs and data. More than twenty years
later, the successors to the ancient NFS and SMB proto-
cols are still the default network file systems on almost
all operating systems.

Even if HTTP were considered a network file system
protocol, it is relatively recent, dating from the early
1990s, and its first RFC [RFC 1945] was dated May
1996. HTTP would clearly be a poor protocol for a
general purpose network file system on most operat-
ing systems including Linux. Since HTTP lacked suf-
ficient support for “distributed authoring” without lock-
ing operations, with little file metadata and lacking di-
rectory operations, “HTTP Extensions for Distributed
Authoring—WEBDAV” (RFC 2518) was released in
February 1999. WEBDAV did not, however, displace
CIFS or NFS, and few operating systems have a usable
in-kernel implementation of WEBDAV.

So after more than twenty years, despite the invention
of some important cluster file systems and the explosion
of interest in web servers, we are almost back where we
started—comparing NFS [3] Version 4 with the current
CIFS extensions and with a new SMB—the SMB?2 pro-
tocol. File systems still matter. Network file systems
are still critical in many small and large enterprises. File
systems represent about 10% (almost SOOKLOC) of the
2.6.21 Linux Kernel source code, and are among the
most actively maintained and optimized components.
The nfs' and cifs modules are among the larger in-kernel
file systems.

Network file systems matter—the protocols that they de-
pend on are more secure, full featured and much more

owercase “nfs” and “cifs” are used to refer to the implementa-
tion of the NFS and CIFS protocol (e.g. for Linux the nfs. ko and
cifs.ko kernel modules), while uppercase “NFS” and “CIFS” re-
fer to the network protocol.

e 131 o

132 e A New Network File System is Born: Comparison of SMB2, CIFS, and NFS

complex than their ancestors. Some of the better NAS?
implementations can perform as well as SAN and clus-
ter file systems for key workloads.

2 Network File System Characteristics

Network protocols can be considered to be layered.
Network file system protocols are the top layer—far
removed from the physical devices such as Ethernet
adapters that send bits over the wire. In the Open Sys-
tem Interconnection (OSI) model, network file system
protocols would be considered as layer 6 and 7 (“Pre-
sentation” and “Application”) protocols. Network file
system protocols rely on lower level transport protocols
(e.g. TCP) for reliable delivery of the network file sys-
tems protocol data units (PDUs), or include intermedi-
ate layers (as NFS has done with SunRPC) to ensure
reliable delivery.

Network file system protocols share some fundamental
characteristics that distinguish them from other “appli-
cation level” protocols. Network file system clients and
servers (and the closely related Network Attached Stor-
age, NAS, servers) differ in key ways from cluster file
systems and web browsers/servers:

o Files vs. Blocks or Objects: This distinction is easy
to overlook when comparing network file system
protocols with network block devices, cluster file
systems and SANs. Network file systems read and
write files not blocks of storage on a device. A file
is more abstract—a container for a sequential series
of bytes. A file is seekable. A file conventionally
contains useful metadata such as ACLs or other se-
curity information, timestamps and size. Network
file systems request data by file handle or filename
or identifier, while cluster file systems operate on
raw blocks of data. Network file system protocols
are therefore more abstract, less sensitive to disk
format, and can more easily leverage file owner-
ship and security information.

e Network file system protocol operations match lo-
cal file system entry points: Network file system
protocol operations closely mirror the function lay-
ering of the file system layer (VFS) of the operating

ZNetwork Attached Storage (NAS) servers are closely related to
network file servers.

system on the client. Network file system opera-
tions on the wire often match one to one with the
abstract VFS operations (read, write, open, close,
create, rename, delete) required by the operating
system. The OS/2 heritage of early SMB/CIFS im-
plementations and the Solaris heritage of NFS are
visible in a few network file system requests.

Directory Hierarchy: Most network file systems as-
sume a hierarchical namespace for file and direc-
tory objects and the directories that contain them.

Server room vs. intranet vs. Internet: Modern net-
work file system protocols have security and per-
formance features that make them usable outside
of the server room (while many cluster file sys-
tems are awkward to deploy securely across mul-
tiple sites). Despite this, HTTP and primitive FTP
are still the most commonly used choices for file
transfers over the Internet. Extensions to NFS ver-
sion 4 and CIFS (DFS) allow construction of a
global hierarchical namespace facilitating transpar-
ent failover and easier configuration.

Application optimization: Because the pattern of
network file system protocol requests often more
closely matches the requests made by the applica-
tion than would be the case for a SAN, and since
the security and process context of most applica-
tion requests can be easily determined, network file
system servers and NAS servers can do interesting
optimizations.

Transparency: Network file systems attempt to
provide local remote transparency so that local ap-
plications detect little or no difference between
running over a network file system and a local file
system.

Heterogeneity: Network file system clients and
servers are often implemented on quite different
operating systems—clients access files without re-
gard to their on-disk format. In most large enter-
prises, client machines running quite different op-
erating systems access the same data on the same
server at the same time. The CIFS (or NFS) net-
work file system client that comes by default with
their operating system neither knows nor cares
about the operating system of the server. Samba
server has been ported to dozens of operating sys-
tems, yet the server operating system is mostly

2007 Linux Symposium, Volume One o 133

transparent to SMB/CIFS clients. Network file sys-
tems are everywhere, yet are not always seen when
running in multi-tier storage environments. They
often provide consistent file access under large web
servers or database servers or media servers. A net-
work file system server such as Samba can easily
export data on other network file systems, on re-
movable media (CD or DVD), or on a local file sys-
tem (ext3, XFS, JFS)—and with far more flexibil-
ity than is possible with most cluster file systems.

Network file systems differ in fundamental ways from
web clients/servers and cluster file systems.

2.1 History of SMB Protocol

The SMB protocol was invented by Dr. Barry Feigen-
baum of IBM’s Boca Raton laboratory during the early
development of personal computer operating system
software. It was briefly named after his initials (“BAF”)
before changing the protocol name to “Server Message
Block” or SMB. IBM published the initial SMB Spec-
ification book at the 1984 IBM PC Conference. A
few years later a companion document, a detailed LAN
Technical Reference for the NetBIOS protocol (which
was used to transport SMB frames), was published.
An alternative transport mechanism using TCP/IP rather
than the Netbeui frames protocol was documented in
RFCs 1001 and 1002 in 1987.

Microsoft, with early assistance from Intel and 3Com,
periodically released documents describing new dialects
of the SMB protocol. The LANMAN1.0 SMB dialect
became the default SMB dialect used by OS/2. At least
two other dialects were added to subsequent OS/2 ver-
sions.

In 1992, X/Open CAE Specification C209 provied bet-
ter documentation for this increasingly important stan-
dard. The SMB protocol was not only the default
network file system for DOS and Windows, but also
for OS/2. IBM added Kerberos and Directory inte-
gration to the SMB protocol in its DCE DSS project
in the early 1990s. A few years later Microsoft also
added Kerberos security to their SMB security negoti-
ation to their Windows 2000 products. Microsoft’s Ker-
beros authentication encapsulated service tickets using
SPNEGO in a new SMB SessionSetup variant, rather
than using the original SecPkgX mechanism used by

earlier SMB implementations (which had been docu-
mented by X/Open). The SMB protocol increasingly
was used for purposes other than file serving, includ-
ing remote server administration, network printing, net-
working messaging, locating network resources and se-
curity management. For these purposes, support for var-
ious network interprocess communication mechanisms
was added to the SMB protocol including: Mailslots,
Named Pipes, and the LANMAN RPC. Eventually more
complex IPC mechanisms were built allowing encap-
sulating DCE/RPC traffic over SMB (even supporting
complex object models such as DCOM).

In the mid 1990s, the SMBFEFS file system for Linux was
developed. Leach and Naik authored various CIFS IETF
Drafts in 1997, but soon CIFS Documentation activity
moved to SNIA. Soon thereafter CIFS implementations
were completed for various operating systems including
0S/400 and HP/UX. The CIFS VFS for Linux was in-
cluded in the Linux 2.6 kernel. After nearly four years,
the SNIA CIFS Technical Reference [4] was released
in 2002, and included not just Microsoft extensions to
CIFS, but also CIFS Unix and Mac Extensions.

In 2003 an additional set of CIFS Unix Extensions was
proposed, and Linux and Samba prototype implemen-
tations were begun. By 2005, Linux client and Samba
server had added support for POSIX ACLs,? POSIX*
path names, a request to return all information needed
by statfs. Support for very large read requests and very
large write responses was also added.

In April 2006, support for POSIX (rather than Windows-
like) byte range lock semantics were added to the Samba
server and Linux cifs client (Linux Kernel 2.6.17). Ad-
ditional CIFS extensions were proposed to allow file I/O
to be better POSIX compliant. In late 2006, and early
2007, joint work among four companies and the Samba
team to define additional POSIX extensions to the CIFS
protocol led to creation of a CIFS Unix Extensions wiki,
as well as implementations of these new extensions [8]

3«pOSIX ACLs” are not part of the official POSIX API. POSIX
1003.1e draft 17 was abandoned before standardization.

“In this paper, “POSIX” refers narrowly to the file API seman-
tics that a POSIX-compliant operating system needs to implement.
When the file system uses the CIFS network file system protocol,
providing POSIX-like file API behavior to applications requires ex-
tensions to the CIFS network protocol. The CIFS “POSIX” Proto-
col Extensions are not part of the POSIX standard, rather a set of
extensions to the network file system protocol to make it easier for
network file system implementations to provide POSIX-like file API
semantics.

134 e A New Network File System is Born: Comparison of SMB2, CIFS, and NFS

in the Linux CIFS client and Samba server (Mac client
and others in progress). The CIFS protocol continues to
evolve, with security and clustering extensions among
the suggestions for the next round of extensions. As the
technical documentation of these extensions improves,
more formal documentation is being considered.

2.2 History of NFS Protocol

NEFS version 1 was not widely distributed, but NFS ver-
sion 2 became popular in the 1980s, and was docu-
mented in RFC 1094 in 1989. Approximately 10 years
after NFS version 2, NFS version 3 was developed. It
was documented by Sun in RFC 1813 citerfc1813 in
1995. Eight years later RFC 3530 defined NFS ver-
sion 4 (obsoleting the earlier RFC 3010, and complet-
ing a nearly five year standardization process). An ex-
tension to NFS version 3, “WebNFS,” documented by
Sun in 1996, attempted to show the performance advan-
tages of a network file system for Internet file traffic in
some workloads (over HTTP). The discussion of Web-
NFS increased the pressure on other network file sys-
tems to perform better over the Internet, and may have
been a factor in the renaming of the SMB protocol—
from “Server Message Block” to “Common Internet File
System.” Related to the work on NFS version 4 was
an improvement to the SunRPC layer that NFS uses
to transport its PDUs. The improved RPCSECGSS al-
lowed support for Kerberos for authentication (as does
CIFS), and allows negotiation of security features in-
cluding whether to sign (for data integrity) or seal (for
data privacy) all NFS traffic from a particular client to a
particular server. The NFS working group is developing
additional extensions to NFS (NFS version 4.1, pNFS,
NFS over RDMA, and improvements to NFS’s support
for a global namespace).

The following shows new protocol operations intro-
duced by NFS protocol versions 3 and 4:

NFS VERSION 2 Operations New NFS Version 4 Operations
GETATTR 1 | CLOSE 4
SETATTR 2 | DELEGPURGE 7
ROOT 3 | DELEGRETURN 8
LOOKUP 4 | GETFH 10
READLINK 5 | LOCK 12
WRITE 8 | LOCKT 13
CREATE 9 | LOCKU 14
REMOVE 10 | LOOKUPP 16
RENAME 11 | NVERIFY 17
LINK 12 | OPEN 18
SYMLINK 13 | OPENATTR 19
MKDIR 14 | OPEN-CONFIRM 20
RMDIR 15 | OPEN-DOWNGRADE 21
READDIR 16 | PUTFH 22
STATFS 17 | PUTPUBFH 23
New NFS VERSION 3 Operations | PUTROOTFH 24
ACCESS 4 | RENEW 30
READ 6 | RESTOREFH 31
MKNOD 11 | SAVEFH 32
READDIRPLUS 17 | SECINFO 33
FSSTAT 18 | SETATTR 34
FSINFO 19 | SETCLIENTID 35
PATHCONF 20 | SETCLIENTID-CONFIRM 36
COMMIT 21 | VERIFY 37

RELEASE-LOCKOWNER 39

3 Current Network File System Alternatives

Today there are a variety of network file systems in-
cluded in the Linux kernel, which support various proto-
cols including: NFS, SMB/CIFS, NCP, AFS, and Plan9.
In addition there are two cluster file systems now in the
mainline Linux kernel: OCFS2 and GFS2. A few pop-
ular kernel cluster file systems for Linux that are not
in mainline are Lustre and IBM’s GPFS. The cifs and
nfs file system clients for Linux are surprisingly simi-
lar in size (between 20 and 30 thousand lines of code)
and change rate. The most common SMB/CIFS server
for Linux is Samba, which is significantly larger than
the Linux NFS server in size and scope. The most com-
mon Linux NFS server is of course nfsd, implemented
substantially in kernel.

Windows Vista also includes support for various
network file system protocols including SMB/CIFS,
SMB2, and NFS.

4 SMB2 Under the Hood

The SMB2 protocol differs [7] from the SMB and CIFS
protocols in the following ways:

e The SMB header is expanded to 64 bytes, and bet-
ter aligned. This allows for increased limits on the

2007 Linux Symposium, Volume One o 135

number of active connections (uid and tids) as well
as the number of process ids (pids).

e The SMB header signature string is no longer
OxFF followed by “SMB” but rather OXxFE and then
“SMB.” In the early 1990s, LANtastic did a sim-
ilar change in signature string (in that case from
“SMB” to “SNB”) to distinguish their requests
from SMB requests.

e Most operations are handle based, leaving Cre-
ate (Open/Create/OpenDirectory) as the only path
based operation.

e Many redundant and/or obsolete commands have
been eliminated.

e The file handle has been increased to 64 bits.

o Better support for symlinks has been added. Win-
dows Services for Unix did not have native support
for symlinks, but emulated them.

e Various improvements to DFS and other miscella-
neous areas of the protocol that will become usable
when new servers are available.

e “Durable file handles” [10] allowing easier recon-
nection after temporary network failure.

e Larger maximum operation sizes, and improved
compound operation (“AndX”) support also have
been claimed but not proved.

Currently 19 SMB2 commands are known:

0x00 NegotiateProtocol 0x0A Lock

0x01 SessionSetupAndX | 0xOB Ioctl
0x02 SessionLogoff 0x0C Cancel
0x03 TreeConnect 0xOD KeepAlive
0x04 TreeDisconnect 0xOE Find

0x05 Create 0xOF Notify
0x06 Close 0x10 Getlnfo
0x07 Flush 0x11 SetInfo
0x08 Read 0x12 Break
0x09 Write

Many of the infolevels used by the GetInfo/SetInfo com-
mands will be familiar to those who have worked with
CIFS.

5 POSIX Conformance

5.1 NFS

NFS version 3 defined 21 network file system operations
(four more than NFS version 2) roughly corresponding
to common VFS (Virtual File System) entry points that
Unix-like operating systems require. NES versions 2
and 3 were intended to be idempotent (stateless), and
thus had difficulty preserving POSIX semantics. With
the addition of a stateful lock daemon, an NFS version 3
client could achieve better application compatibility, but
still can behave differently [6] than local file systems in
at least four areas:

1. Rename of an open file. For example, the silly re-
name approach often used by nfs clients for renam-
ing open files could cause rm —rf to fail.

2. Deleting an existing file or directory can appear to
fail (as if the file were not present) if the request is
retransmitted.

3. Byte range lock security (Since these services are
distinct from the nfs server, both lockd and statd
have had problems in this area).

4. write semantics (when caching was done on the
client).

NFS also required additional protocol extensions to be
able to support POSIX ACLs, and also lacked sup-
port for xattrs (OS/2 EAs), creation time (birth time),
nanosecond timestamps, and certain file flags (im-
mutable, append-only etc.). Confusingly, the NFS pro-
tocol lacked a file open and close operation until NFS
version 4, and thus could only implement a weak cache
consistency model.

5.2 NFSv4

NFS version 4, borrowing ideas from other protocols in-
cluding CIFS, added support for an open and close op-
eration, became stateful, added support for a rich ACL
model similar to NTFS/CIFS ACLs, and added sup-
port for safe caching and a wide variety of extended
attributes (additional file metadata). It is possible for
an NFS version 4 implementation to achieve better ap-
plication compatibility than before without necessarily
sacrificing performance.

136 e A New Network File System is Born: Comparison of SMB2, CIFS, and NFS

5.3 CIFS

The CIFS protocol can be used by a POSIX compli-
ant operating system for most operations, but compen-
sations are needed in order to properly handle POSIX
locks, special files, and to determine approximate rea-
sonable values for the mode and owner fields. There are
other problematic operations that, although not strictly
speaking POSIX issues, are important for a network
file system in order to achieve true local remote trans-
parency. They include symlink, statfs, POSIX ACL op-
erations, xattrs, directory change notification (including
inotify) and some commonly used ioctls (for example
those used for the Isattr and chattr utilities). Without
protocol extensions, the CIFS protocol can adequately
be used for most important operations but differences
are visible as seen in figure 1.

5.4 CIFS with Unix Protocol Extensions

As can be seen in figure 2, with the CIFS Unix Exten-
sions it is possible to more accurately emulate local se-
mantics for complex applications such as a Linux desk-
top.

The Unix Extensions to the CIFS Protocol have been
improved in stages. An initial set, which included var-
ious new infolevels to TRANSACT2 commands in the
range from 0x200 to Ox2FF (inclusive), was available
when CAP_UNIX was included among the capabilities
returned by the SMB negotiate protocol response.

Additional POSIX extensions are negotiated via a get
and set capabilities request on the tree connection via a
Unix QueryFSInfo and SetFSInfo level. Following is a
list of the capabilties that may be negotiated currently:

e CIFS_UNIX_FCNTL_LOCKS_CAP
o CIFS_UNIX_POSIX_ACLS_CAP

e CIFS_UNIX_XATTR_CAP

e CIFS_UNIX_EXATTR_CAP

e CIFS_UNIX POSIX _PATHNAMES CAP (all
except slash supported in pathnames)

e CIFS_UNIX_POSIX_PATH_OPS_CAP

A range of information levels above 0x200
has been reserved by Microsoft and the SNIA
CIFS Working Group for Unix Extensions.
These include Query/SetFileInformation and
Query/SetPathInformation levels:

QUERY _FILE_UNIX_BASIC 0x200 Part of the initial Unix Extensions
QUERY _FILE_UNIX_LINK 0x201 Part of the initial Unix Extensions
QUERY _POSIX_ACL 0x204 Requires
CIFS_UNIX_POSIX_ACL_CAP
QUERY _XATTR 0x205 Requires
CIFS_UNIX_XATTR_CAP
QUERY _ATTR_FLAGS 0x206 Requires

CIFS_UNIX_EXTATTR_CAP
QUERY _POSIX_PERMISSION 0x207

QUERY_POSIX_LOCK 0x208 Requires
CIFS_UNIX_FCNTL_CAP
SMB_POSIX_PATH_OPEN 0x209 Requires
CIFS_UNIX_POSIX_PATH_OPS_CAP
SMB_POSIX_PATH_UNLINK 0x20a Requires

CIFS_UNIX_POSIX_PATH_OPS_CAP

SMB_QUERY FILE_UNIX_INFO2 0x20b Requires
CIFS_UNIX_EXTATTR_CAP

Currently the CIFS Unix Extensions also include the
following Query/SetFileSystemInformation levels that
allow retrieving information about a particular mounted
export (“tree connection”), and negotiating optional ca-
pabilities. Note that unlike NFS and SMB/CIFS, the
CIFS Unix Extensions allow different capabilities to be
negotiated in a more granular fashion, by “tree connec-
tion” rather than by server session.

If a server is exporting resources located on two very
different file systems, this can be helpful.

SMB_QUERY _CIFS_UNIX_INFO 0x200 (Part of the orig-
inal Unix Exten-
sions)

0x201

0x202

SMB_QUERY _POSIX_FS_INFO
SMB_QUERY_POSIX_-WHO_AM_I

These Unix Extensions allow a CIFS client to set and
return fields such as uid, gid and mode, which otherwise
have to be approximated based on CIFS ACLs. They
also drastically reduce the number of network roundtrips
and operations required for common path based opera-
tions. For example, with the older CIFS Unix Exten-
sions, a file create operation takes many network opera-
tions: QueryPathInfo, NTCreateX, SetPathInfo, Query-
Pathlnfo in order to implement local Unix create seman-
tics correctly. File creation can be done in one network
roundtip using the new SMB_POSIX_PATH_OPEN,
which reduces latency and allows the server to better

2007 Linux Symposium, Volume One o 137

B
File Edit Miew Go Beokmarks Help

#3 [}
€ . @ = &

Back Up Home Com_m..lhar

[| [soost | [t |

=

| S|

dirl char-dew-file

7 items, Free space: 230 GB

etlipse"

test-dir - File Browser - O X

Ll

file2-owned- by-root

]

hard-link-to-file1

Edit

View Go Bookmarks Help

=

Caomputer

,;g;

. &
Back 1 Up Reload Home

iDHmnt||te:tdlr‘

fifol

char-dev-file

[l

filel

file2-owned-by- root hard-link-to-filel symlink

L an

b

250 ad

Figure 1: Without extensions to CIFS, local (upper window) vs. remote (below) transparency problems are easily

visible

optimize. The improved atomicity of mkdir and create
makes error handling easier (e.g. in case a server failed
after a create operation, but before the SetPathInfo).

5.5 SMB2

The SMB2 protocol improves upon its predecessors by
including symlink support. However, retrieving mode
and Unix uid and gid from NTFS/CIFS ACLs is still
awkward. SMB2 appears to be only slightly improved
in this area, and substantially worse than the CIFS Unix
Extensions for this purpose.

6 Performance

CIFS has often been described as a chatty protocol, im-
plying that it is inherently slower than NFS, but this is
misleading. Most of the chattiness observed in CIFS
is the result of differences between the operating sys-
tem implementations being compared (e.g. Windows vs.
Linux). Another factor that leads to the accusation of the
CIFS protocol being chatty (wasteful of network band-
width) is due to periodic broadcast frames that contain
server announcements (mostly in support of the Win-
dows Network Neighborhood). These are not a required
part of CIFS, but are commonly enabled on Windows

servers so that clients and/or “Browse Masters” contain
current lists of the active servers in a resource domain.

There are differences between these protocols that could
significantly affect performance. Some examples in-
clude: compound operations, maximum read and write
sizes, maximum number of concurrent operations, en-
dian transformations, packet size, field alignment, dif-
ficult to handle operations, and incomplete operations
that require expensive compensations.

To contrast features that would affect performance it is
helpful to look at some examples.

6.1 Opening an existing file

The SMB2 implementation needs a surprising eight re-
quests to handle this simple operation.

6.2 Creating a new file

The SMB2 protocol appears to match perfectly the re-
quirements of the Windows client here. Attempting a
simple operation like:

echo new file data > newfile
results in the minimum number of requests that would
reasonably be expected (opencreate, write, close). Three
requests and three responses (823 bytes total).

138 o A New Network File System is Born: Comparison of SMB2, CIFS, and NFS

(7] test-dir - File Browser e B K
File Edit View Go Bookmarks Help
= =
@ . & = @@ =

Back Up Reload Home anuter

—_——
[« || [stever ||hesh1\r|

fifol

‘testdir - File Browser

y 0O O 0O O

file2-owned- by-root hard-link-to-file1 symlink

@ . Y Z @ =

Back Up Reload Home Computsr

|a| [nt | [testair |

fifal file1

T

file2-owned-by-root

]

hard-link-to-file1 symlink

7 items, Fres spacs: 23.0 GB

Figure 2: Better local (upper window) vs. remote (below) transparency with CIFS Unix extensions

6.3 Mount (NET USE)

Once again the SMB2 protocol appears to match well
the requirement of the client with only 11 requests
(four are caused by the Windows desktop trying to open
Desktop.ini and AutoRun.inf).

7 Linux Implementation

Much of the progress on SMB2 has been due to ex-
cellent work by the Samba 4 team, led by Dr. Andrew
Tridgell. Over the past year and a half, they have imple-
mented a comprehensive client library for SMB2, im-
plemented a test suite (not as comprehensive yet), im-
plemented DCE/RPC over SMB2 (for remote admin-
istration), implemented a SMB2 server (not complete),
and in cooperation with Ronnie Sahlberg, implemented
a wireshark (ethereal) protocol analyzer.

8 Future Work and Conclusions

Although great progress has been made on a proto-
type user space client in Samba 4, an implementation
of SMB2 in kernel on Linux also needs to be com-
pleted. We have started a prototype. The SMB2 pro-
tocol represents a modest improvement over the older

SMB/CIFS protocol, and should be slightly better de-
spite the slightly larger frame size caused by the larger
header. With fewer commands to optimize and better
aligned fields, performance may be slightly improved as
server developers better tune their SMB2 implementa-
tions.

Despite the addition of support for symlinks, the SMB2
protocol lacks sufficient support for features needed by
Unix and Linux clients. Adding Unix extensions to
SMB2, similar to what has been done with CIFS, is pos-
sible and could reuse some of the existing Unix specific
infolevels.

With current Linux kernels, NFS version 4 and CIFS
(cifs client/Samba server) are good choices for network
file systems for Linux to Linux. NFS performance
for large file copy workloads is better, and NFS offers
some security options that the Linux cifs client does
not. In heterogeneous environments that include Win-
dows clients and servers, Samba is often much easier to
configure.

9 Acknowledgements

The author would like to express his appreciation to the
Samba team, members of the SNIA CIFS technical work

2007 Linux Symposium, Volume One e 139

octet 1 2 3 4 5 6 7 8
RFC 1001 SMB length (some reserve top 7 bits) OxFF 'S 'M' 'B'
msg type
(session)
SMB Status (error) code SMB flags SMB flags2
Command
Process ID (high order) SMB Signature
SMB signature (continued) | Reserved ‘ Tree Identifier ‘ Process Id (Low)
SMB User Identifier Word Count | (variable number of 16 bit Byte Count (size of data area) | (data area
parameters follow) follows)
Table 1: SMB Header Format (39 bytes + size of command specific wct area)
octet 1 2| 3| 4 5 6 7 8
RFC 1001 SMB length 0xFE 'S' ‘™' 'B'
msg type
(session)
SMB Header length (64) reserved Status (error) code
SMB2 Command Unknown SMB2 Flags
Reserved Sequence number
Sequence Number (continued) Process Id
Tree Identifier SMB User Identifier
SMB User Identifier SMB Signature
SMB Signature (continued)
SMB Signature (continued) SMB2 Parameter length (in | Variable Variable
bytes) length SMB | length SMB
Parm Data
Table 2: SMB2 Header Format (usually 68 bytes + size of command specific parameter area)
octet 1 2| 3| 4 5| 6 7| 8
SunRPC Fragment Header XID
Message Type (Request vs. Response) SunRPC Version

Program: NFS (100003)

Program Version (e.g. 3)

NFS Command

Authentication Flavor (e.g. AUTH UNIX)

Credential Length

Credential Stamp

Machine Name length

Machine name (variable size)

Machine Name (continued, variable length)

Unix UID | Unix GID
Auxiliary GIDs (can be much larger)
Verifier Flavor ‘ Verifier Length

NFS Command Parameters and/or Data follow

Table 3: SunRPC/NFSv3 request header format (usually more than 72 bytes + size of nfs command)

140 e A New Network File System is Born: Comparison of SMB2, CIFS, and NFS

group, and others in analyzing and documenting the
SMB/CIFS protocol and related protocols so well over
the years. This is no easy task. In addition, thanks to the
Wireshark team and Tridge for helping the world under-
stand the SMB?2 protocol better, and of course thanks to
the Linux NFSv4 developers and the NFS RFC authors,
for implementing and documenting such a complex pro-
tocol. Thanks to Dr. Mark French for pointing out some
of the many grammar errors that slipped through.

10 Legal Statement

This work represents the view of the author and does not nec-
essarily represent the view of IBM. IBM, OS/2, GPFS, and
0S/400 are registered trademarks of International Business
Machines Corporation in the United States and/or other coun-
tries. Microsoft, Windows and Windows Vista are either a
registered trademark or trademark of Microsoft Corporation
in the United States and/or other countries. UNIX is a reg-
istered trademark of The Open Group in the United States
and other countries. POSIX is a registered trademark of The
IEEE in the United States and other countries. Linux is a reg-
istered trademark of Linus Torvalds. Other company, product
and service names may be trademarks or service marks of
others.

References

[1] Sun Microsystems Inc. RFC 1094: NFS: Network
File System Protocol Specification. March 1989.
See http:
//www.ietf.org/rfc/rfcl094.txt

[2] Callaghan et al. RFC 1813: NFS Version 3
Protocol Specification. June 1995. See http:
//www.ietf.org/rfc/rfcl8l3.txt

[3] S. Shepler, et al. RFC 3530: Network File System
(NFS) version 4 Protocol. April 2003. See http:
//www.ietf.org/rfc/rfc3530.txt

[4] J. Norton, et al. SNIA CIFS Technical Reference.
March 2002. See http:
//www.snia.org/tech_activities/
CIFS/CIFS-TR-1p00_FINAL.pdf

[5] C. Hertel. Implementing CIFS. 2004. See
http://ubigx.org/cifs/

[6] O. Kirch. Why NFS Sucks. Proceedings of the
2006 Ottawa Linux Symposium, Ottawa, Canada,
July 2006.

[7] Dr. A. Tridgell. Exploring the SMB2 Protocol.
SNIA Storage Developer Conference. September
2006.
http://samba.org/~tridge/smb2.pdf

[8] CIFS Unix Extensions. http://wiki.samba.
org/index.php/UNIX_Extensions

[9] Linux CIFS Client and Documentation.
http://linux-cifs.samba.org

[10] What’s new in SMB in Windows Vista
http://blogs.msdn.com/chkdsk/
archive/2006/03/10/548787.aspx

