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Abstract

Some modern processors such as later Opterons R© and
Power R© processors are able to support large pages sizes
such as 1GiB and 16GiB. These page sizes are imprac-
tical to reserve at boot time because of the amount of
memory that is potentially wasted. Currently, Linux R©

as it stands is not well suited to support multiple page
sizes because it makes no effort to satisfy allocations for
contiguous regions of memory. This paper will discuss
features under development that aim to support the allo-
cation of large contiguous areas.

This paper begins by discussing the current status of
mechanisms to reduce external fragmentation in the
page allocator. The reduction of external fragmenta-
tion results in sparsely populated superpages that must
be reclaimed for contiguous allocations to succeed. We
describe how poor reclaim decisions offset the perfor-
mance benefits of superpages in low-memory situations,
before introducing a mechanism for the intelligent re-
claim of contiguous regions. Following a presentation
of metrics used to evaluate the features and the results,
we propose a memory compaction mechanism that mi-
grates pages from sparsely populated to dense regions
when enough memory is free to avoid reclaiming pages.
We conclude by highlighting that parallel allocators pre-
vent contiguous allocations by taking free pages from
regions being reclaimed. We propose a method for ad-
dressing this by making pages temporarily unavailable
to allocators.

1 Introduction

Any architecture supporting virtual memory is required
to map virtual addresses to physical addresses through
an address translation mechanism. Recent translations
are stored in a cache called a Translation Lookaside
Buffer (TLB). TLB Coverage is defined as memory ad-
dressable through this cache without having to access

the master tables in main memory. When the master
table is used to resolve a translation, a TLB Miss is in-
curred. This can have as significant an impact on Clock
cycles Per Instruction (CPI) as CPU cache misses [3].
To compound the problem, the percentage of memory
covered by the TLB has decreased from about 10% of
physical memory in early machines to approximately
0.01% today [6]. As a means of alleviating this, mod-
ern processors support multiple page sizes, usually up to
several megabytes, but gigabyte pages are also possible.
The downside is that processors commonly require that
physical memory for a page entry be contiguous.

In this paper, mechanisms that improve the success rates
of large contiguous allocations in the Linux kernel are
discussed. Linux already supports two page sizes, re-
ferred to as the base page and the huge page. The paper
begins with an update on previous work related to the
placement of pages based on their mobility [2]. A per-
centage of pages allocated by the kernel are movable
due to the data being referenced by page tables or triv-
ially discarded. By grouping these pages together, con-
tiguous areas will be moved or reclaimed to satisfy large
contiguous allocations. As a bonus, pages used by the
kernel are grouped in areas addressable by fewer large
TLB entries, reducing TLB misses.

Work on the intelligent reclaim of contiguous areas is
then discussed. The regular reclaim algorithm reclaims
base pages but has no awareness of contiguous areas.
Poor page selections result in higher latencies and lower
success rates when allocating contiguous regions.

Metrics are introduced that evaluate the placement pol-
icy and the modified reclaim algorithm. After describing
the test scenario, it is shown how the placement policy
keeps a percentage of memory usable for contiguous al-
locations, and the performance impact is discussed. It
is then shown how the reclaim algorithm satisfies the al-
location of contiguous pages faster than the regular re-
claim.

• 141 •
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The remainder of the paper proposes future features to
improve the allocation of large contiguous regions. In-
vestigation showed that contiguous areas were sparsely
populated and that compacting memory would be a logi-
cal step. A memory compaction mechanism is proposed
that will be rarely triggered, as an effective placement
policy significantly reduces the requirement for com-
paction [1] [4]. Additional investigation revealed that
parallel allocators use pages being reclaimed, preempt-
ing the contiguous allocation. This is called the racing
allocator problem. It is proposed that pages being re-
claimed be made unavailable to other allocators.

2 External Fragmentation

External fragmentation refers to the inability to satisfy
an allocation because a sufficiently sized free area does
not exist despite enough memory being free overall [7].
Linux deals with external fragmentation by rarely re-
quiring contiguous pages. This is unsuitable for large,
contiguous allocations. In our earlier work, we defined
metrics for measuring external fragmentation and two
mechanisms for reducing it. This section will discuss
the current status of the work to reduce external frag-
mentation. It also covers how page types are distributed
throughout the physical address space.

2.1 Grouping Pages By Mobility

Previously, we grouped pages based on their abil-
ity to be reclaimed and called the mechanism anti-
fragmentation. Pages are now grouped based on their
ability to be moved, and this is called grouping pages
by mobility. This takes into account the fact that pages
mlock()ed in memory are movable by page migration,
but are not reclaimable.

The standard buddy allocator always uses the smallest
possible block for an allocation, and a minimum num-
ber of pages are kept free. These free pages tend to re-
main as contiguous areas until memory pressure forces a
split. This allows occasional short-lived, high-order al-
locations to succeed, which is why setting min_free_
kbytes to 163841 benefits Ethernet cards using jumbo
frames. The downside is that once split, there is no guar-
antee that the pages will be freed as a contiguous area.
When grouping by mobility, the minimum number of

1A common recommendation when using jumbo frames.

free pages in a zone are stored in contiguous areas. De-
pending on the value of min_free_kbytes, a num-
ber of areas are marked RESERVE. Pages from these
areas are allocated when the alternative is to fail.

Previously, bits from page→flags were used to track
individual pages. A bitmap now records the mobility
type of pages within a MAX_ORDER_NR_PAGES area.
This bitmap is stored as part of the struct zone for
all memory models except the SPARSEMEM, where the
memory section is used. As well as avoiding the con-
sumption of page→flags bits, tracking page type by
area controls fragmentation better.

Previously effective control of external fragmentation
required that min_free_kbytes be 5% to 10% of
physical memory, but this is no longer necessary. When
it is known there will be bursts of high-order atomic
allocations during the lifetime of the system, min_
free_kbytes should be increased. If it is found
that high order allocations are failing, increasing min_
free_kbytes will free pages as contiguous blocks
over time.

2.2 Partitioning Memory

When grouping pages by mobility, the maximum num-
ber of superpages that may be allocated on demand is
dependent on the workload and the number of mov-
able pages in use. This level of uncertainty is not al-
ways desirable. To have a known percentage of memory
available as contiguous areas, we create a zone called
ZONE_MOVABLE that only contains pages that may be
migrated or reclaimed. Superpage allocations are not
movable or reclaimable but if a sysctl is set, superpage
allocations are allowed to use the zone. Once the zone
is sized, there is a reasonable expectation that the super-
page pool can be grown at run-time to at least the size of
ZONE_MOVABLE while leaving the pages available for
ordinary allocations if the superpages are not required.

The size in bytes of the MAX_ORDER area varies be-
tween systems. On x86 and x86-64 machines, it is 4MiB
of data. On PPC64, it is 16MiB; on an IA-64 support-
ing huge pages, it is often 1GiB. If a developer requires
a 1GiB superpage on Power there is no means to pro-
viding it, as the buddy allocator does not have the nec-
essary free-lists. Larger allocations could be satisfied
by increasing MAX_ORDER, but this is a compile-time
change and not desirable in the majority of cases. Gen-
erally, supporting allocations larger than MAX_ORDER_
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Standard Allocator Grouping By Mobility

Figure 1: Distribution of Page Types

NR_PAGES requires adjacent MAX_ORDER_NR_PAGES

areas to be the same mobility type. The memory par-
tition provides this guarantee.

The patches to group pages by mobility and partition
memory were merged for wider testing in the Linux ker-
nel version 2.6.21-rc2-mm2 despite some scepticism
on the wider utility of the patches. Patches to allocate
adjacent MAX_ORDER_NR_PAGES are planned.

2.3 Comparing Distribution

Figure 1 shows where pages of different mobility types
are placed with the standard allocator and when group-
ing by mobility. Different colours are assigned to pages
of different mobility types and each square represents
MAX_ORDER_NR_PAGES. When the snapshot was taken
the system had been booted, a 32MiB file was cre-
ated and then deleted. It is clear in the figure that
MAX_ORDER_NR_PAGES areas contain pages of mixed
types with the standard allocator, but the same type
when when grouping by mobility. This “mixing” in the
standard allocator means that contiguous allocations are
not likely to succeed even if all reclaimable memory is
released.

It is clear from the figure that grouping pages by mobil-
ity does not guarantee that all of memory may be allo-
cated as contiguous areas. The algorithm depends on a
number of areas being marked MOVABLE so that they
may be migrated or reclaimed. To a lesser extent it de-
pends on RECLAIMABLE blocks being reclaimed. Re-
claiming those blocks is a drastic step because there is
no means to target the reclamation of kernel objects in a
specific area.

Despite these caveats, the result when grouping pages
by mobility is that a high percentage of memory may be

allocated as contiguous blocks. With memory partition-
ing, a known percentage of memory will be available.

3 Reclaim

When an allocation request cannot be satisfied from the
free pool, memory must be reclaimed or compacted. Re-
claim is triggered when the free memory drops below a
watermark, activating kswapd, or when available free
memory is so low that memory is reclaimed directly by
a process.

The allocator is optimised for base page-sized alloca-
tions, but the system generates requests for higher or-
der areas. The regular reclaim algorithm fares badly in
the face of such requests, evicting significant portions of
memory before areas of the requested size become free.
This is a result of the Least Recently Used (LRU) reclaim
policy. It evicts pages based on age without taking page
locality into account.

Assuming a random page placement at allocation and
random references over time, then pages of similar LRU
age are scattered throughout the physical memory space.
Reclaiming based on age will release pages in random
areas. To guarantee the eviction of two adjacent pages
requires 50% of all pages in memory to be reclaimed.
This requirement increases with the size of the requested
area tending quickly towards 100%. Awareness is re-
quired of the size and alignment of the allocation or the
performance benefits of superpage use are offset by the
cost of unnecessarily reclaiming memory.

3.1 Linear Area Reclaim

To fulfil a large memory request by reclaiming, a con-
tiguous aligned area of pages must be evicted. The re-
sultant free area is then returned to the requesting pro-
cess. Simplistically this can be achieved by linearly
scanning memory, applying reclaim to suitable contigu-
ous areas. As reclaim completes, pages coalesce into a
contiguous area suitable for allocation.

The linear scan of memory ignores the age of the page
in the LRU lists. But as previously discussed, scanning
based on page age is highly unlikely to yield a contigu-
ous area of the required size. Instead, a hybrid of these
two approaches is used.



144 • Supporting the Allocation of Large Contiguous Regions of Memory

ActiveInactive

Active

Inactive  

Free

O(3) O(3)O(3)O(3)

Figure 2: Area Reclaim area selection

3.2 LRU-Biased Area Reclaim

LRU-Biased Area Reclaim (Area Reclaim)2 is a hybrid
reclaim algorithm incorporating linear area reclaim into
the regular LRU-based aging algorithm. Instead of lin-
early scanning memory for a suitable area, the tails of
the active and inactive LRU lists are used as a starting
point.

Area Reclaim follows the regular approach of target-
ing pages in the LRU list order. First, an area in the
active list is selected based on the oldest page in that
list. Active pages in that area are rotated to the inactive
list. An area in the inactive list is then selected based
on the oldest page in that list. All pages on the LRU
lists within this area are then reclaimed. When there is
allocation pressure at a higher order, this tends to push
groups of pages in the same area from the active list onto
the head of the inactive list increasing the chances of re-
claiming areas at its tail in the future. On the assump-
tion there will be future allocations of the same size,
kswapd applies pressure at the largest size required by
an in-progress allocation.

Figure 2 shows an example memory layout. As an
example, consider the application of Area Reclaim at
order-3. The active and inactive lists work their way
through the pages in memory indicating the LRU-age
of those pages. In this example, the end of the active
list is in the second area and the end of the inactive list
is in the third area. Area Reclaim first applies pressure
to the active list, targeting the second area. Next it ap-
plies pressure to the inactive list, targeting area three.
All pages in this area are reclaimable or free and it will
coelesce.

While targeting pages in an area, we maintain the age-
based ordering of the LRU to some degree. The down-
side is that younger, active and referenced pages in the

2This was initially based on Peter Zijlstra’s modifications to last
year’s Linear Reclaim algorithm, and is commonly known as Lumpy
Reclaim.

x86-64 Test Machine

CPU Opteron R© 2GHz
# Physical CPUs 2
# CPUs 4
Main Memory 1024MiB

PPC64 Test Machine

CPU Power5 R© PPC64
1.9GHz

# Physical CPUs 2
# CPUs 4
Main Memory 4019MiB

Figure 3: Specification of Test Machines

same area are all targeted prematurely. The higher the
order of allocation, the more pages that are unfairly
treated. This is unavoidable.

4 Experimental Methodology

The mechanisms are evaluated using three tests: one
related to performance, and two that are known to ex-
ternally fragment the system under normal conditions.
Each of the tests is run in order, without intervening
reboots, to maximise the chances of the system being
fragmented. The tests are as follows.

kernbench extracts the kernel and then builds it three
times. The number of jobs make runs is the number of
processors multiplied by two. The test gives an over-
all view of the kernel’s performance and is sensitive to
changes that alter scalability.

HugeTLB-Capability is unaltered from our previous
study. For every 250MiB of physical memory, a kernel
compile is executed in parallel. Attempts are made to
allocate hugepages through the kernel’s proc interface
under load and at the end of test.

Highalloc-Stress builds kernels in parallel, but in addi-
tion, updatedb runs so that the kernel will make many
small unmovable allocations. Persistent attempts are
made to allocate hugepages at a constant rate such that
kswapd should not queue more than 16MiB/s I/O. Pre-
vious tests placed 300MiB of data on the I/O queue in
the first three seconds, making comparisons of reclaim
algorithms inconclusive.
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All benchmarks were run using driver scripts from VM-
Regress 0.803 in conjunction with the system that gen-
erates the reports on http://test.kernel.org.
Two machines were used to run the benchmarks based
on 64-bit AMD R© Opteron and POWER5 R© architec-
tures, as shown in Figure 3.

On both machines, a minimum free reserve of 5 ∗
MAX_ORDER_NR_PAGES was set, representing 2%
of physical memory. The placement policy is effective
with a lower reserve, but this gives the most predictable
results. This is due to the low frequency that page types
are mixed under memory pressure. In contrast, our pre-
vious study required fives times more space to reduce
the frequency of fallbacks.

5 Metrics

In this section, five metrics are defined that evaluate
fragmentation reduction and the modified reclaim algo-
rithm. The first metric is system performance, used to
evaluate the overhead incurred when grouping pages by
mobility. The second metric is overall allocator effec-
tiveness, measuring the ability to service allocations. Ef-
fectiveness is also used as the basis of our third metric,
reclaim fitness, measuring the correctness of the reclaim
algorithm. The fourth metric is reclaim cost, measuring
the processor and I/O overheads from reclaim. The final
metric is inter-allocation latency, measuring how long
it takes for an allocation to succeed.

5.1 System Performance

The performance of the kernel memory allocator is crit-
ical to the overall system. Grouping pages by mobility
affects this critical path and any significant degradation
is intolerable. The kernbench benchmark causes high
load on the system, particularly in the memory alloca-
tor. Three compilation runs are averaged, giving pro-
cessor utilisation figures to evaluate any impact of the
allocator paths.

5.2 Effectiveness

The effectiveness metric measures what percentage of
physical memory can be allocated as superpages

3http://www.csn.ul.ie/~mel/projects/
vmregress/vmregress-0.80.tar.gz

E = (Ar ∗100)/At

where Ar is the number of superpages allocated and At

is the total number of superpages in the system. During
the Highalloc-Stress test, attempts are made to allocate
superpages under load and at rest, and the effectivess
is measured. Grouping pages by mobility should show
an increase in the effectiveness when the system is at
rest at the end of a test. Under load, the metric is a
key indicator of the intelligent reclaim algorithm’s area
selection.

5.3 Reclaim Fitness

Reclaim fitness validates the reclaim algorithm. When
applied to 100% of memory, any correct algorithm will
achieve approximately the same effectiveness. A low
variance implies a correct algorithm. An incorrect algo-
rithm may prematurely exit or fail to find pages.

5.4 Reclaim Cost

The reclaim cost metric measures the overhead incurred
by scanning, unmapping pages from processes, and
swapping out. Any modification to the reclaim algo-
rithm affects the overall cost to the system. Cost is de-
fined as:

C = log10((Cs ∗Ws)+(Cu ∗Wu)+(Cw ∗Ww))

where Cs is the number of pages scanned, Cu is the num-
ber of pages unmapped, and Cw is the number of pages
we have to perform I/O for in order to release them. The
scaling factors are chosen to give a realistic ratio of each
of these operations. Ws is given a weight of 1, Wu is
weighted as 1000 and Ww is weighted at 1,000,000.

The cost metric is calculated by instrumenting the kernel
to report the scan, unmap, and write-out rates. These are
collected while testing effectiveness. This metric gives a
measure of the cost to the system when reclaiming pages
by indicating how much additional load the system ex-
periences as a result of reclaim.
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Figure 4: Inter-Allocation Latencies

5.5 Inter-Allocation Latency

Given a regular stream of allocation attempts of the
same size, the inter-allocation latency metric measures
the time between successful allocations. There are three
parts to the metric. The inter-allocation latency vari-
ability is defined as the standard deviation of the inter-
allocation delay between successful allocations. The
mean is the arithmetic mean of these inter-allocation de-
lays. The worst-case allocation time is simply the worst
inter-allocation delay.

The inter-allocation times are recorded when measur-
ing effectivess. Figure 4 shows the raw inter-allocation
times for regular and Area Reclaim. The fixed-height
vertical red lines indicate where an additional 5% of
memory was allocated as superpages. A vertical green
bar indicates when an allocation succeeded and the
height indicates how long since the last success. The
large portions of white on the left side of the regular re-
claim graph indicate the time required for enough mem-
ory to be reclaimed for contiguous allocations to suc-
ceed. In contrast, Area Reclaim does not regularly fail
until 50% of memory is allocated as superpages.

A key feature of a good reclaim algorithm is to provide
a page of the requested size in a timely manner. The
inter-allocation variability metric gives us a measure of
the consistency of the algorithm. This is particularly sig-
nificant during the transition from low to high allocator
load, as allocations are time critical.

x86-64 Test Machine
CPU Mobility Delta
Time Off On (%)

User 85.83 86.78 1.10
System 35.92 34.07 –5.17
Total 121.76 120.84 –0.75

PPC64 Test Machine
CPU Mobility Delta
Time Off On (%)

User 312.43 312.24 –0.06
System 16.89 17.24 2.05
Total 329.32 329.48 0.05

Figure 5: Mobility Performance Comparison

6 Results

Four different scenarios were tested: two sets of runs
evaluating the effectiveness and performance of the page
mobility changes, and two sets of runs evaluating the
Regular and Area Reclaim algorithms.

Figure 5 shows the elapsed processor times when run-
ning kernbench. This is a fork()-, exec()-, I/O-,
and processor-intensive workload and a heavy user of
the kernel page allocator, making it suitable for measur-
ing performance regressions there. On x86-64, there is a
significant and measurable improvement in system time
and overall processor time despite the additional work
required by the placement policy. In Linux, the kernel
address space is a linear mapping of physical memory
using superpage Page Table Entries (PTEs). Grouping
pages by mobility keeps kernel-related allocations to-
gether in the same superpage area, reducing TLB misses
in the kernel portion of the working set. A performance
gain is found on machines where the kernel portion of
the working set exceeds TLB reach when the kernel al-
locations are mixed with other allocation types.

In contrast, the PPC64 figures show small performance
regressions. Here, the kernel portion of the address
space is backed by superpage entries, but the PPC64
processor has at least 1024 TLB entries, or almost ten
times the number of x86-64. In this case, the TLB is able
to hold the working set of the kernel portion whether
pages are grouped by mobility or not. This is com-
pounded by running kernbench immediately after boot,
causing allocated physical pages to be grouped together.
PPC64 is expected to show similar improvements due
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to reduced TLB misses with workloads that have large
portions of their working sets in the kernel address space
and when the system has been running for a long time.

Where there are no benefits due to reduced TLB misses
in the kernel portion of a working set, regressions of be-
tween 0.1% and 2.1% are observed in kernbench. How-
ever, the worst observed regression in overall processor
time is 0.12%. Given that kernbench is an unusually
heavy user of the kernel page allocator and that super-
pages potentially offer considerable performance bene-
fits, this minor slowdown is acceptable.

 Mobility On

 Mobility Off

 0  10  20  30  40  50  60  70  80

x86-64 Test Machine

Allocated (%)

 Mobility On

 Mobility Off

 0  10  20  30  40  50  60  70  80

PPC64 Test Machine

Allocated (%)

Figure 6: Mobility Effectiveness

Figure 6 shows overall effectiveness. The pair of bars
show the percentage of memory successfully allocated
as superpages under load during the Highalloc-Stress
stress and at the end when the system is at rest. The
figures show that grouping the pages significantly im-
proves the success rates for allocations. In particular on
PPC64, dramatically fewer superpages were available at
the end of the tests in the standard allocator. It has been
observed that the longer systems run without page mo-
bility enabled, the closer to 0% the success rates are.

Figure 7 compares the percentage of memory allocated
as huge pages at the end of all test for both reclaim al-
gorithms. Both algorithms should be dumping almost

Reclaim Delta
Arch

Regular Area (%)
x86-64 64.53 73.15 8.62
PPC64 72.11 70.12 -1.99

Figure 7: Correctness

all of memory, so the figures should always be compa-
rable. The figures are comparable or improved, so it is
known that Area Reclaim will find all reclaimable pages
when under pressure. This validates the Area Reclaim
scanner.

 Area

 Regular

 0  1  2  3  4  5  6  7  8  9

x86-64 Test Machine

Cost (log scale)

 Area

 Regular

 0  2  4  6  8  10  12

PPC64 Test Machine

Cost (log scale)

Figure 8: Cost Comparison

Figure 8 shows that the cost of Area Reclaim are higher
than those of Regular reclaim, but not by a considerable
margin. Later we will show the the time taken to allocate
the required areas is much lower with Area Reclaim and
justifies the cost. Cost is a trade-off. On one hand the
algorithm must be effective at reclaiming areas of the
requested size in a reasonable time. On the other, it must
avoid adversely affecting overall system utility while it
is in operation.

The first row of graphs in Figure 9 shows the inter-
allocation variability as it changes over the course of the
test. Being able to deliver ten areas 20 seconds after they
are requested is typically of no use. Note that in both al-
gorithms, the variability is worse towards the start, with
Area Reclaim significantly out-performing Regular Re-
claim.

The second row of graphs in Figure 9 shows the mean
inter-allocation latency as it changes over the course of
the test. It is very clear that the Area Reclaim inter-
allocation latency is more consistent for longer, and gen-
erally lower than that for Regular reclaim.

The third row of graphs in Figure 9 shows the worst-
case inter-allocation latency. Although the actual worst-
case latencies are very similar with the two algorithms,
it is clear that Area Reclaim maintains lower latency for
much longer. The worst-case latencies for Area Reclaim
are at the end of the test, when very few potential con-
tiguous regions exist.
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The superpage size on PPC64 is eight times larger than
that on x86-64. Increased latencies between the archi-
tectures is to be expected, as reclaiming the required
contiguous area is exponentially more difficult. Inspec-
tion of the graphs shows that Area Reclaim allocates
superpages faster on both x86-64 and PPC64. The in-
creased effectiveness of the Area Reclaim algorithm is
particularly noticeable on PPC64 due to the larger su-
perpage size.

6.1 Results Summary

The effectiveness and performance comparisons show
that grouping pages by mobility and Area Reclaim is
considerably better at allocating contiguous regions than
the standard kernel, while still performing well. The
cost and latency metrics show that for a moderate in-
crease in work, we get a major improvement in alloca-
tion latency under load. A key observation is that early
allocations under load with Area Reclaim have consider-
ably lower latency and variability in comparison to the
standard allocator. Typically a memory consumer will
not allocate all of memory as contiguous areas, but allo-
cate small numbers of contiguous areas in short bursts.
Even though it is not possible to anticipate bursts of con-
tiguous allocations, they are handled successfully and
with low latency by the combination of grouping pages
by mobility and Area Reclaim.

7 Memory Compaction

Reclaim is an expensive operation and the cost might
exceeed the benefits of using superpages, particularly
when there is enough memory free overall to satisfy the
allocation. This paper proposes a memory compaction
mechanism that moves pages so that there are fewer, but
larger and contiguous, free areas. The term defragmen-
tation is avoided because it implies all pages are mov-
able, which is not the case in Linux. At the time of writ-
ing, no such memory compaction daemon has been de-
veloped, although a page migration mechanism[5] does
exist in the kernel.4

7.1 Compaction Mechanism

The compaction mechanism will use the existing page
migration mechanism to move pages. The page mobility

4As implemented by Christoph Lameter.

type information stored for a MAX_ORDER_NR_PAGES

area will be used to select where pages should be mi-
grated. Intuitively the best strategy is to move pages
from sparsely to densely populated areas. This is un-
suitable for two reasons. First, it involves a full scan of
all pages in a zone and sorting areas based on density.
Second, when compaction starts, areas that were previ-
ously sparse may no longer be sparse unless the system
was frozen during compaction, which is unacceptable.

The compaction mechanism will group movable pages
towards the end of a zone. When grouping pages by mo-
bility, the location of unmovable pages is biased towards
the lower addresses, so these strategies work in con-
junction. As well as supporting the allocation of very
large contiguous areas, biasing the location of movable
pages towards the end of the zone potentially benefits
the hot-removal of memory and simplifies scanning for
free pages to migrate to.

When selecting free pages, the free page scanner begins
its search at the end of a zone and moves towards the
start. Areas marked MOVABLE are selected. The free
pages contained within are removed from the free-lists
and stored on a private list. No further scanning for free
pages occurs until the pages on the private list are de-
pleted.

When selecting pages to move, the migration scanner
searches from the start of a zone and moves towards the
end. It searches for pages that are on the LRU lists, as
these are highly likely to be migratable. The selection
of an area is different when a process or a compaction
daemon is scanning. This process will be described in
the next two sections.

A compaction run always ends when the two scanners
meet. At that point, it is known that it is very unlikely
that memory can be further compacted unless memory
is reclaimed.

7.2 Direct Compaction

At the time of an allocation failure, a process must de-
cide whether to compact or reclaim memory. The ex-
tent of external fragmentation depends on the size of the
allocation request. In our previous paper, two metrics
were defined that measure external fragmentation. They
are reintroduced here, but not discussed in depth except
as they apply to memory compaction.
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Fragmentation index is the first metric and is only mean-
ingful when an allocation fails due to a lack of a suitable
free area. It determines if the allocation failure was due
to a lack of free memory or external fragmentation. The
index is calculated as

Fi( j) = 1− TotalFree/2 j

AreasFree

where TotalFree is the number of free pages, j is the
order of the desired allocation, and AreasFree is the
number of contiguous free areas of any size. When
AreasFree is 0, Fi( j) is defined as 0.

A value tending towards 0 implies the allocation failed
due to lack of memory and the process should reclaim.
A value tending towards 1 implies the failure is due to
external fragmentation and the process should compact.
If a process tries to compact memory and fails to satisfy
the allocation, it will then reclaim.

It is difficult to know in advance if a high fragmenta-
tion index is due to areas used for unmovable alloca-
tions. If it is, compacting memory will only consume
CPU cycles. Hence when the index is high but before
compaction starts, the index is recalculated using only
blocks marked MOVABLE. This scan is expensive, but
can take place without holding locks, and it is consider-
ably cheaper than unnecessarily compacting memory.

When direct compaction is scanning for pages to move,
only pages within MOVABLE areas are considered. The
compaction run ends when a suitably sized area is free
and the operation is considered successful. The steps
taken by a process allocating a contiguous area are
shown in Figure 10.

7.3 Compaction Daemon

kswapd is woken when free pages drop below a water-
mark to avoid processes entering direct reclaim. Sim-
ilarly, compactd will compact memory when external
fragmentation exceeds a given threshold. The daemon
becomes active when woken by another process or at a
timed interval.

There are two situations were compactd is woken up to
unconditionally compact memory. When there are not
enough pages free, grouping pages by mobility may be
forced to mix pages of different mobility types within

1. Attempt allocation
2. On success, return area
3. Calculate fragmentation index
4. If low memory goto 11
5. Scan areas marked MOVABLE
6. Calculate index based on

MOVABLE areas alone
7. If low memory goto 11
8. Compact memory
9. Attempt allocation

10. On success, return block
11. Reclaim pages
12. Attempt allocation
13. On success, return block
14. Failed, return NULL

Figure 10: Direct Compaction

an area. When a non-movable allocation is improperly
placed, compactd will be woken up. The objective is to
reduce the probability that non-movable allocations will
be forced to use a area reserved for MOVABLE because
movable pages were improperly placed. When kswapd
is woken because the high watermark for free pages is
reached, compactd is also woken up on the assumption
that movable pages can be moved from unmovable areas
to the newly freed pages.

If not explicitly woken, the daemon will wake regularly
and decide if compaction is necessary or not. The metric
used to make this determination is called the unusable
free space index. It measures what fraction of available
free memory may be used to satisfy an allocation of a
specific size. The index is calculated as

Fu( j) =
TotalFree−∑

i=n
i= j 2iki

TotalFree

where TotalFree is the number of free pages, 2n is the
largest allocation that can be satisfied, j is the order of
the desired allocation, and ki is the number of free page
blocks of size 2i. When TotalFree is 0, Fu is defined as
1.

By default the daemon will only be concerned with al-
locations of order-3, the maximum contiguous area nor-
mally considered to be reasonable. Users of larger con-
tiguous allocations would set this value higher. Com-
paction starts if the unusable free space index exceeds
0.75, implying that 75% of currently free memory is un-
usable for a contiguous allocation of the configured size.
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In contrast to a process directly reclaiming, the mi-
grate scanner checks all areas, not just those marked
MOVABLE. The compaction daemon does not exit until
the two scanners meet. The pass is considered a success
if the unusable free space index was below 0.75 before
the operation started, and above 0.75 after it completes.

8 Capturing Page Ranges

A significant factor in the efficiency of the reclaim algo-
rithm is its vulnerability to racing allocators. As pres-
sure is applied to an area of memory, pages are evicted
and released. Some pages will become free very rapidly
as they are clean pages; others will need expensive disk
operations to record their contents. Over this period,
the earliest pages are vulnerable to being used in servic-
ing another allocation request. The loss of even a single
page in the area prevents it being used for a contiguous
allocation request, rendering the work Area Reclaim re-
dundant.

8.1 Race Severity

In order to get a feel for the scale of the problem, the
kernel was instrumented to record and report how often
pages under Area Reclaim were reallocated to another
allocator. This was measured during the Highalloc-
stress test as described in Section 4.

The results in Figure 11 show that only a very small
portion of the areas targeted for reclaim survive to be
allocated. Racing allocations steal more than 97% of all
areas before they coalesce. The size of the area under
reclaim directly contributes to the time to reclaim and
the chances of being disrupted by an allocation.

Area Allocations Rate
Arch (MB) Good Raced (%)

x86-64 2 500 19125 2.61
PPC64 16 152 13544 1.12

Figure 11: Racing Allocations

8.2 Capture

If the reallocation of pages being reclaimed could be
prevented, there would be a significant increase in suc-

cess rates and a reduction in the overall cost for releas-
ing those areas. In order to evaluate the utility of seg-
regating the memory being released, a prototype cap-
ture system was implemented. Benchmarking showed
significant improvement in reallocation rates, but trig-
gered unexpected interactions with overall effectiveness
and increased the chances of the machine going out-of-
memory. More work is required.

9 Future Considerations

The intelligent reclaim mechanism focuses on the re-
claim of LRU pages because the required code is well
understood and reliable. However, a significant percent-
age of areas are marked RECLAIMABLE, usually mean-
ing that they are backed by the slab allocator. The slab
allocator is able to reclaim pages, but like the vanilla
allocator, it has no means to target which pages are re-
claimed. This is particularly true when objects in the
dentry cache are being reclaimed. Intelligently reclaim-
ing slab will be harder because there may be related ob-
jects outside of the area that need to be reclaimed first.
This needs investigation.

Memory compaction will linearly scan memory from
the start of the address space for pages to move. This
is suitable for compactd, but when direct compacting,
it may be appropriate to select areas based on the LRU
lists. Tests similar to those used when reclaiming will
be used to determine if the contiguous area is likely to
be successfully migrated. There are some potential is-
sues with this, such as when the LRU pages are already
at the end of memory, but it has the potential to reduce
stalls incurred during compaction.

The initial results from the page capture prototype are
promising but, they are not production-ready and need
further development and debugging. We have consid-
ered making the direct reclaim of contiguous regions
synchronous to reduce the latency and the number of
pages reclaimed.
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