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Abstract

System time is increasing on enterprise workloads
as multi-core and non-uniform memory architecture
(NUMA) systems become mainstream. A defining char-
acteristic of the increase in system time is an increase in
reference costs due to contention of shared resources—
instances of poor memory locality also play a role. An
exploration of these issues reveals further opportunities
to improve kernel scalability.

This paper examines kernel lock and scalability issues
encountered on enterprise workloads. These issues are
examined at a software level through structure definition
and organization, and at a hardware level through cache
line contention characteristics and system performance
metrics. Issues and opportunities are illustrated in the
process scheduler, I/O paths, timers, slab, and IPC.

1 Introduction

Processor stalls due to memory latency are the most sig-
nificant contributor to kernel CPI (cycles per instruc-
tion) on enterprise workloads. NUMA systems drive
kernel CPI higher as cache misses that cost hundreds
of clock cycles on traditional symmetric multiprocess-
ing systems (SMP) can extend to over a thousand clock
cycles on large NUMA systems. With a fixed amount
of kernel instructions taking longer to execute, system
time increases, resulting in fewer clock cycles for user
applications. Increases in memory latency have a sim-
ilar effect on the CPI of user applications. As a result,
minimizing the effects of memory latency increases on
NUMA systems is essential to achieving good scalabil-
ity.

Cache coherent NUMA systems are designed to over-
come limitations of traditional SMP systems, enabling
more processors and higher bandwidth. NUMA systems
split hardware resources into multiple nodes, with each

node consisting of a set of one or more processors and
physical memory units. Local node memory references,
including references to physical memory on the same
node and cache-to-cache transfers between processors
on the same node, are less expensive due to lower la-
tency. References that cross nodes, or remote node ref-
erences, are done at a higher latency due to the addi-
tional costs introduced by crossing a node interconnect.
As more nodes are added to a system, the cost to refer-
ence memory on a far remote node may increase further
as multiple interconnects are needed to link the source
and destination nodes.

In terms of memory latency, the most expensive kernel
memory references can be broadly categorized as re-
mote memory reads, or reads from physical memory on
a different node, and as remote cache-to-cache transfers,
or reads from a processor cache on a different node.

Many improvements have been added to the Linux ker-
nel to reduce remote memory reads. Examples include
libnuma and the kernel mbind() interface, NUMA
aware slab allocation, and per-cpu scheduler group al-
locations. These are all used to optimize memory lo-
cality. Similarly, many improvements have been added
to the kernel to improve lock sequences which decrease
latency from cache-to-cache transfers. Use of the RCU
(read-copy update) mechanism has enabled several scal-
ability improvements and continues to be utilized in
new development. Use of finer grain locks such as
array locks for SYSV semaphores, conversion of the
page_table_lock to per pmd locks for fast concur-
rent page faults, and per device block I/O unplug, all
contribute to reduce cache line contention.

Through characterization of kernel memory latency,
analysis of high latency code paths, and examination of
kernel data structure layout, we illustrate further oppor-
tunities to reduce latency.

• 153 •
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1.1 Methodology

Kernel memory latency characteristics are studied us-
ing an enterprise OLTP (online transaction processing)
workload with Oracle Database 10g Release 2 on Dual-
Core Intel R© Itanium R© 2 processors. The configuration
includes a large database built on a robust, high per-
formance storage subsystem. The workload is tuned to
make best use of the kernel, utilizing fixed process pri-
ority and core affinity, optimized binding of interrupts,
and use of kernel tunable settings where appropriate.

Itanium processors provide a mechanism to precisely
profile cache misses. The Itanium EAR (event address
registers) performance monitoring registers latch data
reads that miss the L1 cache and collect an extended
set of information about targeted misses. This includes
memory latency in clock cycles, the address of the load
instruction that caused the miss, the processor that re-
tired the load, and the address of the data item that was
missed.

Several additional processing steps are taken to supple-
ment the data collected by hardware. Virtual data ad-
dresses are converted to a physical address during col-
lection using the tpa (translate physical address) instruc-
tion and the resulting physical addresses are looked up
against SRAT (static resource affinity table) data struc-
tures to determine node location. Kernel symbols and
gdwarf-2 annotated assembly code are analyzed to
translate data addresses to kernel global variable names,
structure names, and structure field names. Symbols are
enhanced by inlining spinlocks and sinking them into
wrapper functions, with the exported function name de-
scribing the lock being acquired, where it is acquired,
and by whom it is acquired.

2 Cache Coherency

To maintain consistency between internal caches and
caches on other processors, systems use a cache co-
herency protocol, such as the MESI protocol (modified,
exclusive, shared, invalid). Each cache line contains sta-
tus flags that indicate the current cache line state.

A cache line in E (exclusive) state indicates that the
cache line does not exist in any other processor’s cache.
The data is clean; it matches the image in main memory.

A cache line in S (shared) state can exist in several
caches at once. This is frequently the case for cache

lines that contain data that is read, but rarely, if ever,
modified.

Cache lines in M (modified) state are only present in
one processor cache at a time. The data is dirty; it
is modified and typically does not match the image in
main memory. Cache lines in M state can be directly
transferred to another processors cache, with the abil-
ity to satisfy another processor’s read request detected
through snooping. Before the cache line can be trans-
ferred, it must be written back to main memory.

Cache lines in I (invalid) state have been invalidated,
and they cannot be transferred to another processor’s
cache. Cache lines are typically invalidated when there
are multiple copies of the line in S state, and one of the
processors needs to invalidate all copies of the line so it
can modify the data. Cache lines in I state are evicted
from a cache without being written back to main mem-
ory.

2.1 Cache Line Contention

Coherency is maintained at a cache line level—the co-
herency protocol does not distinguish between individ-
ual bytes on the same cache line. For kernel structures
that fit on a single cache line, modification of a single
field in the structure will result in any other copies of
the cache line containing the structure to be invalidated.

Cache lines are contended when there are several
threads that attempt to write to the same line concur-
rently or in short succession. To modify a cache line,
a processor must hold it in M state. Coherency opera-
tions and state transitions are necessary to accomplish
this, and these come at a cost. When a cache line con-
taining a kernel structure is modified by many differ-
ent threads, only a single image of the line will exist
across the processor caches, with the cache line trans-
ferring from cache to cache as necessary. This effect is
typically referred to as cache line bouncing.

Cache lines are also contended when global variables or
fields that are frequently read are located on the same
cache line as data that is frequently modified. Co-
herency operations and state transitions are required to
transition cache lines to S state so multiple processors
can hold a copy of the cache line for reading. This ef-
fect is typically referred to as false sharing.

Cache line contention also occurs when a thread refer-
encing a data structure is migrated to another processor,
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or when a second thread picks up computation based on
a structure where a first thread left off—as is the case
in interrupt handling. This behavior mimics contention
between two different threads as cache lines need to
be transferred from one processor’s cache to another to
complete the processing.

Issues with cache line contention expand further with
several of the critical kernel structures spanning multi-
ple cache lines. Even in cases where a code path is ref-
erencing only a few fields in a structure, we frequently
have contention across several different cache lines.

Trends in system design further intensify issues with
cache line contention. Larger caches increase the chance
that a cache miss on a kernel structure will hit in
a processor’s cache. Doubling the number of cores
and threads per processor also increases the number of
threads that can concurrently reference a kernel struc-
ture. The prevalence of NUMA increases the number of
nodes in a system, adding latency to the reference types
mentioned in the preceding section. Cache line con-
tention that appears fairly innocuous on small servers
today has the potential to transform into significant scal-
ability problems in the future.

3 NUMA Costs

In an experiment to characterize NUMA costs, a system
is populated with two processors and 64 GB of memory
using two different configurations. In the single node
configuration, both processors and memory are placed
into a single node—while the platform is NUMA, this
configuration is representative of traditional SMP. In the
split node configuration, processors and memory are di-
vided evenly across two NUMA nodes. This experiment
essentially toggles NUMA on and off without changing
the physical computing resources, revealing interesting
changes in kernel memory latency.

With the OLTP workload, scalability deteriorated when
comparing the 2.6.18 kernel to the 2.6.9 kernel. On the
2.6.9 kernel, system time increases from 19% to 23%
when comparing single node to split node configura-
tions. With less processor time available for the user
workload, we measure a 6% performance degradation.
On the 2.6.18 kernel, comparing single node to split
node configurations, system time increases from 19% to
25%, resulting in a more significant 10% performance
degradation.

Kernel data cache miss latency increased 50% as we
moved from single to split nodes, several times greater
than the increase in user data cache miss latency. A ker-
nel memory latency increase of this magnitude causes
several of the critical kernel paths to take over 30%
longer to execute—with kernel CPI increasing from
1.95 to 2.55. The two kernel paths that exhibited the
largest increases in CPI were in process scheduling and
I/O paths.

A comparison of single to split node configurations also
reveals that a surprisingly large amount of kernel data
cache misses are satisfied by cache-to-cache transfers.
The most expensive cache misses were due to remote
cache-to-cache transfers—reads from physical memory
on a remote node accounted for a much smaller amount
of the overall kernel memory latency.

4 2.6.20 Kernel

4.1 Memory Latency Characterization

Figure 1 illustrates the frequency of kernel misses at
a given latency value. This data was collected us-
ing a NUMA system with two fully-populated nodes
on the 2.6.20 kernel running the OLTP workload.
Micro-benchmarks were used to measure latency lower
bounds, confirming assumptions regarding latency of
different reference types.
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Figure 1: Kernel memory latency histogram

Four significant peaks exist on the kernel memory la-
tency histogram. The first, largest peak corresponds to
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local node cache-to-cache transfers and the second peak
corresponds to local node reads from main memory. The
third peak corresponds to a remote node read from main
memory, and the fourth peak highlights remote node
cache-to-cache transfers. Peaks do not represent abso-
lute boundaries between different types of references as
the upper bound is not fixed for any reference type. They
do, however, illustrate specific latency ranges where one
reference type is much more frequent than another.

46% of the kernel data cache misses are node local,
however, these inexpensive misses only account for 27%
of the overall kernel latency. The remote node cache
misses are considerably more expensive, particularly the
remote node cache-to-cache transfers. The height and
width of the fourth peak captures the severity of remote
node cache-to-cache transfers. The tail of the fourth
peak indicates references to a heavily contended cache
line, for instance a contended spinlock.

A two node configuration is used in these experiments
to illustrate that latency based scalability issues are not
exclusive to big iron. As we scale up the number
of NUMA nodes, latencies for remote cache-to-cache
transfers increase and the chance that cache-to-cache
transfers will be local inexpensive references decreases.

Figure 1 also illustrates that the most frequently refer-
enced kernel structures have a tendency to hit in pro-
cessor caches. Memory reads are, relatively speak-
ing, infrequent. Optimizations targeting the location or
NUMA allocation of data do not address cache-to-cache
transfers because these are infrequently read from main
memory.

In examining memory latency histograms for well tuned
user applications, the highest peaks are typically local
node cache-to-cache transfers and local node memory
reads. The most expensive reference type, the remote
node cache-to-cache transfer, is typically the smallest
peak. In a well tuned user application, the majority of
latency comes from local node references, or is at least
split evenly between local and remote node references.
In comparison to user applications, the kernel’s resource
management, communication, and synchronization re-
sponsibilities make it much more difficult to localize
processing to a single node.

4.2 Cache Line Analysis

With cache-to-cache transfers making up the two tallest
peaks in the kernel memory latency histogram, and re-

mote cache-to-cache transfers representing the most ex-
pensive overall references, 2.6.20 cache line analysis is
focused on only those samples representative of a cache-
to-cache transfer.
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Figure 2: Top 500 kernel cache misses based on total
latency

Figure 2 illustrates the top contended structures in the
kernel, based on the top 500 cache lines contributing the
most to kernel memory latency. While the top 500 cache
lines represent only a fraction of 1% of the total kernel
cache lines sampled during measurement, they account
for 33% of total kernel latency. Among the thousands of
structures in the kernel, only twelve structures, spread
across scheduler, timers, and I/O make up the majority
of the breakdown.

The chart is organized to co-locate nearby or related ker-
nel paths. I/O includes structures from AIO, through
block, through SCSI, down to the storage driver. These
represent approximately half of the breakdown. Struc-
tures for the slab allocation are also included on this side
of the chart as the I/O paths and related structures are
the primary users of slab allocation. Scheduler paths,
including the run queue, and list structures contained in
the priority arrays, account for 21% of the breakdown—
several percent more if we include IPC as part of this
path. Dynamic timers account for 9% of the breakdown.

4.3 Cache Line Visualization

Figure 3 is an example of a concise data format used to
illustrate issues with cache line contention. Every path
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   samples   remote  module   inst. address       inst.         function                          data address        data

       338    1.18%  vmlinux  0xA000000100646036  cmpxchg4.acq  [spinlock] @ schedule             0xE000001000054B50  rq_lock
       633   59.40%  vmlinux  0xA000000100069086  cmpxchg4.acq  [spinlock] @ try_to_wake_up       0xE000001000054B50  rq_lock
        67   22.39%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention          0xE000001000054B50  rq_lock
         9   77.78%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention          0xE000001000054B50  rq_lock
        72    2.78%  vmlinux  0xA00000010006B386  cmpxchg4.acq  [spinlock] @ task_running_tick    0xE000001000054B50  rq_lock
         1    0.00%  vmlinux  0xA00000010064B840  cmpxchg4.acq  [spinlock] @ wake_sleeping_dep... 0xE000001000054B50  rq_lock
         3   66.67%  vmlinux  0xA00000010006BC76  ld4.acq       resched_task                      0xE000001000054B50  rq_lock
        18   44.44%  vmlinux  0xA000000100069EA6  cmpxchg4.acq  [spinlock] @ try_to_wake_up       0xE000001000054B50  rq_lock

         5    0.00%  vmlinux  0xA000000100646130  ld8           schedule                          0xE000001000054B58  nr_running
         2    0.00%  vmlinux  0xA000000100646726  ld8           schedule                          0xE000001000054B58  nr_running
         2    0.00%  vmlinux  0xA000000100070806  ld8           try_to_wake_up                    0xE000001000054B58  nr_running
         1    0.00%  vmlinux  0xA00000010006CAF0  ld8           move_tasks                        0xE000001000054B58  nr_running
         3    0.00%  vmlinux  0xA00000010006AE60  ld8           deactivate_task                   0xE000001000054B58  nr_running
         1    0.00%  vmlinux  0xA0000001000753C6  ld8           scheduler_tick                    0xE000001000054B58  nr_running
        32   81.25%  vmlinux  0xA00000010006BBD0  ld8           __activate_task                   0xE000001000054B58  nr_running

        30    0.00%  vmlinux  0xA000000100068010  ld8           find_busiest_group                0xE000001000054B60  raw_weighted_load
         3    0.00%  vmlinux  0xA000000100070720  ld8           try_to_wake_up                    0xE000001000054B60  raw_weighted_load
         2    0.00%  vmlinux  0xA000000100070740  ld8           try_to_wake_up                    0xE000001000054B60  raw_weighted_load
        10    0.00%  vmlinux  0xA000000100070780  ld8           try_to_wake_up                    0xE000001000054B60  raw_weighted_load
         1    0.00%  vmlinux  0xA00000010006CAA6  ld8           move_tasks                        0xE000001000054B60  raw_weighted_load
         1    0.00%  vmlinux  0xA00000010006CAF6  ld8           move_tasks                        0xE000001000054B60  raw_weighted_load
         6    0.00%  vmlinux  0xA000000100075486  ld8           scheduler_tick                    0xE000001000054B60  raw_weighted_load
        21   61.90%  vmlinux  0xA00000010006BBD6  ld8           __activate_task                   0xE000001000054B60  raw_weighted_load

        14    0.00%  vmlinux  0xA000000100068030  ld8           find_busiest_group                0xE000001000054B68  cpu_load[0]
         2    0.00%  vmlinux  0xA000000100070786  ld8           try_to_wake_up                    0xE000001000054B68  cpu_load[0]
         5    0.00%  vmlinux  0xA000000100070790  ld8           try_to_wake_up                    0xE000001000054B68  cpu_load[0]
         2    0.00%  vmlinux  0xA000000100067F70  ld8           find_busiest_group                0xE000001000054B68  cpu_load[0]

         1    0.00%  vmlinux  0xA000000100068030  ld8           find_busiest_group                0xE000001000054B70  cpu_load[1]
         1    0.00%  vmlinux  0xA000000100075490  ld8           scheduler_tick                    0xE000001000054B70  cpu_load[1]

Figure 3: First cache line of rq struct

that references a structure field satisfied by a cache-to-
cache transfer is listed. Samples that are local cache
hits or cache misses that reference main memory are not
included, as a result, we do not see each and every field
referenced in a structure. Several columns of data are
included to indicate contention hotspots and to assist in
locating code paths for analysis.

• samples – The number of sampled cache misses
at a given reference point

• remote – The ratio of cache misses that reference
a remote node compared to local node references

• module – The kernel module that caused the cache
miss

• instruction address – The virtual address for
the instruction that caused the miss

• instruction – Indicates the instruction. This il-
lustrates the size of the field, for example ld4 is a
load of a four byte field. For locks, the instruc-
tion indicates whether a field was referenced atom-
ically, as is the case for a compare and exchange or
an atomic increment / decrement

• function – The kernel function that caused the
miss. In the case of spinlocks, we indicate the spin-
lock call as well as the caller function

• data address – The virtual address of the data
item missed. This helps to illustrate spatial charac-
teristics of contended structure fields

• data – Structure field name or symbolic informa-
tion for the data item

4.4 Process Scheduler

The process scheduler run queue structure spans four
128 byte cache lines, with the majority of latency com-
ing from the try_to_wake_up() path. Cache lines
from the rq struct are heavily contended due to re-
mote wakeups and local process scheduling referenc-
ing the same fields. In the first cache line of rq, the
most expensive references to the rq lock and remote
references from __activate_task come from the
wakeup path.

Remote wakeups are due to two frequent paths. First,
database transactions are completed when a commit
occurs—this involves a write to an online log file. Hun-
dreds of foreground processes go to sleep in the final
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   samples   remote  module   inst. address       inst.         function                          data address        data

         2    0.00%  vmlinux  0xA000000100647420  ld8           schedule                          0xE000001000014B80  nr_switches

         1    0.00%  vmlinux  0xA000000100646100  ld8           schedule                          0xE000001000014B88  nr_uninterruptible

         2    0.00%  vmlinux  0xA00000010006CB60  ld8           move_tasks                        0xE000001000014B98  most_recent_timestamp

       752   63.70%  vmlinux  0xA000000100066000  ld8           idle_cpu                          0xE000001000014BA0  curr (task_struct*)
         5    0.00%  vmlinux  0xA00000010006C4F0  ld8           move_tasks                        0xE000001000014BA0  curr (task_struct*)
         6    0.00%  vmlinux  0xA0000001006468B0  ld8           schedule                          0xE000001000014BA0  curr (task_struct*)
         1    0.00%  vmlinux  0xA000000100070F10  ld8           try_to_wake_up                    0xE000001000014BA0  curr (task_struct*)

       799   65.96%  vmlinux  0xA000000100066006  ld8           idle_cpu                          0xE000001000014BA8  idle (task_struct*)
         1    0.00%  vmlinux  0xA000000100646770  ld8           schedule                          0xE000001000014BA8  idle (task_struct*)
        10    0.00%  vmlinux  0xA0000001006468B6  ld8           schedule                          0xE000001000014BA8  idle (task_struct*)
         4    0.00%  vmlinux  0xA000000100647056  ld8           schedule                          0xE000001000014BA8  idle (task_struct*)
         1    0.00%  vmlinux  0xA0000001006472E0  ld8           schedule                          0xE000001000014BA8  idle (task_struct*)
        31    0.00%  vmlinux  0xA0000001000753A6  ld8           scheduler_tick                    0xE000001000014BA8  idle (task_struct*)
         4    0.00%  vmlinux  0xA000000100065C90  ld8           account_system_time               0xE000001000014BA8  idle (task_struct*)
       176    1.14%  vmlinux  0xA000000100645E46  ld8           schedule                          0xE000001000014BA8  idle (task_struct*)

         2    0.00%  vmlinux  0xA000000100075526  ld8           scheduler_tick                    0xE000001000014BB0  next_balance

         3    0.00%  vmlinux  0xA000000100647DE6  ld8           schedule                          0xE000001000014BB8  prev_mm (mm_struct*)

         6    0.00%  vmlinux  0xA000000100646950  ld8           schedule                          0xE000001000014BC0  active (prio_array*)
         1    0.00%  vmlinux  0xA00000010006B306  ld8           task_running_tick                 0xE000001000014BC0  active (prio_array*)
        17   64.71%  vmlinux  0xA00000010006BB86  ld8           __activate_task                   0xE000001000014BC0  active (prio_array*)

         5    0.00%  vmlinux  0xA00000010006C4F6  ld8           move_tasks                        0xE000001000014BC8  expired (prio_array*)

        13    0.00%  vmlinux  0xA00000010006AD86  ld4           dequeue_task                      0xE000001000014BD0  arrays[0].nr_active
         2   50.00%  vmlinux  0xA00000010006B2B6  ld4           enqueue_task                      0xE000001000014BD0  arrays[0].nr_active

         1    0.00%  vmlinux  0xA00000010006AE10  ld4.acq       dequeue_task                      0xE000001000014BE8  arrays[0].bitmap

Figure 4: Second cache line of rq struct

stage of completing a transaction and need to be woken
up when their transaction is complete. Second, database
processes are submitting I/O on one processor and the
interrupt is arriving on another processor, causing pro-
cesses waiting for I/O to be woken up on a remote pro-
cessor.

A new feature being discussed in the Linux kernel com-
munity, called syslets, could be used to address issues
with remote wakeups. Syslets are simple lightweight
programs consisting of system calls, or atoms, that the
kernel can execute autonomously and asynchronously.
The kernel utilizes a different thread to execute the
atoms asynchronously, even if a user application mak-
ing the call is single threaded. Using this mechanism,
user applications can wakeup foreground processes on
local nodes in parallel by splitting the work between a
number of syslets.

A near term approach, and one complementary to node
local wakeups using syslets, would be to minimize the
number of remote cache line references in the try_to_
wake_up() path. Figure 3 confirms that the run queue
is not cache line aligned. By aligning the run queue, the
rq structure uses one less cache line. This results in a
measurable performance increase as the scheduler stats
ttwu field on the fourth cache line is brought into the

third cache line alongside other data used in the wakeup.

The second cache line of the rq struct in figure 4
shows a high level of contention between the idle and
curr task_struct pointers in idle_task. This
issue originates from the decision to schedule a task on
an idle sibling if the processor targeted for a wakeup is
busy. In this path, we reference the sibling’s runqueue
to check if it is busy or not. When a wakeup occurs
remotely, the sibling’s runqueue status is also checked,
resulting in additional remote cache-to-cache transfers.
Load balancing at the SMT sched_domain happens
more frequently, influencing the equal distribution of the
load between siblings. Instead of checking the sibling,
idle_cpu() can simply return the target cpu if there
is more than one task running, because it’s likely that
siblings will also have tasks running. This change re-
duces contention on the second cache line, and also re-
sults in a measurable performance increase.

The third line contains one field that contributes to cache
line contention, the sd sched_domain pointer used
in try_to_wake_up(). The fourth rq cache line
contains scheduler stats fields, with the most expensive
remote references coming from the try to wake up count
field mentioned earlier. The list_head structures
in the top 500 are also contended in the wakeup path.
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When a process is woken up, it needs to be added to the
prio_array queue.

4.5 Timers

Processes use the per-processor tvec_base that cor-
responds to the processor they are running on when
adding timers. This ensures timers are always added
locally. The majority of scalability issues with timers
are introduced during timer deletion. With I/O submit-
ted on a different processor than it is completed on, it
is necessary to acquire a remote tvec_base lock in
the interrupt handler to detach a timer from that base.

Figure 5 illustrates cache line contention for the tvec_
base lock. The mod_timer() path represents
deletes of the block queue plug timers, which are un-
necessary given we are using direct I/O in this work-
load. Cache line contention for the tvec_base
lock in del_timer() represents deletes from the
scsi_delete_timer() path—the result of delet-
ing a SCSI command eh_timeout timer upon I/O
completion.

Getting the base_lock for every I/O completion re-
sults in tens-of-thousands of expensive remote cache-
to-cache transfers per second. The tvec_base locks
are among the most contended locks in this workload.
An alternative approach would be to batch timers for
deletion, keeping track of a timer’s state. A timer’s state
could be changed locally during an I/O completion since
the timer is part of the scsi_cmnd struct that is read
into the cache earlier in the path. Timer state could indi-
cate both when the timer can be detached, and when the
kernel can free the memory.

Where we have a large number of timers to delete across
a number of tvec_base structures, we can prefetch
locks, hiding latency for the majority of the lock refer-
ences in the shadow of the first tvec_base lock refer-
enced.

4.6 Slab

Submitting I/O on one processor and handling the in-
terrupt on another processor also affects scalability of
slab allocation. Comparisons between the 2.6.20 and
the 2.6.9 kernel, which did not have NUMA aware slab
allocation, indicate the slab allocation is hurting more
than it is helping on the OLTP workload. Figures 6, 7,

and 8 illustrate scalability issues introduced by freeing
slabs from a remote node. The alien pointer in the
kmem_list3 structure and the nodeid in the slab
structure are mostly read, so we may be able to reduce
false sharing of these fields by moving them to another
cache line. If cache lines with these fields exist in S
state, several copies of the data can be held simulta-
neously by multiple processors, and we can eliminate
some of the remote cache-to-cache transfers.

Further opportunity may exist in using kmem_cache_
alloc calls that result in refills to free local slabs cur-
rently batched to be freed on remote processors. This
has the potential to reduce creation of new slabs, local-
ize memory references for slabs that have been evicted
from the cache, and provide more efficient lock refer-
ences.

A number of additional factors limit scalability. Alien
array sizes are limited to 12 and are not resized based on
slab tunables. In addition, the total size of alien arrays
increases squarely as the number of nodes increases,
putting additional memory pressure on the system.

A similar analysis for the new slub (unqueued slab) is
in progress on this configuration to determine if similar
issues exist.

4.7 I/O: AIO

As illustrated throughout this paper, cache line con-
tention of I/O structures is primarily due to submitting
I/O on one processor and handling the interrupt on an-
other processor. A superior solution to this scalability is-
sue would be to utilize hardware and device drivers that
support extended message-signaled interrupts (MSI-X)
and support multiple per-cpu or per-node queues. Using
extended features of MSI, a device can send messages
to a specific set of processors in the system. When an
interrupt occurs, the device can decide a target proces-
sor for the interrupt. In the case of the OLTP workload,
these features could be used to enable I/O submission
and completion on the same processor. This approach
also ensures that slab objects and timers get allocated,
referenced, and freed within a local node.

Another approach, explored in earlier Linux kernels, is
to delay the I/O submission so it can be executed on the
processor or node which will receive the interrupt during
I/O completion. Performance results with this approach
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  samples   remote  module   inst. address       inst.         function                           data address        data

        39   17.95%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention           0xE00000100658C000  lock
         9   11.11%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention           0xE00000100658C000  lock
       307    2.93%  vmlinux  0xA00000010009B4C6  cmpxchg4.acq  [spinlock] @ __mod_timer           0xE00000100658C000  lock
       861   58.07%  vmlinux  0xA0000001000995A6  cmpxchg4.acq  [spinlock] @ del_timer             0xE00000100658C000  lock
        10    0.00%  vmlinux  0xA00000010009B666  cmpxchg4.acq  [spinlock] @ run_timer_softirq     0xE00000100658C000  lock
       982   40.22%  vmlinux  0xA0000001000996C6  cmpxchg4.acq  [spinlock] @ mod_timer             0xE00000100658C000  lock
        24    0.00%  vmlinux  0xA0000001000997E6  cmpxchg4.acq  [spinlock] @ try_to_del_timer_sync 0xE00000100658C000  lock
         1    0.00%  vmlinux  0xA00000010009B966  cmpxchg4.acq  [spinlock] @ run_timer_softirq     0xE00000100658C000  lock

         7   14.29%  vmlinux  0xA00000010009B466  ld8           __mod_timer                        0xE00000100658C008  running_timer (timer_list*)

         3    0.00%  vmlinux  0xA00000010009A906  ld8           internal_add_timer                 0xE00000100658C010  timer_jiffies
        78    1.28%  vmlinux  0xA00000010009B606  ld8           run_timer_softirq                  0xE00000100658C010  timer_jiffies

Figure 5: Cache line with tvec_base struct

  samples   remote  module   inst. address       inst.         function                          data address        data

         9  100.00%  vmlinux  0xA0000001001580F0  ld8           ____cache_alloc_node              0xE00000207945BD00  slabs_partial.next (list_head*)
         5  100.00%  vmlinux  0xA0000001002C3556  ld8           list_del                          0xE00000207945BD00  slabs_partial.next (list_head*)
         1  100.00%  vmlinux  0xA0000001002C3726  ld8           __list_add                        0xE00000207945BD00  slabs_partial.next (list_head*)
         2  100.00%  vmlinux  0xA0000001002C3816  ld8           list_add                          0xE00000207945BD00  slabs_partial.next (list_head*)

         2  100.00%  vmlinux  0xA0000001002C35C0  ld8           list_del                          0xE00000207945BD08  slabs_partial.prev (list_head*)
        22   59.09%  vmlinux  0xA0000001002C36B6  ld8           __list_add                        0xE00000207945BD08  slabs_partial.prev (list_head*)
        17   70.59%  vmlinux  0xA000000100159EE0  ld8           free_block                        0xE00000207945BD08  slabs_partial.prev (list_head*)

         3   66.67%  vmlinux  0xA0000001002C3556  ld8           list_del                          0xE00000207945BD10  slabs_full.next (list_head*)
         1  100.00%  vmlinux  0xA0000001002C3726  ld8           __list_add                        0xE00000207945BD10  slabs_full.next (list_head*)

         2  100.00%  vmlinux  0xA000000100158200  ld8           ____cache_alloc_node              0xE00000207945BD30  free_objects
        24   54.17%  vmlinux  0xA000000100159E10  ld8           free_block                        0xE00000207945BD30  free_objects

       408  100.00%  vmlinux  0xA0000001001580D6  cmpxchg4.acq  [spinlock] @ ____cache_alloc_node 0xE00000207945BD40  list_lock
        17    0.00%  vmlinux  0xA00000010015A206  cmpxchg4.acq  [spinlock] @ cache_flusharray     0xE00000207945BD40  list_lock
       114  100.00%  vmlinux  0xA00000010015A3B6  cmpxchg4.acq  [spinlock] @ __drain_alien_cache  0xE00000207945BD40  list_lock
        18    0.00%  vmlinux  0xA000000100158656  cmpxchg4.acq  [spinlock] @ cache_alloc_refill   0xE00000207945BD40  list_lock
        57   84.21%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention          0xE00000207945BD40  list_lock
         3  100.00%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention          0xE00000207945BD40  list_lock

       727    0.00%  vmlinux  0xA0000001001596B0  ld8           kmem_cache_free                   0xE00000207945BD50  alien (array_cache**)

Figure 6: Cache line with kmem_list3 struct

were mixed, with a range of both good and bad results
across different workloads. This model was also bur-
dened with the complexity of handling many different
corner cases.

Figure 9 illustrates the primary contention point for the
kioctx structure, the ctx_lock that protects a per-
process AIO context. This structure is dynamically al-
located as one per process and lives throughout the life-
time of an AIO context. The first cache line is contended
due to lock references in both the I/O submission and
completion paths.

One approach to improve the kioctx structure would
be to reorder structure fields to create a cache line with
fields most frequently referenced in the submit path,
and another cache line with fields most frequently refer-
enced in the complete path. Further analysis is required
to determine the feasibility of this concept. Contention
in the I/O submission path occurs with __aio_get_
req which needs the lock to put a iocb on a linked
list and with aio_run_iocb which needs the lock
to mark the current request as running. Contention in

the I/O completion path occurs with aio_complete
which needs the lock to put a completion event into
event queue, unlink a iocb from a linked list, and per-
form process wakeup if there are waiters.

Raman, Hundt, and Mannarswamy introduced a tech-
nique for structure layout in multi threaded applications
that optimizes for both improved spatial locality and re-
duces false sharing. Reordering fields in a few opti-
mized structures in the HP-UX operating system kernel
improved performance up to 3.2% on enterprise work-
loads. Structures across the I/O layers appear to be good
candidates for such optimization.

The aio_complete function is a heavyweight func-
tion with very long lock hold times. Having a lock hold
time dominated by one processor contributes to longer
contention wait time with other shorter paths occurring
frequently on all the other processors. In some cases, in-
creasing the number of AIO contexts may help address
this.

Figure 10 illustrates the AIO context internal structure
used to track the kernel mapping of AIO ring_info
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   samples   remote  module   inst. address       inst.         function                          data address        data

         9    0.00%  vmlinux  0xA000000100159740  ld4           kmem_cache_free                   0xE000000128DA5580  avail
         1    0.00%  vmlinux  0xA000000100159770  ld4           kmem_cache_free                   0xE000000128DA5580  avail

         5    0.00%  vmlinux  0xA00000010015A3F0  ld4           __drain_alien_cache               0xE000000128DA5584  limit
         8    0.00%  vmlinux  0xA000000100159746  ld4           kmem_cache_free                   0xE000000128DA5584  limit

        30    0.00%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention          0xE000000128DA5590  lock
         2    0.00%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention          0xE000000128DA5590  lock
      1793    0.00%  vmlinux  0xA000000100159716  cmpxchg4.acq  [spinlock] @ cache_free_alien     0xE000000128DA5590  lock

         2    0.00%  vmlinux  0xA0000001002C07A0  ld8           __copy_user                       0xE000000128DA5598  objpp (entry[0]*)

         2    0.00%  vmlinux  0xA0000001002C07A6  ld8           __copy_user                       0xE000000128DA55A0  objpp[i] 
         3    0.00%  vmlinux  0xA000000100159C20  ld8           free_block                        0xE000000128DA55A0  objpp[i] 

         4    0.00%  vmlinux  0xA000000100159C20  ld8           free_block                        0xE000000128DA55B0  objpp[i]

         1    0.00%  vmlinux  0xA000000100159C20  ld8           free_block                        0xE000000128DA55C0  objpp[i]

         1    0.00%  vmlinux  0xA000000100159C20  ld8           free_block                        0xE000000128DA55D8  objpp[i]

         2    0.00%  vmlinux  0xA000000100159C20  ld8           free_block                        0xE000000128DA55E0  objpp[i]

Figure 7: Cache line with alien array_cache struct

   samples   remote  module   inst. address       inst.         function                          data address        data

         4  100.00%  vmlinux  0xA0000001002C3556  ld8           list_del                          0xE0000010067D0000  list.next (list_head*)
         1  100.00%  vmlinux  0xA0000001002C35B0  ld8           list_del                          0xE0000010067D0000  list.next (list_head*)
         1  100.00%  vmlinux  0xA0000001002C3726  ld8           __list_add                        0xE0000010067D0000  list.next (list_head*)

        88   98.86%  vmlinux  0xA0000001002C35C0  ld8           list_del                          0xE0000010067D0008  list.prev (list_head*)
        79  100.00%  vmlinux  0xA0000001002C36B6  ld8           __list_add                        0xE0000010067D0008  list.prev (list_head*)

        64  100.00%  vmlinux  0xA000000100158160  ld4           ____cache_alloc_node              0xE0000010067D0020  inuse
         2  100.00%  vmlinux  0xA000000100159DF6  ld4           free_block                        0xE0000010067D0020  inuse

         4  100.00%  vmlinux  0xA000000100158226  ld4           ____cache_alloc_node              0xE0000010067D0024  free (kmem_bufctl_t)

       513   45.03%  vmlinux  0xA000000100159636  ld2           kmem_cache_free                   0xE0000010067D0028  nodeid

Figure 8: Cache line with slab struct

and the AIO event buffer. A small percentage of the
cache line contention comes from with I/O submit path
where kernel needs to look up a kernel mapping for
an AIO ring_info structure. A large percentage of
the cache line contention comes from the I/O interrupt
path, where aio_complete needs to lookup the ker-
nel mapping of the AIO event buffer. In this case, the
majority of contention comes from many I/O comple-
tions happening one after the other.

4.8 I/O: Block

Figure 11 illustrates contention over request_queue
structures. The primary contention points are between
the queue_flags used in the submit path to check
block device queue’s status and the queue_lock
in the return path to perform a reference count on
device_busy. This suggests further opportunity for
structure ordering based on submit and complete paths.

Figure 12 illustrates the blk_queue_tag structure.
Lack of alignment with this structure causes unneces-

sary cache line contention as the size of blk_queue_
tag is less than half a cache line, so we end up with
portions of two to three different tags sharing the same
128 byte cache line. Cache lines are frequently bounced
between processors with multiple tags from independent
devices sharing the same cache line.

4.9 I/O: SCSI

Both the scsi_host and scsi_device structures
span several cache lines and may benefit from reorder-
ing. Both structures feature a single cache line with
multiple contended fields, and several other lines which
have a single field that is heavily contended.

Figure 13 illustrates the most heavily contended cache
line of the scsi_host structure. The primary source
of contention is in the submit path with an unconditional
spin lock acquire in __scsi_put_command to put
a scsi_cmnd on a local free_list, and reads of
the cmd_pool field. Multiple locks on the same cache
line is detrimental as it slows progress in the submit path
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  samples   remote  module   inst. address       inst.         function                          data address        data

         1    0.00%  vmlinux  0xA0000001001AB240  fetchadd4.rel lookup_ioctx                      0xE0000010252A1900  users
         2    0.00%  vmlinux  0xA0000001001ABD60  fetchadd4.rel sys_io_getevents                  0xE0000010252A1900  users

        44    2.27%  vmlinux  0xA0000001001AB1A6  ld8           lookup_ioctx                      0xE0000010252A1910  mm (mm_struct*)

        14   71.43%  vmlinux  0xA000000100066E56  cmpxchg4.acq  [spinlock] @ wake_up_common       0xE0000010252A1920  wait.lock (wait_queue_head)
         1    0.00%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention          0xE0000010252A1920  wait.lock (wait_queue_head)
         4    0.00%  vmlinux  0xA0000001000B9F76  cmpxchg4.acq  [spinlock] @ add_wait_queue_exc.. 0xE0000010252A1920  wait.lock (wait_queue_head)
         6    0.00%  vmlinux  0xA0000001000B9FD6  cmpxchg4.acq  [spinlock] @ remove_wait_queue    0xE0000010252A1920  wait.lock (wait_queue_head)

         1    0.00%  vmlinux  0xA0000001002C3556  ld8           list_del                          0xE0000010252A1928  wait.next
         5   60.00%  vmlinux  0xA000000100065EB0  ld8           __wake_up_common                  0xE0000010252A1928  wait.next
         4   75.00%  vmlinux  0xA0000001001A9F90  ld8           aio_complete                      0xE0000010252A1928  wait.next

       372    1.34%  vmlinux  0xA0000001001AA2D6  cmpxchg4.acq  [spinlock] @ aio_run_iocb         0xE0000010252A1938  ctx_lock
      1066    1.13%  vmlinux  0xA0000001001AAA36  cmpxchg4.acq  [spinlock] @ __aio_get_req        0xE0000010252A1938  ctx_lock
        14    0.00%  vmlinux  0xA0000001001ACC36  cmpxchg4.acq  [spinlock] @ io_submit_one        0xE0000010252A1938  ctx_lock
      1214   62.03%  vmlinux  0xA0000001001A8FB6  cmpxchg4.acq  [spinlock] @ aio_complete         0xE0000010252A1938  ctx_lock
       181   34.25%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention          0xE0000010252A1938  ctx_lock
        23   26.09%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention          0xE0000010252A1938  ctx_lock
        33   69.70%  vmlinux  0xA0000001001A9586  ld4.acq       __aio_put_req                     0xE0000010252A1938  ctx_lock
        39   82.05%  vmlinux  0xA0000001001A97D6  ld4.acq       __aio_put_req                     0xE0000010252A1938  ctx_lock
        52    0.00%  vmlinux  0xA0000001001A99B6  cmpxchg4.acq  [spinlock] @ aio_put_req          0xE0000010252A1938  ctx_lock

         4    0.00%  vmlinux  0xA0000001001AABD0  ld4           __aio_get_req                     0xE0000010252A193C  reqs_active
        28   64.29%  vmlinux  0xA0000001001A98C6  ld4           __aio_put_req                     0xE0000010252A193C  reqs_active

         2   50.00%  vmlinux  0xA0000001002C35C0  ld8           list_del                          0xE0000010252A1948  active_reqs.prev

        24    4.17%  vmlinux  0xA0000001001A80D0  ld8           aio_read_evt                      0xE0000010252A1978  ring_info.ring_pages (page**)
         7    0.00%  vmlinux  0xA0000001001A82B0  ld8           aio_read_evt                      0xE0000010252A1978  ring_info.ring_pages (page**)
         1    0.00%  vmlinux  0xA0000001001AAA96  ld8           __aio_get_req                     0xE0000010252A1978  ring_info.ring_pages (page**)
         3   33.33%  vmlinux  0xA0000001001A9C56  ld8           aio_complete                      0xE0000010252A1978  ring_info.ring_pages (page**)
        16   75.00%  vmlinux  0xA0000001001A9D90  ld8           aio_complete                      0xE0000010252A1978  ring_info.ring_pages (page**)

Figure 9: Cache line with kioctx struct

   samples   remote  module   inst. address       inst.         function                        data address        data

        55    1.82%  vmlinux  0xA0000001001A8216  cmpxchg4.acq  [spinlock] @ aio_read_evt       0xE0000010252A1980  lock

         2    0.00%  vmlinux  0xA0000001001A8240  ld4           aio_read_evt                    0xE0000010252A1990  nr
         2    0.00%  vmlinux  0xA0000001001A83E0  ld4           aio_read_evt                    0xE0000010252A1990  nr

         3    0.00%  vmlinux  0xA0000001001A9CD0  ld4           aio_complete                    0xE0000010252A1994  tail

        41    0.00%  vmlinux  0xA0000001001A80E0  ld8           aio_read_evt                    0xE0000010252A1998  internal_pages[0] (page*)
       415    1.20%  vmlinux  0xA0000001001AAAA6  ld8           __aio_get_req                   0xE0000010252A1998  internal_pages[0] (page*)
      1033   58.95%  vmlinux  0xA0000001001A9C76  ld8           aio_complete                    0xE0000010252A1998  internal_pages[0] (page*)
         1  100.00%  vmlinux  0xA0000001001A9DB0  ld8           aio_complete                    0xE0000010252A1998  internal_pages[0] (page*)

         1  100.00%  vmlinux  0xA0000001001A9DB0  ld8           aio_complete                    0xE0000010252A19A0  internal_pages[1] (page*)

         3    0.00%  vmlinux  0xA0000001001A82D0  ld8           aio_read_evt                    0xE0000010252A19A8  internal_pages[2] (page*)

Figure 10: Cache line with ring_info struct

with the cache line bouncing between processors as they
submit I/O.

Figure 14 illustrates contention in the scsi_device
struct with scsi_request_fn() referencing the
host pointer to process the I/O, and the low level driver
checking the scsi_device queue_depth to deter-
mine whether it should change the queue_depth on
a specific SCSI device. These reads lead to false shar-
ing on the queue_depth field, as scsi_adjust_
queue_depth() is not called during the workload. In
this case, the scsi_qla_host flags could be ex-
tended to indicate whether queue_depth needs to be
adjusted, resulting in the interrupt service routine mak-
ing frequent local references rather than expensive re-
mote references.

Figure 15 illustrates further contention between the I/O
submit and complete paths as sd_init_command()
reads of the timeout and changed fields in the sub-
mit path conflict with writes of iodone_cnt in the
complete path.

5 Conclusions

Kernel memory latency increases significantly as we
move from traditional SMP to NUMA systems, result-
ing in less processor time available for user workloads.
The most expensive references, remote cache-to-cache
transfers, primarily come from references to a select few
structures in the process wakeup and I/O paths. Sev-
eral approaches may provide mechanisms to alleviate



2007 Linux Symposium, Volume One • 163

   samples   remote  module   inst. address       inst.         function                        data address        data

         3   66.67%  vmlinux  0xA0000001001D1F26  ld8           __blockdev_direct_IO            0xE00000012C905C00  backing_dev_info.unplug_io_fn

         1  100.00%  vmlinux  0xA00000010029A0A0  ld8           blk_backing_dev_unplug          0xE00000012C905C08  backing_dev_info.unplug_io_data

         1    0.00%  scsi     0xA00000021E2A9B80  ld8           scsi_run_queue                  0xE00000012C905C10  queuedata

       147   59.86%  vmlinux  0xA0000001002942E6  ld4.acq       generic_make_request            0xE00000012C905C28  queue_flags
         1    0.00%  vmlinux  0xA000000100294750  ld4.acq       __freed_request                 0xE00000012C905C28  queue_flags
         3   33.33%  vmlinux  0xA000000100294766  cmpxchg4.acq  __freed_request                 0xE00000012C905C28  queue_flags
         1    0.00%  vmlinux  0xA000000100294780  ld4.acq       __freed_request                 0xE00000012C905C28  queue_flags
         6   16.67%  vmlinux  0xA000000100294796  cmpxchg4.acq  __freed_request                 0xE00000012C905C28  queue_flags
        20   55.00%  vmlinux  0xA000000100296B66  cmpxchg4.acq  blk_remove_plug                 0xE00000012C905C28  queue_flags
         1  100.00%  scsi     0xA00000021E2AF2D6  cmpxchg4.acq  scsi_request_fn                 0xE00000012C905C28  queue_flags
         1    0.00%  vmlinux  0xA000000100297456  ld4.acq       blk_plug_device                 0xE00000012C905C28  queue_flags
         4   25.00%  vmlinux  0xA000000100297486  cmpxchg4.acq  blk_plug_device                 0xE00000012C905C28  queue_flags
         3   66.67%  vmlinux  0xA000000100295930  ld4.acq       get_request                     0xE00000012C905C28  queue_flags
         6   50.00%  vmlinux  0xA00000010028DE96  ld4.acq       elv_insert                      0xE00000012C905C28  queue_flags

         6   50.00%  vmlinux  0xA00000010029C046  cmpxchg4.acq  [spinlock] @ __make_request     0xE00000012C905C30  __queue_lock
         3   66.67%  vmlinux  0xA000000100290156  cmpxchg4.acq  [spinlock] @ blk_run_queue      0xE00000012C905C30  __queue_lock
        18   50.00%  vmlinux  0xA00000010029AB56  cmpxchg4.acq  [spinlock] @ generic_unplug_d.. 0xE00000012C905C30  __queue_lock
         5   40.00%  scsi     0xA00000021E2ACF06  cmpxchg4.acq  [spinlock] @ scsi_device_unbusy 0xE00000012C905C30  __queue_lock
        28   28.57%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention        0xE00000012C905C30  __queue_lock
        13   23.08%  vmlinux  0xA00000010029B2B6  cmpxchg4.acq  [spinlock] @ __make_request     0xE00000012C905C30  __queue_lock
        16   56.25%  scsi     0xA00000021E2A9336  cmpxchg4.acq  [spinlock] @ scsi_end_request   0xE00000012C905C30  __queue_lock
         5   20.00%  scsi     0xA00000021E2AF806  cmpxchg4.acq  [spinlock] @ scsi_request_fn    0xE00000012C905C30  __queue_lock
         3   33.33%  scsi     0xA00000021E2AFA36  cmpxchg4.acq  [spinlock] @ scsi_request_fn    0xE00000012C905C30  __queue_lock

         1    0.00%  vmlinux  0xA00000010029C000  ld8           __make_request                  0xE00000012C905C38  queue_lock*
       124   33.06%  scsi     0xA00000021E2ACEE6  ld8           scsi_device_unbusy              0xE00000012C905C38  queue_lock*
         2   50.00%  vmlinux  0xA000000100298EE0  ld8           blk_run_queue                   0xE00000012C905C38  queue_lock*
         5   60.00%  vmlinux  0xA000000100299006  ld8           blk_run_queue                   0xE00000012C905C38  queue_lock*
        10   30.00%  scsi     0xA00000021E2AB540  ld8           scsi_end_request                0xE00000012C905C38  queue_lock*
         1    0.00%  scsi     0xA00000021E2AB5C6  ld8           scsi_end_request                0xE00000012C905C38  queue_lock*
        11   45.45%  scsi     0xA00000021E2AF7C6  ld8           scsi_request_fn                 0xE00000012C905C38  queue_lock*
         1  100.00%  scsi     0xA00000021E2AF9B6  ld8           scsi_request_fn                 0xE00000012C905C38  queue_lock*
         1    0.00%  scsi     0xA00000021E2AF9F6  ld8           scsi_request_fn                 0xE00000012C905C38  queue_lock*

Figure 11: Cache line with request_queue struct

   samples   remote  module   inst. address       inst.         function                        data address        data

       119   56.30%  vmlinux  0xA000000100299F06  ld8           blk_queue_start_tag             0xE000000128E8BC08  tag_map

       128   54.69%  vmlinux  0xA000000100299F00  ld4           blk_queue_start_tag             0xE000000128E8BC24  max_depth

       113   28.32%  vmlinux  0xA000000100291C26  ld4           blk_queue_end_tag               0xE000000128E8BC28  real_max_depth

       122   53.28%  vmlinux  0xA0000001002B30E0  ld8           find_next_zero_bit              0xE000000128E8BC40  tag_map
        96   12.50%  vmlinux  0xA000000100291C66  ld4           blk_queue_end_tag               0xE000000128E8BC40  tag_map
        16   50.00%  vmlinux  0xA000000100299F76  cmpxchg4.acq  blk_queue_start_tag             0xE000000128E8BC40  tag_map

Figure 12: Cache line with blk_queue_tag struct

scalability issues in the future. Examples include hard-
ware and software utilizing message-signaled interrupts
(MSI-X) with per-cpu or per-node queues, and syslets.
In the near term, several complementary approaches can
be taken to improve scalability.

Improved code sequences reducing remote cache-to-
cache transfers, similar to the optimization targeting
idle_cpu() calls or reducing the number of rq cache
lines referenced in a remote wakeup are beneficial and
need to be pursued further. Proper alignment of struc-
tures also reduces cache-to-cache transfers, as illus-
trated in the blk_queue_tag structure. Opportuni-
ties exist in ordering structure fields to increase cache
line sharing and reduce contention. Examples include
separating read only data from contended read / write
fields, and careful placement or isolation of frequently
referenced spinlocks. In the case of scsi_host and

to a lesser extent kioctx, several atomic semaphores
placed on the same cache quickly increase contention
for a structure.

Data ordering also extends to good use of
__read_mostly attributes for global variables,
which also have a significant impact. In the 2.6.9 ker-
nel, false sharing occurred between inode_lock and
a hot read-only global on the same cache line, ranking
it number 1 in the top 50. In the 2.6.20 kernel, the hot
read-only global was given the __read_mostly at-
tribute, and the cache line with inode_lock dropped
out of the top 50 cache lines. The combination of the
two new cache lines contributed 45% less latency with
the globals separated.

Operations that require a lock to be held for a single
frequently-occurring operation, such a timer delete from
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   samples   remote  module   inst. address       inst.           function                        data address        data

       852   50.23%  scsi     0xA00000021E29DA80  ld8             __scsi_get_command              0xE0000010260C8020  cmd_pool
         2  100.00%  scsi     0xA00000021E29DF10  ld8             __scsi_put_command              0xE0000010260C8020  cmd_pool
 
       292   69.86%  scsi     0xA00000021E29C536  cmpxchg4.acq   [spinlock] @ scsi_put_command    0xE0000010260C8028  free_list_lock

         3    0.00%  scsi     0xA00000021E29DE60  ld8             __scsi_put_command              0xE0000010260C8030  free_list.next

         5   60.00%  scsi     0xA00000021E2AA0F6  ld8             scsi_run_queue                  0xE0000010260C8040  starved_list.next

       292   40.75%  qla      0xA00000021E4063E6  cmpxchg4.acq    [spinlock] @ qla2x00_queuecom.. 0xE0000010260C8050  default_lock
        41   58.54%  scsi     0xA00000021E29C416  cmpxchg4.acq    [spinlock] @ scsi_dispatch_cmd  0xE0000010260C8050  default_lock
        98   50.00%  vmlinux  0xA000000100009106  ld4             ia64_spinlock_contention        0xE0000010260C8050  default_lock
        14   50.00%  vmlinux  0xA000000100009126  cmpxchg4.acq    ia64_spinlock_contention        0xE0000010260C8050  default_lock
        95   49.47%  scsi     0xA00000021E2AF456  cmpxchg4.acq    [spinlock] @ scsi_request_fn    0xE0000010260C8050  default_lock
        97   67.01%  scsi     0xA00000021E2A95B6  cmpxchg4.acq    [spinlock] @ scsi_device_unbu.. 0xE0000010260C8050  default_lock
        42   78.57%  scsi     0xA00000021E2A9736  cmpxchg4.acq    [spinlock] @ scsi_run_queue     0xE0000010260C8050  default_lock

        27   37.04%  qla      0xA00000021E4062B6  ld8             qla2x00_queuecommand            0xE0000010260C8058  host_lock*
       197   57.36%  qla      0xA00000021E4063A6  ld8             qla2x00_queuecommand            0xE0000010260C8058  host_lock*
        41   48.78%  scsi     0xA00000021E29E3A0  ld8             scsi_dispatch_cmd               0xE0000010260C8058  host_lock*
         3   66.67%  scsi     0xA00000021E29E526  ld8             scsi_dispatch_cmd               0xE0000010260C8058  host_lock*
       355   65.63%  scsi     0xA00000021E2ACDB0  ld8             scsi_device_unbusy              0xE0000010260C8058  host_lock*
        14   50.00%  scsi     0xA00000021E2ACEA6  ld8             scsi_device_unbusy              0xE0000010260C8058  host_lock*
       123   55.28%  scsi     0xA00000021E2AF436  ld8             scsi_request_fn                 0xE0000010260C8058  host_lock*
        34   50.00%  scsi     0xA00000021E2AF746  ld8             scsi_request_fn                 0xE0000010260C8058  host_lock*
        38   76.32%  scsi     0xA00000021E2A9E80  ld8             scsi_run_queue                  0xE0000010260C8058  host_lock*

Figure 13: Cache line with scsi_host struct

   samples   remote  module   inst. address       inst.         function                          data address        data

        26   38.46%  scsi     0xA00000021E29EB10  ld8           scsi_put_command                  0xE00000012464C000  host (scsi_host*)
         4   25.00%  scsi     0xA00000021E29ED10  ld8           scsi_get_command                  0xE00000012464C000  host (scsi_host*)
        11   45.45%  scsi     0xA00000021E2ACD90  ld8           scsi_device_unbusy                0xE00000012464C000  host (scsi_host*)
        22   59.09%  scsi     0xA00000021E29CDE0  ld8           scsi_finish_command               0xE00000012464C000  host (scsi_host*)
        90   54.44%  scsi     0xA00000021E2AF0F0  ld8           scsi_request_fn                   0xE00000012464C000  host (scsi_host*)
         1  100.00%  scsi     0xA00000021E2A9B96  ld8           scsi_run_queue                    0xE00000012464C000  host (scsi_host*)
         2  100.00%  scsi     0xA00000021E29DFB0  ld8           scsi_dispatch_cmd                 0xE00000012464C000  host (scsi_host*)

         2    0.00%  scsi     0xA00000021E2AAF10  ld8           scsi_next_command                 0xE00000012464C008  request_queue (request_queue*)
         1    0.00%  scsi     0xA00000021E2ACF26  ld8           scsi_device_unbusy                0xE00000012464C008  request_queue (request_queue*)
         1  100.00%  scsi     0xA00000021E2AB826  ld8           scsi_io_completion                0xE00000012464C008  request_queue (request_queue*)

         6   33.33%  scsi     0xA00000021E29C2F6  cmpxchg4.acq  [spinlock] @ scsi_put_command     0xE00000012464C034  list_lock
        21   52.38%  scsi     0xA00000021E29C3B6  cmpxchg4.acq  [spinlock] @ scsi_get_command     0xE00000012464C034  list_lock

         2    0.00%  scsi     0xA00000021E2AF686  ld8           scsi_request_fn                   0xE00000012464C048  starved_entry.next

        92   35.87%  qla      0xA00000021E420D60  ld4           qla2x00_process_completed_req...  0xE00000012464C060  queue_depth

         2  100.00%  qla      0xA00000021E41EDF0  ld4           qla2x00_start_scsi                0xE00000012464C074  lun

Figure 14: First cache line of scsi_device struct

a tvec_base, can be batched so many operations can
be completed with a single lock reference. In addition,
iterating across all nodes for per-node operations may
provide an opportunity to prefetch locks and data ahead
for the next node to be processed, hiding the latency of
expensive memory references. This technique may be
utilized to improve freeing of slab objects.

Through a combination of improvements to the exist-
ing kernel sources, new feature development targeting
the reduction of remote cache-to-cache transfers, and
improvements in hardware and software capabilities to
identify and characterize cache line contention, we can
ensure improved scalability on future platforms.
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