
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Kernel Scalability—Expanding the Horizon Beyond Fine Grain Locks

Corey Gough
Intel Corp.

corey.d.gough@intel.com

Suresh Siddha
Intel Corp.

suresh.b.siddha@intel.com

Ken Chen
Google, Inc.

kenchen@google.com

Abstract

System time is increasing on enterprise workloads
as multi-core and non-uniform memory architecture
(NUMA) systems become mainstream. A defining char-
acteristic of the increase in system time is an increase in
reference costs due to contention of shared resources—
instances of poor memory locality also play a role. An
exploration of these issues reveals further opportunities
to improve kernel scalability.

This paper examines kernel lock and scalability issues
encountered on enterprise workloads. These issues are
examined at a software level through structure definition
and organization, and at a hardware level through cache
line contention characteristics and system performance
metrics. Issues and opportunities are illustrated in the
process scheduler, I/O paths, timers, slab, and IPC.

1 Introduction

Processor stalls due to memory latency are the most sig-
nificant contributor to kernel CPI (cycles per instruc-
tion) on enterprise workloads. NUMA systems drive
kernel CPI higher as cache misses that cost hundreds
of clock cycles on traditional symmetric multiprocess-
ing systems (SMP) can extend to over a thousand clock
cycles on large NUMA systems. With a fixed amount
of kernel instructions taking longer to execute, system
time increases, resulting in fewer clock cycles for user
applications. Increases in memory latency have a sim-
ilar effect on the CPI of user applications. As a result,
minimizing the effects of memory latency increases on
NUMA systems is essential to achieving good scalabil-
ity.

Cache coherent NUMA systems are designed to over-
come limitations of traditional SMP systems, enabling
more processors and higher bandwidth. NUMA systems
split hardware resources into multiple nodes, with each

node consisting of a set of one or more processors and
physical memory units. Local node memory references,
including references to physical memory on the same
node and cache-to-cache transfers between processors
on the same node, are less expensive due to lower la-
tency. References that cross nodes, or remote node ref-
erences, are done at a higher latency due to the addi-
tional costs introduced by crossing a node interconnect.
As more nodes are added to a system, the cost to refer-
ence memory on a far remote node may increase further
as multiple interconnects are needed to link the source
and destination nodes.

In terms of memory latency, the most expensive kernel
memory references can be broadly categorized as re-
mote memory reads, or reads from physical memory on
a different node, and as remote cache-to-cache transfers,
or reads from a processor cache on a different node.

Many improvements have been added to the Linux ker-
nel to reduce remote memory reads. Examples include
libnuma and the kernel mbind() interface, NUMA
aware slab allocation, and per-cpu scheduler group al-
locations. These are all used to optimize memory lo-
cality. Similarly, many improvements have been added
to the kernel to improve lock sequences which decrease
latency from cache-to-cache transfers. Use of the RCU
(read-copy update) mechanism has enabled several scal-
ability improvements and continues to be utilized in
new development. Use of finer grain locks such as
array locks for SYSV semaphores, conversion of the
page_table_lock to per pmd locks for fast concur-
rent page faults, and per device block I/O unplug, all
contribute to reduce cache line contention.

Through characterization of kernel memory latency,
analysis of high latency code paths, and examination of
kernel data structure layout, we illustrate further oppor-
tunities to reduce latency.

• 153 •

154 • Kernel Scalability—Expanding the Horizon Beyond Fine Grain Locks

1.1 Methodology

Kernel memory latency characteristics are studied us-
ing an enterprise OLTP (online transaction processing)
workload with Oracle Database 10g Release 2 on Dual-
Core Intel R© Itanium R© 2 processors. The configuration
includes a large database built on a robust, high per-
formance storage subsystem. The workload is tuned to
make best use of the kernel, utilizing fixed process pri-
ority and core affinity, optimized binding of interrupts,
and use of kernel tunable settings where appropriate.

Itanium processors provide a mechanism to precisely
profile cache misses. The Itanium EAR (event address
registers) performance monitoring registers latch data
reads that miss the L1 cache and collect an extended
set of information about targeted misses. This includes
memory latency in clock cycles, the address of the load
instruction that caused the miss, the processor that re-
tired the load, and the address of the data item that was
missed.

Several additional processing steps are taken to supple-
ment the data collected by hardware. Virtual data ad-
dresses are converted to a physical address during col-
lection using the tpa (translate physical address) instruc-
tion and the resulting physical addresses are looked up
against SRAT (static resource affinity table) data struc-
tures to determine node location. Kernel symbols and
gdwarf-2 annotated assembly code are analyzed to
translate data addresses to kernel global variable names,
structure names, and structure field names. Symbols are
enhanced by inlining spinlocks and sinking them into
wrapper functions, with the exported function name de-
scribing the lock being acquired, where it is acquired,
and by whom it is acquired.

2 Cache Coherency

To maintain consistency between internal caches and
caches on other processors, systems use a cache co-
herency protocol, such as the MESI protocol (modified,
exclusive, shared, invalid). Each cache line contains sta-
tus flags that indicate the current cache line state.

A cache line in E (exclusive) state indicates that the
cache line does not exist in any other processor’s cache.
The data is clean; it matches the image in main memory.

A cache line in S (shared) state can exist in several
caches at once. This is frequently the case for cache

lines that contain data that is read, but rarely, if ever,
modified.

Cache lines in M (modified) state are only present in
one processor cache at a time. The data is dirty; it
is modified and typically does not match the image in
main memory. Cache lines in M state can be directly
transferred to another processors cache, with the abil-
ity to satisfy another processor’s read request detected
through snooping. Before the cache line can be trans-
ferred, it must be written back to main memory.

Cache lines in I (invalid) state have been invalidated,
and they cannot be transferred to another processor’s
cache. Cache lines are typically invalidated when there
are multiple copies of the line in S state, and one of the
processors needs to invalidate all copies of the line so it
can modify the data. Cache lines in I state are evicted
from a cache without being written back to main mem-
ory.

2.1 Cache Line Contention

Coherency is maintained at a cache line level—the co-
herency protocol does not distinguish between individ-
ual bytes on the same cache line. For kernel structures
that fit on a single cache line, modification of a single
field in the structure will result in any other copies of
the cache line containing the structure to be invalidated.

Cache lines are contended when there are several
threads that attempt to write to the same line concur-
rently or in short succession. To modify a cache line,
a processor must hold it in M state. Coherency opera-
tions and state transitions are necessary to accomplish
this, and these come at a cost. When a cache line con-
taining a kernel structure is modified by many differ-
ent threads, only a single image of the line will exist
across the processor caches, with the cache line trans-
ferring from cache to cache as necessary. This effect is
typically referred to as cache line bouncing.

Cache lines are also contended when global variables or
fields that are frequently read are located on the same
cache line as data that is frequently modified. Co-
herency operations and state transitions are required to
transition cache lines to S state so multiple processors
can hold a copy of the cache line for reading. This ef-
fect is typically referred to as false sharing.

Cache line contention also occurs when a thread refer-
encing a data structure is migrated to another processor,

2007 Linux Symposium, Volume One • 155

or when a second thread picks up computation based on
a structure where a first thread left off—as is the case
in interrupt handling. This behavior mimics contention
between two different threads as cache lines need to
be transferred from one processor’s cache to another to
complete the processing.

Issues with cache line contention expand further with
several of the critical kernel structures spanning multi-
ple cache lines. Even in cases where a code path is ref-
erencing only a few fields in a structure, we frequently
have contention across several different cache lines.

Trends in system design further intensify issues with
cache line contention. Larger caches increase the chance
that a cache miss on a kernel structure will hit in
a processor’s cache. Doubling the number of cores
and threads per processor also increases the number of
threads that can concurrently reference a kernel struc-
ture. The prevalence of NUMA increases the number of
nodes in a system, adding latency to the reference types
mentioned in the preceding section. Cache line con-
tention that appears fairly innocuous on small servers
today has the potential to transform into significant scal-
ability problems in the future.

3 NUMA Costs

In an experiment to characterize NUMA costs, a system
is populated with two processors and 64 GB of memory
using two different configurations. In the single node
configuration, both processors and memory are placed
into a single node—while the platform is NUMA, this
configuration is representative of traditional SMP. In the
split node configuration, processors and memory are di-
vided evenly across two NUMA nodes. This experiment
essentially toggles NUMA on and off without changing
the physical computing resources, revealing interesting
changes in kernel memory latency.

With the OLTP workload, scalability deteriorated when
comparing the 2.6.18 kernel to the 2.6.9 kernel. On the
2.6.9 kernel, system time increases from 19% to 23%
when comparing single node to split node configura-
tions. With less processor time available for the user
workload, we measure a 6% performance degradation.
On the 2.6.18 kernel, comparing single node to split
node configurations, system time increases from 19% to
25%, resulting in a more significant 10% performance
degradation.

Kernel data cache miss latency increased 50% as we
moved from single to split nodes, several times greater
than the increase in user data cache miss latency. A ker-
nel memory latency increase of this magnitude causes
several of the critical kernel paths to take over 30%
longer to execute—with kernel CPI increasing from
1.95 to 2.55. The two kernel paths that exhibited the
largest increases in CPI were in process scheduling and
I/O paths.

A comparison of single to split node configurations also
reveals that a surprisingly large amount of kernel data
cache misses are satisfied by cache-to-cache transfers.
The most expensive cache misses were due to remote
cache-to-cache transfers—reads from physical memory
on a remote node accounted for a much smaller amount
of the overall kernel memory latency.

4 2.6.20 Kernel

4.1 Memory Latency Characterization

Figure 1 illustrates the frequency of kernel misses at
a given latency value. This data was collected us-
ing a NUMA system with two fully-populated nodes
on the 2.6.20 kernel running the OLTP workload.
Micro-benchmarks were used to measure latency lower
bounds, confirming assumptions regarding latency of
different reference types.

0

2000

4000

6000

8000

10000

12000

14000

latency in core clocks

s
a
m
p
l
e
s

2.6.20 kernel memory latency

1

2

3

4

Figure 1: Kernel memory latency histogram

Four significant peaks exist on the kernel memory la-
tency histogram. The first, largest peak corresponds to

156 • Kernel Scalability—Expanding the Horizon Beyond Fine Grain Locks

local node cache-to-cache transfers and the second peak
corresponds to local node reads from main memory. The
third peak corresponds to a remote node read from main
memory, and the fourth peak highlights remote node
cache-to-cache transfers. Peaks do not represent abso-
lute boundaries between different types of references as
the upper bound is not fixed for any reference type. They
do, however, illustrate specific latency ranges where one
reference type is much more frequent than another.

46% of the kernel data cache misses are node local,
however, these inexpensive misses only account for 27%
of the overall kernel latency. The remote node cache
misses are considerably more expensive, particularly the
remote node cache-to-cache transfers. The height and
width of the fourth peak captures the severity of remote
node cache-to-cache transfers. The tail of the fourth
peak indicates references to a heavily contended cache
line, for instance a contended spinlock.

A two node configuration is used in these experiments
to illustrate that latency based scalability issues are not
exclusive to big iron. As we scale up the number
of NUMA nodes, latencies for remote cache-to-cache
transfers increase and the chance that cache-to-cache
transfers will be local inexpensive references decreases.

Figure 1 also illustrates that the most frequently refer-
enced kernel structures have a tendency to hit in pro-
cessor caches. Memory reads are, relatively speak-
ing, infrequent. Optimizations targeting the location or
NUMA allocation of data do not address cache-to-cache
transfers because these are infrequently read from main
memory.

In examining memory latency histograms for well tuned
user applications, the highest peaks are typically local
node cache-to-cache transfers and local node memory
reads. The most expensive reference type, the remote
node cache-to-cache transfer, is typically the smallest
peak. In a well tuned user application, the majority of
latency comes from local node references, or is at least
split evenly between local and remote node references.
In comparison to user applications, the kernel’s resource
management, communication, and synchronization re-
sponsibilities make it much more difficult to localize
processing to a single node.

4.2 Cache Line Analysis

With cache-to-cache transfers making up the two tallest
peaks in the kernel memory latency histogram, and re-

mote cache-to-cache transfers representing the most ex-
pensive overall references, 2.6.20 cache line analysis is
focused on only those samples representative of a cache-
to-cache transfer.

kmem_list3
[slab]

5%

array_cache
*alien [slab]

3%

slab [slab]
1%

kioctx [aio]
4%

blk_queue_tag
[block]

6%

request_queue
[block]

7%

scsi_host
[scsi]
13%

scsi_device
[scsi]
10%

qla_host
[scsi]

7%

rq
[scheduler]

16%

list_head
[scheduler]

6%

tvec_base
[timers]

9%

time keeping
- 7 globals

4%

network -
6 structs

6%

other
3%

Figure 2: Top 500 kernel cache misses based on total
latency

Figure 2 illustrates the top contended structures in the
kernel, based on the top 500 cache lines contributing the
most to kernel memory latency. While the top 500 cache
lines represent only a fraction of 1% of the total kernel
cache lines sampled during measurement, they account
for 33% of total kernel latency. Among the thousands of
structures in the kernel, only twelve structures, spread
across scheduler, timers, and I/O make up the majority
of the breakdown.

The chart is organized to co-locate nearby or related ker-
nel paths. I/O includes structures from AIO, through
block, through SCSI, down to the storage driver. These
represent approximately half of the breakdown. Struc-
tures for the slab allocation are also included on this side
of the chart as the I/O paths and related structures are
the primary users of slab allocation. Scheduler paths,
including the run queue, and list structures contained in
the priority arrays, account for 21% of the breakdown—
several percent more if we include IPC as part of this
path. Dynamic timers account for 9% of the breakdown.

4.3 Cache Line Visualization

Figure 3 is an example of a concise data format used to
illustrate issues with cache line contention. Every path

2007 Linux Symposium, Volume One • 157

 samples remote module inst. address inst. function data address data

 338 1.18% vmlinux 0xA000000100646036 cmpxchg4.acq [spinlock] @ schedule 0xE000001000054B50 rq_lock
 633 59.40% vmlinux 0xA000000100069086 cmpxchg4.acq [spinlock] @ try_to_wake_up 0xE000001000054B50 rq_lock
 67 22.39% vmlinux 0xA000000100009106 ld4 ia64_spinlock_contention 0xE000001000054B50 rq_lock
 9 77.78% vmlinux 0xA000000100009126 cmpxchg4.acq ia64_spinlock_contention 0xE000001000054B50 rq_lock
 72 2.78% vmlinux 0xA00000010006B386 cmpxchg4.acq [spinlock] @ task_running_tick 0xE000001000054B50 rq_lock
 1 0.00% vmlinux 0xA00000010064B840 cmpxchg4.acq [spinlock] @ wake_sleeping_dep... 0xE000001000054B50 rq_lock
 3 66.67% vmlinux 0xA00000010006BC76 ld4.acq resched_task 0xE000001000054B50 rq_lock
 18 44.44% vmlinux 0xA000000100069EA6 cmpxchg4.acq [spinlock] @ try_to_wake_up 0xE000001000054B50 rq_lock

 5 0.00% vmlinux 0xA000000100646130 ld8 schedule 0xE000001000054B58 nr_running
 2 0.00% vmlinux 0xA000000100646726 ld8 schedule 0xE000001000054B58 nr_running
 2 0.00% vmlinux 0xA000000100070806 ld8 try_to_wake_up 0xE000001000054B58 nr_running
 1 0.00% vmlinux 0xA00000010006CAF0 ld8 move_tasks 0xE000001000054B58 nr_running
 3 0.00% vmlinux 0xA00000010006AE60 ld8 deactivate_task 0xE000001000054B58 nr_running
 1 0.00% vmlinux 0xA0000001000753C6 ld8 scheduler_tick 0xE000001000054B58 nr_running
 32 81.25% vmlinux 0xA00000010006BBD0 ld8 __activate_task 0xE000001000054B58 nr_running

 30 0.00% vmlinux 0xA000000100068010 ld8 find_busiest_group 0xE000001000054B60 raw_weighted_load
 3 0.00% vmlinux 0xA000000100070720 ld8 try_to_wake_up 0xE000001000054B60 raw_weighted_load
 2 0.00% vmlinux 0xA000000100070740 ld8 try_to_wake_up 0xE000001000054B60 raw_weighted_load
 10 0.00% vmlinux 0xA000000100070780 ld8 try_to_wake_up 0xE000001000054B60 raw_weighted_load
 1 0.00% vmlinux 0xA00000010006CAA6 ld8 move_tasks 0xE000001000054B60 raw_weighted_load
 1 0.00% vmlinux 0xA00000010006CAF6 ld8 move_tasks 0xE000001000054B60 raw_weighted_load
 6 0.00% vmlinux 0xA000000100075486 ld8 scheduler_tick 0xE000001000054B60 raw_weighted_load
 21 61.90% vmlinux 0xA00000010006BBD6 ld8 __activate_task 0xE000001000054B60 raw_weighted_load

 14 0.00% vmlinux 0xA000000100068030 ld8 find_busiest_group 0xE000001000054B68 cpu_load[0]
 2 0.00% vmlinux 0xA000000100070786 ld8 try_to_wake_up 0xE000001000054B68 cpu_load[0]
 5 0.00% vmlinux 0xA000000100070790 ld8 try_to_wake_up 0xE000001000054B68 cpu_load[0]
 2 0.00% vmlinux 0xA000000100067F70 ld8 find_busiest_group 0xE000001000054B68 cpu_load[0]

 1 0.00% vmlinux 0xA000000100068030 ld8 find_busiest_group 0xE000001000054B70 cpu_load[1]
 1 0.00% vmlinux 0xA000000100075490 ld8 scheduler_tick 0xE000001000054B70 cpu_load[1]

Figure 3: First cache line of rq struct

that references a structure field satisfied by a cache-to-
cache transfer is listed. Samples that are local cache
hits or cache misses that reference main memory are not
included, as a result, we do not see each and every field
referenced in a structure. Several columns of data are
included to indicate contention hotspots and to assist in
locating code paths for analysis.

• samples – The number of sampled cache misses
at a given reference point

• remote – The ratio of cache misses that reference
a remote node compared to local node references

• module – The kernel module that caused the cache
miss

• instruction address – The virtual address for
the instruction that caused the miss

• instruction – Indicates the instruction. This il-
lustrates the size of the field, for example ld4 is a
load of a four byte field. For locks, the instruc-
tion indicates whether a field was referenced atom-
ically, as is the case for a compare and exchange or
an atomic increment / decrement

• function – The kernel function that caused the
miss. In the case of spinlocks, we indicate the spin-
lock call as well as the caller function

• data address – The virtual address of the data
item missed. This helps to illustrate spatial charac-
teristics of contended structure fields

• data – Structure field name or symbolic informa-
tion for the data item

4.4 Process Scheduler

The process scheduler run queue structure spans four
128 byte cache lines, with the majority of latency com-
ing from the try_to_wake_up() path. Cache lines
from the rq struct are heavily contended due to re-
mote wakeups and local process scheduling referenc-
ing the same fields. In the first cache line of rq, the
most expensive references to the rq lock and remote
references from __activate_task come from the
wakeup path.

Remote wakeups are due to two frequent paths. First,
database transactions are completed when a commit
occurs—this involves a write to an online log file. Hun-
dreds of foreground processes go to sleep in the final

158 • Kernel Scalability—Expanding the Horizon Beyond Fine Grain Locks

 samples remote module inst. address inst. function data address data

 2 0.00% vmlinux 0xA000000100647420 ld8 schedule 0xE000001000014B80 nr_switches

 1 0.00% vmlinux 0xA000000100646100 ld8 schedule 0xE000001000014B88 nr_uninterruptible

 2 0.00% vmlinux 0xA00000010006CB60 ld8 move_tasks 0xE000001000014B98 most_recent_timestamp

 752 63.70% vmlinux 0xA000000100066000 ld8 idle_cpu 0xE000001000014BA0 curr (task_struct*)
 5 0.00% vmlinux 0xA00000010006C4F0 ld8 move_tasks 0xE000001000014BA0 curr (task_struct*)
 6 0.00% vmlinux 0xA0000001006468B0 ld8 schedule 0xE000001000014BA0 curr (task_struct*)
 1 0.00% vmlinux 0xA000000100070F10 ld8 try_to_wake_up 0xE000001000014BA0 curr (task_struct*)

 799 65.96% vmlinux 0xA000000100066006 ld8 idle_cpu 0xE000001000014BA8 idle (task_struct*)
 1 0.00% vmlinux 0xA000000100646770 ld8 schedule 0xE000001000014BA8 idle (task_struct*)
 10 0.00% vmlinux 0xA0000001006468B6 ld8 schedule 0xE000001000014BA8 idle (task_struct*)
 4 0.00% vmlinux 0xA000000100647056 ld8 schedule 0xE000001000014BA8 idle (task_struct*)
 1 0.00% vmlinux 0xA0000001006472E0 ld8 schedule 0xE000001000014BA8 idle (task_struct*)
 31 0.00% vmlinux 0xA0000001000753A6 ld8 scheduler_tick 0xE000001000014BA8 idle (task_struct*)
 4 0.00% vmlinux 0xA000000100065C90 ld8 account_system_time 0xE000001000014BA8 idle (task_struct*)
 176 1.14% vmlinux 0xA000000100645E46 ld8 schedule 0xE000001000014BA8 idle (task_struct*)

 2 0.00% vmlinux 0xA000000100075526 ld8 scheduler_tick 0xE000001000014BB0 next_balance

 3 0.00% vmlinux 0xA000000100647DE6 ld8 schedule 0xE000001000014BB8 prev_mm (mm_struct*)

 6 0.00% vmlinux 0xA000000100646950 ld8 schedule 0xE000001000014BC0 active (prio_array*)
 1 0.00% vmlinux 0xA00000010006B306 ld8 task_running_tick 0xE000001000014BC0 active (prio_array*)
 17 64.71% vmlinux 0xA00000010006BB86 ld8 __activate_task 0xE000001000014BC0 active (prio_array*)

 5 0.00% vmlinux 0xA00000010006C4F6 ld8 move_tasks 0xE000001000014BC8 expired (prio_array*)

 13 0.00% vmlinux 0xA00000010006AD86 ld4 dequeue_task 0xE000001000014BD0 arrays[0].nr_active
 2 50.00% vmlinux 0xA00000010006B2B6 ld4 enqueue_task 0xE000001000014BD0 arrays[0].nr_active

 1 0.00% vmlinux 0xA00000010006AE10 ld4.acq dequeue_task 0xE000001000014BE8 arrays[0].bitmap

Figure 4: Second cache line of rq struct

stage of completing a transaction and need to be woken
up when their transaction is complete. Second, database
processes are submitting I/O on one processor and the
interrupt is arriving on another processor, causing pro-
cesses waiting for I/O to be woken up on a remote pro-
cessor.

A new feature being discussed in the Linux kernel com-
munity, called syslets, could be used to address issues
with remote wakeups. Syslets are simple lightweight
programs consisting of system calls, or atoms, that the
kernel can execute autonomously and asynchronously.
The kernel utilizes a different thread to execute the
atoms asynchronously, even if a user application mak-
ing the call is single threaded. Using this mechanism,
user applications can wakeup foreground processes on
local nodes in parallel by splitting the work between a
number of syslets.

A near term approach, and one complementary to node
local wakeups using syslets, would be to minimize the
number of remote cache line references in the try_to_
wake_up() path. Figure 3 confirms that the run queue
is not cache line aligned. By aligning the run queue, the
rq structure uses one less cache line. This results in a
measurable performance increase as the scheduler stats
ttwu field on the fourth cache line is brought into the

third cache line alongside other data used in the wakeup.

The second cache line of the rq struct in figure 4
shows a high level of contention between the idle and
curr task_struct pointers in idle_task. This
issue originates from the decision to schedule a task on
an idle sibling if the processor targeted for a wakeup is
busy. In this path, we reference the sibling’s runqueue
to check if it is busy or not. When a wakeup occurs
remotely, the sibling’s runqueue status is also checked,
resulting in additional remote cache-to-cache transfers.
Load balancing at the SMT sched_domain happens
more frequently, influencing the equal distribution of the
load between siblings. Instead of checking the sibling,
idle_cpu() can simply return the target cpu if there
is more than one task running, because it’s likely that
siblings will also have tasks running. This change re-
duces contention on the second cache line, and also re-
sults in a measurable performance increase.

The third line contains one field that contributes to cache
line contention, the sd sched_domain pointer used
in try_to_wake_up(). The fourth rq cache line
contains scheduler stats fields, with the most expensive
remote references coming from the try to wake up count
field mentioned earlier. The list_head structures
in the top 500 are also contended in the wakeup path.

2007 Linux Symposium, Volume One • 159

When a process is woken up, it needs to be added to the
prio_array queue.

4.5 Timers

Processes use the per-processor tvec_base that cor-
responds to the processor they are running on when
adding timers. This ensures timers are always added
locally. The majority of scalability issues with timers
are introduced during timer deletion. With I/O submit-
ted on a different processor than it is completed on, it
is necessary to acquire a remote tvec_base lock in
the interrupt handler to detach a timer from that base.

Figure 5 illustrates cache line contention for the tvec_
base lock. The mod_timer() path represents
deletes of the block queue plug timers, which are un-
necessary given we are using direct I/O in this work-
load. Cache line contention for the tvec_base
lock in del_timer() represents deletes from the
scsi_delete_timer() path—the result of delet-
ing a SCSI command eh_timeout timer upon I/O
completion.

Getting the base_lock for every I/O completion re-
sults in tens-of-thousands of expensive remote cache-
to-cache transfers per second. The tvec_base locks
are among the most contended locks in this workload.
An alternative approach would be to batch timers for
deletion, keeping track of a timer’s state. A timer’s state
could be changed locally during an I/O completion since
the timer is part of the scsi_cmnd struct that is read
into the cache earlier in the path. Timer state could indi-
cate both when the timer can be detached, and when the
kernel can free the memory.

Where we have a large number of timers to delete across
a number of tvec_base structures, we can prefetch
locks, hiding latency for the majority of the lock refer-
ences in the shadow of the first tvec_base lock refer-
enced.

4.6 Slab

Submitting I/O on one processor and handling the in-
terrupt on another processor also affects scalability of
slab allocation. Comparisons between the 2.6.20 and
the 2.6.9 kernel, which did not have NUMA aware slab
allocation, indicate the slab allocation is hurting more
than it is helping on the OLTP workload. Figures 6, 7,

and 8 illustrate scalability issues introduced by freeing
slabs from a remote node. The alien pointer in the
kmem_list3 structure and the nodeid in the slab
structure are mostly read, so we may be able to reduce
false sharing of these fields by moving them to another
cache line. If cache lines with these fields exist in S
state, several copies of the data can be held simulta-
neously by multiple processors, and we can eliminate
some of the remote cache-to-cache transfers.

Further opportunity may exist in using kmem_cache_
alloc calls that result in refills to free local slabs cur-
rently batched to be freed on remote processors. This
has the potential to reduce creation of new slabs, local-
ize memory references for slabs that have been evicted
from the cache, and provide more efficient lock refer-
ences.

A number of additional factors limit scalability. Alien
array sizes are limited to 12 and are not resized based on
slab tunables. In addition, the total size of alien arrays
increases squarely as the number of nodes increases,
putting additional memory pressure on the system.

A similar analysis for the new slub (unqueued slab) is
in progress on this configuration to determine if similar
issues exist.

4.7 I/O: AIO

As illustrated throughout this paper, cache line con-
tention of I/O structures is primarily due to submitting
I/O on one processor and handling the interrupt on an-
other processor. A superior solution to this scalability is-
sue would be to utilize hardware and device drivers that
support extended message-signaled interrupts (MSI-X)
and support multiple per-cpu or per-node queues. Using
extended features of MSI, a device can send messages
to a specific set of processors in the system. When an
interrupt occurs, the device can decide a target proces-
sor for the interrupt. In the case of the OLTP workload,
these features could be used to enable I/O submission
and completion on the same processor. This approach
also ensures that slab objects and timers get allocated,
referenced, and freed within a local node.

Another approach, explored in earlier Linux kernels, is
to delay the I/O submission so it can be executed on the
processor or node which will receive the interrupt during
I/O completion. Performance results with this approach

160 • Kernel Scalability—Expanding the Horizon Beyond Fine Grain Locks

 samples remote module inst. address inst. function data address data

 39 17.95% vmlinux 0xA000000100009106 ld4 ia64_spinlock_contention 0xE00000100658C000 lock
 9 11.11% vmlinux 0xA000000100009126 cmpxchg4.acq ia64_spinlock_contention 0xE00000100658C000 lock
 307 2.93% vmlinux 0xA00000010009B4C6 cmpxchg4.acq [spinlock] @ __mod_timer 0xE00000100658C000 lock
 861 58.07% vmlinux 0xA0000001000995A6 cmpxchg4.acq [spinlock] @ del_timer 0xE00000100658C000 lock
 10 0.00% vmlinux 0xA00000010009B666 cmpxchg4.acq [spinlock] @ run_timer_softirq 0xE00000100658C000 lock
 982 40.22% vmlinux 0xA0000001000996C6 cmpxchg4.acq [spinlock] @ mod_timer 0xE00000100658C000 lock
 24 0.00% vmlinux 0xA0000001000997E6 cmpxchg4.acq [spinlock] @ try_to_del_timer_sync 0xE00000100658C000 lock
 1 0.00% vmlinux 0xA00000010009B966 cmpxchg4.acq [spinlock] @ run_timer_softirq 0xE00000100658C000 lock

 7 14.29% vmlinux 0xA00000010009B466 ld8 __mod_timer 0xE00000100658C008 running_timer (timer_list*)

 3 0.00% vmlinux 0xA00000010009A906 ld8 internal_add_timer 0xE00000100658C010 timer_jiffies
 78 1.28% vmlinux 0xA00000010009B606 ld8 run_timer_softirq 0xE00000100658C010 timer_jiffies

Figure 5: Cache line with tvec_base struct

 samples remote module inst. address inst. function data address data

 9 100.00% vmlinux 0xA0000001001580F0 ld8 ____cache_alloc_node 0xE00000207945BD00 slabs_partial.next (list_head*)
 5 100.00% vmlinux 0xA0000001002C3556 ld8 list_del 0xE00000207945BD00 slabs_partial.next (list_head*)
 1 100.00% vmlinux 0xA0000001002C3726 ld8 __list_add 0xE00000207945BD00 slabs_partial.next (list_head*)
 2 100.00% vmlinux 0xA0000001002C3816 ld8 list_add 0xE00000207945BD00 slabs_partial.next (list_head*)

 2 100.00% vmlinux 0xA0000001002C35C0 ld8 list_del 0xE00000207945BD08 slabs_partial.prev (list_head*)
 22 59.09% vmlinux 0xA0000001002C36B6 ld8 __list_add 0xE00000207945BD08 slabs_partial.prev (list_head*)
 17 70.59% vmlinux 0xA000000100159EE0 ld8 free_block 0xE00000207945BD08 slabs_partial.prev (list_head*)

 3 66.67% vmlinux 0xA0000001002C3556 ld8 list_del 0xE00000207945BD10 slabs_full.next (list_head*)
 1 100.00% vmlinux 0xA0000001002C3726 ld8 __list_add 0xE00000207945BD10 slabs_full.next (list_head*)

 2 100.00% vmlinux 0xA000000100158200 ld8 ____cache_alloc_node 0xE00000207945BD30 free_objects
 24 54.17% vmlinux 0xA000000100159E10 ld8 free_block 0xE00000207945BD30 free_objects

 408 100.00% vmlinux 0xA0000001001580D6 cmpxchg4.acq [spinlock] @ ____cache_alloc_node 0xE00000207945BD40 list_lock
 17 0.00% vmlinux 0xA00000010015A206 cmpxchg4.acq [spinlock] @ cache_flusharray 0xE00000207945BD40 list_lock
 114 100.00% vmlinux 0xA00000010015A3B6 cmpxchg4.acq [spinlock] @ __drain_alien_cache 0xE00000207945BD40 list_lock
 18 0.00% vmlinux 0xA000000100158656 cmpxchg4.acq [spinlock] @ cache_alloc_refill 0xE00000207945BD40 list_lock
 57 84.21% vmlinux 0xA000000100009106 ld4 ia64_spinlock_contention 0xE00000207945BD40 list_lock
 3 100.00% vmlinux 0xA000000100009126 cmpxchg4.acq ia64_spinlock_contention 0xE00000207945BD40 list_lock

 727 0.00% vmlinux 0xA0000001001596B0 ld8 kmem_cache_free 0xE00000207945BD50 alien (array_cache**)

Figure 6: Cache line with kmem_list3 struct

were mixed, with a range of both good and bad results
across different workloads. This model was also bur-
dened with the complexity of handling many different
corner cases.

Figure 9 illustrates the primary contention point for the
kioctx structure, the ctx_lock that protects a per-
process AIO context. This structure is dynamically al-
located as one per process and lives throughout the life-
time of an AIO context. The first cache line is contended
due to lock references in both the I/O submission and
completion paths.

One approach to improve the kioctx structure would
be to reorder structure fields to create a cache line with
fields most frequently referenced in the submit path,
and another cache line with fields most frequently refer-
enced in the complete path. Further analysis is required
to determine the feasibility of this concept. Contention
in the I/O submission path occurs with __aio_get_
req which needs the lock to put a iocb on a linked
list and with aio_run_iocb which needs the lock
to mark the current request as running. Contention in

the I/O completion path occurs with aio_complete
which needs the lock to put a completion event into
event queue, unlink a iocb from a linked list, and per-
form process wakeup if there are waiters.

Raman, Hundt, and Mannarswamy introduced a tech-
nique for structure layout in multi threaded applications
that optimizes for both improved spatial locality and re-
duces false sharing. Reordering fields in a few opti-
mized structures in the HP-UX operating system kernel
improved performance up to 3.2% on enterprise work-
loads. Structures across the I/O layers appear to be good
candidates for such optimization.

The aio_complete function is a heavyweight func-
tion with very long lock hold times. Having a lock hold
time dominated by one processor contributes to longer
contention wait time with other shorter paths occurring
frequently on all the other processors. In some cases, in-
creasing the number of AIO contexts may help address
this.

Figure 10 illustrates the AIO context internal structure
used to track the kernel mapping of AIO ring_info

2007 Linux Symposium, Volume One • 161

 samples remote module inst. address inst. function data address data

 9 0.00% vmlinux 0xA000000100159740 ld4 kmem_cache_free 0xE000000128DA5580 avail
 1 0.00% vmlinux 0xA000000100159770 ld4 kmem_cache_free 0xE000000128DA5580 avail

 5 0.00% vmlinux 0xA00000010015A3F0 ld4 __drain_alien_cache 0xE000000128DA5584 limit
 8 0.00% vmlinux 0xA000000100159746 ld4 kmem_cache_free 0xE000000128DA5584 limit

 30 0.00% vmlinux 0xA000000100009106 ld4 ia64_spinlock_contention 0xE000000128DA5590 lock
 2 0.00% vmlinux 0xA000000100009126 cmpxchg4.acq ia64_spinlock_contention 0xE000000128DA5590 lock
 1793 0.00% vmlinux 0xA000000100159716 cmpxchg4.acq [spinlock] @ cache_free_alien 0xE000000128DA5590 lock

 2 0.00% vmlinux 0xA0000001002C07A0 ld8 __copy_user 0xE000000128DA5598 objpp (entry[0]*)

 2 0.00% vmlinux 0xA0000001002C07A6 ld8 __copy_user 0xE000000128DA55A0 objpp[i]
 3 0.00% vmlinux 0xA000000100159C20 ld8 free_block 0xE000000128DA55A0 objpp[i]

 4 0.00% vmlinux 0xA000000100159C20 ld8 free_block 0xE000000128DA55B0 objpp[i]

 1 0.00% vmlinux 0xA000000100159C20 ld8 free_block 0xE000000128DA55C0 objpp[i]

 1 0.00% vmlinux 0xA000000100159C20 ld8 free_block 0xE000000128DA55D8 objpp[i]

 2 0.00% vmlinux 0xA000000100159C20 ld8 free_block 0xE000000128DA55E0 objpp[i]

Figure 7: Cache line with alien array_cache struct

 samples remote module inst. address inst. function data address data

 4 100.00% vmlinux 0xA0000001002C3556 ld8 list_del 0xE0000010067D0000 list.next (list_head*)
 1 100.00% vmlinux 0xA0000001002C35B0 ld8 list_del 0xE0000010067D0000 list.next (list_head*)
 1 100.00% vmlinux 0xA0000001002C3726 ld8 __list_add 0xE0000010067D0000 list.next (list_head*)

 88 98.86% vmlinux 0xA0000001002C35C0 ld8 list_del 0xE0000010067D0008 list.prev (list_head*)
 79 100.00% vmlinux 0xA0000001002C36B6 ld8 __list_add 0xE0000010067D0008 list.prev (list_head*)

 64 100.00% vmlinux 0xA000000100158160 ld4 ____cache_alloc_node 0xE0000010067D0020 inuse
 2 100.00% vmlinux 0xA000000100159DF6 ld4 free_block 0xE0000010067D0020 inuse

 4 100.00% vmlinux 0xA000000100158226 ld4 ____cache_alloc_node 0xE0000010067D0024 free (kmem_bufctl_t)

 513 45.03% vmlinux 0xA000000100159636 ld2 kmem_cache_free 0xE0000010067D0028 nodeid

Figure 8: Cache line with slab struct

and the AIO event buffer. A small percentage of the
cache line contention comes from with I/O submit path
where kernel needs to look up a kernel mapping for
an AIO ring_info structure. A large percentage of
the cache line contention comes from the I/O interrupt
path, where aio_complete needs to lookup the ker-
nel mapping of the AIO event buffer. In this case, the
majority of contention comes from many I/O comple-
tions happening one after the other.

4.8 I/O: Block

Figure 11 illustrates contention over request_queue
structures. The primary contention points are between
the queue_flags used in the submit path to check
block device queue’s status and the queue_lock
in the return path to perform a reference count on
device_busy. This suggests further opportunity for
structure ordering based on submit and complete paths.

Figure 12 illustrates the blk_queue_tag structure.
Lack of alignment with this structure causes unneces-

sary cache line contention as the size of blk_queue_
tag is less than half a cache line, so we end up with
portions of two to three different tags sharing the same
128 byte cache line. Cache lines are frequently bounced
between processors with multiple tags from independent
devices sharing the same cache line.

4.9 I/O: SCSI

Both the scsi_host and scsi_device structures
span several cache lines and may benefit from reorder-
ing. Both structures feature a single cache line with
multiple contended fields, and several other lines which
have a single field that is heavily contended.

Figure 13 illustrates the most heavily contended cache
line of the scsi_host structure. The primary source
of contention is in the submit path with an unconditional
spin lock acquire in __scsi_put_command to put
a scsi_cmnd on a local free_list, and reads of
the cmd_pool field. Multiple locks on the same cache
line is detrimental as it slows progress in the submit path

162 • Kernel Scalability—Expanding the Horizon Beyond Fine Grain Locks

 samples remote module inst. address inst. function data address data

 1 0.00% vmlinux 0xA0000001001AB240 fetchadd4.rel lookup_ioctx 0xE0000010252A1900 users
 2 0.00% vmlinux 0xA0000001001ABD60 fetchadd4.rel sys_io_getevents 0xE0000010252A1900 users

 44 2.27% vmlinux 0xA0000001001AB1A6 ld8 lookup_ioctx 0xE0000010252A1910 mm (mm_struct*)

 14 71.43% vmlinux 0xA000000100066E56 cmpxchg4.acq [spinlock] @ wake_up_common 0xE0000010252A1920 wait.lock (wait_queue_head)
 1 0.00% vmlinux 0xA000000100009126 cmpxchg4.acq ia64_spinlock_contention 0xE0000010252A1920 wait.lock (wait_queue_head)
 4 0.00% vmlinux 0xA0000001000B9F76 cmpxchg4.acq [spinlock] @ add_wait_queue_exc.. 0xE0000010252A1920 wait.lock (wait_queue_head)
 6 0.00% vmlinux 0xA0000001000B9FD6 cmpxchg4.acq [spinlock] @ remove_wait_queue 0xE0000010252A1920 wait.lock (wait_queue_head)

 1 0.00% vmlinux 0xA0000001002C3556 ld8 list_del 0xE0000010252A1928 wait.next
 5 60.00% vmlinux 0xA000000100065EB0 ld8 __wake_up_common 0xE0000010252A1928 wait.next
 4 75.00% vmlinux 0xA0000001001A9F90 ld8 aio_complete 0xE0000010252A1928 wait.next

 372 1.34% vmlinux 0xA0000001001AA2D6 cmpxchg4.acq [spinlock] @ aio_run_iocb 0xE0000010252A1938 ctx_lock
 1066 1.13% vmlinux 0xA0000001001AAA36 cmpxchg4.acq [spinlock] @ __aio_get_req 0xE0000010252A1938 ctx_lock
 14 0.00% vmlinux 0xA0000001001ACC36 cmpxchg4.acq [spinlock] @ io_submit_one 0xE0000010252A1938 ctx_lock
 1214 62.03% vmlinux 0xA0000001001A8FB6 cmpxchg4.acq [spinlock] @ aio_complete 0xE0000010252A1938 ctx_lock
 181 34.25% vmlinux 0xA000000100009106 ld4 ia64_spinlock_contention 0xE0000010252A1938 ctx_lock
 23 26.09% vmlinux 0xA000000100009126 cmpxchg4.acq ia64_spinlock_contention 0xE0000010252A1938 ctx_lock
 33 69.70% vmlinux 0xA0000001001A9586 ld4.acq __aio_put_req 0xE0000010252A1938 ctx_lock
 39 82.05% vmlinux 0xA0000001001A97D6 ld4.acq __aio_put_req 0xE0000010252A1938 ctx_lock
 52 0.00% vmlinux 0xA0000001001A99B6 cmpxchg4.acq [spinlock] @ aio_put_req 0xE0000010252A1938 ctx_lock

 4 0.00% vmlinux 0xA0000001001AABD0 ld4 __aio_get_req 0xE0000010252A193C reqs_active
 28 64.29% vmlinux 0xA0000001001A98C6 ld4 __aio_put_req 0xE0000010252A193C reqs_active

 2 50.00% vmlinux 0xA0000001002C35C0 ld8 list_del 0xE0000010252A1948 active_reqs.prev

 24 4.17% vmlinux 0xA0000001001A80D0 ld8 aio_read_evt 0xE0000010252A1978 ring_info.ring_pages (page**)
 7 0.00% vmlinux 0xA0000001001A82B0 ld8 aio_read_evt 0xE0000010252A1978 ring_info.ring_pages (page**)
 1 0.00% vmlinux 0xA0000001001AAA96 ld8 __aio_get_req 0xE0000010252A1978 ring_info.ring_pages (page**)
 3 33.33% vmlinux 0xA0000001001A9C56 ld8 aio_complete 0xE0000010252A1978 ring_info.ring_pages (page**)
 16 75.00% vmlinux 0xA0000001001A9D90 ld8 aio_complete 0xE0000010252A1978 ring_info.ring_pages (page**)

Figure 9: Cache line with kioctx struct

 samples remote module inst. address inst. function data address data

 55 1.82% vmlinux 0xA0000001001A8216 cmpxchg4.acq [spinlock] @ aio_read_evt 0xE0000010252A1980 lock

 2 0.00% vmlinux 0xA0000001001A8240 ld4 aio_read_evt 0xE0000010252A1990 nr
 2 0.00% vmlinux 0xA0000001001A83E0 ld4 aio_read_evt 0xE0000010252A1990 nr

 3 0.00% vmlinux 0xA0000001001A9CD0 ld4 aio_complete 0xE0000010252A1994 tail

 41 0.00% vmlinux 0xA0000001001A80E0 ld8 aio_read_evt 0xE0000010252A1998 internal_pages[0] (page*)
 415 1.20% vmlinux 0xA0000001001AAAA6 ld8 __aio_get_req 0xE0000010252A1998 internal_pages[0] (page*)
 1033 58.95% vmlinux 0xA0000001001A9C76 ld8 aio_complete 0xE0000010252A1998 internal_pages[0] (page*)
 1 100.00% vmlinux 0xA0000001001A9DB0 ld8 aio_complete 0xE0000010252A1998 internal_pages[0] (page*)

 1 100.00% vmlinux 0xA0000001001A9DB0 ld8 aio_complete 0xE0000010252A19A0 internal_pages[1] (page*)

 3 0.00% vmlinux 0xA0000001001A82D0 ld8 aio_read_evt 0xE0000010252A19A8 internal_pages[2] (page*)

Figure 10: Cache line with ring_info struct

with the cache line bouncing between processors as they
submit I/O.

Figure 14 illustrates contention in the scsi_device
struct with scsi_request_fn() referencing the
host pointer to process the I/O, and the low level driver
checking the scsi_device queue_depth to deter-
mine whether it should change the queue_depth on
a specific SCSI device. These reads lead to false shar-
ing on the queue_depth field, as scsi_adjust_
queue_depth() is not called during the workload. In
this case, the scsi_qla_host flags could be ex-
tended to indicate whether queue_depth needs to be
adjusted, resulting in the interrupt service routine mak-
ing frequent local references rather than expensive re-
mote references.

Figure 15 illustrates further contention between the I/O
submit and complete paths as sd_init_command()
reads of the timeout and changed fields in the sub-
mit path conflict with writes of iodone_cnt in the
complete path.

5 Conclusions

Kernel memory latency increases significantly as we
move from traditional SMP to NUMA systems, result-
ing in less processor time available for user workloads.
The most expensive references, remote cache-to-cache
transfers, primarily come from references to a select few
structures in the process wakeup and I/O paths. Sev-
eral approaches may provide mechanisms to alleviate

2007 Linux Symposium, Volume One • 163

 samples remote module inst. address inst. function data address data

 3 66.67% vmlinux 0xA0000001001D1F26 ld8 __blockdev_direct_IO 0xE00000012C905C00 backing_dev_info.unplug_io_fn

 1 100.00% vmlinux 0xA00000010029A0A0 ld8 blk_backing_dev_unplug 0xE00000012C905C08 backing_dev_info.unplug_io_data

 1 0.00% scsi 0xA00000021E2A9B80 ld8 scsi_run_queue 0xE00000012C905C10 queuedata

 147 59.86% vmlinux 0xA0000001002942E6 ld4.acq generic_make_request 0xE00000012C905C28 queue_flags
 1 0.00% vmlinux 0xA000000100294750 ld4.acq __freed_request 0xE00000012C905C28 queue_flags
 3 33.33% vmlinux 0xA000000100294766 cmpxchg4.acq __freed_request 0xE00000012C905C28 queue_flags
 1 0.00% vmlinux 0xA000000100294780 ld4.acq __freed_request 0xE00000012C905C28 queue_flags
 6 16.67% vmlinux 0xA000000100294796 cmpxchg4.acq __freed_request 0xE00000012C905C28 queue_flags
 20 55.00% vmlinux 0xA000000100296B66 cmpxchg4.acq blk_remove_plug 0xE00000012C905C28 queue_flags
 1 100.00% scsi 0xA00000021E2AF2D6 cmpxchg4.acq scsi_request_fn 0xE00000012C905C28 queue_flags
 1 0.00% vmlinux 0xA000000100297456 ld4.acq blk_plug_device 0xE00000012C905C28 queue_flags
 4 25.00% vmlinux 0xA000000100297486 cmpxchg4.acq blk_plug_device 0xE00000012C905C28 queue_flags
 3 66.67% vmlinux 0xA000000100295930 ld4.acq get_request 0xE00000012C905C28 queue_flags
 6 50.00% vmlinux 0xA00000010028DE96 ld4.acq elv_insert 0xE00000012C905C28 queue_flags

 6 50.00% vmlinux 0xA00000010029C046 cmpxchg4.acq [spinlock] @ __make_request 0xE00000012C905C30 __queue_lock
 3 66.67% vmlinux 0xA000000100290156 cmpxchg4.acq [spinlock] @ blk_run_queue 0xE00000012C905C30 __queue_lock
 18 50.00% vmlinux 0xA00000010029AB56 cmpxchg4.acq [spinlock] @ generic_unplug_d.. 0xE00000012C905C30 __queue_lock
 5 40.00% scsi 0xA00000021E2ACF06 cmpxchg4.acq [spinlock] @ scsi_device_unbusy 0xE00000012C905C30 __queue_lock
 28 28.57% vmlinux 0xA000000100009106 ld4 ia64_spinlock_contention 0xE00000012C905C30 __queue_lock
 13 23.08% vmlinux 0xA00000010029B2B6 cmpxchg4.acq [spinlock] @ __make_request 0xE00000012C905C30 __queue_lock
 16 56.25% scsi 0xA00000021E2A9336 cmpxchg4.acq [spinlock] @ scsi_end_request 0xE00000012C905C30 __queue_lock
 5 20.00% scsi 0xA00000021E2AF806 cmpxchg4.acq [spinlock] @ scsi_request_fn 0xE00000012C905C30 __queue_lock
 3 33.33% scsi 0xA00000021E2AFA36 cmpxchg4.acq [spinlock] @ scsi_request_fn 0xE00000012C905C30 __queue_lock

 1 0.00% vmlinux 0xA00000010029C000 ld8 __make_request 0xE00000012C905C38 queue_lock*
 124 33.06% scsi 0xA00000021E2ACEE6 ld8 scsi_device_unbusy 0xE00000012C905C38 queue_lock*
 2 50.00% vmlinux 0xA000000100298EE0 ld8 blk_run_queue 0xE00000012C905C38 queue_lock*
 5 60.00% vmlinux 0xA000000100299006 ld8 blk_run_queue 0xE00000012C905C38 queue_lock*
 10 30.00% scsi 0xA00000021E2AB540 ld8 scsi_end_request 0xE00000012C905C38 queue_lock*
 1 0.00% scsi 0xA00000021E2AB5C6 ld8 scsi_end_request 0xE00000012C905C38 queue_lock*
 11 45.45% scsi 0xA00000021E2AF7C6 ld8 scsi_request_fn 0xE00000012C905C38 queue_lock*
 1 100.00% scsi 0xA00000021E2AF9B6 ld8 scsi_request_fn 0xE00000012C905C38 queue_lock*
 1 0.00% scsi 0xA00000021E2AF9F6 ld8 scsi_request_fn 0xE00000012C905C38 queue_lock*

Figure 11: Cache line with request_queue struct

 samples remote module inst. address inst. function data address data

 119 56.30% vmlinux 0xA000000100299F06 ld8 blk_queue_start_tag 0xE000000128E8BC08 tag_map

 128 54.69% vmlinux 0xA000000100299F00 ld4 blk_queue_start_tag 0xE000000128E8BC24 max_depth

 113 28.32% vmlinux 0xA000000100291C26 ld4 blk_queue_end_tag 0xE000000128E8BC28 real_max_depth

 122 53.28% vmlinux 0xA0000001002B30E0 ld8 find_next_zero_bit 0xE000000128E8BC40 tag_map
 96 12.50% vmlinux 0xA000000100291C66 ld4 blk_queue_end_tag 0xE000000128E8BC40 tag_map
 16 50.00% vmlinux 0xA000000100299F76 cmpxchg4.acq blk_queue_start_tag 0xE000000128E8BC40 tag_map

Figure 12: Cache line with blk_queue_tag struct

scalability issues in the future. Examples include hard-
ware and software utilizing message-signaled interrupts
(MSI-X) with per-cpu or per-node queues, and syslets.
In the near term, several complementary approaches can
be taken to improve scalability.

Improved code sequences reducing remote cache-to-
cache transfers, similar to the optimization targeting
idle_cpu() calls or reducing the number of rq cache
lines referenced in a remote wakeup are beneficial and
need to be pursued further. Proper alignment of struc-
tures also reduces cache-to-cache transfers, as illus-
trated in the blk_queue_tag structure. Opportuni-
ties exist in ordering structure fields to increase cache
line sharing and reduce contention. Examples include
separating read only data from contended read / write
fields, and careful placement or isolation of frequently
referenced spinlocks. In the case of scsi_host and

to a lesser extent kioctx, several atomic semaphores
placed on the same cache quickly increase contention
for a structure.

Data ordering also extends to good use of
__read_mostly attributes for global variables,
which also have a significant impact. In the 2.6.9 ker-
nel, false sharing occurred between inode_lock and
a hot read-only global on the same cache line, ranking
it number 1 in the top 50. In the 2.6.20 kernel, the hot
read-only global was given the __read_mostly at-
tribute, and the cache line with inode_lock dropped
out of the top 50 cache lines. The combination of the
two new cache lines contributed 45% less latency with
the globals separated.

Operations that require a lock to be held for a single
frequently-occurring operation, such a timer delete from

164 • Kernel Scalability—Expanding the Horizon Beyond Fine Grain Locks

 samples remote module inst. address inst. function data address data

 852 50.23% scsi 0xA00000021E29DA80 ld8 __scsi_get_command 0xE0000010260C8020 cmd_pool
 2 100.00% scsi 0xA00000021E29DF10 ld8 __scsi_put_command 0xE0000010260C8020 cmd_pool

 292 69.86% scsi 0xA00000021E29C536 cmpxchg4.acq [spinlock] @ scsi_put_command 0xE0000010260C8028 free_list_lock

 3 0.00% scsi 0xA00000021E29DE60 ld8 __scsi_put_command 0xE0000010260C8030 free_list.next

 5 60.00% scsi 0xA00000021E2AA0F6 ld8 scsi_run_queue 0xE0000010260C8040 starved_list.next

 292 40.75% qla 0xA00000021E4063E6 cmpxchg4.acq [spinlock] @ qla2x00_queuecom.. 0xE0000010260C8050 default_lock
 41 58.54% scsi 0xA00000021E29C416 cmpxchg4.acq [spinlock] @ scsi_dispatch_cmd 0xE0000010260C8050 default_lock
 98 50.00% vmlinux 0xA000000100009106 ld4 ia64_spinlock_contention 0xE0000010260C8050 default_lock
 14 50.00% vmlinux 0xA000000100009126 cmpxchg4.acq ia64_spinlock_contention 0xE0000010260C8050 default_lock
 95 49.47% scsi 0xA00000021E2AF456 cmpxchg4.acq [spinlock] @ scsi_request_fn 0xE0000010260C8050 default_lock
 97 67.01% scsi 0xA00000021E2A95B6 cmpxchg4.acq [spinlock] @ scsi_device_unbu.. 0xE0000010260C8050 default_lock
 42 78.57% scsi 0xA00000021E2A9736 cmpxchg4.acq [spinlock] @ scsi_run_queue 0xE0000010260C8050 default_lock

 27 37.04% qla 0xA00000021E4062B6 ld8 qla2x00_queuecommand 0xE0000010260C8058 host_lock*
 197 57.36% qla 0xA00000021E4063A6 ld8 qla2x00_queuecommand 0xE0000010260C8058 host_lock*
 41 48.78% scsi 0xA00000021E29E3A0 ld8 scsi_dispatch_cmd 0xE0000010260C8058 host_lock*
 3 66.67% scsi 0xA00000021E29E526 ld8 scsi_dispatch_cmd 0xE0000010260C8058 host_lock*
 355 65.63% scsi 0xA00000021E2ACDB0 ld8 scsi_device_unbusy 0xE0000010260C8058 host_lock*
 14 50.00% scsi 0xA00000021E2ACEA6 ld8 scsi_device_unbusy 0xE0000010260C8058 host_lock*
 123 55.28% scsi 0xA00000021E2AF436 ld8 scsi_request_fn 0xE0000010260C8058 host_lock*
 34 50.00% scsi 0xA00000021E2AF746 ld8 scsi_request_fn 0xE0000010260C8058 host_lock*
 38 76.32% scsi 0xA00000021E2A9E80 ld8 scsi_run_queue 0xE0000010260C8058 host_lock*

Figure 13: Cache line with scsi_host struct

 samples remote module inst. address inst. function data address data

 26 38.46% scsi 0xA00000021E29EB10 ld8 scsi_put_command 0xE00000012464C000 host (scsi_host*)
 4 25.00% scsi 0xA00000021E29ED10 ld8 scsi_get_command 0xE00000012464C000 host (scsi_host*)
 11 45.45% scsi 0xA00000021E2ACD90 ld8 scsi_device_unbusy 0xE00000012464C000 host (scsi_host*)
 22 59.09% scsi 0xA00000021E29CDE0 ld8 scsi_finish_command 0xE00000012464C000 host (scsi_host*)
 90 54.44% scsi 0xA00000021E2AF0F0 ld8 scsi_request_fn 0xE00000012464C000 host (scsi_host*)
 1 100.00% scsi 0xA00000021E2A9B96 ld8 scsi_run_queue 0xE00000012464C000 host (scsi_host*)
 2 100.00% scsi 0xA00000021E29DFB0 ld8 scsi_dispatch_cmd 0xE00000012464C000 host (scsi_host*)

 2 0.00% scsi 0xA00000021E2AAF10 ld8 scsi_next_command 0xE00000012464C008 request_queue (request_queue*)
 1 0.00% scsi 0xA00000021E2ACF26 ld8 scsi_device_unbusy 0xE00000012464C008 request_queue (request_queue*)
 1 100.00% scsi 0xA00000021E2AB826 ld8 scsi_io_completion 0xE00000012464C008 request_queue (request_queue*)

 6 33.33% scsi 0xA00000021E29C2F6 cmpxchg4.acq [spinlock] @ scsi_put_command 0xE00000012464C034 list_lock
 21 52.38% scsi 0xA00000021E29C3B6 cmpxchg4.acq [spinlock] @ scsi_get_command 0xE00000012464C034 list_lock

 2 0.00% scsi 0xA00000021E2AF686 ld8 scsi_request_fn 0xE00000012464C048 starved_entry.next

 92 35.87% qla 0xA00000021E420D60 ld4 qla2x00_process_completed_req... 0xE00000012464C060 queue_depth

 2 100.00% qla 0xA00000021E41EDF0 ld4 qla2x00_start_scsi 0xE00000012464C074 lun

Figure 14: First cache line of scsi_device struct

a tvec_base, can be batched so many operations can
be completed with a single lock reference. In addition,
iterating across all nodes for per-node operations may
provide an opportunity to prefetch locks and data ahead
for the next node to be processed, hiding the latency of
expensive memory references. This technique may be
utilized to improve freeing of slab objects.

Through a combination of improvements to the exist-
ing kernel sources, new feature development targeting
the reduction of remote cache-to-cache transfers, and
improvements in hardware and software capabilities to
identify and characterize cache line contention, we can
ensure improved scalability on future platforms.

6 Acknowledgements

Special thanks to Chinang Ma, Doug Nelson, Hubert
Nueckel, and Peter Wang for measurement and analy-
sis contributions to this paper. We would also like to
thank Collin Terrell for draft reviews.

References

[1] MSI-X ECN Against PCI Conventional 2.3.
http://www.pcisig.com/
specifications/conventional/.

[2] Intel Corporation. Intel vtune performance
analyzer for linux – dsep and sfdump5.
http://www.intel.com/cd/software/

2007 Linux Symposium, Volume One • 165

 samples remote module inst. address inst. function data address data

 1 100.00% sd 0xA00000021E247D80 ld4 sd_init_command 0xE00000012B304880 sector_size

 1 0.00% qla 0xA00000021E406100 ld8 qla2x00_queuecommand 0xE00000012B304888 hostdata (void*)

 67 50.75% sd 0xA00000021E2476E6 ld8 sd_init_command 0xE00000012B3048C8 changed
 7 71.43% scsi 0xA00000021E2A9B90 ld8 scsi_run_queue 0xE00000012B3048C8 changed

 13 46.15% scsi 0xA00000021E29E260 fetchadd4.rel scsi_dispatch_cmd 0xE00000012B3048D8 iorequest_cnt

 104 27.88% scsi 0xA00000021E29D2B0 fetchadd4.rel __scsi_done 0xE00000012B3048DC iodone_cnt

 129 48.06% sd 0xA00000021E247566 ld4 sd_init_command 0xE00000012B3048E4 timeout

Figure 15: Second cache line of scsi_device struct

products/asmo-na/eng/vtune/239144.
htm.

[3] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manuals. http:
//developer.intel.com/products/
processor/manuals/index.htm.

[4] Intel Corporation. Intel Itanium 2 Architecture
Software Developer’s Manuals.
http://developer.intel.com/design/
itanium2/documentation.htm.

[5] Hewlett-Packard Laboratories. q-tools project.
http://www.hpl.hp.com/research/
linux/q-tools/.

[6] Ingo Molnar. Syslets, generic asynchronous system
call support. http://redhat.com/~mingo/
syslet-patches/.

[7] Easwaran Raman, Robert Hundt, and Sandya
Mannarswamy. Structure Layout Optimization for
Multithreaded Programs. In Proceedings of the
2007 International Symposium on Code
Generation and Optimization, 2007.

7 Legal

Intel and Itanium are registered trademarks of Intel Corpora-
tion. Oracle and Oracle Database 10g Release 2 are regis-
tered trademarks of Oracle Corporation. Linux is a registered
trademark of Linus Torvalds.

All other trademarks mentioned herein are the property of
their respective owners.

166 • Kernel Scalability—Expanding the Horizon Beyond Fine Grain Locks

