
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Using KVM to run Xen guests without Xen

Ryan A. Harper
IBM

ryanh@us.ibm.com

Michael D. Day
IBM

ncmike@us.ibm.com

Anthony N. Liguori
IBM

aliguori@us.ibm.com

Abstract

The inclusion of the Kernel Virtual Machine (KVM)
driver in Linux 2.6.20 has dramatically improved
Linux’s ability to act as a hypervisor. Previously, Linux
was only capable of running UML guests and contain-
ers. KVM adds support for running unmodified x86
operating systems using hardware-based virtualization.
The current KVM user community is limited by the
availability of said hardware.

The Xen hypervisor, which can also run unmodified op-
erating systems with hardware virtualization, introduced
a paravirtual ABI for running modified operating sys-
tems such as Linux, Netware, FreeBSD, and OpenSo-
laris. This ABI not only provides a performance advan-
tage over running unmodified guests, it does not require
any hardware support, increasing the number of users
that can utilize the technology. The modifications to the
Linux kernel to support the Xen paravirtual ABI are in-
cluded in some Linux distributions, but have not been
merged into mainline Linux kernels.

This paper will describe the modifications to KVM
required to support the Xen paravirtual ABI and a
new module, kvm-xen, implementing the requisite
hypervisor-half of the ABI. Through these modifica-
tions, Linux can add to its list of supported guests all of
the paravirtual operating systems currently supported by
Xen. We will also evaluate the performance of a Xeno-
Linux guest running under the Linux hypervisor to com-
pare Linux’s ability to act as a hypervisor versus a more
traditional hypervisor such as Xen.

1 Background

The x86 platform today is evolving to better support vir-
tualization. Extensions present in both AMD and Intel’s
latest generation of processors include support for sim-
plifying CPU virtualization. Both AMD and Intel plan

on providing future extensions to improve MMU and
hardware virtualization.

Linux has also recently gained a set of x86 virtual-
ization enhancements. For the 2.6.20 kernel release,
the paravirt_ops interface and KVM driver were
added. paravirt_ops provides a common infras-
tructure for hooking portions of the Linux kernel that
would traditionally prevent virtualization. The KVM
driver adds the ability for Linux to run unmodified
guests, provided that the underlying processor supports
either AMD or Intel’s CPU virtualization extensions.

Currently, there are three consumers of the
paravirt_ops interface: Lguest [Lguest], a
“toy” hypervisor designed to provide an example
implementation; VMI [VMI], which provides support
for guests running under VMware; and XenoLinux
[Xen], which provides support for guests running under
the Xen hypervisor.

1.1 Linux as a Hypervisor

As of 2.6.20, Linux will have the ability to virtualize
itself using either hardware assistance on newer proces-
sors or paravirtualization on existing and older proces-
sors.

It is now interesting to compare Linux to existing hy-
pervisors such as VMware [VMware] and Xen [Xen].
Some important questions include:

• What level of security and isolation does Linux
provide among virtual guests?

• What are the practical advantages and disadvan-
tages of using Linux as a hypervisor?

• What are the performance implications versus a
more traditional hypervisor design such as that of
Xen?

• 179 •

180 • Using KVM to run Xen guests without Xen

To begin answering these questions and others, we use
Linux’s virtualization capabilities to run a XenoLinux
kernel as a guest within Linux.

The Xen hypervisor is now in several Linux distribu-
tions and forms the basis of two commercial hypervi-
sors. Therefore, the paravirtual kernel interface that
Xen supports is a good proof point of completeness and
performance. If Linux can support guests well using
a proven interface such as Xen’s, then Linux can be a
practical hypervisor.

2 Virtualization and the x86 Platform

Starting in late 2005, the historical shortcomings of the
x86 platform with regard to virtualization were reme-
died by Intel and AMD. It will take another several years
before most x86 platforms in the field have hardware
virtualization support. There are two classes of prob-
lems when virtualizating older x86 platforms:

1. Functional issues, including the existence of priv-
ileged instructions that are available to non-
privileged code. [Robin]

2. Performance issues that arise when multiple ker-
nels are running on the platform.

Most of the work done by VMware and Xen, as well as
the code in Linux, paravirt_ops and Lguest, is
focused on overcoming these x86 shortcomings.

Performance issues caused by virtualization, including
TLB flushing, cache thrashing, and the need for ad-
ditional layers of memory management, are being ad-
dressed in current and future versions of Intel and AMD
processors.

2.1 Ring Compression and Trap-and-Emulate

Traditionally, a monitor and a guest mode have been re-
quired in the CPU to virtualize a platform. [Popek] This
allows a hypervisor to know whenever one of its guests
is executing an instruction that needs hypervisor inter-
vention, since executing a privileged instruction in guest
mode will cause a trap into monitor mode.

A second requirement for virtualization is that all in-
structions that potentially modify the guest isolation

mechanisms on the platform must trap when executed
in guest mode.

Both of these requirements are violated by Intel and
AMD processors released prior to 2005. Neverthe-
less VMware, and later Xen, both successfully virtual-
ized these older platforms by devising new methods and
working with x86 privilege levels in an unanticipated
way.

The x86 processor architecture has four privilege lev-
els for segment descriptors and two for page descrip-
tors. Privileged instructions are able to modify control
registers or otherwise alter the protection and isolation
characteristics of segments and pages on the platform.
Privileged instructions must run at the highest protec-
tion level (ring 0). All x86 processors prior to the intro-
duction of hardware virtualization fail to generate a trap
on a number of instructions when issued outside of ring
0. These “non-virtualizable” instructions prevent the
traditional trap-and-emulate virtualization method from
functioning.

Ring compression is the technique of loading a guest
kernel in a less-privileged protection zone, usually ring
3 (the least privileged) for user space and ring 1 for the
guest kernel (or ring 3 for the x86_64 guest kernel).
In this manner, every time the guest kernel executes a
trappable privileged instruction the processor enters into
the hypervisor (fulfilling the first requirement above, the
ability to monitor the guest), giving the hypervisor full
control to disallow or emulate the trapped instruction.

Ring compression almost works to simulate a monitor
mode on x86 hardware. It is not a complete solution
because some x86 instructions that should cause a trap
in certain situations do not.

2.2 Paravirtualization and Binary Translation

On x86 CPUs prior to 2005 there are some cases
where non-privileged instructions can alter isolation
mechanisms. These include pushing or popping flags
or segment registers and returning from interrupts—
instructions that are safe when only one OS is running
on the host, but not safe when multiple guests are run-
ning on the host. These instructions are unsafe because
they do not necessarily cause a trap when executed by
non-privileged code. Traditionally, hypervisors have re-
quired this ability to use traps as a monitoring mecha-
nism.

2007 Linux Symposium, Volume One • 181

VMware handles the problem of non-trapping privi-
leged instructions by scanning the binary image of the
kernel, looking for specific instructions [Adams] and re-
placing them with instructions that either trap or call into
the hypervisor. The process VMware uses to replace bi-
nary instructions is similar to that used by the Java just-
in-time bytecode compiler.

Xen handles this problem by modifying the OS kernel at
compile time, so that the kernel never executes any non-
virtualizable instructions in a manner that can violate
the isolation and security of the other guests. A Xen
kernel replaces sensitive instructions with register-based
function calls into the Xen hypervisor. This technique is
also known as paravirtualization.

2.3 x86 Hardware Virtualization Support

Beginning in late 2005 when Intel started shipping Intel-
VT extensions, x86 processors gained the ability to have
both a host mode and a guest mode. These two modes
co-exist with the four levels of segment privileges and
two levels of page privileges. AMD also provides pro-
cessors with similar features with their AMD-V exten-
sions. Intel-VT and AMD-V are similar in their major
features and programming structure.

With Intel-VT and AMD-V, hardware ring compression
and binary translation are obviated by the new hard-
ware instructions. The first generation of Intel and AMD
virtualization support remedied many of the functional
shortcomings of x86 hardware, but not the most impor-
tant performance shortcomings.

Second-generation virtualization support from each
company addresses key performance issues by reduc-
ing unnecessary TLB flushes and cache misses and by
providing multi-level memory management support di-
rectly in hardware.

KVM provides a user-space interface for using AMD-
V and Intel-VT processor instructions. Interestingly,
KVM does this as a loadable kernel module which turns
Linux into a virtual machine monitor.

3 Linux x86 Virtualization Techniques in
More Detail

To allow Linux to run paravirtual Xen guests, we use
techniques that are present in Xen, KVM, and Lguest.

3.1 Avoiding TLB Flushes

x86 processors have a translation-look-aside buffer
(TLB) that caches recently accessed virtual address to
physical address mappings. If a virtual address is ac-
cessed that is not present in the TLB, several hundred
cycles are required to determine the physical address of
the memory.

Keeping the TLB hit rate as high as possible is neces-
sary to achieve high performance. The TLB, like the
instruction cache, takes advantage of locality of refer-
ence, or the tendency of kernel code to refer to the same
memory addresses repeatedly.

Locality of reference is much reduced when a host is
running more than one guest operating system. The
practical effect of this is that the TLB hit rate is reduced
significantly when x86 platforms are virtualized.

This problem cannot be solved by simply increasing the
size of the TLB. Certain instructions force the TLB to
be flushed, including hanging the address of the page
table. A hypervisor would prefer to change the page
table address every time it switches from guest to host
mode, because doing so simplifies the transition code.

3.2 Using a Memory Hole to Avoid TLB Flushes

Devising a safe method for the hypervisor and guest to
share the same page tables is the best way to prevent an
automatic TLB flush every time the execution context
changes from guest to host. Xen creates a memory hole
immediately above the Linux kernel and resides in that
hole. To prevent the Linux kernel from having access to
the memory where the hypervisor is resident, Xen uses
segment limits on x86_32 hardware. The hypervisor is
resident in mapped memory, but the Linux kernel cannot
gain access to hypervisor memory because it is beyond
the limit of the segment selectors used by the kernel. A
general representation of this layout is shown in Figure
1.

This method allows both Xen and paravirtual Xen guests
to share the same page directory, and hence does not
force a mandatory TLB flush every time the execu-
tion context changes from guest to host. The memory
hole mechanism is formalized in the paravirt_ops
reserve_top_address function.

182 • Using KVM to run Xen guests without Xen

#
#

#��,
,

,

#
#

#��,
,

, #
#

#��,
,

,

#
#

#��,
,

,

0x00000000

0xC0000000 PAGE OFFSET

FIXADDR START

FIXADDR END

etext

Linux

Guest Kernel

Hypervisor

Figure 1: Using segment limits on i386 hardware allows
the hypervisor to use the same page directory as each
guest kernel. The guest kernel has a different segment
selector with a smaller limit.

3.2.1 x86_64 hardware and TLB Flushes

The x86_64 processors initially removed segment limit
checks, so avoiding TLB flushes in 64-bit works differ-
ently from 32-bit hardware. Transitions from kernel to
hypervisor occur via the syscall instruction, which is
available in 64-bit mode. syscall forces a change to
segment selectors, dropping the privilege level from 1 to
0.

There is no memory hole per se in 64-bit mode, because
segment limits are not universally enforced. An unfortu-
nate consequence is that a guest’s userspace must have
a different page table from the guest’s kernel. There-
fore, the TLB is flushed on a context switch from user
to kernel mode, but not from guest (kernel) to host (hy-
pervisor) mode.

3.3 Hypercalls

A paravirtual Xen guest uses hypercalls to avoid caus-
ing traps, because a hypercall can perform much better
than a trap. For example, instead of writing to a pte that
is flagged as read-only, the paravirtualized kernel will
pass the desired value of the pte to Xen via a hypercall.
Xen will validate the new value of the pte, write to the
pte, and return to the guest. (Other things happen be-
fore execution resumes at the guest, much like returning
from an interrupt in Linux).

Xen hypercalls are similiar to software interrupts. They
pass parameters in registers. 32-bit unprivileged guests
in Xen, hypercalls are executed using an int in-
struction. In 64-bit guests, they are executed using a
syscall instruction.

3.3.1 Handling Hypercalls

Executing a hypercall transfers control to the hypervisor
running at ring 0 and using the hypervisor’s stack. Xen
has information about the running guest stored in several
data structures. Most hypercalls are a matter of validat-
ing the requested operation and making the requested
changes. Unlike instruction traps, not a lot of intro-
spection must occur. By working carefully with page ta-
bles and processor caches, hypercalls can be much faster
than traps.

3.4 The Lguest Monitor

Lguest implements a virtual machine monitor for
Linux that runs on x86 processors that do not have hard-
ware support for virtualization. A userspace utility pre-
pares a guest image that includes an Lguest kernel and
a small chunk of code above the kernel to perform con-
text switching from the host kernel to the guest kernel.

Lguest uses the paravirt_ops interface to install
trap handlers for the guest kernel that reflect back into
Lguest switching code. To handle traps, Lguest
switches to the host Linux kernel, which contains a
paravirt_ops implementation to handle guest hy-
percalls.

2007 Linux Symposium, Volume One • 183

3.5 KVM

The AMD-V and Intel-VT instructions available in
newer processors provide a mechanism to force the pro-
cessor to trap on certain sensitive instructions even if the
processor is running in privileged mode. The processor
uses a special data area, known as the VMCB or VMCS
on AMD and Intel respectively, to determine which in-
structions to trap and how the trap should be delivered.
When a VMCB or VMCS is being used, the processor
is considered to be in guest mode. KVM programs the
VMCB or VMCS to deliver sensitive instruction traps
back into host mode. KVM uses information provided
in the VMCB and VMCS to determine why the guest
trapped and emulates the instruction appropriately.

Since this technique does not require any modifications
to the guest operating system, it can be used to run any
x86 operating that runs on a normal processor.

4 Our Work

Running a Xen guest on Linux without the Xen hyper-
visor present requires some basic capabilities. First, we
need to be able to load a Xen guest into memory. Sec-
ond, we have to initialize a Xen compatible start-of-day
environment. Lastly, Linux needs to be able to switch
between running the guest as well as to support han-
dling the guest’s page tables. For the purposes of this pa-
per we are not addressing virtual IO, nor SMP; however,
we do implement a simple console device. We discuss
these features in Section 6. We expand on our choice
of using QEMU as our mechanism to load and initialize
the guest for running XenoLinux in Section 4.2. Using
the Lguest switching mechanism and tracking the guest
state is explained in Section 4.3. Section 4.4 describes
using Linux’s KVM infrastructure for Virtual Machine
creation and shadowing a VM’s page tables. The vir-
tual console mechanism is explained in Section 4.5. Fi-
nally, we describe the limitations of our implementation
in Section 4.6.

4.1 QEMU and Machine Types

QEMU is an open source machine emulator which uses
translation or virtulization to run operating systems or
programs for various machine architectures. In addition
to emulating CPU architectures, QEMU also emulates
platform devices. QEMU combines a CPU and a set of

#
#

#��,
,

,

#
#

#��,
,

, #
#

#��,
,

,

#
#

#��,
,

,

kvm-xen

kvm

Hypervisor

QEMU

Linux

Host Kernel

XenoLinux
Guest Image

0xC0000000 PAGE OFFSET

etext

(TOP ADDR) - 4MB

0x00000000

Figure 2: Linux host memory layout with KVM, kvm-
xen, and a XenoLinux guest

devices together in a QEMU machine type. One exam-
ple is the “pc” machine which emulates the 32-bit x86
architecture and emulates a floppy controller, RTC, PIT,
IOAPIC, PCI bus, VGA, serial, parallel, network, USB,
and IDE disk devices.

A paravirtualized Xen guest can be treated as a new
QEMU machine type. Specifically, it is a 32-bit CPU
which only executes code in ring 1 and contains no de-
vices. In addition to being able to define which devices
are to be emulated on a QEMU machine type, we can
also control the initial machine state. This control is
quite useful as Xen’s start-of-day assumptions are not
the same as a traditional 32-bit x86 platform. In the end,
the QEMU Xen machine type can be characterized as an
eccentric x86 platform that does not run code in ring 0,

184 • Using KVM to run Xen guests without Xen

nor has it any hardware besides the CPU.

Paravirtualized kernels, such as XenoLinux, are built
specifically to be virtualized, allowing QEMU to use an
accelerator, such as KVM. KVM currently relies on the
presence of hardware virtualization to provide protec-
tion while virtualizing guest operating systems. Paravir-
tual kernels do not need hardware support to be virtual-
ized, but they do require assistance in transitioning con-
trol between the host and the guest. Lguest provides a
simple mechanism for the transitions we explain below.

4.2 Lguest Monitor and Hypercalls

Lguest is a simple x86 paravirtual hypervisor designed
to exercise the paravirt_ops interface in Linux
2.6.20. No hypercalls are implemented within Lguest’s
hypervisor, but instead it will transfer control to the host
to handle the requested work. This delegation of work
ensures a very small and simple hypervisor. Paravirtual
Xen guests rely on hypercalls to request that some work
be done on its behalf.

For our initial implementation, we chose not to imple-
ment the Xen hypercalls in our hypervisor directly, but
instead reflect the hypercalls to the QEMU Xen ma-
chine. Handling a Xen hypercall is fairly straightfor-
ward. When the guest issues a hypercall, we examine
the register state to determine which hypercall was is-
sued. If the hypercall is handled in-kernel (as some
should be for performance reasons) then we simply call
the handler and return to the guest when done. If the hy-
percall handler is not implemented in-kernel, we transi-
tion control to the QEMU Xen machine. This transition
is done by setting up specific PIO operations in the guest
state and exiting kvm_run. The QEMU Xen machine
will handle the hypercalls and resume running the guest.

4.3 KVM Back-end

The KVM infrastructure does more than provide an in-
terface for using new hardware virtualization features.
The KVM interface gives Linux a generic mechanism
for constructing a VM using kernel resources. We
needed to create a new KVM back-end which provides
access to the infrastructure without requiring hardware
support.

Our back-end for KVM is kvm-xen. As with other
KVM back-ends such as kvm-intel and kvm-amd, kvm-
xen is required to provide an implementation of the

struct kvm_arch_ops. Many of the arch ops are
designed to abstract the hardware virtualization imple-
mentation. This allows kvm-xen to provide its own
method for getting, setting, and storing guest register
state, as well as hooking on guest state changes to en-
force protection with software in situations where kvm-
intel or kvm-amd would rely on hardware virtualization.

We chose to re-use Lguest’s structures for tracking guest
state. This choice was obvious after deciding to re-use
Lguest’s hypervisor for handling the transition from host
to guest. Lguest’s hypervisor represents the bare mini-
mum needed in a virtual machine monitor. For our ini-
tial work we saw no compelling reason to write our own
version of the switching code.

During our hardware setup we map the hypervisor into
the host virtual address space. We suffer the same re-
strictions on the availability of a specific virtual address
range due to Lguest’s assumption that on most machines
the top 4 megabytes are unused. During VCPU cre-
ation, we allocate a struct lguest, reserve space
for guest state, and allocate a trap page.

After the VCPU is created, KVM initializes its shadow
MMU code. Using the vcpu_setup hook which fires
after the MMU is initialized, we set up the initial guest
state. This setup involves building the guest GDT, IDT,
TSS, and the segment registers.

When set_cr3 is invoked the KVM MMU resets the
shadow page table and calls into back-end specific code.
In kvm-xen, we use this hook to ensure that the hyper-
visor pages are always mapped into the shadow page
tables and to ensure that the guest cannot modify those
pages.

We use a modified version of Lguest’s run_guest
routine when supporting the kvm_run call. Lguest’s
run_guest will execute the guest code until it traps
back to the host. Upon returning to the host, it de-
code the trap information and decides how to proceed.
kvm-xen follows the same model, but replaces Lguest-
specific responses such as replacing Lguest hypercalls
with Xen hypercalls.

4.4 Virtual Console

The virtual console as expected by a XenoLinux guest
is a simple ring queue. Xen guests expect a reference
to a page of memory shared between the guest and the

2007 Linux Symposium, Volume One • 185

host and a Xen event channel number. The QEMU Xen
machine type allocates a page of the guest’s memory,
selects an event channel, and initializes the XenoLinux
start-of-day with these values.

During the guest booting process it will start writing
console output to the shared page and will issue a hyper-
call to notify the host of a pending event. After control is
transferred from the guest, the QEMU Xen machine ex-
amines which event was triggered. For console events,
the QEMU Xen machine reads data from the ring queue
on the shared page, increments the read index pointer,
and notifies the guest that it received the message via
the event channel bitmap, which generates an interrupt
in the guest upon returning from the host. The data read
from and written to the shared console page is connected
to a QEMU character device. QEMU exposes the char-
acter devices to users in many different ways including
telnet, Unix socket, PTY, and TCP socket. In a similar
manner, any writes to QEMU character devices will put
data into the shared console page, increment the write
index pointer, and notify the guest of the event.

4.5 Current Restrictions

The current implementation for running Xen guests on
top of Linux via KVM supports 32-bit UP guests. We
have not attempted to implement any of the infrastruc-
ture required for virtual IO beyond simple console sup-
port. Additionally, while using Lguest’s hypervisor sim-
plified our initial work, we do inherit the requirement
that the top 4 megabytes of virtual address space be
available on the host. We discuss virtual IO and SMP
issues as future work in Section 6.

5 Xen vs. Linux as a hypervisor

One of the driving forces behind our work was to com-
pare a more traditional microkernel-based hypervisor
with a hypervisor based on a monolithic kernel. kvm-
xen allows a XenoLinux guest to run with Linux as the
hypervisor allowing us to compare this environment to
a XenoLinux guest running under the Xen hypervisor.
For our evaluation, we chose three areas to focus on:
security, manageability, and performance.

5.1 Security

A popular metric to use when evaluating how secure a
system can be is the size of the Trusted Computing Base

(or TCB). On a system secured with static or dynamic
attestation, it is no longer possible to load arbitrary priv-
ileged code [Farris]. This means the system’s security
is entirely based on the privileged code that is being
trusted.

Many claim that a microkernel-based hypervisor, such
as Xen, significantly reduces the TCB since the hyper-
visor itself is typically much smaller than a traditional
operating system [Qiang]. The Xen hypervisor would
appear to confirm this claim when we consider its size
relative to an Operating System such as Linux.

Pro ject SLOCs
KVM 8,950

Xen 165,689
Linux 5,500,933

Figure 3: Naive TCB comparison of KVM, Xen, and
Linux

From Figure 3, we can see that Xen is thirty-three times
smaller than Linux. However, this naive comparison
is based on the assumption that a guest running under
Xen does not run at the same privilege level as Xen it-
self. When examining the TCB of a Xen system, we
also have to consider any domain that is privileged. In
every Xen deployment, there is at least one privileged
domain, typically Domain-0, that has access to physi-
cal hardware. Any domain that has access to physical
hardware has, in reality, full access to the entire system.
The vast majority of x86 platforms do not possess an
IOMMU which means that every device capable of per-
forming DMA can access any region of physical mem-
ory. While privileged domains do run in a lesser ring,
since they can program hardware to write arbitrary data
to arbitrary memory, they can very easily escalate their
privileges.

When considering the TCB of Xen, we must also con-
sider the privileged code running in any privileged do-
main.

Pro ject SLOCs
KVM 5,500,933

Xen 5,666,622

Figure 4: TCB size of KVM and Xen factoring in the
size of Linux

We clearly see from Figure 4 that since the TCB of both

186 • Using KVM to run Xen guests without Xen

kvm-xen and Xen include Linux, the TCB comparison
really reduces down to the size of the kvm-xen module
versus the size of the Xen hypervisor. In this case, we
can see that the size of the Xen TCB is over an order
magnitude larger than kvm-xen.

5.2 Driver Domains

While most x86 platforms do not contain IOMMUs,
both Intel and AMD are working on integrating
IOMMU functionality into their next generation plat-
forms [VT-d]. If we assume that eventually, IOMMUs
will be common for the x86, one could argue that Xen
has an advantage since it could more easily support
driver domains.

5.3 Guest security model

The Xen hypervisor provides no security model for re-
stricting guest operations. Instead, any management
functionality is simply restricted to root from the privi-
leged domain. This simplistic model requires all man-
agement software to run as root and provides no way to
restrict a user’s access to a particular set of guests.

kvm-xen, on the other hand, inherits the Linux user se-
curity model. Every kvm-xen guest appears as a process
which means that it also is tied to a UID and GID. A
major advantage of kvm-xen is that the supporting soft-
ware that is needed for each guest can be run with non-
root privileges. Consider the recent vulnerability in Xen
related to the integrated VNC server [CVE]. This vul-
nerability actually occurred in QEMU which is shared
between KVM and Xen. It was only a security issue in
Xen, though, as the VNC server runs as root. In KVM,
the integrated VNC server runs as a lesser user, giving
the VM access only to files on the host that are accessi-
ble by its user.

Perhaps the most important characteristic of the process
security model for virtualization is that it is well under-
stood. A Linux administrator will not have to learn all
that much to understand how to secure a system using
kvm-xen. This reduced learning curve will inherently
result in a more secure deployment.

5.4 Tangibility

Virtualization has the potential to greatly complicate
machine management, since it adds an additional layer

of abstraction. While some researchers are proposing
new models to simplify virtualization [Sotomayor], we
believe that applying existing management models to
virtualization is an effective way to address the problem.

The general deployment model of Xen is rather com-
plicated. It first requires deploying the Xen hypervi-
sor which must boot in place of the operating system.
A special kernel is then required to boot the privileged
guest–Domain-0. There is no guarantee that device
drivers will work under this new kernel, although the
vast majority do. A number of key features of modern
Linux kernels are also not available such as frequency
scaling and software suspend. Additionally, regardless
of whether any guests are running, Xen will reserve a
certain amount of memory for the hypervisor—typically
around 64MB.

kvm-xen, on the other hand, is considerably less intru-
sive. No changes are required to a Linux install when
kvm-xen is not in use. A special host kernel is not
needed and no memory is reserved. To deploy kvm-xen,
one simply needs to load the appropriate kernel module.

Besides the obvious ease-of-use advantage of kvm-xen,
the fact that it requires no resources when not being
used means that it can be present on any Linux installa-
tion. There is no trade-off, other than some disk space,
to having kvm-xen installed. This lower barrier to en-
try means that third parties can more easily depend on
a Linux-based virtualization solution such as kvm-xen
than a microkernel-based solution like Xen.

Another benefit of kvm-xen is that is leverages the full
infrastructure of QEMU. QEMU provides an integrated
VNC server, a rich set of virtual disk formats, userspace
virtual network, and many other features. It is consider-
ably easier to implement these features in QEMU since
it is a single process. Every added piece of infrastruc-
ture in Xen requires creating a complex communication
protocol and dealing with all sorts of race conditions.

Under kvm-xen, every XenoLinux guest is a process.
This means that the standard tools for working with pro-
cesses can be applied to kvm-xen guests. This greatly
simplifies management as eliminates the need to create
and learn a whole new set of tools.

5.5 Performance

At this early stage in our work, we cannot definitively
answer the question of whether a XenoLinux guest un-

2007 Linux Symposium, Volume One • 187

Pro ject Cycles
xen-pv 154

kvm-xen 1151
kvm-svm 2696

Figure 5: Hypercall latency

der kvm-xen will perform as well or better than running
under the Xen hypervisor. We can, however, use our
work to attempt to determine whether the virtualization
model that kvm-xen uses is fundamentally less perfor-
mant than the model employed by Xen. Further, we can
begin to determine how significant that theoretical per-
formance difference would be.

The only fundamental difference between kvm-xen and
the Xen hypervisor is the cost of a hypercall. With
the appropriate amount of optimization, just about ev-
ery other characteristic can be made equivalent between
the two architectures. Hypercall performance is rather
important in a virtualized environment as most of the
privileged operations are replaced with hypercalls.

As we previously discussed, since the Xen Hypervisor is
microkernel-based, the virtual address space it requires
can be reduced to a small enough amount that it can fit
within the same address space as the guest. This means
that a hypercall consists of only a privilege transition.
Due to the nature of x86 virtualization, this privilege
transition is much more expensive than a typical syscall,
but is still relatively cheap.

Since kvm-xen uses Linux as its hypervisor, it has to use
a small monitor to trampoline hypercalls from a guest
to the host. This is due to the fact that Linux cannot
be made to fit into the small virtual address space hole
that the guest provides. Trampolining the hypercalls in-
volves changing the virtual address space and, subse-
quently, requires a TLB flush. While there has been a
great deal of work done on the performance impact of
this sort of transition [Wiggins], for the purposes of this
paper we will attempt to consider the worst-case sce-
nario.

In the above table, we see that kvm-xen hypercalls are
considerably worse than Xen hypercalls. We also note
though that kvm-xen hypercalls are actually better than
hypercalls when using SVM. Current SVM-capable pro-
cessors require an address space change on every world
switch so these results are not surprising.

Based on these results, we can assume that kvm-xen
should be able to at least perform as well as an SVM
guest can today. We also know from many sources
[XenSource] that SVM guests can perform rather well
on many workloads, suggesting that kvm-xen should
also perform well on these workloads.

6 Future Work

To take kvm-xen beyond our initial work, we must ad-
dress how to handle Xen’s virtual IO subsystem, SMP
capable guests, and hypervisor performance.

6.1 Xen Virtual IO

A fully functional Xen virtual IO subsystem is com-
prised of several components. The XenoLinux kernel
includes a virtual disk and network driver built on top
of a virtual bus (Xenbus), an inter-domain page-sharing
mechanism (grant tables), and a data persistence layer
(Xenstore). For kvm-xen to utilize the existing support
in a XenoLinux kernel, we need to implement support
for each of these elements.

The Xenbus element is mostly contained within the
XenoLinux guest, not requiring significant work to be
utilized by kvm-xen. Xenbus is driven by interaction
with Xenstore. As changes occur within the data tracked
by Xenstore, Xenbus triggers events within the Xeno-
Linux kernel. At a minimum, kvm-xen needs to im-
plement the device enumeration protocol in Xenstore so
that XenoLinux guests have access to virtual disk and
network.

Xen’s grant-tables infrastructure is used for controlling
how one guest shares pages with other domains. As with
Xen’s Domain 0, the QEMU Xen machine is also capa-
ble of accessing all of the guest’s memory, removing the
need to reproduce grant-table-like functionality.

Xenstore is a general-purpose, hierarchical data persis-
tence layer. Its implementation relies on Linux notifier
chains to trigger events with a XenoLinux kernel. kvm-
xen would rely on implementing a subset of Xenstore
functionality in the QEMU Xen machine.

6.2 SMP Guests

Providing support for XenoLinux SMP guests will be
very difficult. As of this writing, KVM itself does not

188 • Using KVM to run Xen guests without Xen

support SMP guests. In addition to requiring KVM
to become SMP capable, XenoLinux kernels rely on
the Xen hypervisor to keep all physical CPU Time
Stamp Counter (TSC) registers in relative synchroniza-
tion. Linux currently does not utilize TSCs in such a
fashion using other more reliable time sources such as
ACPI PM timers.

6.3 Hypervisor Performance

Xen guests that utilize shadow page tables benefit signif-
icantly from the fact that the shadow paging mechanism
is within the hypervisor itself. kvm-xen uses KVM’s
MMU, which resides in the host kernel, and XenoLinux
guests running on kvm-xen would benefit greatly from
moving the MMU into the hypervisor. Additionally, sig-
nificant performance improvements would be expected
from moving MMU and context-switch-related hyper-
calls out of the QEMU Xen machine and into the hyper-
visor.

7 Conclusion

With kvm-xen we have demonstrated that is possible
to run a XenoLinux guest with Linux as its hyper-
visor. While the overall performance picture of run-
ning XenoLinux guests is not complete, our initial re-
sults indicate that kvm-xen can achieve adequate per-
formance without using a dedicated microkernel-based
hypervisor like Xen. There are still some significant
challenges for kvm-xen—namely SMP guest support—
though as KVM and the paravirt_ops interface in
Linux evolve, implementing SMP support will become
easier.

8 References

[Lguest] Russell, Rusty. lguest (formerly lhype).
Ozlabs. 2007. 10 Apr. 2007
http://lguest.ozlabs.org.

[VMI] Amsden, Z. Paravirtualization API Version 2.5.
VMware. 2006.

[Xen] Barham P., et al. Xen and the art of
virtualization. In Proc. SOSP 2003. Bolton Landing,
New York, U.S.A. Oct 19–22, 2003.

[VMware] http://www.vmware.com

[Robin] Robin, J. and Irvine, C. Analysis of Intel
Pentium’s Ability to Support a Secure Virtual Machine
Monitor. Proceedings of the 9th USENIX Security
Symposium, Denver, CO, August 2000.

[Popek] Popek, G. and Goldberg, R. Formal
Requirements for Virtualizable Third Generation
Architectures. Communications of the ACM, July
1974.

[Adams] Adams, K. and Agesen, O. A Comparison of
Software and Hardware Techniques for x86
Virtualization. ASPLOS, 2006

[Farris] Farris, J. Remote Attestation. University of
Illinois at Urbana-Champaign. 6 Dec. 2005.

[Qiang] Qiang, H. Security architecture of trusted
virtual machine monitor for trusted computing. Wuhan
University Journal of Natural Science. Wuhan
University Journals Press. 15 May 2006.

[VT-d] Abramson, D.; Jackson, J.; Muthrasanallur, S.;
Neiger, G.; Regnier, G.; Sankaran, R.; Schoinas, I.;
Uhlig, R.; Vembu, B.; Wiegert, J. Intel R© Virtualization
Technology for Directed I/O. Intel Technology Journal.
http://www.intel.com/technology/itj/
2006/v10i3/ (August 2006).

[CVE] Xen QEMU Vnc Server Arbitrary Information
Disclosure Vunerability. CVE-2007-0998. 14 Mar.
2007
http://www.securityfocus.com/bid/22967

[Sotomayor] Sotomayor, B. (2007). A Resource
Management Model for VM-Based Virtual Workspaces.
Unpublished masters thesis, University of Chicago,
Chicago, Illinois, United States.

[Wiggins] Wiggins, A., et al. Implementation of Fast
Address-Space Switching and TLB Sharing on the
StrongARM Processor. University of New South Wales.

[XenSource] A Performance Comparision of
Commercial Hypervisors. XenSource. 2007. http:
//blogs.xensource.com/rogerk/wp-content/

uploads/2007/03/hypervisor_performance_

comparison_1_0_5_with_esx-data.pdf

