
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Djprobe—Kernel probing with the smallest overhead

Masami Hiramatsu
Hitachi, Ltd., Systems Development Lab.
masami.hiramatsu.pt@hitachi.com

Satoshi Oshima
Hitachi, Ltd., Systems Development Lab.
satoshi.oshima.fk@hitachi.com

Abstract

Direct Jump Probe (djprobe) is an enhancement to
kprobe, the existing facility that uses breakpoints to cre-
ate probes anywhere in the kernel. Djprobe inserts jump
instructions instead of breakpoints, thus reducing the
overhead of probing. Even though the kprobe “booster”
speeds up probing, there still is too much overhead due
to probing to allow for the tracing of tens of thousands
of events per second without affecting performance.

This presentation will show how the djprobe is designed
to insert a jump, discuss the safety of insertion, and de-
scribe how the cross self-modification (and so on) is
checked. This presentation also provides details on how
to use djprobe to speed up probing and shows the per-
formance improvement of djprobe compared to kprobe
and kprobe-booster.

1 Introduction

1.1 Background

For the use of non-stop servers, we have to support
a probing feature, because it is sometimes the only
method to analyze problematic situations.

Since version 2.6.9, Linux has kprobes as a very unique
probing mechanism [7]. In kprobe ((a) in Figure 1),
an original instruction at probe point is copied to an
out-of-line buffer and a break-point instruction is put at
the probe point. The break-point instruction triggers a
break-point exception and invokes pre_handler()
of the kprobe from the break-point exception handler.
After that, it executes the out-of-line buffer in single-
step mode. Then, it triggers a single-step exception and
invokes post_handler(). Finally, it returns to the
instruction following the probe point.

This probing mechanism is useful. For example, system
administrators may like to know why their system’s per-
formance is not very good under heavy load. Moreover,

system-support venders may like to know why their sys-
tem crashed by salvaging traced data from the dumped
memory image. In both cases, if the overhead due to
probing is high, it will affect the result of the mea-
surment and reduce the performance of applications.
Therefore, it is preferable that the overhead of probing
becomes as small as possible.

From our previous measurement [10] two years ago, the
processing time of kprobe was about 1.0 usec whereas
Linux Kernel State Tracer (LKST) [2] was less than 0.1
usec. From our previous study of LKST [9], about 3%
of overhead for tracing events was recorded. Therefore,
we decided our target for probing overhead should be
less than 0.1 usec.

1.2 Previous Works

Figure 1 illustrates how the probing behaviors are dif-
ferent among kprobe, kprobe-booster and djprobe when
a process hits a probe point.

As above stated, our goal of the processing time is less
than 0.1 usec. Thus we searched for improvements to
reduce the probing overhead so as it was as small as
possible. We focused on the probing process of kprobe,
which causes exceptions twice when each probe hit. We
predicted that most of the overhead came from the ex-
ceptions, and we could reduce it by using jumps instead
of the exceptions.

We developed the kprobe-booster as shown in Fig-
ure 1(b). In this improvement, we attempted to replace
the single-step exception with a jump instruction, be-
cause it was easier than replacing a break-point. Thus,
the first-half of processing of kprobe-booster is same as
the kprobe, but it does not use a single-step exception
in the latter-half. This improvement has already been
merged into upstream kernel since 2.6.17.

Last year, Ananth’s paper [7] unveiled efforts for im-
proving kprobes, so the probing overheads of kprobe

• 189 •



190 • Djprobe—Kernel probing with the smallest overhead

(a)Kprobe

(c)Djprobe

break
point

Breakpoint
 Handler

Trap
 Handler

Original
Instruction

Original
Instructions

jump
instruction

jump
instruction

pre_
 handler

Interrupt
Emulation code

User
 Handler

Program Text

Program Text

post_
 handler

(b)Kprobe-booster

break
point

Breakpoint
 Handler

Original
Instruction

pre_
 handler

Program Text

jump
instruction

out of line buffer

out of line buffer

 out-of-line buffer

Figure 1: Kprobe, kprobe-booster and djprobe

and kprobe-booster became about 0.5 usec and about 0.3
usec respectively. Thus the kprobe-booster succeeded to
reduce the probing overhead by almost half. However,
its performance is not enough for our target.

Thus, we started developing djprobe: Direct Jump
Probe.

1.3 Concept and Issues

The basic idea of djprobe is simply to use a jump in-
struction instead of a break-point exception. In djprobe
((c) in Figure 1), a process which hits a probe point
jumps to the out-of-line buffer, calls probing handler,
executes the “original instructions” on the out-of-line
buffer directly, and jumps back to the instruction fol-
lowing the place where the original instructions existed.
We will see the result of this improvement in Section 4.

There are several difficulties to implement this concept.
A jump instruction must occupy 5 bytes on i386, re-
placement with a jump instruction changes the instruc-
tion boundary, original instructions are executed on an-
other place, and these are done on the running kernel.
So. . .

• Replacement of original instructions with a jump
instruction must not block other threads.

• Replacement of original instructions which are
targeted by jumps must not cause unexpectable
crashes.

• Some instructions such as an instruction with rel-
ative addressing mode can not be executed at out-
of-line buffer.

• There must be at least one instruction following the
replaced original instructions to allow for the re-
turning from the probe.

• Cross code modification in SMP environment may
cause General Protection Fault by Intel Erratum.

• Djprobe (and also kprobe-booster) does not sup-
port the post_handler.

Obviously, some tricks are required to make this con-
cept real. This paper discribes how djprobe solve these
issues.

1.4 Terminology

Before discussing details of djprobe, we would like to
introduce some useful terms. Figure 2 illustrates an ex-
ample of execution code in CISC architecture. The first
instruction is a 2 byte instruction, second is also 2 bytes,
and third is 3 bytes.

In this paper, IA means Insertion Address, which speci-
fies the address of a probe point. DCR means Detoured
Code Region, which is a region from insertion address to
the end of a detoured code. The detoured code consists
of the instructions which are partially or fully covered
by a jump instruction of djprobe. JTPR means Jump
Target Prohibition Region, which is a 4 bytes (on i386)
length region, starts from the next address of IA. And,
RA means Return Address, which points the instruction
next to the DCR.



2007 Linux Symposium, Volume One • 191

insn1 insn2 insn3

DCR

JTPR

IA IA+1IA-1 IA+2 IA+3 IA+4 IA+5 IA+6 IA+7

 RA = IA+sizeof(DCR)

Program Text

ins1: 1st Instruction

ins2: 2nd Instruction

ins3: 3rd Instruction

IA: Insertion Address

RA: Return Address

JTPR: Jump Target Prohibition Region

DCR: Detoured Code Region

Figure 2: Terminology

2 Solutions of the Issues

In this section, we discuss how we solve the issues of
djprobe. The issues that are mentioned above can be
categorized as follows.

• Static-Analysis Issues

• Dynamic-Safety Issue

• Cross Self-modifying Issue

• Functionality-Performance Tradeoff Issue

The following section deeply discuss how to solve the
issues of djprobe.

2.1 Static Analysis Issues

First, we will discuss a safety check before the probe is
inserted. Djprobe is an enhancement of kprobes and it
based on implementation of Kprobes. Therefore, it in-
cludes every limitation of kprobes, which means djprobe
cannot probe where kprobes cannot. As figure 3 shows,
the DCR may include several instructions because the
size of jump instruction is more than one byte (relative
jump instruction size is 5 bytes in i386 architecture). In
addition, there are only a few choices of remedies at ex-
ecution time because “out-of-line execution” is done di-
rectly (which means single step mode is not used). This

jump
instruction

(a)before probed

DCR

ins1 ins2

target

ins3

jump
instruction

(b)after probed

DCR

ins1 ins2

target

ins3
jump

instruction

Figure 3: Corruption by jump into JTPR

means there are 4 issues that should be checked stati-
cally. See below. Static safety check must be done be-
fore registering the probe and it is enough that it be done
just once. Djprobe requires that a user must not insert
a probe, if the probe point doesn’t pass safety checks.
They must use kprobe instead of djprobe at the point.

2.1.1 Jumping in JTPR Issue

Replacement with a jump instruction involves changing
instruction boundaries. Therefore, we have to ensure
that no jump or call instructions in the kernel or kernel
modules target JTPR. For this safety check, we assume
that other functions never jump into the code other than
the entry point of the function. This assumption is ba-
sically true in gcc. An exception is setjmp()/longjmp().
Therefore, djprobe cannot put a probe where setjmp() is
used. Based on this assumption, we can check whether
JTPR is targeted or not by looking through within the
function. This code analysis must be changed if the as-
sumption is not met. Moreover, there is no effective way
to check for assembler code currently.

2.1.2 IP Relative Addressing Mode Issue

If the original instructions in DCR include the IP (In-
struction Pointer, EIP in i386) relative addressing mode
instruction, it causes the problem because the original
instruction is copied to out-of-line buffer and is executed
directly. The effective address of IP relative addressing
mode is determined by where the instruction is placed.
Therefore, such instructions will require a correction of
a relative address. The problem is that almost all rel-
ative jump instructions are “near jumps” which means



192 • Djprobe—Kernel probing with the smallest overhead

destination must be within –128 to 127 bytes. How-
ever, out-of-line buffer is always farther than 128 bytes.
Thus, the safety check disassembles the probe point and
checks whether IP relative instruction is included. If the
IP relative address is found, the djprobe can not be used.

2.1.3 Prohibit Instructions in JTPR Issue

There are some instructions that cannot be probed by
djprobe. For example, a call instruction is prohibited.
When a thread calls a function in JTPR, the address in
the JTPR is pushed on the stack. Before the thread re-
turns, if a probe is inserted at the point, ret instruction
triggers a corruption because instruction boundary has
been changed. The safety check also disassembles the
probe point and check whether prohibited instructions
are included.

2.1.4 Function Boundary Issue

Djprobe requires at least one instruction must follow
DCR. If DCR is beyond the end of the function, there is
no space left in the out-of-line buffer to jump back from.
This safety check can easily be done because what we
have to do is only to compare DCR bottom address and
function bottom address.

2.2 Dynamic-Safety Issue

Next, we discuss the safety of modifying multiple in-
structions when the kernel is running. The dynamic-
safety issue is a kind of atomicity issue. We have to
take care of interrupts, other threads, and other proces-
sors, because we can not modify multiple instructions
atomically. This issue becomes more serious on the pre-
emptive kernel.

2.2.1 Simultaneous Execution Issue

Djprobe has to overwrite several instructions by a jump
instruction, since i386 instruction set is CISC. Even if
we write this jump atomically, there might be other
threads running on the middle of the instructions which
will be overwritten by the jump. Thus, “atomic write”
can not help us in this situation. In contrast, we can
write the break-point instruction atomically because its

Original
Instructions

DCR

jump
instruction

Program Text

break
point

Kprobe

out-of-line buffer

Detour

Execute Execute

Figure 4: Bypass method

size is one byte. In other words, the break-point instruc-
tion modifies only one instruction. Therefore, we de-
cided to use the “bypass method” for embedding a jump
instruction.

Figure 4 illustrates how this bypass method works.

This method is similar to the highway construction. The
highway department makes a bypass route which de-
tours around the construction area, because the traffic
can not be stopped. Similarly, since the entire system
also can not be stopped, djprobe generates an out-of-
line code as a bypass from the original code, and uses
a break-point of the kprobe to switch the execution ad-
dress from the original address to the out-of-line code.
In addition, djprobe adds a jump instruction in the end
of the out-of-line code to go back to RA. In this way,
other threads detour the region which is overwritten by
a jump instruction while djprobe do it.

What we have to think of next is when the other threads
execute from within the detoured region. In the case
of non-preemptive kernel, these threads might be inter-
rupted within the DCR. The same issue occurs when
we release the out-of-line buffers. Since some threads
might be running or be interrupted on the out-of-line
code, we have to wait until those return from there. As
you know, in the case of the non-preemptive kernel,
interrupted kernel threads never call scheduler. Thus,
to solve this issue, we decided to use the scheduler
synchronization. Since the synchronize_sched()
function waits until the scheduler is invoked on all pro-
cessors, we can ensure all interrupts, which were oc-
curred before calling this function, finished.



2007 Linux Symposium, Volume One • 193

2.2.2 Simultaneous Execution Issue on Preemptive
Kernel

This wait-on-synchronize_sched method is
premised on the fact that the kernel is never pre-
empted. In the preemptive kernel, we must use another
function to wait the all threads sleep on the known
places, because some threads may be preempted on
the DCR. We discussed this issue deeply and decided
to use the freeze_processes() recommended
by Ingo Molnar [6]. This function tries to freeze all
active processes including all preempted threads. So,
preempted threads wake up and run after they call the
try_to_freeze() or the refrigerator().
Therefore, if the freeze_processe() succeeds,
all threads are sleeping on the refrigerator()
function, which is a known place.

2.3 Cross Self-modifying Issue

The last issue is related to a processor specific erratum.
The Intel R© processor has an erratum about unsynchro-
nized cross-modifying code [4]. On SMP machine, if
one processor modifies the code while another proces-
sor pre-fetches unmodified version of the code, unpre-
dictable General Protection Faults will occur. We sup-
posed this might occur as a result of hitting a cache-
line boundary. On the i386 architecture, the instruc-
tions which are bigger than 2 bytes may be across the
cache-line boundary. These instructions will be pre-
fetched twice from 2nd cache. Since a break-point in-
struction will change just a one byte, it is pre-fetched at
once. Other bigger instructions, like a long jump, will
be across the cache-alignment and will cause an unex-
pected fault. In this erratum, if the other processors issue
a serialization such as CPUID, the cache is serialized
and the cross-modifying is safely done.

Therefore, after writing the break-point, we do not write
the whole of the jump code at once. Instead of that, we
write only the jump address next to the break-point. And
then we issue the CPUID on each processor by using
IPI (Inter Processor Interrupt). At this point, the cache
of each processor is serialized. After that, we overwrite
the break-point by a jump op-code whose size is just one
byte.

2.4 Functionality-Performance Tradeoff Issue

From Figure 1, djprobe (and kprobe-booster) does not
call post_handler(). We thought that is a trade-
off between speed and the post_handler. Fortu-
nately, the SystemTap [3], which we were assuming
as the main use of kprobe and djprobe, did not use
post_handler. Thus, we decided to choose speed
rather than the post_handler support.

3 Design and Implementation

Djprobe was originally designed as a wrapper routine
of kprobes. Recently, it was re-designed as a jump op-
timization functionality of kprobes.1 This section ex-
plains the latest design of djprobe on i386 architecture.

3.1 Data Structures

To integrate djprobe into kprobes, we introduce the
length field in the kprobe data structure to spec-
ify the size of the DCR in bytes. We also introduce
djprobe_instance data structure, which has three
fields: kp, list, and stub. The kp field is a kprobe
that is embedded in the djprobe_instance data
structure. The list is a list_head for registration
and unregistration. The stub is an arch_djprobe_
stub data structure to hold a out-of-line buffer.

From the viewpoint of users, a djprobe_instance
looks like a special aggregator probe, which aggregates
several probes on the same probe point. This means that
a user does not specify the djprobe_instance data
structure directly. Instead, the user sets a valid value
to the length field of a kprobe, and registers that.
Then, that kprobe is treated as an aggregated probe
on a djprobe_instance. This allows you to use
djprobe transparently as a kprobe. Figure 5 illustrates
these data structures.

3.2 Static Code Analysis

Djprobe requires the safety checks, that were discussed
in Section 2.1, before calling register_kprobe().
Static code analysis tools, djprobe_static_code_
analyzer, is available from djprobe development
site [5]. This tool also provides the length of DCR.
Static code analysis is done as follows.

1For this reason, djprobe is also known as jump optimized
kprobe.



194 • Djprobe—Kernel probing with the smallest overhead

djprbe_instance

kprobe

arch_djprobe_stub

out-of-line buffer

list

kprobe

list

User defined probe

Djprobe defined object

list

 Link

Point

Figure 5: The instance of djprobe

[37af1b] subprogram
sibling [37af47]
external yes
name "register_kprobe"
decl_file 1
decl_line 874
prototyped yes
type [3726a0]
low_pc 0xc0312c3e
high_pc 0xc0312c46
frame_base 2 byte block
[ 0] breg4 4

Figure 6: Example of debuginfo output by eu-readelf

3.2.1 Function Bottom Check

djprobe_static_code_analyzer requires a
debuginfo file for the probe target kernel or module. It
is provided by the kernel compilation option if you use
vanilla kernel. Or it is provided as debuginfo package
in the distro.

Figure 6 shows what debuginfo looks like.

First of all, this tool uses the debuginfo file to find
the top (low_pc) and bottom (high_pc) addresses of the
function where the probe point is included, and makes
a list of these addresses. By using this list, it can check
whether the DCR bottom exceeds function bottom. If it
finds this to be true, it returns 0 as “can’t probe at this
point.”

There are two exceptions to the function bottom check.
If the DCR includes an absolute jump instruction or a
function return instruction, and the last byte of these in-
structions equals the bottom of the function, the point

can be probed by djprobe, because direct execution of
those instructions sets IP to valid place in the kernel and
there is no need to jump back.

3.2.2 Jump in JTPR Check

Next, djprobe_static_code_analyzer disassem-
bles the probed function of the kernel (or the module)
by using objdump tool. The problem is the current
version of objdump cannot correctly disassemble if the
BUG() macro is included in the function. In that case, it
simply discards the output following the BUG() macro
and retries to disassemble from right after the BUG().
This disassembly provides not only the boundaries in-
formation in DCR but also the assembler code in the
function.

Then, it checks that all of jump or call instructions in
the function do not target JTPR. It returns 0, if it find an
instruction target JTPR.

If the probe instruction is 5 bytes or more, it simply re-
turns the length of probed instruction, because there is
no boundary change in JTPR.

3.2.3 Prohibited Relative Addressing Mode and In-
struction Check

djprobe_static_code_analyzer checks that DCR
does not include a relative jump instruction or prohibited
instructions.

3.2.4 Length of DCR

Djprobe requires the length of DCR as an argu-
ment of register_kprobe() because djprobe does
not have a disassembler in the current implemen-
tation. djprobe_static_code_analyzer ac-
quires it and returns the length in case that the probe
point passes all checks above.

3.3 Registration Procedure

This is done by calling the register_kprobe()
function. Before that, a user must set the address of a
probe point and the length2 of DCR.

2If the length field of a kprobe is cleared, it is not treated as a
djprobe but a kprobe.



2007 Linux Symposium, Volume One • 195

3.3.1 Checking Conflict with Other Probes

First, register_kprobe() checks whether other
probes are already inserted on the DCR of the specified
probe point or not. These conflicts can be classified in
following three cases.

1. Some other probes are already inserted in the same
probe point. In this case, register_kprobe()
treats the specified probe as one of the collocated
probes. Currently, if the probe which previously
inserted is not djprobe, the jump optimization is not
executed. This behavior should be improved to do
jump optimization when feasible.

2. The DCR of another djprobe covers the speci-
fied probe point. In this case, currently, this
function just returns -EEXIST. However, ide-
ally, the djprobe inserted previously should be un-
optimized for making room for the specified probe.

3. There are some other probes in the DCR of the
specified djprobe. In this case, the specified
djprobe becomes a normal kprobe. This means the
length field of the kprobe is cleared.

3.3.2 Creating New djprobe_instance Object

Next, register_kprobe() calls the register_
djprobe() function. It allocates a djprobe_
instance object. This function copies the values of
addr field and length field from the original kprobe
to the kp field of the djprobe_instance. Then, it
also sets the address of the djprobe_pre_handler()
to the pre_handler field of the kp field in the
djprobe_instance. Then, it invokes the arch_
prepare_djprobe_instance() function to pre-
pare an out-of-line buffer in the stub field.

3.3.3 Preparing the Out-of-line Buffer

Figure 7 illustrates how an out-of-line buffer is com-
posed.

The arch_prepare_djprobe_instance() allo-
cates a piece of executable memory for the out-of-line
buffer by using __get_insn_slot() and setup its
contents. Since the original __get_insn_slot()

Template code

Template code The instructions in DCR

Template code

Call 0 

Call djprobe_callback() 

jump 

Out-of-line buffer

 Copy the template code

  Embed the address of
  djprobe_callback()

 Copy the instructions and
 write a jump

Figure 7: Preparing an out-of-line buffer

function can handle only single size of memory slots, we
modified it to handle various length memory slots. After
allocating the buffer, it copies the template code of the
buffer from the djprobe_template_holder()
and embeds the address of the djprobe_instance
object and the djprobe_callback() function
into the template. It also copies the original code
in the DCR of the specified probe to the next to the
template code. Finally, it adds the jump code which
returns to the next address of the DCR and calls
flush_icache_range() to synchronize i-cache.

3.3.4 Register the djprobe_instance Object

After calling arch_prepare_djprobe_
instance(), register_djprobe() regis-
ters the kp field of the djprobe_instance
by using __register_kprobe_core(), and
adds the list field to the registering_list
global list. Finally, it adds the user-defined
kprobe to the djprobe_instance by using the
register_aggr_kprobe() and returns.

3.4 Committing Procedure

This is done by calling the commit_djprobes()
function, which is called from commit_kprobes().

3.4.1 Check Dynamic Safety

The commit_djprobes() calls the check_
safety() function to check safety of dynamic-
self modifying. In other words, it ensures that



196 • Djprobe—Kernel probing with the smallest overhead

int3

int3 Addr

DCR

jmp Addr

Issue CPUID (Serialization)

Insertion Address Return Address

Program Text

Figure 8: Optimization Procedure

no thread is running on the DCR nor is it pre-
empted. For this purpose, check_safety()
call synchronize_sched() if the kernel is
non-preemptive, and freeze_processes() and
thaw_processes() if the kernel is preemptive.
These functions may take a long time to return, so we
call check_safety() only once.

3.4.2 Jump Optimization

Jump optimization is done by calling the
arch_preoptimize_djprobe_instance() and
the arch_optimize_djprobe_instance(). The
commit_djprobes() invokes the former function
to write the destination address (in other words, the
address of the out-of-line buffer) into the JTPR of
the djprobe, and issues CPUID on every online CPU.
After that, it invokes the latter function to change
the break-point instruction of the kprobe to the jump
instruction. Figure 8 illustrates how the instructions
around the insertion address are modified.

3.4.3 Cleanup Probes

After optimizing registered djprobes, the commit_
djprobe() releases the instances of the djprobe in
the unregistering_list list. These instances are
linked by calling unregister_kprobe() as de-
scribed Section 3.6. Since the other threads might be
running on the out-of-line buffer as described in the Sec-
tion 2.2, we can not release it in the unregister_
kprobe(). However, the commit_djprobe() al-
ready ensured safety by using the check_safety().
Thus we can release the instances and the out-of-line
buffers safely.

Original
Instructions

jump
instruction

jump
instruction

User
 Handler

Program Text

djprobe_callback()

Return Address

save
regs

restore
regs

call
function

out-of-line buffer

Execute directly

JumpJump

 Call

 Call

Figure 9: Probing Procedure

3.5 Probing Procedure

Figure 9 illustrates what happens when a process hits a
probe point.

When a process hits a probe point, it jumps to the out-
of-line buffer of a djprobe. And it emulates the break-
point on the first-half of the buffer. This is accom-
plished by saving the registers on the stack and calling
the djprobe_callback() to call the user-defined
handlers related to this probe point. After that, djprobe
restores the saved registers, directly executes continuing
several instructions copied from the DCR, and jumps
back to the RA which is the next address of the DCR.

3.6 Unregistration Procedure

This is done by calling unregister_kprobe().
Unlike the registration procedure, un-optimization is
done in the unregistration procedure.

3.6.1 Checking Whether the Probe Is Djprobe

First, the unregister_kprobe() checks whether
the specified kprobe is one of collocated kprobes. If
it is the last kprobe of the collocated kprobes which
are aggregated on a aggregator probe, it also tries
to remove the aggregator. As described above, the
djprobe_instance is a kind of the aggregator
probe. Therefore, the function also checks whether the
aggregator is djprobe (this is done by comparing the
pre_handler field and the address of djprobe_
pre_handler()). If so it calls unoptimize_
djprobe() to remove the jump instruction written by
the djprobe.



2007 Linux Symposium, Volume One • 197

jmp

int3 Addr

DCR

int3

Addr

Issue CPUID (Serialization)

Insertion Address Return Address

Program Text

Figure 10: Un-optimization Procedure

3.6.2 Probe Un-optimization

Figure 10 illustrates how a probe point is un-optimized.

The unoptimized_djprobe() invokes arch_

unoptimize_djprobe_instance() to restore the
original instructions to the DCR. First, it inserts a break-
point to IA for protect the DCR from other threads,
and issues CPUID on every online CPUs by using IPI
for cache serialization. After that, it copies the bytes
of original instructions to the JTPR. At this point, the
djprobe becomes just a kprobe, this means it is un-
optimized and uses a break-point instead of a jump.

3.6.3 Removing the Break-Point

After calling unoptimize_djprobe(), the
unregister_kprobe() calls arch_disarm_
kprobe() to remove the break-point of the kprobe,
and waits on synchronize_sched() for cpu
serialization. After that, it tries to release the aggregator
if it is not a djprobe. If the aggregator is a djprobe, it just
calls unregister_djprobe() to add the list
field of the djprobe to the unregistering_list
global list.

4 Performance Gains

We measured and compared the performance of djprobe
and kprobes. Table 1 and Table 2 show the processing
time of one probing of kprobe, kretprobe, its boosters,
and djprobes. The unit of measure is nano-seconds. We
measured it on Intel R© Pentium R© M 1600MHz with UP
kernel, and on Intel R© CoreTM Duo 1667MHz with SMP
kernel by using linux-2.6.21-rc4-mm1.

method orignal booster djprobe
kprobe 563 248 49

kretprobe 718 405 211

Table 1: Probing Time on Pentium R© M in nsec

method orignal booster djprobe
kprobe 739 302 61

kretprobe 989 558 312

Table 2: Probing Time on CoreTM Duo in nsec

We can see djprobe could reduce the probing overhead
to less than 0.1 usec (100 nsec) on each processor. Thus,
it achived our target performance. Moreover, kretprobe
can also be accelerated by djprobe, and the djprobe-
based kretprobe is as fast as kprobe-booster.

5 Example of Djprobe

Here is an example of djprobe. The differences between
kprobe and djprobe can be seen at two points: setting the
length field of a kprobe object before registration,
and calling commit_kprobes() after registration and
unregistration.

/* djprobe_ex.c -- Direct Jump Probe Example */
#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kprobes.h>

static long addr=0;
module_param(addr, long, 0444);
static long size=0;
module_param(size, long, 0444);

static int probe_func(struct kprobe *kp,
struct pt_regs *regs) {

printk("probe point:%p\n", (void*)kp->addr);
return 0;

}

static struct kprobe kp;

static int install_probe(void) {
if (addr == 0) return -EINVAL;

memset(&kp, sizeof(struct kprobe), 0);
kp.pre_handler = probe_func;
kp.addr = (void *)addr;

kp.length = size;

if (register_kprobe(&kp) != 0) return -1;

commit_kprobes();



198 • Djprobe—Kernel probing with the smallest overhead

return 0;
}

static void uninstall_probe(void) {
unregister_kprobe(&kp);

commit_kprobes();
}

module_init(install_probe);
module_exit(uninstall_probe);
MODULE_LICENSE("GPL");

6 Conclusion

In this paper, we proposed djprobe as a faster probing
method, discussed what the issues are, and how djprobe
can solve them. After that, we described the design and
the implementation of djprobe to prove that our proposal
can be implemented. Finally, we showed the perfor-
mance improvement, and that it could reduce the prob-
ing overhead dramatically. You can download the latest
patch set of djprobe from djprobe development site [5].
Any comments and contributions are welcome.

7 Future Works

We have some plans about future djprobe development.

7.1 SystemTap Enhancement

We have a plan to integrate the static analysis tool into
the SystemTap for accelerating kernel probing by using
djprobe.

7.2 Dynamic Code Modifier

Currently, djprobe just copies original instructions from
DCR. This is the main reason why the djprobe cannot
probe the place where the DCR is including execution-
address-sensitive code.

If djprobe analyzes these sensitive codes and replaces
its parameter to execute it on the out-of-line buffer, the
djprobe can treat those codes. This idea is basically
done by kerninst [1, 11] and GILK [8].

7.3 Porting to Other Architectures

Current version of djprobe supports only i386 architec-
ture. Development for x86_64 is being considered. Sev-
eral difficulties are already found, such as RIP relative
instructions. In x86_64 architecuture, RIP relative ad-
dressing mode is expanded and we must assume it might
be used. Related to dynamic code modifier, djprobe
must modify the effective address of RIP relative ad-
dressing instructions.

To realize this, djprobe requires instruction boundary in-
formation in DCR to recognize every instruction. This
should be provided by djprobe_static_code_
analyser or djprobe must have essential version of
disassembler in it.

7.4 Evaluating on the Xen Kernel

In the Xen kernel, djprobe has bigger advantage than
on normal kernel, because it does not cause any inter-
rupts. In the Xen hypervisor, break-point interruption
switches a VM to the hypervisor and the hypervisor up-
calls the break-point handler of the VM. This procedure
is so heavy that the probing time becomes almost dou-
ble.

In contrast, djprobe does not switch the VM. Thus, we
are expecting the probing overhead of djprobe might be
much smaller than kprobes.

8 Acknowledgments

We would like to thank Ananth Mavinakayanahalli,
Prasanna Panchamukhi, Jim Keniston, Anil Keshava-
murthy, Maneesh Soni, Frank Ch. Eigler, Ingo Mol-
nar, and other developers of kprobes and SystemTap for
helping us develop the djprobe.

We also would like to thank Hideo Aoki, Yumiko Sugita
and our colleagues for reviewing this paper.

9 Legal Statements

Copyright c© Hitachi, Ltd. 2007

Linux is a registered trademark of Linus Torvalds.



2007 Linux Symposium, Volume One • 199

Intel, Pentium, and Core are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] kerninst. http://www.paradyn.org/
html/kerninst.html.

[2] Lkst. http://lkst.sourceforge.net/.

[3] SystemTap.
http://sourceware.org/systemtap/.

[4] Unsynchronized cross-modifying code operation
can cause unexpected instruction execution
results. Intel Pentium II Processor Specification
Update.

[5] Djprobe development site, 2005. http://
lkst.sourceforge.net/djprobe.html.

[6] Re: djprobes status, 2006.
http://sourceware.org/ml/
systemtap/2006-q3/msg00518.html.

[7] Ananth N. Mavimalayanahalli et al. Probing the
Guts of Kprobes. In Proceedings of Ottawa Linux
Symposium, 2006.

[8] David J. Pearce et al. Gilk: A dynamic
instrumentation tool for the linux kernel. In
Computer Performance Evaluation/TOOLS, 2002.

[9] Toshiaki Arai et al. Linux Kernel Status Tracer
for Kernel Debugging. In Proceedings of
Software Engineering and Applications, 2005.

[10] Masami Hiramatsu. Overhead evaluation about
kprobes and djprobe, 2005.
http://lkst.sourceforge.net/docs/
probe-eval-report.pdf.

[11] Ariel Tamches and Barton P. Miller. Fine-Grained
Dynamic Instrumentation of Commodity
Operating System Kernels. In OSDI, February
1999.



200 • Djprobe—Kernel probing with the smallest overhead


