
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



kvm: the Linux Virtual Machine Monitor

Avi Kivity
Qumranet

avi@qumranet.com

Yaniv Kamay
Qumranet

yaniv@qumranet.com

Dor Laor
Qumranet

dor.laor@qumranet.com

Uri Lublin
Qumranet

uril@qumranet.com

Anthony Liguori
IBM

aliguori@us.ibm.com

Abstract

Virtualization is a hot topic in operating systems these
days. It is useful in many scenarios: server consolida-
tion, virtual test environments, and for Linux enthusiasts
who still can not decide which distribution is best. Re-
cently, hardware vendors of commodity x86 processors
have added virtualization extensions to the instruction
set that can be utilized to write relatively simple virtual
machine monitors.

The Kernel-based Virtual Machine, or kvm, is a new
Linux subsystem which leverages these virtualization
extensions to add a virtual machine monitor (or hyper-
visor) capability to Linux. Using kvm, one can create
and run multiple virtual machines. These virtual ma-
chines appear as normal Linux processes and integrate
seamlessly with the rest of the system.

1 Background

Virtualization has been around almost as long as com-
puters. The idea of using a computer system to emulate
another, similar, computer system was early recognized
as useful for testing and resource utilization purposes.
As with many computer technologies, IBM led the way
with their VM system. In the last decade, VMware’s
software-only virtual machine monitor has been quite
successful. More recently, the Xen [xen] open-source
hypervisor brought virtualization to the open source
world, first with a variant termed paravirtualization and
as hardware became available, full virtualization.

2 x86 Hardware Virtualization Extensions

x86 hardware is notoriously difficult to virtualize. Some
instructions that expose privileged state do not trap

when executed in user mode, e.g. popf. Some privileged
state is difficult to hide, e.g. the current privilege level,
or cpl.

Recognizing the importance of virtualization, hardware
vendors [Intel][AMD] have added extensions to the x86
architecture that make virtualization much easier. While
these extensions are incompatible with each other, they
are essentially similar, consisting of:

• A new guest operating mode – the processor can
switch into a guest mode, which has all the regu-
lar privilege levels of the normal operating modes,
except that system software can selectively re-
quest that certain instructions, or certain register
accesses, be trapped.

• Hardware state switch – when switching to guest
mode and back, the hardware switches the control
registers that affect processor operation modes, as
well as the segment registers that are difficult to
switch, and the instruction pointer so that a control
transfer can take effect.

• Exit reason reporting – when a switch from guest
mode back to host mode occurs, the hardware re-
ports the reason for the switch so that software can
take the appropriate action.

3 General kvm Architecture

Under kvm, virtual machines are created by opening a
device node (/dev/kvm.) A guest has its own memory,
separate from the userspace process that created it. A
virtual cpu is not scheduled on its own, however.

• 225 •



226 • kvm: the Linux Virtual Machine Monitor

Guest address spaceUser address space

Kernel

Memory

assigned

to Guest

Guest memory

mapped to user 

process

Figure 1: kvm Memory Map

3.1 /dev/kvm Device Node

kvm is structured as a fairly typical Linux character de-
vice. It exposes a /dev/kvm device node which can
be used by userspace to create and run virtual machines
through a set of ioctl()s.

The operations provided by /dev/kvm include:

• Creation of a new virtual machine.

• Allocation of memory to a virtual machine.

• Reading and writing virtual cpu registers.

• Injecting an interrupt into a virtual cpu.

• Running a virtual cpu.

Figure 1 shows how guest memory is arranged. Like
user memory in Linux, the kernel allocates discontigu-
ous pages to form the guest address space. In addition,
userspace can mmap() guest memory to obtain direct
access. This is useful for emulating dma-capable de-
vices.

Running a virtual cpu deserves some further elabora-
tion. In effect, a new execution mode, guest mode is
added to Linux, joining the existing kernel mode and
user mode.

Guest execution is performed in a triply-nested loop:

Execute natively
in Guest Mode

Handle
Exit

I/O?

Signal
Pending?

Enter
Guest
Mode

Issue Guest
Execution ioctl

Handle I/O

User mode Kernel mode Guest mode

Yes

Yes

No

No

Figure 2: Guest Execution Loop

• At the outermost level, userspace calls the kernel
to execute guest code until it encounters an I/O in-
struction, or until an external event such as arrival
of a network packet or a timeout occurs. External
events are represented by signals.

• At the kernel level, the kernel causes the hardware
to enter guest mode. If the processor exits guest
mode due to an event such as an external interrupt
or a shadow page table fault, the kernel performs
the necessary handling and resumes guest execu-
tion. If the exit reason is due to an I/O instruction
or a signal queued to the process, then the kernel
exits to userspace.

• At the hardware level, the processor executes guest
code until it encounters an instruction that needs
assistance, a fault, or an external interrupt.

Refer to Figure 2 for a flowchart-like representation of
the guest execution loop.



2007 Linux Symposium, Volume One • 227

3.2 Reconciling Instruction Set Architecture Dif-
ferences

Unlike most of the x86 instruction set, where instruc-
tion set extensions introduced by one vendor are adopted
by the others, hardware virtualization extensions are not
standardized. Intel and AMD processors have different
instructions, different semantics, and different capabili-
ties.

kvm handles this difference in the traditional Linux
way of introducing a function pointer vector, kvm_
arch_ops, and calling one of the functions it de-
fines whenever an architecture-dependent operation is
to be performed. Base kvm functionality is placed in a
module, kvm.ko, while the architecture-specific func-
tionality is placed in the two arch-specific modules,
kvm-intel.ko and kvm-amd.ko.

4 Virtualizing the MMU

As with all modern processors, x86 provides a virtual
memory system which translates user-visible virtual ad-
dresses to physical addresses that are used to access the
bus. This translation is performed by the memory man-
agement unit, or mmu. The mmu consists of:

• A radix tree ,the page table, encoding the virtual-
to-physical translation. This tree is provided by
system software on physical memory, but is rooted
in a hardware register (the cr3 register)

• A mechanism to notify system software of missing
translations (page faults)

• An on-chip cache (the translation lookaside buffer,
or tlb) that accelerates lookups of the page table

• Instructions for switching the translation root in or-
der to provide independent address spaces

• Instructions for managing the tlb

The hardware support for mmu virtualization provides
hooks to all of these components, but does not fully vir-
tualize them. The principal problem is that the mmu
provides for one level of translation (guestvirtual →
guest physical) but does not account for the sec-
ond level required by virtualization (guest physical →
host physical.)

The classical solution is to use the hardware virtualiza-
tion capabilities to present the real mmu with a sep-
arate page table that encodes the combined transla-
tion (guestvirtual → host physical) while emulating the
hardware’s interaction with the original page table pro-
vided by the guest. The shadow page table is built incre-
mentally; it starts out empty, and as translation failures
are reported to the host, missing entries are added.

A major problem with shadow page tables is keeping
the guest page table and the shadow page table synchro-
nized. Whenever the guest writes to a page table, the
corresponding change must also be performed on the
shadow page table. This is difficult as the guest page ta-
ble resides in ordinary memory and thus is not normally
trapped on access.

4.1 Virtual TLB Implementation

The initial version of shadow page tables algorithm in
kvm used a straightforward approach that reduces the
amount of bugs in the code while sacrificing perfor-
mance. It relies on the fact that the guest must use the tlb
management instructions to synchronize the tlb with its
page tables. We trap these instructions and apply their
effect to the shadow page table in addition to the normal
effect on the tlb.

Unfortunately, the most common tlb management in-
struction is the context switch, which effectively in-
validates the entire tlb.1 This means that workloads
with multiple processes suffer greatly, as rebuilding the
shadow page table is much more expensive than refilling
the tlb.

4.2 Caching Virtual MMU

In order to improve guest performance, the virtual mmu
implementation was enhanced to allow page tables to
be cached across context switches. This greatly in-
creases performance at the expense of much increased
code complexity.

As related earlier, the problem is that guest writes to the
guest page tables are not ordinarily trapped by the vir-
tualization hardware. In order to receive notifications of
such guest writes, we write-protect guest memory pages
that are shadowed by kvm. Unfortunately, this causes a
chain reaction of additional requirements:

1Actually, kernel mappings can be spared from this flush; but the
performance impact is nevertheless great.



228 • kvm: the Linux Virtual Machine Monitor

• To write protect a guest page, we need to know
which translations the guest can use to write to the
page. This means we need to keep a reverse map-
ping of all writable translations that point to each
guest page.

• When a write to a guest page table is trapped, we
need to emulate the access using an x86 instruction
interpreter so that we know precisely the effect on
both guest memory and the shadow page table.

• The guest may recycle a page table page into a nor-
mal page without a way for kvm to know. This can
cause a significant slowdown as writes to that page
will be emulated instead of proceeding at native
speeds. kvm has heuristics that determine when
such an event has occurred and decache the corre-
sponding shadow page table, eliminating the need
to write-protect the page.

At the expense of considerable complexity, these re-
quirements have been implemented and kvm context
switch performance is now reasonable.

5 I/O Virtualization

Software uses programmed I/O (pio) and memory-
mapped I/O (mmio) to communicate with hardware de-
vices. In addition, hardware can issue interrupts to re-
quest service by system software. A virtual machine
monitor must be able to trap and emulate pio and mmio
requests, and to simulate interrupts from virtual hard-
ware.

5.1 Virtualizing Guest-Initiated I/O Instructions

Trapping pio is quite straightforward as the hardware
provides traps for pio instructions and partially decodes
the operands. Trapping mmio, on the other hand, is quite
complex, as the same instructions are used for regular
memory accesses and mmio:

• The kvm mmu does not create a shadow page table
translation when an mmio page is accessed

• Instead, the x86 emulator executes the faulting in-
struction, yielding the direction, size, address, and
value of the transfer.

In kvm, I/O virtualization is performed by userspace.
All pio and mmio accesses are forwarded to userspace,
which feeds them into a device model in order to simu-
late their behavior, and possibly trigger real I/O such as
transmitting a packet on an Ethernet interface. kvm also
provides a mechanism for userspace to inject interrupts
into the guest.

5.2 Host-Initiated Virtual Interrupts

kvm also provides interrupt injection facilities to
userspace. Means exist to determine when the guest
is ready to accept an interrupt, for example, the inter-
rupt flag must be set, and to actually inject the interrupt
when the guest is ready. This allows kvm to emulate the
APIC/PIC/IOAPIC complex found on x86-based sys-
tems.

5.3 Virtualizing Framebuffers

An important category of memory-mapped I/O devices
are framebuffers, or graphics adapters. These have char-
acteristics that are quite distinct from other typical mmio
devices:

• Bandwidth – framebuffers typically see very high
bandwidth transfers. This is in contrast to typi-
cal devices which use mmio for control, but trans-
fer the bulk of the data with direct memory access
(dma).

• Memory equivalence – framebuffers are mostly just
memory: reading from a framebuffers returns the
data last written, and writing data does not cause
an action to take place.

In order to efficiently support framebuffers, kvm allows
mapping non-mmio memory at arbitrary addresses such
as the pci region. Support is included for the VGA win-
dows which allow physically aliasing memory regions,
and for reporting changes in the content of the frame-
buffer so that the display window can be updated incre-
mentally.

6 Linux Integration

Being tightly integrated into Linux confers some impor-
tant benefits to kvm:



2007 Linux Symposium, Volume One • 229

• On the developer level, there are many opportu-
nities for reusing existing functionality within the
kernel, for example, the scheduler, NUMA support,
and high-resolution timers.

• On the user level, one can reuse the existing Linux
process management infrastructure, e.g., top(1)
to look at cpu usage and taskset(1) to pin
virtual machines to specific cpus. Users can use
kill(1) to pause or terminate their virtual ma-
chines.

7 Live Migration

One of the most compelling reasons to use virtualiza-
tion is live migration, or the ability to transport a virtual
machine from one host to another without interrupting
guest execution for more than a few tens of millisec-
onds. This facility allows virtual machines to be relo-
cated to different hosts to suit varying load and perfor-
mance requirements.

Live migration works by copying guest memory to the
target host in parallel with normal guest execution. If a
guest page has been modified after it has been copied,
it must be copied again. To that end, kvm provides a
dirty page log facility, which provides userspace with a
bitmap of modified pages since the last call. Internally,
kvmmaps guest pages as read-only, and only maps them
for write after the first write access, which provides a
hook point to update the bitmap.

Live migration is an iterative process: as each pass
copies memory to the remote host, the guest generates
more memory to copy. In order to ensure that the pro-
cess converges, we set the following termination crite-
ria:

• Two, not necessarily consecutive, passes were
made which had an increase in the amount of mem-
ory copied compared to previous pass, or,

• Thirty iterations have elapsed.

8 Future Directions

While already quite usable for many workloads, many
things remain to be done for kvm. Here we describe the
major features missing; some of them are already work-
in-progress.

8.1 Guest SMP Support

Demanding workloads require multiple processing
cores, and virtualization workloads are no exception.
While kvm readily supports SMP hosts, it does not yet
support SMP guests.

In the same way that a virtual machine maps to a host
process under kvm, a virtual cpu in an SMP guest maps
to a host thread. This keeps the simplicity of the kvm
model and requires remarkably few changes to imple-
ment.

8.2 Paravirtualization

I/O is notoriously slow in virtualization solutions. This
is because emulating an I/O access requires exiting
guest mode, which is a fairly expensive operation com-
pared to real hardware.

A common solution is to introduce paravirtualized de-
vices, or virtual “hardware” that is explicitly designed
for virtualized environments. Since it is designed
with the performance characteristics of virtualization in
mind, it can minimize the slow operations to improve
performance.

8.3 Memory Management Integration

Linux provides a vast array of memory management
features: demand paging, large pages (hugetlbfs), and
memory-mapped files. We plan to allow a kvm guest
address space to directly use these features; this can en-
able paging of idle guest memory to disk, or loading a
guest memory image from disk by demand paging.

8.4 Scheduler Integration

Currently, the Linux scheduler has no knowledge that it
is scheduling a virtual cpu instead of a regular thread.
We plan to add this knowledge to the scheduler so that
it can take into account the higher costs of moving a
virtual cpu from one core to another, as compared to a
regular task.



230 • kvm: the Linux Virtual Machine Monitor

8.5 New Hardware Virtualization Features

Virtualization hardware is constantly being enhanced
with new capabilities, for example, full mmu virtualiza-
tion, a.k.a. nested page tables or extended page tables,
or allowing a guest to securely access a physical device
[VT-d]. We plan to integrate these features into kvm in
order to gain the performance and functionality benefits.

8.6 Additional Architectures

kvm is currently only implemented for the i386 and
x86-64 architectures. However, other architectures
such as powerpc and ia64 support virtualization, and
kvm could be enhanced to support these architectures as
well.

9 Conclusions

kvm brings an easy-to-use, fully featured integrated vir-
tualization solution for Linux. Its simplicity makes ex-
tending it fairly easy, while its integration into Linux
allows it to leverage the large Linux feature set and the
tremendous pace at which Linux is evolving.

10 References

[qemu] Bellard, F. (2005). Qemu, a Fast and Portable
Dynamic Translator. In Usenix annual technical
conference.

[xen] Barham P., et al. Xen and the art of virtualization.
In Proc. SOSP 2003. Bolton Landing, New York,
U.S.A. Oct 19-22, 2003.

[Intel] Intel Corp. IA-32 Intel R© Architecture Software
Developer’s Manual, Volume 3B: System Programming
Guide, Part 2. Order number 25366919.

[AMD] AMD Inc. AMD64 Architecture Programmer’s
Manual Volume 2: System Programming.

[VT-d] Abramson, D.; Jackson, J.; Muthrasanallur, S.;
Neiger, G.; Regnier, G.; Sankaran, R.; Schoinas, I.;
Uhlig, R.; Vembu, B.; Wiegert, J. Intel R© Virtualization
Technology for Directed I/O. Intel Technology Journal.
http://www.intel.com/technology/itj/
2006/v10i3/ (August 2006).


