
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Linux Kernel Development
How Fast it is Going, Who is Doing It, What They are Doing, and Who is Sponsoring It

Greg Kroah-Hartman
SuSE Labs / Novell Inc.
gregkh@suse.de

1 Introduction

The Linux kernel is one of the most popular Open
Source development projects, and yet not much atten-
tion has been placed on who is doing this development,
who is sponsoring this development, and what exactly is
being developed. This paper should help explain some
of these facts by delving into the kernel changelogs and
producing lots of statistics.

This paper will focus on the kernel releases of the past
two and 1/3 years, from the 2.6.11 through the 2.6.21
release.

2 Development vs. Stability

In the past, the Linux kernel was split into two different
trees, the development branch, and the stable branch.
The development branch was specified by using an odd
number for the second release number, while the stable
branch used an even number. As an example, the 2.5.32
release was a development release, while the 2.4.24 re-
lease is a stable release.

After the 2.6 kernel series was created, the developers
decided to change this method of having two different
trees. They declared that all 2.6 kernel releases would
be considered “stable,” no matter how quickly develop-
ment was happening. These releases would happen ev-
ery 2 to 3 months and would allow developers to add
new features and then stabilize them in time for the next
release. This was done in order to allow distributions to
be able to decide on a release point easier by always hav-
ing at least one stable kernel release near a distribution
release date.

To help with stability issues while the developers are
creating a new kernel version, a -stable branch was

created that would contain bug fixes and security up-
dates for the past kernel release before the next major
release happened.

This is best explained with the diagram shown in Fig-
ure 1. The kernel team released the 2.6.19 kernel as a
stable release. Then the developers started working on
new features and started releasing the -rc versions as
development kernels so that people could help test and
debug the changes. After everyone agreed that the de-
velopment release was stable enough, it was released as
the 2.6.20 kernel.

While the development of new features was happen-
ing, the 2.6.19.1, 2.6.19.2, and other stable kernel ver-
sions were released, containing bug fixes and security
updates.

For this paper, we are going to focus on the main kernel
releases, and ignore the -stable releases, as they con-
tain a very small number of bugfixes and are not where
any development happens.

3 Frequency of release

When the kernel developers first decided on this new
development cycle, it was said that a new kernel would
be released every 2-3 months, in order to prevent lots of
new development from being “backed up.” The actual
number of days between releases can be seen in Table 1.

It turns out that they were very correct, with the average
being 2.6 months between releases.

4 Rate of Change

When modifying the Linux kernel, developers break
their changes down into small, individual units of
change, called patches. These patches usually do only

• 239 •



240 • Linux Kernel Development

Figure 1: Kernel release cycles

one thing to the source tree, and are built on top of each
other, modifying the source code by changing, adding,
or removing lines of code. At each change point in time,
the kernel should be able to be successfully built and op-
erate. By enforcing this kind of discipline, the kernel
developers must break their changes down into small
logical pieces. The number of individual changes that
go into each kernel release is very large, as can be seen
in Table 2.

When you compare the number of changes per release,
with the length of time for each release, you can deter-
mine the number of changes per hour, as can be seen in
Table 3.

So, from the 2.6.11 to the 2.6.21 kernel release, a total of
852 days, there were 2.89 patches applied to the kernel

Kernel Days of
Version development

2.6.11 69
2.6.12 108
2.6.13 73
2.6.14 61
2.6.15 68
2.6.16 77
2.6.17 91
2.6.18 95
2.6.19 72
2.6.20 68
2.6.21 81

Table 1: Frequency of kernel releases

Kernel Changes per
Version Release

2.6.11 4,041
2.6.12 5,565
2.6.13 4,174
2.6.14 3,931
2.6.15 5,410
2.6.16 5,734
2.6.17 6,113
2.6.18 6,791
2.6.19 7,073
2.6.20 4,983
2.6.21 5,349

Table 2: Changes per kernel release

Kernel Changes
Version per Hour

2.6.11 2.44
2.6.12 2.15
2.6.13 2.38
2.6.14 2.69
2.6.15 3.31
2.6.16 3.10
2.6.17 2.80
2.6.18 2.98
2.6.19 4.09
2.6.20 3.05
2.6.21 2.75

Table 3: Changes per hour by kernel release



2007 Linux Symposium, Volume One • 241

tree per hour. And that is only the patches that were
accepted.

5 Kernel Source Size

The Linux kernel keeps growing in size over time, as
more hardware is supported, and new features added.
For the following numbers, I count everything in the
released Linux source tarball as “source code” even
though a small percentage is the scripts used to config-
ure and build the kernel, as well as a minor amount of
documentation. This is done because someone creates
those files, and are worthy of being mentioned.

The information in Table 4 show the number of files and
lines in each kernel version.

Kernel
Version Files Lines

2.6.11 17,091 6,624,076
2.6.12 17,361 6,777,860
2.6.13 18,091 6,988,800
2.6.14 18,435 7,143,233
2.6.15 18,812 7,290,070
2.6.16 19,252 7,480,062
2.6.17 19,554 7,588,014
2.6.18 20,209 7,752,846
2.6.19 20,937 7,976,221
2.6.20 21,281 8,102,533
2.6.21 21,615 8,246,517

Table 4: Size per kernel release

Over these releases, the kernel team has a very constant
growth rate of about 10% per year, a very impressive
number given the size of the code tree.

When you combine the number of lines added per re-
lease, and compare it to the amount of time per release,
you can get some very impressive numbers, as can be
seen in Table 5.

Summing up these numbers, it comes to a crazy 85.63
new lines of code being added to the kernel tree every
hour for the past 2 1/3 years.

6 Where the Change is Happening

The Linux kernel source tree is highly modular, en-
abling new drivers and new architectures to be added

Kernel Lines per
Version Hour

2.6.11 77.6
2.6.12 59.3
2.6.13 120.4
2.6.14 105.5
2.6.15 90.0
2.6.16 102.8
2.6.17 49.4
2.6.18 72.3
2.6.19 129.3
2.6.20 77.4
2.6.21 74.1

Table 5: Lines per hour by kernel release

quite easily. The source code can be broken down into
the following categories:

• core: this is the core kernel code, run by every-
one and included in all architectures. This code
is located in the subdirectories block/, ipc/,
init/, kernel/, lib/, mm/, and portions of
the include/ directory.

• drivers: these are the drivers for different hardware
and virtual devices. This code is located in the
subdirectories crypto/, drivers/, sound/,
security/, and portions of the include/ di-
rectory.

• architecture: this is the CPU specific code, where
anything that is only for a specific processor lives.
This code is located in the arch/, and portions of
the include/ directory.

• network: this is the code that controls the differ-
ent networking protocols. It is located in the net/
directory and the include/net subdirectory.

• filesystems: this is the code that controls the differ-
ent filesystems. It is located in the fs/ directory.

• miscellaneous: this is the rest of the kernel source
code, including the code needed to build the ker-
nel, and the documentation for various things. It is
located in Documentation/, scripts/, and
usr/ directories.



242 • Linux Kernel Development

The breakdown of the 2.6.21 kernel’s source tree by
the number of different files in the different category is
shown in Table 6, while Table 7 shows the breakdown
by the number of lines of code.

Category Files
% of

kernel

core 1,371 6%
drivers 6,537 30%
architecture 10,235 47%
network 1,095 5%
filesystems 1,299 6%
miscellaneous 1,068 5%

Table 6: 2.6.21 Kernel size by files

Category
Lines of

Code
% of

kernel

core 330,637 4%
drivers 4,304,859 52%
architecture 2,127,154 26%
network 506,966 6%
filesystems 702,913 9%
miscellaneous 263,848 3%

Table 7: 2.6.21 Kernel size by lines of code

In the 2.6.21 kernel release, the architecture section of
the kernel contains the majority of the different files, but
the majority of the different lines of code are by far in
the drivers section.

I tried to categorize what portions of the kernel are
changing over time, but there did not seem to be a simple
way to represent the different sections changing based
on kernel versions. Overall, the percentage of change
seemed to be evenly spread based on the percentage that
the category took up within the overall kernel structure.

7 Who is Doing the Work

The number of different developers who are doing
Linux kernel development, and the identifiable compa-
nies1 who are sponsoring this work, have been slowly
increasing over the different kernel versions, as can be
seen in Table 8.

1The identification of the different companies is described in the
next section.

Kernel Number of Number of
Version Developers Companies

2.6.11 479 30
2.6.12 704 38
2.6.13 641 39
2.6.14 632 45
2.6.15 685 49
2.6.16 782 56
2.6.17 787 54
2.6.18 904 60
2.6.19 887 67
2.6.20 730 75
2.6.21 838 68

All 2998 83

Table 8: Number of individual developers and employ-
ers

Factoring in the amount of time between each individ-
ual kernel releases and the number of developers and
employers ends up showing that there really is an in-
crease of the size of the community, as can be shown in
Table 9.

Despite this large number of individual developers,
there is still a small number who are doing the majority
of the work. Over the past two and one half years, the
top 10 individual developers have contributed 15 per-
cent of the number of changes and the top 30 developers

Kernel
Version

Number of
Developers

per day

Number of
Companies

per day

2.6.11 6.94 0.43
2.6.12 6.52 0.35
2.6.13 8.78 0.53
2.6.14 10.36 0.74
2.6.15 10.07 0.72
2.6.16 10.16 0.73
2.6.17 8.65 0.59
2.6.18 9.52 0.63
2.6.19 12.32 0.93
2.6.20 10.74 1.10
2.6.21 10.35 0.84

Table 9: Number of individual developers and employ-
ers over time



2007 Linux Symposium, Volume One • 243

have contributed 30 percent. The list of individual de-
velopers, the number of changes they have contributed,
and the percentage of the overall total can be seen in
Table 10.

Name
Number of
Changes

Percent of
Total

Al Viro 1326 2.2%
David S. Miller 1096 1.9%

Adrian Bunk 1091 1.8%
Andrew Morton 991 1.7%

Ralf Baechle 981 1.7%
Andi Kleen 856 1.4%

Russell King 788 1.3%
Takashi Iwai 764 1.3%

Stephen Hemminger 650 1.1%
Neil Brown 626 1.1%
Tejun Heo 606 1.0%

Patrick McHardy 529 0.9%
Randy Dunlap 486 0.8%

Jaroslav Kysela 463 0.8%
Trond Myklebust 445 0.8%

Jean Delvare 436 0.7%
Christoph Hellwig 435 0.7%

Linus Torvalds 433 0.7%
Ingo Molnar 429 0.7%

Jeff Garzik 424 0.7%
David Woodhouse 413 0.7%

Paul Mackerras 411 0.7%
David Brownell 398 0.7%

Jeff Dike 397 0.7%
Ben Dooks 392 0.7%

Greg Kroah-Hartman 388 0.7%
Herbert Xu 376 0.6%
Dave Jones 371 0.6%

Ben Herrenschmidt 365 0.6%
Mauro Chehab 365 0.6%

Table 10: Individual Kernel contributors

8 Who is Sponsoring the Work

Despite the broad use of the Linux kernel in a wide
range of different types of devices, and reliance of it
by a number of different companies, the number of indi-
vidual companies that help sponsor the development of
the Linux kernel remains quite small as can be seen by
the list of different companies for each kernel version in
Table 8.

The identification of the different companies was de-
duced through the use of company email addresses and

the known sponsoring of some developers. It is pos-
sible that a small number of different companies were
missed, however based on the analysis of the top con-
tributors of the kernel, the majority of the contributions
are attributed in this paper.

The large majority of contributions still come from in-
dividual contributors, either because they are students,
they are contributing on their own time, or their employ-
ers are not allowing them to use their company email
addresses for their kernel development efforts. As seen
in Table 11 almost half of the contributions are done by
these individuals.

Company Number of Percent of
Name Changes Total

Unknown 27976 47.3%
Red Hat 6106 10.3%

Novell 5923 10.0%
Linux Foundation 4843 8.2%

IBM 3991 6.7%
Intel 2244 3.8%
SGI 1353 2.3%

NetApp 636 1.1%
Freescale 454 0.8%
linutronix 370 0.6%

HP 360 0.6%
Harvard 345 0.6%

SteelEye 333 0.6%
Oracle 319 0.5%

Conectiva 296 0.5%
MontaVista 291 0.5%
Broadcom 285 0.5%

Fujitsu 266 0.4%
Veritas 219 0.4%

QLogic 218 0.4%
Snapgear 214 0.4%

Emulex 147 0.2%
LSI Logic 130 0.2%

SANPeople 124 0.2%
Qumranet 106 0.2%

Atmel 91 0.2%
Toshiba 90 0.2%

Samsung 82 0.1%
Renesas Technology 81 0.1%

VMWare 78 0.1%

Table 11: Company Kernel Contributions

9 Conclusion

The Linux kernel is one of the largest and most success-
ful open source projects that has ever come about. The



244 • Linux Kernel Development

huge rate of change and number of individual contrib-
utors show that it has a vibrant and active community,
constantly causing the evolution of the kernel to survive
the number of different environments it is used in. How-
ever, despite the large number of individual contributors,
the sponsorship of these developers seem to be consol-
idated in a small number of individual companies. It
will be interesting to see if, over time, the companies
that rely on the success of the Linux kernel will start to
sponsor the direct development of the project, to help
ensure that it remains valuable to those companies.

10 Thanks

The author would like to thank the thousands of individ-
ual kernel contributors, without them, papers like this
would not be interesting to anyone.

I would also like to thank Jonathan Corbet, whose
gitdm tool were used to create a large number of these
different statistics. Without his help, this paper would
have taken even longer to write, and not been as infor-
mative.

11 Resources

The information for this paper was retrieved di-
rectly from the Linux kernel releases as found
at the kernel.org web site and from the git
kernel repository. Some of the logs from the git
repository were cleaned up by hand due to email
addresses changing over time, and minor typos
in authorship information. A spreadsheet was
used to compute a number of the statistics. All
of the logs, scripts, and spreadsheet can be found
at http://www.kernel.org/pub/linux/
kernel/people/gregkh/kernel_history/


