
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Implementing Democracy
a large scale cross-platform desktop application

Christopher James Lahey
Participatory Culture Foundation

clahey@clahey.net

Abstract

Democracy is a cross-platform video podcast client. It
integrates a large number of functions, including search-
ing, downloading, and playing videos. Thus, it is a
large-scale application integrating a number of software
libraries, including a browser, a movie player, a bittor-
rent client, and an RSS reader.

The paper and talk will discuss a number of techniques
used, including using PyRex to link from python to C li-
braries, using a web browser and a templating system to
build the user interface for cross-platform desktop soft-
ware (including a different web browser on each plat-
form), and our object store used to keep track of every-
thing in our application, store our state to disk, and bring
updates to the UI.

1 Internet video

Internet video is becoming an important part of modern
culture, currently through video blogs, video podcasts,
and YouTube. Video podcasting gives everyone the abil-
ity to decide what they want to make available, but the
spread of such systems as YouTube and Google Video
suggest that large corporations will have a lot to say in
the future of internet video.

The most popular use of internet video right now is
YouTube. YouTube videos are popping up all over the
place. Unfortunately, this gives one company a lot of
power over content. It lets them take down whatever
they find inconvenient or easily block certain content
from reaching certain people.

Video podcasts are RSS feeds with links to videos. Pod-
casting allows the publisher to put whatever videos he
wants on his personal webspace. Podcasting clients
download these videos for display on different devices.

This gets around the problem of one company control-
ling everything. That is, except for the fact that the
most prominent podcast client is iTunes and it’s used
for downloading to iPods. Once again, the company has
the ability to censor.

Some folks in Worcester, Massachusetts saw this as a
problem and so sought funding and formed the non-
profit Participatory Culture Foundation. The goal of the
Participatory Culture Foundation is to make sure that ev-
eryone has a voice and that no one need be censored. We
are approaching this from a number of different angles.
We have a project writing tutorials for people that want
to make and publish internet video. We are in planning
for a server project to let people post their video pod-
casts. And most importantly, we write the Democracy
player.

The reason the player is so important to us is that we
want to make sure that publishing and viewing are in-
dependent. If they aren’t, then there are two types of
lock-in. Firstly, if a user wants to see a particular video,
they’re forced to use the particular publisher’s viewing
software. Secondly, once a user starts using a partic-
ular publisher’s viewing software, that publisher gains
control over what the viewer can see. These two could
easily join together in a feedback loop that leads to a
monopoly situation.

However, to separate publishing and viewing, we need
a standard for communication. RSS fills this role per-
fectly. In fact, it’s already in use for this purpose. The
role we want Democracy to fill is that of a good player
that encourages viewers to use RSS. Well, we also just
want it to be a great video player.

2 Democracy

Democracy’s main job is to download and play videos
from RSS feeds. We also decided to make it able to be

• 245 •



246 • Implementing Democracy

the heart of your video experience. Thus it plays local
videos, searches for videos on the internet, and handles
videos downloaded in your web browser.

To do all this we integrated a number of other tools.
We included other python projects wholesale, like feed-
parser and BitTorrent. We link to a number of stan-
dard libraries through either standard python interfaces
or through the use of Pyrex as a glue language.

For widest adoption, we decided it was important for
Democracy to be cross-platform. Windows and Mac
would get us the most users, but Linux is important to us
since we create free software. So far two of our new de-
velopers (myself included) have come from Linux-land
and one from OSX-land.

3 Major objects in Democracy

There are two major object types that we deal with:
Feeds and Items.

Feeds tend to be RSS feeds, but they can also be scrapes
of HTML pages, watches on local directories, and other
things. Since we don’t know at feed creation time
whether a URL will return an RSS feed or an HTML
page, we create a Feed object which is mainly a proxy
to a FeedImpl object that can be created later. python
makes this proxy action almost completely transparent.
We implement a __getattr__ handler which gets
called for methods and data that aren’t defined in the
Feed object. In this handler, we simply return the cor-
responding method or data for the FeedImpl object. We
use this trick in a couple of other similar proxy situations
in Democracy.

Items are individual entries in an RSS feed. Most of
them represent a video that democracy could potentially
download. You can also use democracy to download
either directories of multiple videos or non-video files.
They can be either available, downloading, or down-
loaded. We also have FileItems which are used to des-
ignate local files that don’t have a corresponding URL.
These can either be the children videos of a directory we
download, or files found on the local disk. We have spe-
cial feeds that monitor a local directory and create any
found files. You can also pass Democracy a filename
and it will create an item for that video.

We’ve spent a lot of time tweaking the behavior of all of
these objects. One of the things we’ve discovered is that

the more features that we have, the harder new features
are to implement. Anyone who has any experience at all
shouldn’t be surprised to hear this, but it’s amazing the
difference between hearing about it in books and getting
specific examples in your work.

4 Object Store

To keep track of everything that is happening in our ap-
plication, we have a collection of objects. Every impor-
tant object has a global ID. This includes all feeds and
items, as well as playlists and channel guides.

However, we need fast access to different sets of objects.
We need a list of all items in a particular feed, for exam-
ple. To implement this, we have a system of views into
the database. Each view acts like another database and
can thus have subviews. We have a number of different
view types. The first is filters, which are subsets of the
database. The second is maps, which create a new ob-
ject for each member of the original database. The third
is indexes, which create a whole bunch of subdatabases
and put each item in one of the subdatabases. Finally
we have sorts, though these are redundant, as the other
view types can be sorted as well.

The other important part of the object database is that
you can monitor a view for changes. We send signals on
new objects being added or removed. Each object has
a signalChange function which signals that the data in
that object has changed. You monitor this by watching
for changes on a database view.

This in-memory object database has worked quite well
for us. We have a list of all objects that we care about,
while still being able to have lists of the objects that we
care about right now. An example of a use of views is
that each feed doesn’t keep a list of its items. It just has
a view into the database and as the items get created, the
feed gets that item added to its item list. However, the
biggest use of views is in our cross-platform UI.

5 Cross Platform UI

To implement the cross-platform user interface, we use
HTML with CSS. We have two main HTML areas and
platform-specific menus and buttons. The HTML is
generated automatically based on the objects in our ob-
ject database.



2007 Linux Symposium, Volume One • 247

We start with XML templates that are compiled into
python code that in turn generates HTML. You can pass
in plain XHTML and it will work. To start with, we had
a series of key-value pairs that were set in python code
and could then be accessed within the templates. That
proved to be a pain of having to change the python ev-
ery time we needed to change a referenced key, so we
switched to simply allowing the python to be embedded
directly in the XML. This is safe, since we provide all
the XML and don’t take any from the outside world, and
it’s much more maintainable.

The template system can do a number of different things
with the results of the python. It can embed the result
directly in the HTML. It can encode as a string and then
embed the result in the HTML.

Slightly more interestingly, it can hide a chunk of
HTML based on the return value. It can update a sec-
tion of the template whenever a view changes. The most
interesting part though is that it can repeat a section of
HTML for every object in a view.

repeatForView takes a chunk of template and re-
peats it for every object in a view. When an object is
added to or removed from the view, it adds or removes
the corresponding HTML. When an object changes, it
recalculates the HTML for that object.

Some of our team members are not entirely happy with
HTML as our solution. It means working within the
system that the browser gives us. It also means sup-
porting both OSX’s webkit and mozilla with our code
(we use gtkmozembed on Linux and xul on Win-
dows.) Finally, it sticks us with xul on Windows. We
originally tried using the Windows framework by hand.
We decided this was just too much work from python.
When that didn’t work, we tried using gtk and embed-
ding mozilla, but found that gtkmozembed doesn’t
work on Windows. Finally we switched to xul, but
xul is much harder to code to than either OSX or gtk.
We may switch to using gtk+ on Windows, and to sup-
port that, we would switch to using some other render-
ing system, perhaps our own XML language that maps
to cairo on gtk+ and something else on OSX.

I personally would prefer to stick with HTML plus CSS.
It gives us a wide range of developers who know our
rendering model. It gives us a bunch of free code to do
the rendering. The only problem is getting one of those
sets of code to work on Windows.

6 LiveStorage

To save our database to disk, we originally just pickled
the object database to disk. Python pickle is a library
that takes a python object and encodes all the data in
it to an on-disk format. The same library will then de-
code that data and create the corresponding objects in
memory again. It handles links to other objects includ-
ing reference loops and it handles all the standard string
and number data types.

This worked as long as we didn’t change the in-memory
representation of any of our objects. We worked around
a number of different issues, but in the end we decided
to remove some classes, and pickle throws an exception
if it has an object on disk that doesn’t have a correspond-
ing class in memory.

The next step was to add a system that copied the data
into python dictionaries and then pickled that created
object. To do this, we created a schema object which
describes what sort of data gets stored. This makes re-
moving a field trivial. The system that copies the data
out of the python dictionaries at load time simply ig-
nores any fields not listed in the schema.

Adding fields is a bit more complicated, but to solve
this, we store a version number in the database. Every
time we change the schema, we increment this version
number. At load time, the system compares the version
in the database to the version in the running applica-
tion and runs a series of upgrades on the data. These
upgrades happen on the dictionary version of the ob-
jects and thus involve no running code. They can also
remove or add objects, which allows us to remove old
classes that aren’t necessary and add objects that are.

Our next problem with data storage was that it was super
slow to save the database. The larger the database got,
the slower it was, to the tune of 45 seconds on large
data sets, and we want to save regularly so that the user
doesn’t lose any data.

To solve this, we decided to save each object individu-
ally. Unfortunately, the objects referred to one another.
Pickle handles this just fine when you ask it to pickle all
the objects at once, but it isn’t able to do that when you
want to pickle just a single object (in fact, it will basi-
cally pickle every object related to the one you requested
and then at load time will not connect the objects saved
in different pickle runs.) The biggest example of this
was that each feed kept a list of the items in that feed.



248 • Implementing Democracy

So the first step was to make the objects not refer to
each other. For the most part we wanted to do this
by just replacing references to other objects with their
database ID. This works, but we also decided that we
didn’t want to keep redundant data. For example, a sim-
ple replacement of references with IDs in the database
would lead to a feed having a list of items in that feed
and the items each having the ID of their feed. Luck-
ily, our in-memory database already had filters. We just
made the feeds not store their children, and instead the
list of children is simply a database filter.

After this, we replaced the single pickle with a Berkeley
database storing the list of objects. We still had to worry
about keeping changes in sync. For example, when first
creating a feed, you need to make sure that all of the
items are saved as well. To solve this, we simply stored
the list of changed items and did the actual save to the
database in a timeout loop. We used a transaction, and
since the old database save happened in a timeout loop
as well, we have the exact same semantics for syncing
of different objects.

This worked great for a good while. We even used
the schema upgrade functions to do things other than
database upgrades, such as to automatically work
around bugs in old versions. In fact we had no prob-
lem with this on Linux or Windows, but on Mac OSX,
we got frequent reports of database errors on load and
many people lost their data. We tried reproducing the
error to debug it and we asked about the issue on Berke-
ley DB’s usenet groups (where we’d gotten useful infor-
mation before,) but there was no response. From there
we decided to switch to sqlite. We’re still using it to
just store a list of pickled objects, but it’s working fairly
well for us.

The next step we’d like to take is not to have the entire
database in memory at all times. Having it in memory
increases our memory usage and limits the number of
feeds a user can monitor. We’d like to change to using
a more standard relational database approach to storing
our data. This would, however, completely change how
we access our data. We’ve decided that the size of this
change means we should wait until after 1.0 to make this
change.

There are some other major obstacles to making this
change other than the number of pieces of code that
would have to change. The first is that we use change
notification extensively. An object changes and people

interested in that object are notified. Similarly, objects
added to or removed are signalled. To get around this,
we would need either a relational database that does
change notifications of this sort, or we would need to
add a change notification layer on top of the database.
Currently these notifications happen based on the differ-
ent filters in our database, so we would need to dupli-
cate the SQL searches that we do as monitoring code to
know who needs to be signalled. For this reason, we’re
hoping that we find a relational database that will han-
dle live sql searches and send notification of changes,
additions, and removals.

The second obstacle is less of a problem with the change
and more a reason that it won’t help. Specifically, we
touch most of the database at load time anyway. It would
mean that we could start the user interface having loaded
less data, but we queue an update of every RSS feed at
load time. To run this update, we need to load all the
items in that feed so we can compare them to the items
we download (so that we don’t create duplicate items.)
At that point we could unload all that data.

7 BitTorrent

We act as a bittorrent client as well. This can either be
by loading a BitTorrent file by hand or by including it
in an RSS player. As a user, I found it very pleasant to
have things just download. In fact, at first, I didn’t real-
ize that I was using a BitTorrent client. I think this can
help increase usage of BitTorrent since people won’t be
intimidated by technology if they don’t know they’re us-
ing it. Another good example of this is the downloader
used for World of Warcraft.

Unfortunately, the primary BitTorrent source code has
become non-free software. For this reason, we eventu-
ally switched to using BitTornado. Unfortunately Bit-
Tornado introduced a number of bugs, and we decided
that for us, fixing those bugs would be harder than recre-
ating the new features that BitTornado supplied. We still
don’t have all the features that we want, but in switching
back to the old BitTorrent code, we’ve got a codebase
that tends to work quite well.

Looking into the future, we’d love to see a free software
BitTorrent client take off. Post 1.0, we’re considering
adding a bunch of new BitTorrent features and proto-
col improvements to the code base we’re currently us-
ing. Our goal would certainly be to maintain the code



2007 Linux Symposium, Volume One • 249

as a separate project so we don’t waste our time and so
that the free software community gets a good BitTorrent
client. Of course, this would depend on other develop-
ers, but we will see what happens.

8 FeedParser

For parsing RSS feeds, we’ve had a huge amount of
success with feedparser.py. It’s a feed parser de-
signed to be used either separately or as a library. It
parses the RSS feeds and gives them to us as useful data
structures. So far the library has just worked for us in
almost every situation.

The only thing we’ve had trouble with has been that
feedparser derives a new class based on python dictio-
naries. It does this so that it can treat a number of dif-
ferent keys as the same key. For instance, url and
location are treated as the same key, so that if you
set either one of them, parser_dict["url"] will
give the value. Unfortunately, this aggregation is done
at read time instead of write time. This makes the dic-
tionary a bit slower to use, but more importantly, it’s
meant that the == operator doesn’t have the behavior
that you might naively expect. We’ve had to write a
fairly complicated replacement for it which is proba-
bly much slower than == on two dictionaries. We may
change this behavior going forward to change the keys
when writing to the dictionaries instead, but I will resist
it until we have profiling data that shows that it slows
things down.

9 Unicode

python currently has two classes to represent strings.
The first is str, which is a list of bytes, and the second
is unicode, which is a list of characters. These two
classes automatically convert back and forth as needed,
but this conversion can both get the wrong value and can
cause exceptions. This usually happens because the au-
tomatic conversion isn’t quite the conversion you were
expecting. It actually assumes ASCII on many machines
and just throws an exception when you mix a str ob-
ject and a unicode object with characters greater than
127.

Unfortunately, these sorts of bugs rarely show up for an
English speaker because most text is ASCII and thus
converts correctly. Therefore the bugs can be hard to
reproduce and since can happen all over the place.

A reasonable solution might be to use unicode ev-
erywhere. This was our general policy for a long time,
but there were exceptions. The first was developer for-
getfulness. When you write a literal string in python,
unless you specify that it’s unicode, it creates a str
object. The second exception is that there are certain
python classes that only work with str objects, such
as cStringIO. For these classes we would convert
into strs of a certain encoding, but we would some-
times forget and we would do multiple conversion steps
in some cases. Thirdly, there are OS differences. Specif-
ically, filenames are actually different classes on differ-
ent OSes. When you do a listdir on Windows, you
get unicode objects in the returned list, but on Linux
and OSX, you get str objects.

Our recently introduced policy is twofold. First is
that you can use different types of objects in differ-
ent places. We define three object types. There’s
str, there’s unicode, and there’s filenameType.
filenameType is defined in the platform-specific
code, so it is different on the different platforms.

In the platform-specific code, we also provide con-
version functions between the different types. There’s
unicodeToFilename and filenameToUnicode
which do the obvious conversion. They do not do re-
versible conversions, but instead provide a conversion
that a user would be happy to see. We also have
makeURLSafe, and because we need to undo that
change, unmakeURLSafe. unmakeURLSafe
(makeURLSafe(obj)) == obj if obj is a
filenameType. We will see if these conversion
functions are sufficient or if we need to make more
functions like this.

The second part of our policy is that we enforce the
types passed to and returned from many functions.
We’ve introduced functions that take a passed-in object
and check that they’re of the right type and we’ve in-
troduced decorators that check the return value of the
method. In both cases, an exception is thrown if an ob-
ject is of the wrong type. This means that we see many
bugs much sooner than if we just waited for them to be
found by people using other languages.

There has been a period of transition to these new poli-
cies, since all the exposed bugs have to be fixed. We’re
still going through this transition phase, but it’s going
well so far.



250 • Implementing Democracy

10 More info

You can learn more about the democracy
project at getdemocracy.com and more
about the Participatory Culture Foundation at
participatoryculture.org.


