
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



“Turning the Page” on Hugetlb Interfaces

Adam G. Litke
IBM

agl@us.ibm.com

Abstract

HugeTLBFS was devised to meet the needs of large
database users. Applications use filesystem calls to ex-
plicitly request superpages. This interface has been ex-
tended over time to meet the needs of new users, leading
to increased complexity and misunderstood semantics.
For these reasons, hugeTLBFS is unsuitable for poten-
tial users like HPC, embedded, and the desktop. This
paper will introduce a new interface abstraction for su-
perpages, enabling multiple interfaces to coexist, each
with separate semantics.

To begin, a basic introduction to virtual memory and
how page size can affect performance is described.
Next, the differing semantic properties of common
memory object types will be discussed with a focus on
how those differences relate to superpages. A brief his-
tory of hugeTLBFS and an overview of its design is pre-
sented, followed by an explanation of some of its prob-
lems. Next, a new abstraction layer that enables alter-
native superpage interfaces to be developed is proposed.
We describe some extended superpage semantics and a
character device that could be used to implement them.
The paper concludes with some goals and future work
items.

1 Introduction

Address translation is a fundamental operation in virtual
memory systems. Virtual addresses must be converted
to physical addresses using the system page tables. The
Translation Lookaside Buffer (TLB) is a hardware cache
that stores these translations for quick retrieval. While
system memory sizes increase exponentially, the TLB
has remained small. TLB coverage, the percent of total
virtual memory that can be translated into physical ad-
dresses directly through the cache, has decreased by a
factor of 100 in the last ten years [4]. This has resulted
in a greater number of TLB misses and reduced system
performance.

This paper will discuss extensions provided by hardware
which can serve to alleviate TLB coverage issues. Prop-
erly leveraging these extensions in the operating sys-
tem is challenging due to the persistent trade-offs be-
tween code complexity, performance benefits, and the
need to maintain system stability. We propose an exten-
sible mechanism that enables TLB coverage issues to be
solved without adverse effects.

2 Hardware Management

Virtual memory is a technique employed by most mod-
ern computer hardware and operating systems. The con-
cept can be implemented in many ways but this paper fo-
cuses on the Linux virtual memory manager (VM). The
physical memory present in the system is divided into
equally-sized units called page frames. Memory within
these page frames can be referred to by a hardware-
assigned location called a physical address. Only the
operating system kernel has direct access to page frames
via the physical address. Programs running in user mode
must access memory through a virtual address. This ad-
dress is software-assigned and arbitrary. The VM is re-
sponsible for establishing the mapping from virtual ad-
dresses to physical addresses so that the actual data in-
side of the page frame can be accessed. In addition to
address translation, the VM is responsible for knowing
how each page frame is being used. Quite a few data
structures exist for tracking this information. A page ta-
ble entry (PTE), besides storing a physical address, lists
the access permissions for a page frame. The assigned
permissions are enforced at the hardware level. A struct
page is also maintained for each page frame in the sys-
tem [2]. This structure stores status information such as
the number of current users and whether the page frame
is undergoing disk I/O.

When a program accesses a block of memory for the
first time, a translation will not be available to the CPU
so control is passed to the VM. A page frame is allocated

• 277 •



278 • “Turning the Page” on Hugetlb Interfaces

for the process and a PTE is inserted into the page ta-
bles. The TLB is filled with the new virtual to physical
translation and execution continues. Subsequent refer-
ences to this page will trigger a TLB look-up in hard-
ware. A TLB hit occurs if the translation is found in
the cache and execution can continue immediately. Fail-
ure to find the translation is called a TLB miss. When a
TLB miss occurs, a significant amount of overhead is
incurred. The page tables must be traversed to find the
page frame which results in additional memory refer-
ences.

The TLB is conceptually a small array, each slot con-
taining translation information for one page of memory.
Over time it has remained small, generally containing
128 or fewer entries [6]. On a system where the page
size is 4 KiB, a TLB with 128 slots could cache transla-
tions for 512 KiB of memory. This calculation provides
a measure of TLB reach. Maximizing TLB reach is a
worthy endeavor because it will reduce TLB misses.

The increasing complexity of today’s applications re-
quire large working sets. A working set is the smallest
collection of information that must be present in main
memory to ensure efficient operation of the program [1].
When TLB reach is smaller than the working set, a prob-
lem may arise for programs that do not exhibit locality
of reference. The principle states that data stored in the
same place is likely to be used at the same time. If a
large working set is accessed sparsely, the limited num-
ber of TLB entries will suffer a cycle of eviction and
refilling called TLB thrashing.

Scientific applications, databases, and various other
workloads exhibit this behavior and the resulting
marginalization of the TLB. One way to mitigate the
problem is to increase TLB reach. As a simple prod-
uct, it can be increased either by enlarging the TLB or
by increasing the page size. Hardware vendors are ad-
dressing the issue by devoting more silicon to the TLB
and by supporting the use of an increasing number of
page sizes. It is up to the operating system to leverage
these hardware features to realize the maximum bene-
fits.

2.1 Superpages

Superpages is the term used to refer to any page with a
size that is greater than the base page size. Significant
research has been done to develop algorithms for, and

12 bits

2^21 = 2M

21 bits

2^12 = 4k

9 bits9 bits2 bits

9 bits2 bits

pmd

pgd

pte

pte

pgd
offset

pmd
offset

pte
offset

page
offset

pgd
offset

pte
offset

page
offset

Figure 1: Example page table structure given different
page sizes

measure the performance of superpages. Some work-
loads such as scientific applications and large databases
commonly see gains between 10 and 15 percent when
using superpages. Gains as high as 30% have been mea-
sured in some cases [5]. Superpages are ideal for an
application that has a persistent, large, densely accessed
working set. The best candidates tend to be computa-
tionally intensive.

Virtual memory management with superpages is more
complex. Due to the way a virtual address indexes the
page table structures and the target page, multiple page
sizes necessitate multiple page table formats. Figure 1
contrasts the page table layout for two different page
sizes using the x86 architecture as an example. As the
figure shows, a virtual address is divided into a series of
offsets. The page offset must use enough bits to refer-
ence every byte in the page to which the virtual address
refers. A 4 KiB page requires 12 bits but a 2 MiB page
needs 21. Since, in this example, the virtual address is
only 32 bits, supporting a big page offset necessitates
changes to the other offsets. In this example, the pmd
page table level is simply removed which results in a
two level page table structure the 2 MiB pages.

For most workloads, superpages have no effect or may
actually hinder performance. Due to internal fragmen-
tation, larger page sizes can result in wasted memory
and additional, unnecessary work for the operating sys-
tem. For example, to satisfy security requirements a
newly allocated page must be filled with zeroes before
it is given to a process. Even if the process only intends
to use a small portion of the page, the entire page must
be allocated and zeroed. This condition is worst for ap-
plications that sparsely access their allocated memory.



2007 Linux Symposium, Volume One • 279

Although superpages are complex and improve perfor-
mance only for programs with a specific set of charac-
teristics, where they do help the impact is great. For
this reason, any implementation of superpages should be
flexible to maximize performance potential while plac-
ing as small of a burden on the system as possible.

3 Address Space Management

By insulating the application from the physical mem-
ory layout, the kernel can regulate memory usage to im-
prove security and performance. Programs can be guar-
anteed private memory allowing sharing only under con-
trolled circumstances. Optimizations, such as automat-
ically sharing common read-only data among processes
is made possible. This leads to memory with different
semantic characteristics, two of which are particularly
relevant when discussing superpages and their imple-
mentation in Linux.

3.1 Shared Versus Private

A block of memory can be either shared or private to
a process. When memory is being accessed in shared
mode, multiple processes can read and, depending on
access permissions, write to the same set of pages which
are shared among all the attached processes. This means
that modifications made to the memory by one process
will be seen by every other process using that memory.
This mode is clearly useful for things such as interpro-
cess communication.

Memory is most commonly accessed with private se-
mantics. A private page appears exclusive to one ad-
dress space and therefore only one process may modify
its contents. As an optimization, the kernel may share a
private page among multiple processes as long as it re-
mains unmodified. When a write is attempted on such a
page it must first be unshared. This is done by creating
a new copy of the original page and permitting changes
only to the new copy. This operation is called copy on
write (COW) [2].

3.2 File-backed Versus Anonymous

The second semantic characteristic concerns the source
of the data that occupies a memory area. Memory can
be either file-backed or anonymous. File-backed mem-
ory is essentially an in memory cache of file data from

a disk or other permanent storage. When pages of this
memory type are accessed, the virtual memory manager
transparently performs any disk I/O necessary to ensure
the in memory copy of the data is in sync with the mas-
ter version on disk. Maintaining the coherency of many
copies of the same data is a significant source of com-
plexity in the Linux memory management code.

Anonymous memory areas generally have no associated
backing data store. Under memory pressure, the data
may be associated with a swap file and written out to
disk, but this is not a persistent arrangement as with file-
backed areas. When pages are allocated for this type of
memory, they are filled with zeroes.

Linux is focused on furnishing superpage memory with
anonymous and shared semantics. This means that su-
perpages can be trivially used with only a small subset
of the commonly used memory objects.

3.3 Memory Objects

Memory is used by applications for many different pur-
poses. The application places requirements on each
area, for example the code must be executable and the
data writable. The operating system enforces additional
constraints, such as preventing writes to the code or pre-
venting execution of the stack. Together these define the
required semantics for each area.

The stack is crucial to the procedural programming
model. It is organized into frames, where each frame
stores the local variables and return address for a func-
tion in the active function call chain. Memory in this
area is private and anonymous and is typically no larger
than a few base pages. The access pattern is localized
since executing code tends to only access data in its own
frame at the top of the stack. It is unlikely that such a
small, densely accessed area would benefit from super-
pages.

Another class of objects are the memory resident com-
ponents of an executable program. These can be fur-
ther divided into the machine executable code (text) and
the program variables (data). These objects use file-
backed, private memory. The access pattern depends
heavily on the specific program, but when they are suf-
ficiently large, superpages can provide significant per-
formance gains. The text and data segments of shared
libraries are handled slightly different but have similar
semantic properties to executable program segments.



280 • “Turning the Page” on Hugetlb Interfaces

Program Text

Program Data and BSS

Heap

Shared Memory
Segments

Shared Libraries

Text

Data

Text

Data

Text

Data

File-backed
Mmap Areas

Private Shared
Writable

Shared
Read-only

Anonymous 
Mmap Areas Private Shared

Stack

Figure 2: Memory object types

The heap is used for dynamic memory allocation such
as with malloc. It is private, anonymous memory and
can be fairly trivially backed with superpages. Programs
that use lots of dynamic memory may see performance
gains from superpages.

Shared memory segments are used for interprocess
communication. Processes attach them by using a
global shared memory identifier. Database management
systems use large shared memory segments to cache
databases in memory. Backing that data with super-
pages has demonstrated substantial benefits and inspired
the inclusion of superpage support in Linux.

It is already possible to use superpages for some mem-
ory types directly. Shared memory segments and spe-
cial, explicit memory maps are supported. By using li-
braries, superpages can be extended in a limited way to
a wider variety of memory objects such as the heap and
program segments.

4 Introduction to HugeTLBFS

In 2002, developers began posting patches to make su-
perpages available to Linux applications. Several ap-
proaches were proposed and, as a result of the ensuing
discussions, a set of requirements evolved. First and
foremost, the existing VM code could not be unduly
complicated by superpage support. Second, databases
were the application class most likely to benefit from
superpage usage at the time, so the interface had to be
suitable for them. HugeTLBFS was deemed to satisfy
these design requirements and was merged at the end of
2002.

HugeTLBFS is a RAM-based filesystem. The data
it contains only exists within superpages in mem-
ory. There is no backing store such as a hard disk.
HugeTLBFS supports one page size called a huge page.
The size of a huge page varies depending on the archi-
tecture and other factors. To access huge page backed
memory, an application may use one of two methods.
A file can be created and mmap()ed on a mounted
hugeTLBFS filesystem, or a specially created shared
memory segment can be used. HugeTLBFS continues to
serve databases well, but other applications use memory
in different ways and find this mechanism unsuitable.

The last few years have seen a dramatic increase in en-
thusiasm for superpages from the scientific community.
Researchers run multithreaded jobs to process massive
amounts of data on fast computers equipped with huge
amounts of memory. The data sets tend to reside in
portions of memory with private semantics such as the
BSS and heap. Heavy usage of these memory areas is a
general characteristic of the Fortran programming lan-
guage. To accommodate these new users, private map-
ping support was added to hugeTLBFS in early 2006.
LibHugeTLBFS was written to facilitate the remapping
of executable segments and heap memory into huge
pages. This improved performance for a whole new
class of applications, but for a price.

For shared mappings, the huge pages are reserved at cre-
ation time and are guaranteed to be available. Private
mappings are subject to non-deterministic COW opera-
tions which make it impossible to determine the number
of huge pages that will actually be needed. For this rea-
son, successful allocation of huge pages to satisfy a pri-
vate mapping is not guaranteed. Huge pages are a scarce
resource and they frequently run out. If this happens
while trying to satisfy a huge page fault, the application



2007 Linux Symposium, Volume One • 281

will be killed. This unfortunate consequence makes the
use of private huge pages unreliable.

The data mapped into huge pages by applications is ac-
cessible in files via globally visible mount points. This
makes it easy for any process with sufficient privileges
to read, and possibly modify, the sensitive data of an-
other process. The problem can be partially solved
through careful use of multiple hugeTLBFS mounts
with appropriate permissions. Despite safe file per-
missions, an unwanted covert communication channel
could still exist among processes run by the same user.

HugeTLBFS has become a mature kernel interface with
countless users who depend on consistency and stability.
Adapting the code for new superpage usage scenarios,
or even to fix the problems mentioned above has become
difficult. As hardware vendors make changes to solve
TLB coverage issues such as adding support for multiple
superpage sizes, Linux is left unable to capitalize due to
the inflexibility of the hugeTLBFS interface.

For a real example of these problems, one must
only look back to the addition of demand faulting
to hugeTLBFS. Before enablement of this feature,
huge pages were always prefaulted. This means that
when huge pages were requested via an mmap() or
shmat() system call, all of them were allocated and
installed into the mapping immediately. If enough pages
were not available or some other error occurred, the sys-
tem call would fail right away. Demand faulting de-
lays the allocation of huge pages until they are actually
needed. A side effect of this change is that huge page
allocation errors are delayed along with the faults.

A commercial database relied on the strict accounting
semantics provided by prefault mode. The program
mapped one huge page at a time until it failed. This ef-
fectively reserved all available huge pages for use by the
database manager. When hugeTLBFS switched to de-
mand faulting, the mmap() calls would never fail so the
algorithm falsely assumed an inflated number of huge
pages were available and reserved. Even with a smarter
huge page reservation algorithm, the database program
could be killed at a non-deterministic point in the future
when the huge page pool is exhausted.

5 Page Table Abstraction

HugeTLBFS is complex and its semantics are rigid.
This makes it an unsuitable vehicle for future develop-
ment. To quantify the potential benefits of expanded

System Calls

User Space

VFS

Virtual Memory
Manager

Page Tables

Hardware

Address Space Operations

File Operations

VM Operations

ext2fs
Address Space Operations

File Operations

VM Operations

jfs
Address Space Operations

File Operations

VM Operations

Page Table Operations

hugetlbfs

Figure 3: How hugeTLBFS interacts with the rest of the
kernel

superpage usage, a mechanism for testing competing
and potentially incompatible semantics and interfaces
is needed. Making this possible requires overriding the
superpage-related special cases that are currently hard-
wired to hugeTLBFS.

In finding a solution to this problem, it is important to
remember the conditions that grounded the development
of hugeTLBFS. Additional complexity cannot be added
to the VM. Transparent, fully-integrated superpage sup-
port is thus an unrealistic pursuit. As with any kernel
change, care must be taken to not disturb existing users.
The behavior of hugeTLBFS must not change and per-
formance regressions of any kind must be avoided. Fur-
ther, a complete solution must fully abstract existing
special cases but remain extensible.

Like any other filesystem, hugeTLBFS makes use of
an abstraction called the virtual filesystem (VFS) layer.
This object-oriented interface is what makes it possible
for the VM to consistently interact with a diverse array
of filesystems. Many of the special cases introduced by
supporting superpages are hidden from the VM through



282 • “Turning the Page” on Hugetlb Interfaces

hugeTLBFS’ effective use of the VFS API. This inter-
face was not designed to solve page size issues so some
parts of the kernel remain hugeTLBFS-aware. Most of
these cases are due to the need for an alternate page table
format for superpages. Figure 3 shows how hugeTLBFS
fits into the VFS layer as compared to other filesystems.

Taking the VFS layer as inspiration, we propose an ab-
straction for page table operations that is capable of un-
wiring the remaining hugeTLBFS-specific hooks. It is
simply a structure of six function pointers that fully rep-
resent the set of special page table operations needed.

fault() is called when a page fault occurs somewhere
inside a VMA. This function is responsible for finding
the correct page and instantiating it into the page tables.

copy_vma() is used during fork to copy page table
entries from a VMA in the parent process to a VMA in
the child process.

change_protection() is called to modify the pro-
tection bits of PTEs for a range of memory.

pin_pages() is used to instantiate the pages in a
range of userspace memory. The kernel is not gen-
erally permitted to take page faults. When accessing
userspace, the kernel must first ensure that all pages in
the range to be accessed are present.

unmap_page_range() is needed when unmapping
a VMA. The page tables are traversed and all instan-
tiated pages for a given memory range are unmapped.
The PTEs for the covered range are cleared and any
pages which are no longer in use are freed.

free_pgtable_range() is called after all of the
PTEs in a mapping are cleared to release the pages that
were used to store the actual page tables.

5.1 Evaluating the Solution

The page table operations produce a complete and ex-
tensible solution. All the infrastructure is in place to
enable hugeTLBFS to be built as a module, further sep-
arating it from the core VM. Other independent super-
page interface modules can be added to the system with-
out causing interference.

The implementation is simple. The existing,
hugeTLBFS page table manipulation functions are

collected into an operations structure without modi-
fying them in any way. Instead of calling hard-wired
functions, the function to call is looked up in the page
table operations. Changing only these two elements
ensures that hugeTLBFS behavior is unchanged.

Superpages exist solely for performance reasons so an
implementation that is inefficient serves only to under-
mine its own existence. Two types of overhead are
considered with respect to the proposed changes. One
pointer will be added to the VMA. Already, this struc-
ture does not fit into a cache line on some CPUs, so
care must be taken to place the new field at a sensi-
ble offset within the structure definition. To this end,
the pagetable_ops pointer has been placed near the
vm_ops and vm_flags fields, which are also used
frequently when manipulating page tables.

The second performance consideration is related to the
pointer indirection added when a structure of function
pointers is used. Instead of simply jumping to an ad-
dress that can be determined at link time, a small amount
of additional work is required. The address of the as-
signed operations is looked up in the VMA. This ad-
dress, plus an offset, is dereferenced to yield the ad-
dress of the function to be called. VMAs that do not
implement the page table operations do not incur any
overhead. Instead of checking vm_flags for VM_
HUGETLB, pagetable_ops is checked for a NULL
value.

6 Using the Abstraction Interface

With a small amount of simple abstraction code, the ker-
nel has become more flexible and is suitable for further
superpage development. HugeTLBFS and its existing
users remain undisturbed and performance of the sys-
tem has not been affected in any measurable way. We
now describe some possible applications of this new ex-
tensible interface.

A character device is an attractive alternative to the
existing filesystem interface for several reasons. Its
semantics provide a more natural and secure method
for allocating anonymous, private memory. The inter-
face code is far simpler than that of hugeTLBFS which
makes it a much more agile base for the following ex-
tensions.

The optimal page size for a particular memory area de-
pends on many factors such as: total size, density of



2007 Linux Symposium, Volume One • 283

struct pagetable_operations_struct page_pagetable_ops = {
.copy_vma = copy_hugetlb_page_range,
.pin_pages = follow_hugetlb_page,
.unmap_page_range = unmap_hugepage_range,
.change_protection = hugetlb_change_protection,
.free_pgtable_range = hugetlb_free_pgd_range,
.fault = page_fault,

};

Figure 4: A sample page table operations structure

access, and frequency of access. If the page size is
too small, the system will have to service more page
faults, the TLB will not be able to cache enough virtual
to physical translations, and performance will suffer. If
the page size is too large, both time and memory are
wasted. On the PowerPC R© architecture, certain proces-
sors can use pages in sizes of 4KiB, 64KiB, 16MiB, and
larger. Other platforms can also support more than the
two page sizes Linux allows. Architecture specific code
can be modified to support more than two page sizes at
the same time. Fitted with a mechanism to set the de-
sired size, a character device will provide a simple page
allocation interface and make it possible to measure the
effects of different page sizes on a wide variety of appli-
cations.

Superpages are a scarce resource. Fragmentation of
memory over time makes allocation of large, contiguous
blocks of physical memory nearly impossible. Without
contiguous physical memory, superpages cannot be con-
structed. Unlike with normal pages, swap space cannot
be used to reclaim superpages. One strategy for dealing
with this problem is demotion. When a superpage al-
location fails, a portion of the process’ memory can be
converted to use normal pages. This allows the process
to continue running in exchange for a sacrifice of some
of the superpage performance benefits.

Selecting the best page size for the memory areas of a
process can be complex because it depends on factors
such as application behavior and the general system en-
vironment. It is possible to let the system choose the
best page size based on variables it can monitor. For ex-
ample, a population map can be used to keep track of
allocated base pages in a memory region [5]. Densely
populated regions could be promoted to superpages au-
tomatically.

6.1 A Simple Character Device

The character device is a simple driver modeled after
/dev/zero. While the basic functionality could be
implemented via hugeTLBFS, that would subject it to
the functional limitations previously described. Addi-
tionally, it could not be used to support development of
the extensions just described. For these reasons, the im-
plementation uses page table abstraction and is indepen-
dent of hugeTLBFS.

The code is self contained and can be divided into three
distinct components. The first component is the stan-
dard infrastructure needed by all drivers. This device
is relatively simple and needs only a small function to
register with the driver layer.

The second component is the set of device-specific
structures that define the required abstracted operations.
Figure 4 shows the page table operations for the charac-
ter device. Huge page utility functions are already well
separated from the hugeTLBFS interface which makes
code reuse possible. Five of the six page table opera-
tions share the same functions used by hugeTLBFS.

The third component is what makes this device unique.
It handles page faults differently than hugeTLBFS so
a special fault() function is defined in the page
table operations. This function is simpler than the
hugeTLBFS fault handler because it does not need to
handle shared mappings or filesystem operations such
as truncation. Most of the proposed semantic changes
can be implemented by further modifying the fault han-
dler.

7 Conclusions

The page table operations abstraction was developed
to enable advanced superpage development and work



284 • “Turning the Page” on Hugetlb Interfaces

around some problems in hugeTLBFS. It does not alter
the behavior of the current interface nor complicate the
kernel in any significant way. No performance penalty
could be measured. Work on the topics previously de-
scribed can now begin.

The described changes have also led to some general
improvements in the way hugeTLBFS interacts with
the rest of the kernel. By collecting a set of dispersed
hugeTLBFS-specific page table calls into one structure,
the list of overloaded operations becomes clear. This
API, when coupled with other pending cleanups, re-
moves hard-coded special cases from the kernel. The
result is a hugeTLBFS implementation that is even fur-
ther “on the side” and decoupled from the core memory
manager.

8 Future Work

During development of the page table abstraction inter-
face and the character device, a few additional oppor-
tunities to clean up the interface between hugeTLBFS
and the rest of the kernel became apparent. Every effort
should be made to extricate the remaining hugeTLBFS
special cases from the kernel. Moving superpage-
related logic behind the appropriate abstractions makes
for a simpler VM and at the same time enables richer
superpage support.

The work presented in this paper enables a substantial
body of research and development using Linux. We
intend to implement different superpage semantics and
measure their performance effects across a variety of
workloads and real applications. If good gains can be
achieved with reasonable code we hope to see those
gains realized outside of our incubator in production
kernels.

A separate effort to reduce memory fragmentation is un-
derway [3]. If this body of work makes it into the kernel,
it will have a positive effect on the usability of super-
pages in Linux. When contiguous blocks of physical
memory are readily available, superpages can be allo-
cated and freed as needed. This makes them easier to
use in more situations and with greater flexibility. For
example, page size promotion and demotion become
more effective if memory can be allocated directly from
the system instead of from the static pool of superpages
that exists today.

9 Legal Statement

This work represents the view of the authors and does not
necessarily represent the view of IBM.

Linux R© is a trademark of Linus Torvalds in the United States,
other countries, or both.

Other company, product, and service names may be the trade-
marks or service marks of others.

This material is based upon work supported by the Defense
Advanced Research Projects Agency under its Agreement
No. HR0011-07-9-0002.

References

[1] P. Denning. The working set model for program
behavior. Communications of the ACM,
11(5):323–333, 1968.

[2] M. Gorman. Understanding the Linux Virtual
Memory Manager. Prentice Hall Upper Saddle
River, NJ, 2004.

[3] M. Gorman and A. Whitcroft. The What, The Why
and the Where To of Anti-Fragmentation. Ottawa
Linux Symposium, 1:369–384, 2006.

[4] J. Navarro. Transparent operating system support
for superpages. PhD thesis, RICE UNIVERSITY,
2004.

[5] J. Navarro, S. Iyer, P. Druschel, and A. Cox.
Practical, transparent operating system support for
superpages. ACM SIGOPS Operating Systems
Review, 36(si):89, 2002.

[6] T. Selén. Reorganisation in the skewed-associative
TLB. Department of Information Technology,
Uppsala University.


