
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Resource Management: Beancounters

Pavel Emelianov
xemul@openvz.org

Denis Lunev
den@openvz.org

Kirill Korotaev
dev@openvz.org

Abstract

The paper outlines various means of resource man-
agement available in the Linux kernel, such as per-
process limits (the setrlimit(2) interface), shows
their shortcomings, and illustrates the need for another
resource control mechanism: beancounters.

Beancounters are a set of per-process group parameters
(proposed and implemented by Alan Cox and Andrey
Savochkin and further developed for OpenVZ) which
can be used with or without containers.

Beancounters history, architecture, goals, efficiency, and
some in-depth implementation details are given.

1 Current state of resource management in the
Linux kernel

Currently the Linux kernel has only one way to con-
trol resource consumption of running processes—it is
UNIX-like resource limits (rlimits).

Rlimits set upper bounds for some resource usage pa-
rameters. Most of these limits apply to a single process,
except for the limit for the number of processes, which
applies to a user.

The main goal of these limits is to protect processes
from an accidental misbehavior (like infinite memory
consumption) of other processes. A better way to or-
ganize such a protection would be to set up a minimal
amount of resources that are always available to the pro-
cess. But the old way (specifying upper limits to catch
some cases of excessive consumption) may work, too.

It is clear that the reason for introducing limits was
the protection against an accidental misbehavior of pro-
cesses. For example, there are separate limits for the
data and stack size, but the limit on the total memory
consumed by the stack, data, BSS, and memory mapped
regions does not exist. Also, it is worth to note that the

RLIMIT_CORE and RLIMIT_RSS limits are mostly
ignored by the Linux kernel.

Again, most of these resource limits apply to a single
process, which means, for example, that all the memory
may be consumed by a single user running the appropri-
ate number of processes. Setting the limits in such a way
as to have the value of multiplying the per-process limit
by the number of processes staying below the available
values is impractical.

2 Beancounters

For some time now Linus has been accepting patches
adding the so-called namespaces into the kernel.
Namespaces allow tasks to observe their own set of par-
ticular kernel objects such as IPC objects, PIDs, network
devices and interfaces, etc. Since the kernel provides
such a grouping for tasks, it is necessary to control the
resource consumption of these groups.

The current mainline kernel lacks the ability to track the
kernel resource usage in terms of arbitrary task groups,
and this ability is required rather badly.

The list of the resources that the kernel provides is huge,
but the main resources are:

• memory,

• CPU,

• IO bandwidth,

• disk space,

• Networking bandwidth.

This article describes the architecture, called “bean-
counters,” which the OpenVZ team proposes for con-
trolling the first resource (memory). Other resource con-
trol mechanisms are outside the scope of this article.

• 285 •

286 • Resource Management: Beancounters

2.1 Beancounters history

All the deficiencies of the per-process resource account-
ing were noticed by Alan Cox and Andrey Savochkin
long ago. Then Alan introduced an idea that crucial ker-
nel resources must be handled in terms of groups and set
the “beancounter” name for this group. He also stated
that once a task moves to a separate group it never comes
back and neither do the resources allocated on its re-
quests.

These ideas were further developed by Andrey Sav-
ochkin, who proposed the first implementation of bean-
counters [UB patch]. It included the tracking of process
page tables, the numbers of tasks within a beancounter,
and the total length of mappings. Further versions in-
cluded such resources as file locks, pseudo terminals,
open files, etc.

Nowadays the beancounters used by OpenVZ control
the following resources:

• kernel memory,

• user-space memory,

• number of tasks,

• number of open files and sockets,

• number of PTYs, file locks, pending signals, and
iptable rules,

• total size of network buffers,

• active dentry cache size, i.e. the size of the dentries
that cannot be shrunk,

• dirty page cache that is used to track the IO activity.

2.2 The beancounters basics

The core object is the beancounter itself. The bean-
counter represents a task group which is a resource con-
sumer.

Basically a beancounter consists of an ID to make it
possible to address the beancounter from user space for
changing its parameters and the set of usage-limit pairs
to control the usage of several kernel resources.

More precisely, each beancounter contains not just
usage-limit pairs, but a more complicated set. It in-
cludes the usage, limit, barrier, fail counter, and max-
imal usage values.

The notion of “barrier” has been introduced to make it
possible to start rejecting the allocation of a resources
before the limit has been hit. For example when a bean-
counter hits the mappings barrier, the subsequent sbrk
and mmap calls start to fail, although execve, which
maps some areas, still works. This allows the adminis-
trator to “warn” the tasks that a beancounter is short of
resources before the corresponding group hits the limit
and the tasks start dying due to unrecoverable rejections
of resource allocation.

Allocating a new resource is preceded by “charging” it
to the beancounter the current task belongs to. Essen-
tially the charging consists of an atomic checking that
the amount of resource consumed doesn’t exceed the
limit, and adding the resource size to the current usage.

Here is a list of memory resources controlled by the
beancounters subsystem:

• total size of allocated kernel space objects,

• size of network buffers,

• lengths of mappings, and

• number of physical pages.

Below are some details on the implementation.

3 Memory management with beancounters

This section describes the way beancounters are used to
track memory usage. The kernel memory is accounted
separately from the userspace one. First, the userspace
memory management is described.

3.1 Userspace memory management

The kernel defines two kinds of requests related to mem-
ory allocation.

1. The request to allocate a memory region for phys-
ical pages. This is done via the mmap(2) system
call. The process may only work within a set of

2007 Linux Symposium, Volume One • 287

mmap-ed regions, which are called VMAs (virtual
memory areas). Such a request does not lead to al-
location of any physical memory to the task. On
the other hand, it allows for a graceful reject from
the kernel space, i.e. an error returned by the sys-
tem call makes it possible for the task to take some
actions rather than die suddenly and silently.

2. The request to allocate a physical page within one
of the VMAs created before. This request may also
create some kernel space objects, e.g. page tables
entries. The only way to reject this request is to
send a signal—SEGV, BUS, or KILL—depending
on the failure severity. This is not a good way of
rejecting as not every application expects critical
signals to come during normal operation.

The beancounters introduce the “unused page” term
to indicate a page in the VMA that has not yet been
touched, i.e. a page whose VMA has already been al-
located with mmap, but the page itself is not yet there.
The “used” pages are physical pages.

Kernel VMAs may be classified as:

• reclaimable VMAs, which are backed by some file
on the disk. For example, when the kernel needs
some more memory, it can safely push the pages
from this VMA to the disk with almost no limita-
tion.

• unreclaimable VMAs, which are not backed by any
file and the only way to free the pages within such
VMAs is push the page to the swap space. This
way has certain limitations in that the system may
have no swap at all or the swap size may be too
small. The reclamation of pages from this kind of
VMAs is more likely to fail in comparison with the
previous kind.

In the terms defined above, the OpenVZ beancounters
account for the following resources:

• the number of used pages within all the VMAs,

• the sum of unused and used pages within unre-
claimable VMAs and used pages in reclaimable
VMAs.

Process

memoryUnreclaimable

VMA

Reclaimable

VMA

Unused

pages

Touched

pages

Touched

pages

Unused

pages

P

r

i

v

v

m

p

a

g

e

s

P

h

y

s

p

a

g

e

s

Figure 1: User space memory management

The first resource is account-only (i.e. not limited) and is
called “physpages.” The second one is limited in respect
of only unused pages allocation and is called “privvm-
pages.” This is illustrated in Figure 1.

The only parameter that remains unlimited—the size of
pages touched from a disk file—does not create a secu-
rity hole since the size of files is limited by the OpenVZ
disk quotas.

3.2 Physpages management

While privvmpages accounting works with whole
pages, physpages accounts for page fractions in the case
some pages are shared among beancounters [RSS]. This
may happen if a task changes its beancounter or if tasks
from different groups map and use the same file.

This is how it works. There is a many-to-many depen-
dence between the mapped pages and the beancounters
in the system. This dependence is tracked by a ring of
page beancounters associated with each mapped page
(see Figure 2). What is important is that each page has

288 • Resource Management: Beancounters

its associated circular list of page beancounters and the
head of this list has a special meaning.

page

. . .

BC2BC1

BC3

BCN

Figure 2: Page shared among beancounters

Naturally, if a page is shared among N beancounters,
each beancounter is to get a 1

N -th part of it. This ap-
proach would be the most precise, but also the worst,
because adding a page to a new beancounter would re-
quire an update of all the beancounters among which the
page is already shared.

Instead of doing that, parts of the page equal to

1
2shi f t(page,beancounter)

are charged, where shi f t(page,beancounter) is calcu-
lated for

∑
beancounters

1
2shi f t(page,beancounter) = 1

to be true for each page.

When mapping a page into a new beancounter, half of
the part charged to the head of the page’s beancounters
list is moved to the new beancounter. Thus when the
page is sequentially mapped to 4 different beancounters,
its fractions would look like

bc1 bc2 bc3 bc4
1 1

2 1
2

1
2

3 1
2

1
4

1
4

4 1
4

1
4

1
4

1
4

When unmapping a page from a beancounter, the frac-
tion of the page charged to this beancounter is returned
to one or two of the beancounters on the page list.

For example, when unmapping the page from bc4 the
fractions would change like

{1
4
,
1
4
,
1
4
,
1
4
}→ {1

2
,
1
4
,
1
4
}

ı.e. a fraction from bc4 was added to only one
beancounter—bc3.

Next, when unmapping the page from bc3 with fraction
of 1

2 its charge will be added to two beancounters to keep
fractions be the powers of two:

{1
2
,
1
4
,
1
4
}→ {1

2
,
1
2
}

With that approach the following has been achieved:

• algorithm of adding and removing references to
beancounters has O(1) complexity;

• the sum of the physpages values from all the bean-
counters is the number of RAM pages actually used
in the kernel.

3.2.1 Dirty page cache management

The above architecture is used for dirty page cache and
thus IO accounting.

Let’s see how IO works in the Linux kernel [RLove].
Each page may be either clean or dirty. Dirty pages are
marked with the bit of the same name and are about to
be written to disk. The main point here is that dirtying
a page doesn’t imply that it will be written to disk im-
mediately. When the actual writing starts, the task (and
thus the beancounter) that made the page dirty may al-
ready be dead.

Another peculiarity of IO is that a page may be marked
as dirty in a context different from the one that really
owns the page. Arbitrary pages are unmapped when the
kernel shrinks the page cache to free more memory. This
is done by checking the pte dirty flag set by a CPU.

Thus it is necessary to save the context in which a page
became dirty until the moment the page becomes clean,

2007 Linux Symposium, Volume One • 289

i.e. its data is written to disk. To track the context in
question, an IO beancounter is added between the page
and its page beancounters ring (see Figure 3). This IO
beancounter keeps the appropriate beancounter while
the page stays dirty.

page

IO

. . .

BC2BC1

BC3

BCN

Figure 3: Tracking the dirtier of the page

To determine the context of a page, the page bean-
counter ring mentioned above is used. When a page
becomes dirty in a synchronous context, e.g. a regular
write happens, the current beancounter is used. When
a page becomes dirty in an arbitrary context, e.g. from
a page shrinker, the first beancounter from this ring is
used.

3.3 Kernel memory management

Privvmpages allow a user to track the memory usage
of tasks and give the applications a chance for a grace-
ful exit rather than being killed, but they do not provide
any protection. Kernel memory size—the “kmemsize”
in the beancounters terms—is the way to protect the sys-
tem from a DoS attack from userspace.

The kernel memory is a scarce resource on 32-bit sys-
tems due to the limited normal zone size. But even on
64-bit systems, applications causing the kernel to con-
sume the unlimited amount of RAM can easily DoS it.

There is a great difference between the user memory and

the kernel memory which results in dramatic difference
in implementation.

When a user page is freed, the task and thus the bean-
counter it belongs to is always well known. When a ker-
nel space object is freed, the beancounter it belongs to is
almost never known due to refcounting mechanism and
RCU. Thus each kernel object should carry a pointer on
the beancounter it was allocated by.

The way beancounters store this pointer differs between
different techniques of allocating objects.

There are three mechanisms for object allocation in the
kernel:

1. buddy page allocator – the core mechanism used
directly and by the other two. To track the bean-
counter of the directly allocated page there is an
additional pointer on struct page. Another
possible way would be to allocate a mirrored to
mem_map array of pointers, or reuse mapping
field on struct page.

2. vmalloc – To track the owner of vmalloc-ed object
the owner of the first (more precisely—the zeroth)
page is used. This is simple as well.

3. kmalloc – the way to allocate small objects (down
to 32 bytes of size). Many objects allocated with
kmalloc must be tracked and thus have a pointer
to the corresponding beancounter. First versions
of beancounters changed such objects explicitly by
adding struct beancounter *owner field
in structures. To unify this process in new ver-
sions, mm/slab.c is modified by adding an ar-
ray of pointers on beancounters at the tail of each
slab (see Figure 4). This array is indexed with the
sequence number of the object on the slab.

Such an architecture has two potential side effects:

1. slabs will become shorter, i.e. one slab will carry
less objects than it did before; and

2. slabs may become “offslab” as the gap will exceed
the offslab border.

Table 1 shows the results for size-X caches. As seen
from this table less than 1% of available objects from
“on-page” slabs are lacking. “Offslab” caches do not
lack any objects and no slabs become offslab.

290 • Resource Management: Beancounters

slab

slab bufctl

BC ptrs o

b

j

e

c

t

s

Figure 4: Extending a slab for the kernel memory track-
ing

Slab size
of objects offslab-ness

before after before after
size-32 113 101 − −
size-64 59 56 − −
size-128 30 29 − −
size-256 15 15 − −
size-512 8 8 + +
size-1024 4 4 + +
size-2048 2 2 + +
size-4096 . . . 1 1 + +

Table 1: The comparison of size-X caches with and
without beancounters patch

3.4 Network buffers management

Network buffers management [AFTM] fundamentally
differs for the send and receive buffers. Basically, the
host does not control the incoming traffic and fully con-
trol the outgoing traffic.

Unfortunately, the mainstream kernel socket accounting
mechanism cannot be reused, as it has known deficien-
cies:

• slab overhead is not included into the accounted
packet size. For Ethernet the difference is around
25%–30% as size-2048 slab is used for pack-
ets. Unfortunately, skb->truesize calcula-
tions can’t be changed without massive TCP/IP

stack fix, as this would lead to serious performance
degradation due to TCP window reduction; and

• the accounting is not strict, and limits can be over-
used.

3.4.1 Send buffer space

TCPv4 now and TCPv6 with DCCP in the future are
accounted separately from all the other outgoing traffic.
Only the packets residing in the socket send queue are
charged since skb “clones” sent to device for transmis-
sion have a very limited lifetime.

Netlink send operations charging is not uniform in re-
spect to send direction. The buffers are charged for user
socket only even if they are sent from the kernel. This is
fair as, usually, data stream from the kernel to a user is
initiated by the user.

Beancounters track memory usage with the appropriate
overheads on per-socket basis. Each socket has a guar-
antee calculated as

limit−barrier
Nsockets

,

where Nsockets is the limit of sockets of appropriate type
on the beancounter.

Beancounters don’t break a semantics of the select
system call, i.e. if it returns that the socket can be writ-
ten to, write will send at least one byte. To achieve
this goal an additional field for the socket structure had
been introduced, namely, poll_reserve. So, actual
resource usage is shown as

∑
s∈sockets

(spoll_reserv + ∑
skb∈swrite_queue

skbsize)

3.4.2 Receive buffer space

Management of the receive buffers for non-TCP sockets
is simple. Incoming packets are simply dropped if the
limit is hit. This is normal for raw IP sockets and UDP,
as there is no protocol guarantee that the packet will be
delivered.

Though, there is a problem with the netlink sockets. In
general, the user (ip or similar tool) sends a request

2007 Linux Symposium, Volume One • 291

to the kernel and starts waiting for an answer. The an-
swer may never arrive as the kernel does not retransmit
netlink responses. Though, the practical impact of this
deficiency is acceptable.

TCP buffer space accounting is mostly the same except
for the guarantee for one packet. The amount equal
to Nsockets ∗max_advmss is reserved for this purpose.
Beancounters rely on the generic code for TCP window
space shrinking. Though, a better window management
policy for all sockets inside a beancounter is being in-
vestigated.

4 Performance

The OpenVZ team spent a lot of time improving the per-
formance of the beancounters patches. The following
techniques are employed:

• Pre-charging of resources on a task creation.
When the task later tries to charge a new portion
of resource, it may take the desired amount from
this reserve. The same technique is used in net-
work buffers accounting, but pre-charge is stored
on socket.

• On-demand accounting. Per-group accounting
is not performed when the overall resource con-
sumption is low enough. When a system becomes
low of some resource per-beancounter accounting
is turned on and vice-versa—when a system has a
lot of free resources, per-beancounter accounting is
turned off. Nevertheless this switch is rather slow
as it implies seeking for all resources belonging to
a beancounter and thus it should happen rarely.

Test name Vanilla OVZ %
Process Creation 7456 7288 97%
Execl Throughput 2505 2490 99%
Pipe Throughput 4071 4084 100%
Shell Scripts 4521 4369 96%
File Read 1051 1041 99%
File Write 1070 1086 101%

Table 2: Unixbench results comparison (p.1)

The results of unixbench test are shown for the follow-
ing kernels:

Test name Vanilla OVZ %
Process Creation 7456 6788 91%
Execl Throughput 2505 2290 91%
Pipe Throughput 4071 4064 99%
Shell Scripts 4521 3969 87%
File Read 1051 1031 98%
File Write 1070 1066 99%

Table 3: Unixbench results comparison (p.2)

• Vanilla 2.6.18 kernel,

• OpenVZ 2.6.18-028stab025 kernel,

• OpenVZ 2.6.18-028stab025 kernel without pages
sharing accounting.

Tests were run on Dual-Core Intel® Xeon™ CPU
3.20GHz machine with 3Gb of RAM.

Table 2 shows the results of comparing the vanilla ker-
nel against the OpenVZ kernel without page-sharing ac-
counting; and Table 3, for the vanilla kernel against the
full beancounters patch.

5 Conclusions

Described in this article is the memory management
made in “beancounters” subsystem. The userspace
memory including RSS accounting and the kernel mem-
ory including network buffers management were de-
scribed.

Beancounters architecture has proven its efficiency and
flexibility. It has been used in OpenVZ kernels for all
the time OpenVZ project exists.

The questions that are still unsolved are:

• TCP window management based on the bean-
counter resource availability;

• on-demand RSS accounting; and

• integration with the mainstream kernel.

292 • Resource Management: Beancounters

References

[UB patch] Andrey Savochkin, User Beancounter
Patch, http://mirrors.paul.sladen.org/
ftp.sw.com.sg/pub/Linux/people/saw/

kernel/user_beancounter/

UserBeancounter.html

[RSS] Pavel Emelianov, RSS fractions accounting
http://wiki.openvz.org/RSS_

fractions_accounting

[AFTM] ATM Forum, Traffic Management
Specification, version 4.1

[RLove] Robert Love, Linux Kernel Development (2nd
Edition), Ch. 15. Novell Press, January 12, 2005.

