
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Manageable Virtual Appliances

David Lutterkort
Red Hat, Inc.

dlutter@redhat.com

Mark McLoughlin
Red Hat, Inc.

markmc@redhat.com

Abstract

Virtual Appliances are a relatively new phenomenon,
and expectations vary widely on their use and precise
benefits. This paper details some usage models, how re-
quirements vary depending on the environment the ap-
pliance runs in, and the challenges connected to them.
In particular, appliances for the enterprise have to fit
into already existing infrastructure and work with ex-
isting sitewide services such as authentication, logging,
and backup.

Appliances can be most simply distributed and deployed
as binary images; this requires support in existing tools
and a metadata format to describe the images. A sec-
ond approach, basing appliances entirely on a metadata
description that includes their setup and configuration,
gives users the control they need to manage appliances
in their environment.

1 Introduction

Virtual Appliances promise to provide a simple and
cost-efficient way to distribute and deploy applications
bundled with the underlying operating system as one
unit. At its simplest, an appliance consists of disk im-
ages and a description how these disk images can be
used to create one or more virtual machines that pro-
vide a particular function, such as a routing firewall, or a
complete webmail system. Distributing a whole system
instead of an application that the end user has to install
themselves has clear benefits: installing the appliance is
much simpler than setting up an application, the appli-
ance supplier tests the appliance as a whole, and tunes
all its components for the appliance’s needs. In addi-
tion, appliances leave the appliance supplier much more
latitude in the selection of the underlying operating sys-
tem; this is particularly attractive for applications that
are hard to port even amongst successive versions of the
same distribution.

In addition to these installation-related benefits, some
of the more general benefits of virtualization make ap-
pliances attractive, especially hardware isolation, better
utilization of existing systems, and isolation of applica-
tions for improved security and reliability.

Because of their novelty, there is little agreement on
what kind of appliance is most beneficial in which sit-
uation, how different end user requirements influence
the tooling around appliances, and how users deploy and
maintain their appliances. Examples of applications that
are readily available as appliances range from firewalls
and asterisk-based VoIP appliances, to complete Wikis
and blogs, and database servers and LAMP stacks.

A survey of existing appliances makes one thing clear:
there are many open questions around appliances; for
them to fulfill their potential, these questions must be
answered, and those answers must be backed by work-
ing, useful tools.

Comparing how current Linux distributions are built,
delivered and managed to what is available for appli-
ances points to many of these shortcomings: installing
an appliance is a completely manual process, getting
it to run often requires an intimate understanding of
the underlying virtualization platform, and the ability
to configure the virtual machine for the appliance man-
ually; managing it depends too often on appliance-
specific one-off solutions. As an example, for an ap-
pliance based on paravirtualized Xen, the host and the
appliance must agree on whether to use PAE or not, a
build-time configuration. A mismatch here leads to an
obscure error message when the appliance is started. As
another example, in an effort to minimize the size of the
appliance image, appliance builders sometimes strip out
vital information such as the package database, making
it impossible to assess whether the appliance is affected
by a particular security vulnerability, or, more impor-
tantly, update it when it is.

In addition, appliances bring some problems into the

• 293 •



294 • Manageable Virtual Appliances

spotlight that exist for bare-metal deployments, too, but
are made more pressing because appliances rely on the
distribution of entire systems. The most important of
these problems is that of appliance configuration—very
few appliances can reasonably be deployed without any
customization by the end-user. While appliances will
certainly be a factor in pushing the capabilities and use
of current discovery and zeroconf mechanisms, it is un-
likely that that is enough to address all the needs of users
in the near future.

We restrict ourselves to appliances consisting of a single
virtual machine. It is clear that there are uses for appli-
ances made up of multiple virtual machines, for exam-
ple, for three-tier web applications, with separate virtual
machines for the presentation logic, the business logic,
and the database tier. Such appliances though add con-
siderable complexity to the single-VM case: the virtual
machines of the appliance need to be able to discover
each other, might want to create a private network for
intra-appliance communication, and might want to con-
strain how the virtual machines of the appliance should
be placed on hosts. For the sake of simplicity, and
given that handling single-VM appliances well is a nec-
essary stepping stone to multi-VM appliances, we ex-
clude these issues and focus solely on single-VM appli-
ances.

The rest of the paper is organized as follows: Section 2
discusses appliance builders and users, and how their
expectations for appliances vary depending on the en-
vironment in which they operate, Section 3 introduces
images and recipes, two different approaches to appli-
ances, Sections 4 and 5 describe images and recipes in
detail, and the final Section 6 discusses these two con-
cepts, and some specific problems around appliances
based on the example of a simple web appliance.

2 Builders and Users

Appliances available today cover a wide variety of ap-
plications and therefore target users: from consumer
software to applications aimed at SMB’s, to enterprise
software. It is worthwhile to list in more detail the ex-
pectations and needs of different applications and target
audiences—it is unlikely that the differences that exist
today between a casual home user and a sysadmin in a
large enterprise will disappear with appliances.

Two separate groups of people are involved with ap-
pliances: appliance builders, who create and distribute

appliances, and appliance users who deploy and run
them. We call the first group builders rather than de-
velopers for two reasons: while appliance creation will
often involve a heavy dose of software development,
it will, to a large extent, be very similar to traditional
development for bare-metal systems and the need for
appliance-specific development tools will be minimal;
besides creating appliances through very specific devel-
opment, they can also be created by assembling existing
components with no or minimal custom development.
The value of these appliances comes entirely from them
being approved, pretested and tuned configurations of
software. In that sense, a sysadmin in an enterprise who
produces “golden images” is an appliance builder.

What all appliance builders have in common is that they
need to go through repeated cycles of building the ap-
pliance from scratch, and running, testing and improv-
ing it. They therefore need ways to make these steps
repeatable and automatable. Of course, they also share
the goal of distributing the appliance, externally or inter-
nally, which means that they need to describe the appli-
ance in as much detail as is necessary for users to deploy
them easily and reliably.

Users and their expectations vary as much as the envi-
ronments in which they operate, and expectations are
closely coupled to the environment in which the appli-
ance will run. Because of the differences in users, the
requirements on the appliances themselves should nat-
urally vary, too: whereas for consumer software ease
of installation and configuration is crucial, appliances
meant for an enterprise setting need to focus on being
manageable in bulk and fitting into an environment with
preexisting infrastructure and policies. As an example, a
typical hardware appliance, a DSL router with a simple
web configuration interface is a great consumer device,
since it lets consumers perform complicated tasks with
ease, while it is completely unsuited for a data center,
where ongoing, automated management of a large num-
ber of routers is more important than the ease of first-
time setup.

These differences have their repercussions for virtual
appliances, too: an appliance developer for a consumer
appliance will put more emphasis on an easy-to-use in-
terface, whereas for enterprise appliances the emphasis
will be on reliability, manageability and the problems
that only appear in large-scale installations. Building the
user interface for a consumer appliance is tightly cou-
pled to the appliance’s function, and we consider it part



2007 Linux Symposium, Volume One • 295

of the custom development for the appliance; address-
ing the concerns of the enterprise user, the sysadmin,
requires tools that go beyond the individual appliance,
and therefore should be handled independently of the
function of the appliance.

While for consumer appliances it is entirely reasonable
to predefine what can and can not be configured about
the appliance, this is not feasible for data center appli-
ances: the infrastructures and policies at different sites
are too varied to allow an appliance developer to antici-
pate all the changes that are required to make the appli-
ance fit in. Often, these changes will have little bearing
on the functioning of the appliance, and are concerned
with issues such as logging to a central logging server,
auditing shell access, monitoring the appliance’s perfor-
mance and resource usage etc. At the same time, enter-
prise users will demand that they can intervene in any
aspect of the appliance’s functioning should that become
necessary, especially for security reasons.

Consumers and enterprise users also differ sharply in
their expectations for a deployment tool: for a con-
sumer, a simple graphical tool such as virt-manager
is ideal, and adding features for downloading and run-
ning an appliance to it will provide consumers with a
good basis for appliance use. For enterprise users, who
will usually be sysadmins, it is important that appliances
can be deployed, configured and managed in a way as
automated as possible.

3 Images and Recipes

This paper details two different approaches to build-
ing and distributing appliances: Appliance Images, ap-
pliances distributed as one or more disk images and
a description of how to create a virtual machine from
them, and Appliance Recipes, appliances completely de-
scribed in metadata.

Appliances can be built for any number of virtualization
technologies and hypervisors; deployment tools for ap-
pliances should be able to understand appliance descrip-
tions regardless of the virtualization technology they
are built on, and should be able to at least let the user
know ahead of time if a given appliance can be de-
ployed on a given host. The appliance description there-
fore needs to carry information on the expected plat-
form. Rather than encode this knowledge in appliance-
specific deployment tools, we base the appliance de-
scription on libvirt and its XML metadata format for

virtual machines, since libvirt can already deal with a
number of virtualization platforms such as paravirtual-
ized and fully-virtualized Xen hosts, qemu, and kvm
and abstracts differences between them away. This ap-
proach also makes it possible for related tools such as
virt-manager [1] and virt-factory [2] to in-
tegrate appliance deployment and management seam-
lessly.

The goal of both the image and recipe approach is to
describe appliances in a way that integrates well with
existing open-source tools, and to introduce as fewer ad-
ditional requirements on the infrastructure as possible.

Deployment of Appliance Images is very simple, con-
sisting of little more than creating a virtual machine us-
ing the disk images; for Appliance Recipes, additional
steps amounting to a system install are needed. On the
other hand, changing the configuration of Appliance Im-
ages is much harder and requires special care to ensure
changes are preserved across updates, especially when
updates are image-based, whereas Appliance Recipes
provide much more flexibility in this area. In addition,
Appliance Recipes provide a clear record of what ex-
actly goes into the appliance, something that can be hard
to determine with image-based appliances.

By virtue of consisting of virtual machines, appliances
share some characteristics with bare-metal machines,
and some of the techniques for managing bare-metal
machines are also useful for appliances: for example,
Stateless Linux [3] introduced the notion of running a
system readonly root by making almost the entire file
system readonly. For Stateless, this allows running mul-
tiple clients off the same image, since the image is guar-
anteed to be immutable. For image-based appliances,
this can be beneficial since it cleanly delineates the parts
of the appliance that are immutable content from those
that contain user data. It does make it harder for the user
to modify arbitrary parts of the appliance, especially its
configuration, though Stateless provides mechanisms to
make parts of the readonly image mutable, and to pre-
serve client-specific persistent state.

Similarly, managing the configuration of machines is
not a problem unique to appliances, and using the same
tools for managing bare-metal and appliance configura-
tions is very desirable, especially in large-scale enter-
prise deployments.



296 • Manageable Virtual Appliances

3.1 Relation to Virtual Machines

Eventually, an appliance, i.e., the artifacts given to the
appliance user by the appliance builder, is used to create
and run a virtual machine. If a user will only ever run
the appliance in a single virtual machine, the appliance
and the virtual machine are interchangeable, particularly
for Appliance Images, in the sense that the original im-
age the appliance user received is the one off which the
virtual machine runs.

When a user runs several instances of the same ap-
pliance in multiple virtual machines, for example, to
balance the load across several instances of the same
web appliance, this relation is more complicated: appli-
ances in general are free to modify any of their disk im-
ages, so that each virtual machine running the appliance
must run off a complete copy of all of the appliance’s
disk images. The existence of the copies complicates
image-based updates as the copy for each virtual ma-
chine must be found and updated, making it necessary to
track the relation between original appliance image and
the images run by each virtual machine. For Appliance
Recipes, this is less of an issue, since the metadata takes
the place of the original appliance image, and a separate
image is created for every virtual machine running that
appliance recipe.

3.2 Combining Images and Recipes

Appliance Images and Appliance Recipes represent two
points in a spectrum of ways to distribute appliances.
Image-based appliances are easy to deploy, whereas
recipe-based appliances give the user a high degree of
control over the appliance at the cost of a more demand-
ing deployment.

A hybrid approach, where the appliance is completely
described in metadata, and shipped as an image com-
bines the advantages of both approaches: to enable this,
the appliance builder creates images from the recipe
metadata, and distributes both the metadata and the im-
ages together.

4 Appliance Images

The description of an Appliance Image, by its very na-
ture, is focused on describing a virtual machine in a
transportable manner. Such a description is not only

useful for distributing appliances, but also anywhere
where a virtual machine and all its parts need to be
saved and recreated over long distances or long periods
of time, for example for archiving an entire application
and all its dependencies.

Appliance Images are also suitable for situations where
the internals of the virtual machine are unimportant, or
because the appliance is running an O/S that the rest of
the environment can’t understand in more detail.

With no internals exposed, the appliance then consists
just of a number of virtual disks, descriptions of needed
virtual hardware, most importantly a NIC, and con-
straints on which virtualization platform the appliance
can run.

Appliance Images need to carry just enough metadata
in their description to allow running them safely in an
environment that knows nothing but the metadata about
them. To enable distribution, Appliance Images need to
be bundled in a standard format that makes it easy to
download and install them. For simplicity, we bundle
the metadata, as an XML file, and the disk images as
normal tarballs.

Ultimately, we need to create a virtual machine based on
the appliance metadata and the disk images; therefore, it
has to be possible to generate a libvirt XML description
of the virtual machine from the appliance’s metadata.
Using libvirt XML verbatim as the appliance description
is not possible, since it contains some information, such
as the MAC address for the appliance’s NIC, that clearly
should be determined when the appliance is deployed,
not when it is built.

4.1 Metadata for Appliance Images

The metadata for an Appliance Image consists of three
parts:

1. General information about the appliance, such as a
name and human-readable label

2. The description of the virtual machine for the ap-
pliance

3. The storage for the appliance, as a list of image
files



2007 Linux Symposium, Volume One • 297

4.1.1 Virtual Machine Descriptor

The metadata included with an appliance needs to con-
tain enough information to make a very simple decision
that anybody (and any tool) wanting to run the appli-
ance will be faced with: can this appliance run on this
host? Since the differences between running a virtual
machine on a paravirtualized and fully-virtualized host
from an application’s point of view are small, the ap-
pliance metadata allows describing them simultaneously
with enough detail for tools to determine how to boot the
appliance ahead of time; for each supported virtualiza-
tion platform, the metadata lists how to boot the virtual
machine on that platform, together with a description of
the platform.

The boot descriptor roughly follows libvirt’s <os> ele-
ment: for fully-virtualized domains, it contains an indi-
cation of which bootloader and what boot device to use,
and for paravirtualized domains, it either lists the kernel
and initrd together or that pygrub should be used as
well as the root device and possible kernel boot options.
If the kernel/initrd are mentioned explicitly, they must
be contained in the tarball used to distribute the appli-
ance as separate files.

The platform description, based on libvirt’s capabili-
ties, indicates the type of hypervisor (for example, xen
or hvm), the expected architecture (for example, i686
or ia64), and additional features such as whether the
guest needs pae or not.

Besides these two items, the virtual machine metadata
lists how the disk images should be mapped into the vir-
tual machine, how much memory and how many virtual
CPUs it should receive, whether a (graphical) console is
provided, and which network devices to create.

4.1.2 Disk Images

The disk images for the appliance are simple files; for
the time being, we use only (sparse) raw files, though it
would be desirable to use compressed qcow images for
disks that are rarely written to.1

Disk images are classified into one of three categories
to enable a simple update model where parts of the ap-
pliance are replaced on update. Such an update model

1Unfortunately, the Xen blktap driver has a bug that makes it
impossible to use qcow images that were not created by Xen tools.

requires that the appliance separates the user’s data from
the appliance’s code, and keeps them on separate disks.
The image categories are:

• system disks that contain the O/S and application
and are assumed to not change materially over the
appliance’s lifetime

• data disks that contain application data that must
be preserved across updates

• scratch disks that can be erased at will between
runs of the appliance

The classification of disk images mirrors closely how a
filesystem needs to be labeled for Stateless Linux: in a
Stateless image, most files are readonly, and therefore
belong on a system disk. Mutable files come in two fla-
vors: files whose content needs to be preserved across
reboots of the image, which therefore belong on a data
disk, and files whose content is transient, and therefore
belong on a scratch disk.

Updates of an Appliance Image can be performed in one
of two ways: by updating from within, using the up-
date mechanisms of the appliance’s underlying operat-
ing system, for example, yum, or by updating from the
outside, replacing some of the appliance’s system disks.
If the appliance is intended to be updated by replacing
the system disks, it is very desirable, though not strictly
necessary, that the system disks are mounted readonly
by the appliance; to prepare the appliance for that, the
same techniques as for Stateless Linux need to be ap-
plied, in particular, marking writable parts of the filesys-
tem in /etc/rwtab and /etc/statetab.

Data disks don’t have to be completely empty when the
appliance is shipped: as an example, a web application
with a database backend, bundled as an appliance will
likely ship with a database that has been initialized and
the application’s schema loaded.

4.2 Building an Appliance Image

An appliance supplier creates the appliance by first in-
stalling and configuring the virtual machine for the ap-
pliance any way they see fit; typically this involves in-
stalling a new virtual machine, starting it, logging into it
and making manual configuration changes. Even though



298 • Manageable Virtual Appliances

these steps will produce a distributable Appliance Im-
age, they will generally not make building the Appliance
Image reproducible in an automated manner. When this
is important, for example, when software development
rather than simple assembly is an important part of the
appliance build process, the creation of the Appliance
Image should be based on an Appliance Recipe, even if
the appliance is ultimately only distributed as an image.

Once the appliance supplier is satisfied with the setup of
the virtual machine, they create an XML description of
the appliance, based on the virtual machine’s character-
istics. Finally, the virtual machine’s disk is compressed
and, together with the appliance descriptor, packed into
a tarball.

This process contains some very mechanical steps, par-
ticularly creating the initial appliance descriptor and
packing the tarball that will be supported by a tool. The
tool will similarly support unpacking, installing, and
image-based updating of the appliance.

4.3 Deploying an Appliance Image

An appliance user deploys an appliance in two steps:
first, she downloads and installs the appliance into a
well-known directory, uncompressing the disk images.

As a second step, the user simply runs virt-install
to create the virtual machine for the appliance;
virt-install is a command line tool generally used
to provision operating systems into virtual machines.
For Appliance Images, it generates the libvirt XML de-
scriptor of the appliance’s virtual machine from the ap-
pliance descriptor and additional user-provided details
such as an explicit MAC address for the virtual ma-
chine’s NIC, or whether and what kind of graphical con-
sole to enable.

To allow for multiple virtual machines running the
same appliance concurrently, the disk images for
the appliance are copied into per-VM locations, and
virt-install records the relation between the ap-
pliance and the VM image. This is another reason
why using qcow as the image format is preferrable to
simple raw images, as it has a facility for overlay im-
ages that only record the changes made to a base im-
age. With qcow images, instantiating a virtual machine
could avoid copying the usually large system disks, cre-
ating only an overlay for them. Data disks, of course,

still should be created through copying from the original
appliance image, while scratch disks should be created
as new files, as they are empty by definition.

It is planned to integrate Appliance Image deploy-
ment into virt-manager, too, to give users a simple
graphical interface for appliance deployment.

In both cases, the tools check that the host requirements
in the appliance descriptor are satisfied by the actual
host on which the appliance is deployed.

4.4 Packaging Appliance Images as RPM’s

Packaging appliances as tarballs provides a lowest-
common-denominator for distributing appliances that is
distribution, if not operating system, agnostic. Most dis-
tributions already have a package format tailored to dis-
tributing and installing software and tools built around
them.

For RPM-based distributions, it seems natural to pack-
age appliances as RPMs, too. This immediately sets a
standard for, amongst others, how appliances should be
made available (as RPMs in yum repositories), how their
authenticity can be guaranteed (by signing them with a
key known to RPM), and how they are to be versioned.

5 Appliance Recipes

Appliance Recipes describe a complete virtual machine
in metadata during its whole lifecycle from initial pro-
visioning to ongoing maintenance while the appliance is
in use. The recipe contains the specification of the ap-
pliance’s virtual machine, which is very similar to that
for Appliance Images, and a description of how the ap-
pliance is to be provisioned initially and how it is to be
configured. In contrast to Appliance Images, it does not
contain any disk images. An Appliance Recipe consists
of the following parts:

1. An appliance descriptor describing the virtual ma-
chine; the descriptor is identical to that for Appli-
ance Images, except that it must contain the size of
each disk to be allocated for the virtual machine.

2. A kickstart file, used to initially provision the vir-
tual machine from the recipe.



2007 Linux Symposium, Volume One • 299

3. A puppet manifest, describing the appliance’s con-
figuration. The manifest is used both for initial pro-
visioning, and during the lifetime of the appliance;
updating the manifest provides a simple way to up-
date existing appliances without having to reprovi-
sion them.

Before an appliance based on a recipe can be deployed
in a virtual machine, the virtual machine’s disks need
to be created and populated, by installing a base system
into empty disk images. Once the disk images have been
created, deployment follows the same steps as that for
an Appliance Image.

The Appliance Recipe shifts who builds the disk im-
ages from the appliance builder to the appliance user,
with one very important difference: the appliance user
has a complete description of the appliance, consum-
able by tools, that they can adapt to their needs. With
that, the appliance user can easily add site-specific cus-
tomizations to the appliance, by amending the appli-
ance’s metadata; for example, if all syslog messages
are to be sent to a specific server, the appliance user can
easily add their custom syslog.conf to the appli-
ance’s description. It also provides a simple mechanism
for the appliance builder to leave certain parts of the ap-
pliance’s configuration as deploy-time choices, by pa-
rameterizing and templating that part of the appliance’s
metadata.

We use kickstart, Fedora’s automated installer, for the
initial provisioning of the appliance image, and puppet,
a configuration management tool, for the actual configu-
ration of the appliance. It is desirable to expose as much
of the appliance’s setup to puppet and to only define a
very minimal system with kickstart for several reasons:
keeping the kickstart files generic makes it possible to
share them across many appliances and rely only on a
small set of well-tested stock of kickstart files; since
kickstarting only happens when a virtual machine is
first provisioned, any configuration the kickstart file per-
forms is hard to track over the appliance’s lifetime; and,
most importantly, by keeping the bulk of the appliance’s
configuration in the puppet manifest it becomes possi-
ble for the appliance user to adapt as much as possible
of the appliance to their site-specific needs. The base
system for the appliance only needs to contain a mini-
mal system with a DHCP client, yum, and the puppet
client.

Strictly speaking, an Appliance Recipe shouldn’t carry
a full kickstart file, since it contains many directives that
should be controlled by the appliance user, not the ap-
pliance builder, such as the timezone for the appliance’s
clock. The most important parts of the kickstart file that
the appliance builder needs to influence are the layout of
the appliance’s storage and how disks are mounted into
it, and the yum repositories needed during provision-
ing. The recipe should therefore only ship with a partial
kickstart file that is combined with user- or site-specific
information upon instantiation of the image.

5.1 Configuration Management

The notion of Appliance Recipes hinges on describing
the configuration of a virtual machine in its entirety in
a simple, human-readable format. That description has
to be transported from the appliance builder to the ap-
pliance user, leaving the appliance user the option of
overriding almost arbitrary aspects of the configuration.
These overrides must be kept separate from the origi-
nal appliance configuration to make clean upgrades of
the latter possible: if the user directly modifies the orig-
inal appliance configuration, updates will require cum-
bersome and error-prone merges.

The first requirement, describing the configuration of a
system, is the bread and butter of a number of configu-
ration management tools, such as cfengine, bcfg2, and
puppet. These tools are also geared towards managing
large numbers of machines, and provide convenient and
concise ways to expressing the similarities and differ-
ences between the configuration of individual machines.
We chose puppet as the tool for backing recipes, since it
meets the other two requirements of making configura-
tions transportable and overridable particularly well.

The actual setup and configuration of an appliance, i.e.
the actual appliance functionality, is expressed as a pup-
pet manifest. The manifest, written in puppet’s declar-
ative language, describes the configuration through a
number of resource definitions that describe basic prop-
erties of the configuration, such as which packages have
to be installed, what services need to be enabled, and
what custom config files to deploy. Files can either be
deployed as simple copies or by instantiating templates.

Resource definitions are grouped into classes, logical
units describing a specific aspect of the configuration;
for example, the definition of a class webserver



300 • Manageable Virtual Appliances

might express that the httpd package must be in-
stalled, the httpd service must be enabled and run-
ning, and that a configuration file foo.conf must be
deployed to /etc/httpd/conf.d.

The complete configuration of an actual system is made
up of mapping any number of classes to that system, a
node in puppet’s lingo. This two-level scheme of classes
and nodes is at the heart of expressing the similarities
and differences between systems, where, for example,
all systems at a site will have their logging subsystem
configured identically, but the setup of a certain web ap-
plication may only apply to a single node.

Site-specific changes to the original appliance config-
uration fall into two broad categories: overriding core
parts of the appliance’s configuration, for example, to
have its webserver use a site-specific SSL certificate,
and adding to the appliance’s setup, without affecting its
core functionality, for example, to send all syslog mes-
sages to a central server.

These two categories are mirrored by two puppet fea-
tures: overrides are performed by subclassing classes
defined by the appliance and substituting site-specific
bits in the otherwise unchanged appliance configuration.
Additions are performed by mapping additional, site-
specific classes to the node describing the appliance.

The configuration part of an Appliance Recipe consists
of a puppet module, a self-contained unit made up of the
classes and supporting files. Usually, puppet is used in
client/server mode, where the configuration of an entire
site is stored on a central server, the puppetmaster, and
clients receive their configuration from it. In that mode,
the appliance’s module is copied onto the puppetmaster
when the recipe is installed.

5.2 Deploying an Appliance Recipe

Deploying an Appliance Recipe requires some infras-
tructure that is not needed for Appliance Images, ow-
ing to the fact that the appliance’s image needs to be
provisioned first. Recipes are most easily deployed us-
ing virt-factory, which integrates all the neces-
sary tools on a central server. It is possible though to
use a recipe without virt-factory’s help; all that is
needed is the basic infrastructure to perform kickstart-
based installs with virt-install, and a puppetmas-
ter from which the virtual machine will receive its con-
figuration once it has been booted.

In preparation for the appliance instantiation, the appli-
ance’s puppet manifest has to be added to the puppet-
master by copying it to the appropriate place on the pup-
petmaster’s filesystem. With that in place, the instantia-
tion is entirely driven by virt-install, which per-
forms the following steps:

1. Create empty image files for the virtual machine

2. Create and boot the virtual machine and install it
according to the appliance’s kickstart file

3. Bootstrap the puppet client during the install

4. Reboot the virtual machine

5. Upon reboot, the puppet client connects to the pup-
petmaster and performs the appliance-specific con-
figuration and installation

5.3 Creating an Appliance Recipe

For the appliance builder, creating an Appliance Recipe
is slightly more involved than creating an Appliance Im-
age. The additional effort is caused by the need to cap-
ture the appliance’s configuration in a puppet manifest.
The manifest can simply be written by hand, being little
more than formalized install instructions.

It is more convenient though to use cft [4], a tool that
records changes made to a system’s configuration and
produces a puppet manifest from that. Besides notic-
ing and recording changes made to files, it also records
more complex and higher-level changes such as the in-
stallation of a package, the modification of a user, or the
starting and enabling of a service.

With that, the basic workflow for creating an Appliance
Recipe is similar to that for an Appliance Image:

1. Write (or reuse) a kickstart file and install a base
system using virt-install

2. Start the virtual machine with the base system

3. Log into the virtual machine and start a cft session
to capture configuration changes

4. Once finished configuring the virtual machine, fin-
ish the cft session and have it generate the puppet
manifest



2007 Linux Symposium, Volume One • 301

5. Generate the appliance descriptor for the virtual
machine

6. Package appliance descriptor, kickstart file, and
puppet manifest into an Appliance Recipe

Note that all that gets distributed for an Appliance
Recipe is a number of text files, making them con-
siderably smaller than Appliance Images. Of course,
when the user instantiates the recipe, images are created
and populated; but that does not require that the user
downloads large amounts of data for this one appliance,
rather, they are more likely to reuse already existing lo-
cal mirrors of yum repositories.

6 Example

As an example, we built a simple web calendaring ap-
pliance based on kronolith, part of the horde PHP web
application framework; horde supports various storage
backends, and we decided to use PostgreSQL as the stor-
age backend.

To separate the application from its data, we created a
virtual machine with two block devices: one for the ap-
plication, and one for the PostgreSQL data, both based
on 5GB raw image files on the host. We then installed a
base system with a DHCP client, yum and puppet on
it and started the virtual machine.

After logging in on the console, we started a cft session
and performed the basic setup of kronolith: installing
necessary packages, opening port 80 on the firewall, and
starting services such as httpd and postgresql.
Following kronolith’s setup instructions, we created a
database user and schema for it, and gave the web ap-
plication permission to connect to the local PostgreSQL
database server. Using a web browser we used horde’s
administration UI to change a few configuration options,
in particular to point it at its database, and to create a
sample user.

These steps gave us both an Appliance Image and an
Appliance Recipe: the Appliance Image consists of the
two image files, the kernel and initrd for the virtual ma-
chine, and the appliance XML description. The Appli-
ance Recipe consists of the appliance XML description,
the kickstart file for the base system, and the puppet
manifest generated by the cft session.

Even an application as simple as kronolith requires a
small amount of custom development to be fully func-
tional as an appliance. For kronolith, there were two
specific problems that need to be addressed: firstly, kro-
nolith sends email alerts of upcoming appointments to
users, which means that it has to be able to connect to a
mailserver, and secondly, database creation is not fully
scripted.

We addressed the first problem, sending email, in two
different ways for the image and the recipe variant of the
appliance: for the image variant, kronolith’s web inter-
face can be used to point it to an existing mail hub. Since
this modifies kronolith’s configuration files in /etc,
these files need to be moved to the data disk to ensure
that they are preserved during an image-based update.
For the recipe case, we turned the appropriate config file
into a template, requiring that the user has to fill in the
name of the mail hub in a puppet manifest before de-
ployment.

The fact that database creation is not fully scripted is
not a problem for the kronolith Appliance Image, since
the database is created by the appliance builder, not the
user. For the recipe case, recipe instantiation has to be
fully automated; in this case though, the problem is eas-
ily addressed with a short shell script that is included
with the puppet manifest and run when the appliance is
instantiated.

Another issue illustrates how low-level details of the ap-
pliance are connected to the environment in which it is
expected to run: as the appliance is used over time, it is
possible that its data disk fills up. For consumer or SMB
use, it would be enough to provide a page in the web UI
that shows how full the appliance’s disk is—though a
nontechnical user will likely lack the skill to manually
expand the data disk, and therefore needs the appliance
to provide mechanisms to expand the data disk. The
appliance can not do that alone though, since the file
backing the data disk must be expanded from outside
the appliance first. For this use, the appliance tools have
to provide easy-to-use mechanisms for storage manage-
ment.

For enterprise users, the issue presents itself completely
differently: such users in general have the necessary
skills to perform simple operations such as increasing
storage for the appliance’s data. But they are not very
well served by an indication of how full the data disk
is in the appliance’s UI because such mechanisms scale



302 • Manageable Virtual Appliances

poorly to large numbers of machines; for the same rea-
son, sending an email notification when the data disk
becomes dangerously full is not all that useful either.
What serves an enterprise user best is being able to in-
stall a monitoring agent inside the appliance. Since dif-
ferent sites use different monitoring systems, this is a
highly site-dependent operation. With the recipe-based
appliance, adding the monitoring agent and its configu-
ration to the appliance is very simple, no different from
how the same is done for other systems at the site. With
the image-based appliance, whether this is possible at all
depends on whether the appliance builder made it possi-
ble to gain shell access. Other factors, such as whether
the appliance builder kept a package database in the ap-
pliance image and what operating system and version
the appliance is based on, determine how hard it is to
enable monitoring of the appliance.

Over time, and if appliances find enough widespread
use, we will probably see solutions to these problems
such as improved service discovery and standardized
interfaces for monitoring and storage management that
alleviate these issues. Whether they can cover all the
use cases that require direct access to the insides of the
appliance is doubtful, since in aggregate they amount
to managing every aspect of a system from the out-
side. In any event, such solutions are neither mature
nor widespread enough to make access and use of tradi-
tional management techniques unnecessary in the near
future.

Details of the kronolith example, including the appli-
ance descriptor and the commented recipe can be found
on a separate website [5].

Acknowledgements

We wish to thank Daniel Berrange for many fruitful dis-
cussions, particularly around appliance descriptors, lib-
virt capabilities and the ins and outs of matching guests
to hosts.

References

[1] http:
//virt-manager.et.redhat.com/

[2] http:
//virt-factory.et.redhat.com/

[3] http://fedoraproject.org/wiki/
StatelessLinux

[4] http://cft.et.redhat.com/

[5] http://people.redhat.com/dlutter/
kronolith-appliance.html


