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Abstract

While Linux provides copious monitoring and control
options for individual processes, it has less support
for applying the same operations efficiently to related
groups of processes. This has led to multiple proposals
for subtly different mechanisms for process aggregation
for resource control and isolation. Even though some of
these efforts could conceptually operate well together,
merging each of them in their current states would lead
to duplication in core kernel data structures/routines.

The Containers framework, based on the existing
cpusets mechanism, provides the generic process group-
ing features required by the various different resource
controllers and other process-affecting subsystems. The
result is to reduce the code (and kernel impact) required
for such subsystems, and provide a common interface
with greater scope for co-operation.

This paper looks at the challenges in meeting the needs
of all the stakeholders, which include low overhead,
feature richness, completeness and flexible groupings.
We demonstrate how to extend containers by writing
resource control and monitoring components, we also
look at how to implement namespaces and cpusets on
top of the framework.

1 Introduction

Over the course of Linux history, there have been and
continue to be multiple efforts to provide forms of mod-
ified behaviour across sets of processes. These ef-
forts have tended to fall into two main camps, resource
control/monitoring, and namespace isolation (although
some projects contain elements of both).

*With additional contributions by Balbir Singh
and Srivatsa Vaddagiri, IBM Linux Technology Center,
{balbir,vatsa}@in.ibm.com

Technically resource control and isolation are related;
both prevent a process from having unrestricted access
to even the standard abstraction of resources provided
by the Unix kernel. For the purposes of this paper, we
use the following defintions:

Resource control is any mechanism which can do either
or both of:

• tracking how much of a resource is being com-
sumed by a set of processes

• imposing quantative limits on that consumption, ei-
ther absolutely, or just in times of contention.

Typically resource control is visible to the processes be-
ing controlled.

Namespace isolation1 is a mechanism which adds an
additional indirection or translation layer to the nam-
ing/visibility of some unix resource space (such as pro-
cess ids, or network interfaces) for a specific set of pro-
cesses. Typically the existence of isolation itself is in-
visible to the processes being isolated.

Resource Control and Isolation are both subsets of the
general model of a subsystem which can apply be-
haviour differently depending on a process’ membership
of some specific group. Other examples could include:

• basic job control. A job scheduling system needs
to be able to keep track of which processes are
part of a given running “job,” in the presence of
fork() and exit() calls from processes in that
job. This is the simplest example of the kind of

1We avoid using the alternative term virtualization in this paper
to make clear the distinction between lightweight in-kernel virtual-
ization/isolation, and the much more heavyweight virtual machine
hypervisors such as Xen which run between the kernel and the hard-
ware.
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process tracking system proposed in this paper, as
the kernel need do nothing more than maintain the
membership list of processes in the job.

• tracking memory pressure for a group of processes,
and being able to receive notifications when mem-
ory pressure reaches some particular level (e.g. as
measured by the scanning level reached in try_
to_free_pages()), or reaches the OOM stage.

Different projects have proposed various basic mech-
anisms for implementing such process tracking. The
drawbacks of having multiple such mechanisms include:

• different and mutually incompatible user-space and
kernel APIs and feature sets.

• The merits of the underlying process grouping
mechanisms and the merits of the actual resource
control/isolation system become intertwined.

• systems that could work together to provide syner-
gistic control of different resources to the same sets
of processes are unable to do so easily since they’re
based on different frameworks.

• kernel structures and code get bloated with addi-
tional framework pointers and hooks.

• writers of such systems have to duplicate large
amounts of functionally-similar code.

The aim of the work described in this paper is to pro-
vide a generalized process grouping mechanism suitable
for use as a base for current and future Linux process-
control mechanisms such as resource controllers; the in-
tention is that writers of such controllers need not be
concerned with the details of how processes are being
tracked and partitioned, and can concentrate on the par-
ticular resource controller at hand, and the resource ab-
straction presented to the user. (Specifically, this frame-
work does not attempt to prescribe any particular re-
source abstraction.) The requirements for a process-
tracking framework to meet the needs of existing and fu-
ture process-management mechanisms are enumerated,
and a proposal is made that aims to satisfy these require-
ments.

For the purposes of this paper, we refer to a tracked
group of processes as a container. Whether this is a

suitable final name for the concept is currently the sub-
ject of debate on various Linux mailing lists, due to its
use by other development groups for a similar concept in
userspace. Alternative suggestions have included parti-
tion and process set.

2 Requirements

In this section we attempt to enumerate the properties re-
quired of a generic container framework. Not all mecha-
nisms that depend on containers will require all of these
properties.

2.1 Multiple Independent Subsystems

Clients of the container framework will typically be
resource accounting/control systems and isolation sys-
tems. In this paper we refer to the generic client as a sub-
system. The relationship between the container frame-
work and a subsystem is similar to that between the
Linux VFS and a specific filesystem—the framework
handles many of the common operations, and passes no-
tifications/requests to the subsystem.

Different users are likely to want to make use of differ-
ent subsystems; therefore it should be possible to se-
lectively enable different subsystems both at compile
time and at runtime. The main function of the container
framework is to allow a subsystem to associate some
kind of policy/stats (referred to as the subsystem state)
with a group of processes, without the subsystem hav-
ing to worry in too much detail about how this is actually
accomplished.

2.2 Mobility

It should be possible for an appropriately-privileged
user to move a process between containers. Some sub-
systems may require that processes can only move into
a container at the point when it is created (e.g. a virtual
server system where the process becomes the new init
process for the container); therefore it should be possi-
ble for mobility to be configurable on a per-subsystem
basis.
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2.3 Inescapability

Once a process has been assigned to a container, it
shouldn’t be possible for the process (or any of its chil-
dren) to move to a different container without action by
a privileged (i.e. root) user, or by a user to whom that
capability has been delegated, e.g. via filesystem per-
missions.

2.4 Extensible User Interface

Different subsystems will need to present different con-
figuration and reporting interfaces to userspace:

• a memory resource controller might want to allow
the user to specify guarantees and limits on the
number of pages that processes in a container can
use, and report how many pages are actually in use.

• a memory-pressure tracker might want to allow the
user to specify the particular level of memory pres-
sure which should cause user notifications.

• the cpusets system needs to allow users to specify
various parameters such as the bitmasks of CPUs
and memory nodes to which processes in the con-
tainer have access.

From the user’s point of view it is simplest if there is at
least some level of commonality between the configu-
ration of different subsystems. Therefore the container
framework should provide an interface that captures the
common aspects of different subsystems but which still
allows subsystems sufficient flexibility. Possible candi-
dates include:

• A filesystem interface, where each subsystem can
register files that the user can write (for configura-
tion) and/or read (for reporting) has the advantages
that it can be manipulated by many standard unix
tools and library routines, has built-in support for
permission delegation, and can provide arbitrary
input/output formats and behaviour.

• An API (possibly a new system call?) that allows
the user to read/write named properties would have
the advantages that it would tend to present a more
uniform interface (although possibly too restrictive
for some subsystems) and potentially have slightly
better performance than a filesystem-based inter-
face.

2.5 Nesting

For some subsystems it is desirable for there to be mul-
tiple nested levels of containers:

• The existing cpusets system inherently divides and
subdivides sets of memory nodes and CPUs be-
tween different groups of processes on the system.

• Nesting allows some fraction of the resources
available to one set of processes to be delegated to
a subset of those processes.

• Nested virtual servers may also find hierarchical
support useful.

Some other subsystems will either be oblivious to the
concept of nesting, or will actively want to avoid it;
therefore the container system should allow subsystems
to selectively control whether they allow nesting.

2.6 Multiple Partitions

The container framework will allow the user to partition
the set of processes. Consider a system that is config-
ured with the cpusets and beancounters subsystems. At
any one time, a process will be in one and exactly one
cpuset (a cpuset A may also be a child of some other
cpuset B, in which case in a sense all processes in A are
indirectly members of cpuset B as well, but a process is
only a direct member of one cpuset). Similarly a process
is only a direct member of one beancounter. So cpusets
and beancounters are each a partition function on the set
of processes.

Some initial work on this project produced a system that
simply used the same partition function for all subsys-
tems, i.e. for every cpuset created there would also be
a beancounter created, and all processes moved into the
new cpuset would also become part of the new bean-
counter. However, very plausible scenarios were pre-
sented to demonstrate that this was too limiting.

A generic container framework should support some
way of allowing different partitions for different sub-
systems. Since the requirements suggest that support-
ing hierarchical partitions is useful, even if not re-
quired/desired for all subsystems, we refer to these par-
titions, without loss of generality, as hierarchies.

For illustration, we consider the following examples of
dividing processes on a system.
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Figure 1: Example container divisions with independent (single-subsystem) hierarchies

A University Timesharing System2

A university server has various users—students,
professors, and system tasks. For CPU and mem-
ory, it is desired to partition the system according
to the process owner’s user ID, whereas for net-
work traffic, it is desired to partition the system ac-
cording to the traffic content (e.g. WWW browser
related traffic across all users shares the same limit
of 20%). Any single way of partitioning the sys-
tem will make this kind of resource planning hard,
potentially requiring creating a container for each
tuple of the cross-product of the various config-
ured resource subsystems.. Allowing the system
to be partitioned in multiple ways, depending on
resource type, is therefore a desirable feature.

A Virtual Server System
A large commercial hosting server has many
NUMA nodes. Blocks of nodes are sold to re-
sellers (R1, R2) to give guaranteed CPU/memory
resources. The resellers then sell virtual servers
(VS1–VS4) to end users, potentially overcommit-
ting their resources but not affecting other resellers
on the system.

The server owner would use cpusets to restrict each
reseller to a set of NUMA memory nodes/CPUs;
the reseller would then (via root-delegated capa-
bilities) use a server isolation subsystem and a re-
source control subsystem to create virtual servers
with various levels of resource guarantees/limits,
within their own cpuset resources.

2Example contributed by Srivatsa Vaddagiri.

Two possible approaches to supporting these examples
are given below; the illustrative figures represent a ker-
nel with cpusets, memory, network, and isolation sub-
systems.

2.6.1 Independent hierarchies

In the simplest approach, each hierarchy provides the
partition for exactly one subsystem. So to use e.g.
cpusets and beancounters on the same system, you
would need to create a cpuset hierarchy and a beancoun-
ters hierarchy, and assign processes to containers sepa-
rately for each subsystem.

This solution can be used to implement any of the
other approaches presented below. The drawback is that
it imposes a good deal of extra management work to
userspace in the (we believe likely) common case when
the partitioning is in fact the same across multiple or
even all subsystems. In particular, moving processes
between containers can have races—if userspace has to
move a process as two separate actions on two different
hierarchies, a child process forked during this operation
might end up in inconsistent containers in the two hier-
archies.

Figure 1 shows how containers on the university and
hosting servers might be configured when each subsys-
tem is an independent hierarchy. The cpusets and mem-
ory subsystems have duplicate configurations for the
university server (which doesn’t use the isolation sub-
system), and the network, memory and isolation subsys-
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Figure 2: Example container divisions with multi-subsystem hierarchies

tems have duplicate configurations for the hosting server
since they’re the same for each virtual server.

2.6.2 Multi-subsystem hierarchies

An extension to the above approach allows multiple sub-
systems to be bound on to the same hierarchy; so e.g.
if you were using cpusets and beancounters, and you
wanted the cpuset and beancounter assignments to be
isomorphic for all processes, you could bind cpusets and
beancounters to the same hierarchy of containers, and
only have to operate on a single hierarchy when creat-
ing/destroying containers, or moving processes between
containers.

Figure 2 shows how the support for multiple subsystems
per hierarchy can simplify the configuration for the two
example servers. The university server can merge the
configurations for the cpusets and memory subsystems
(although not for the network subsystem, since that’s us-
ing an orthogonal division of processes). The hosting
server can merge all four subsystems into a single hier-
archy.

2.7 Non-process references to containers

Although the process is typically the object most uni-
versally associated with a container, it should also be
possible to associate other objects—such as pages, file

handles or network sockets—with a container, for ac-
counting purposes or in order to affect the kernel’s be-
haviour with respect to those objects.

Since such associations are likely to be subsystem-
specific, the container framework needs primarily to be
able to provide an efficient reference-counting mecha-
nism, which will allow references to subsystem state ob-
jects to be made in such a way that they prevent the de-
struction of the associated container until the reference
has been released.

2.8 Low overhead

The container framework should provide minimal addi-
tional runtime overhead over a system where individ-
ual subsystems are hard-coded into the source at all ap-
propriate points (pointers in task_struct, additional
fork() and exit() handlers, etc).

3 Existing/Related Work

In this section we consider the existing mechanisms for
process tracking and control in Linux, looking at both
those already included in the Linux source tree, and
those proposed as bases for other efforts.

3.1 Unix process grouping mechanisms

Linux has inherited several concepts from classical Unix
that can be used to provide some form of association be-
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tween different processes. These include, in order of in-
creasing specificity: group id (gid), user id (uid), session
id (sid) and process group (pgrp).

Theoretically the gid and/or uid could be used as the
identification portion of the container framework, and
a mechanism for configuring per-uid/gid state could be
added. However, these have the serious drawbacks that:

• Job-control systems may well want to run multiple
jobs as the same user/group on the same machine.

• Virtual server systems will want to allow processes
within a virtual server to have different uids/gids.

The sid and/or the pgrp might be suitable as a track-
ing base for containers, except for the fact that tradi-
tional Unix semantics allow processes to change their
sid/pgrp (by becoming a session/group leader); remov-
ing this ability would be possible, but could resulting in
unexpected breakage in applications. (In particular, re-
quiring all processes in a virtual server to have the same
sid or pgrp would probably be unmanageable).

3.2 Cpusets

The cpusets system is the only major container-like sys-
tem in the mainline Linux kernel. Cpusets presents a
pseudo-filesystem API to userspace with semantics in-
cluding:

• Creating a directory creates a new empty cpuset (an
analog of a container).

• Control files in a cpuset directory allow you to con-
trol the set of memory nodes and/or CPUs that
tasks in that cpuset can use.

• A special control file, tasks can be read to list the
set of processes in the cpuset; writing a pid to the
tasks file moves a process into that cpuset.

3.3 Linux/Unix container systems

The Eclipse [3] and Resource Containers [4] projects
both sought to add quality of service to Unix. Both
supported hierarchical systems, allowing free migration
of processes and threads between containers; Eclipse

used the independent hierarchies model described in
Section 2.6.1; Resource Containers bound all schedulers
(subsystems) into a single hierarchy.

PAGG [5] is part of the SGI Comprehensive System
Accounting project, adapted for Linux. It provides a
generic container mechanism that tracks process mem-
bership and allows subsystems to be notified when pro-
cesses are created or exit. A crucial difference between
PAGG and the design presented in this paper is that
PAGG allows a free-form association between processes
and arbitrary containers. This results in more expensive
access to container subsystem state, and more expensive
fork()/exit() processing.

Resource Groups [2] (originally named CKRM – Class-
based Kernel Resource Management) and BeanCoun-
ters [1] are resource control frameworks for Linux. Both
provide multiple resource controllers and support addi-
tional controllers. ResGroups’ support for additional
controllers is more generic than the design proposed
in this paper—we feel that the additional overheads
that it introduces are unnecessary; BeanCounters is less
generic, in that additional controllers have to be hard-
coded into the existing BeanCounters source. Both
frameworks also enforce a particular resource model
on their resource controllers, which may be inappro-
priate for resource controllers with different require-
ments from those envisaged—for example, implement-
ing cpusets with its current interface (or an equivalent
natural interface) on top of either the BeanCounters or
ResGroups abstractions would not be possible.

3.4 Linux virtual server systems

There have been a variety of virtual server systems de-
veloped for Linux; early commercial systems included
Ensim’s Virtual Private Server [6] and SWSoft’s Vir-
tuozzo [7]; these both provided various resource con-
trollers along with namespace isolation, but no support
for generic extension with user-provided subsystems.

More recent open-sourced virtualization systems have
included VServer [8] and OpenVZ [9], a GPL’d subset
of the functionality of Virtuozzo.

3.5 NSProxy-based approaches

Recent work on Linux virtual-server systems [10]
has involved providing multiple copies of the various
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namespaces (such as for IPC, process ids, etc) within
the kernel, and having the namespace choice be made
on a per-process basis. The fact that different pro-
cesses can now have different IPC namespaces results
in the requirement that these namespaces be reference-
counted on fork() and released on exit(). To
reduce the overhead of such reference counting, and
to reduce the number of per-process pointers required
for all these virtualizable namespaces, the struct
nsproxy was introduced. This is a reference-counted
structure holding reference-counted pointers to (theoret-
ically) all the namespaces required for a task; therefore
at fork()/exit() time only the reference count on
the nsproxy object must be adjusted. Since in the
common case a large number of processes are expected
to share the same set of namespaces, this results in a
reduction in the space required for namespace pointers
and in the time required for reference counting, at the
cost of an additional indirection each time one of the
namespaces is accessed.

4 Proposed Design

This section presents a proposed design for a container
framework based on the requirements presented in Sec-
tion 2 and the existing work surveyed above. A pro-
totype implementation of this design is available at
the project website [11], and has been posted to the
linux-kernel@vger.kernel.org mailing list and
other relevant lists.

4.1 Overview

The proposed container approach is an extension of
the process-tracking design used for cpusets. The cur-
rent design favours the multiple-hierarchy approach de-
scribed in Section 2.6.2.

4.2 New structure types

The container framework adds several new structures
to the kernel. Figure 3 gives an overview of the rela-
tionship between these new structures and the existing
task_struct and dentry.

4.2.1 container

The container structure represents a container ob-
ject as described in Section 1. It holds parent/child/
sibling information, per-container state such as flags,
and a set of subsystem state pointers, one for the state
for each subsystem configured in the kernel. It holds
no resource-specific state. It currently3 holds no refer-
ence to a list of tasks in the container; the overhead of
maintaining such a list would be paid whenever tasks
fork() or exit(), and the relevant information can
be reconstructed via a simple walk of the tasklist.

4.2.2 container_subsys

The container_subsys structure represents a sin-
gle resource controller or isolation component, e.g. a
memory controller or a CPU scheduler.

The most important fields in a container_subsys
are the callbacks provided to the container framework;
these are called at the appropriate times to allow the sub-
system to learn about or influence process events and
container events in the hierarchy to which this subsys-
tem is bound, and include:

create is called when a new container is created

destroy is called when a container is destroyed

can_attach is called to determine whether the subsys-
tem wants to allow a process to be moved into a
given container

attach is called when a process moves from one con-
tainer to another

fork is called when a process forks a child

exit is called when a process exits

populate is called to populate the contents of a con-
tainer directory with subsystem-specific control
files

bind is called when a subsystem is moved between hi-
erarchies.

3The possibility of maintaining such a task list just for those sub-
systems that really need it is being considered.
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Apart from create and destroy, implemention of
these callbacks is optional.

Other fields in container_subsys handle house-
keeping state, and allow a subsystem to find out to which
hierarchy it is attached.

Subsystem registration is done at compile time—
subsystems add an entry in the header file include/

linux/container_subsys.h. This is used in con-
junction with pre-processor macros to statically allocate
an identifier for each subsystem, and to let the container
system locate the various container_subsys ob-
jects.

The compile-time registration of subsystems means that
it is not possible to build a container subsystem purely
as a module. Real-world subsystems are expected to re-
quire subsystem-specific hooks built into other locations
in the kernel anyway; if necessary, space could be left in
the relevant arrays for a compile-time configurable num-
ber of “extra” subsystems.

4.2.3 container_subsys_state

A container_subsys_state represents the base
type from which subsystem state objects are derived,
and would typically be embedded as the first field in the
subsystem-specific state object. It holds housekeeping
information that needs to be shared between the generic
container system and the subsystem. In the current de-
sign this state consists of:

container – a reference to the container object with
which this state is associated. This is primarily
useful for subsystems which want to be able to ex-
amine the tree of containers (e.g. a hierarchical re-
source manager may propagate resource informa-
tion between subsystem state objects up or down
the hierarchy of containers).

refcnt – the reference count of external non-process ob-
jects on this subsystem state object, as described in
Section 2.7. The container framework will refuse
to destroy a container whose subsystems have non-
zero states, even if there are no processes left in the
container.

To access its state for a given task, a subsystem can
call task_subsys_state(task, <subsys_id>).

This function simply dereferences the given subsystem
pointer in the task’s css_group (see next Section).

4.2.4 css_group

For the same reasons as described in Section 3.5, main-
taining large numbers of pointers (per-hierarchy or per-
subsystem) within the task_struct object would re-
sult in space wastage and reference-counting overheads,
particularly in the case when container systems com-
piled into the kernel weren’t actually used.

Therefore, this design includes the css_group (con-
tainer subsystem group) object, which holds one
container_subsys_state pointer for each reg-
istered subsystem. A reference-counted pointer field
(called containers) to a css_group is added to
task_struct, so the space overhead is one pointer per
task, and the time overhead is one reference count op-
eration per fork()/exit(). All tasks with the same
set of container memberships across all hierarchies will
share the same css_group.

A subsystem can access the per-subsystem state for a
task by looking at the slot in the task’s css_group

indexed by its (statically defined) subsystem id. Thus
the additional indirection is the only subsystem-state ac-
cess overhead introduced by the css_group; there’s
no overhead due to the generic nature of the container
framework. The space/time tradeoff is similar to that
associated with nsproxy.

It has been proposed (by Srivatsa Vaddagiri and oth-
ers) that the css_group should be merged with the
nsproxy to form a single per-task object containing
both namespace and container information. This would
be a relatively straightforward change, but the current
design keeps these as separate objects until more expe-
rience has been gained with the system.

4.3 Code changes in the core kernel

The bulk of the new code required for the container
framework is that implementing the container filesys-
tem and the various tracking operations. These are
driven entirely by the user-space API as described in
Section 4.5.

Changes in the generic kernel code are minimal and con-
sist of:
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Figure 3: Three subsystems (A, B, C) have been compiled into the kernel; a single hierarchy has been mounted
with A and B bound to it. Container directories foo and bar have been created, associated with subsystem states
A2/B2 and A3/B3 respectively. Tasks T1 and T2 are in container foo; task T3 is in container bar. Subsystem C is
unbound so all container groups (and hence tasks) share subsystem state C1.

• A hook early in the fork() path to take an ad-
ditional reference count on the task’s css_group
object.

• A hook late in the fork() path to invoke
subsystem-specific fork callbacks, if any are re-
quired.

• A hook in the exit() path to invoke any
subsystem-specfic exit callbacks, if any, and to
release the reference count on the task’s css_

group object (which will also free the css_group
if this releases the last reference.)

4.4 Locking Model

The current container framework locking model re-
volves around a global mutex (container_mutex),
each task’s alloc_lock (accessed via task_
lock() and task_unlock()) and RCU critical sec-
tions.

The container_mutex is used to synchronize per-
container operations driven by the userspace API. These

include creating/destroying containers, moving pro-
cesses between containers, and reading/writing sub-
system control files. Performance-sensitive operations
should not require this lock.

When modifying the containers pointer in a task,
the container framework surrounds this operation with
task_lock()/task_unlock(), and follows with
a synchronize_rcu() operation before releasing
the container_mutex.

Therefore, in order for a subsystem to be sure that it is
accessing a valid containers pointer, it suffices for
at least one of the following three conditions to be true
of the current task:

• it holds container_mutex

• it holds its own alloc_lock.

• it is in an RCU critical section.

The final condition, that of being in an RCU critical sec-
tion, doesn’t prevent the current task being concurrently
moved to a different container in some hierarchy—it
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simply tells you that the current task was in the spec-
ified set of containers at some point in the very recent
past, and that any of the subsystem state pointers in that
css_group object won’t be candidates for deletion
until after the end of the current RCU critical section.

When an object (such as a file or a page) is accounted
to the value that has been read as the current subsystem
state for a task, it may actually end up being accounted
to a container that the task has just been moved from;
provided that a reference to the charged subsystem state
is stored somewhere in the object, so that at release
time the correct subsystem state can be credited, this is
typically sufficient. A subsystem that wants to reliably
migrate resources between containers when the process
that allocated those resources moves (e.g. cpusets, when
the memory_migratemode is enabled) may need ad-
ditional subsystem-specific locking, or else use one of
the two other locking methods listed above, in order to
ensure that resources are always accounted to the correct
containers.

The subsystem state pointers in a given css_group are
immutable once the object has been created; therefore
as long as you have a pointer to a valid css_group, it
is safe to access the subsystem fields without additional
locking (beyond that mandated by subsystem-specific
rules).

4.5 Userspace API

The userspace API is very similar to that of the existing
cpusets system.

A new hierarchy is created by mounting an instance of
the container pseudo-filesystem. Options passed to
the mount() system call indicate which of the avail-
able subsystems should be bound to the new hierarchy.
Since each subsystem can only be bound to a single hier-
archy at once, this will fail with EBUSY if the subsystem
is already bound to a different hierarchy.

Initially, all processes are in the root container of this
new hierarchy (independently of whatever containers
they might be members of in other hierarchies).

If a mount request is made for a set of subsystems that
exactly match an existing active hierarchy, the same su-
perblock is reused.

At the time when a container hierarchy is unmounted, if
the hierarchy had no child containers then the hierarchy

is released and all subsystems are available for reuse.
If the hierarchy still has child containers, the hierarchy
(and superblock) remain active even though not actively
attached to a mounted filesystem.4

Creating a directory in a container mount creates a new
child container; containers may be arbitrarily nested,
within any restrictions imposed by the subsystems
bound to the hierarchy being manipulated.

Each container directory has a special control file,
tasks. Reading from this file returns a list of pro-
cesses in the container; writing a pid to this file moves
the given process into the container (subject to success-
ful can_attach() callbacks on the subsystems bound
to the hierarchy).

Other control files in the container directory may be cre-
ated by subsystems bound to that hierarchy; reads and
writes on these files are passed through to the relevant
subsystems for processing.

Removing a directory from a container mount destroys
the container represented by the directory. If tasks re-
main within the container, or if any subsystem has a non-
zero reference count on that container, the rmdir()
operation will fail with EBUSY. (The existence of sub-
system control files within a directory does not keep it
busy; these are cleared up automatically.)

The file /proc/PID/container lists, for each ac-
tive hierarchy, the path from the root container to the
container of which process PID is a member.5

The file /proc/containers gives information
about the current set of hierarchies and subsystems in
use. This is primarily useful for debugging.

4.6 Overhead

The container code is optimized for fast access by sub-
systems to the state associated with a given task, and a
fast fork()/exit() path.

Depending on the synchronization requirements of a
particular subsystem, the first of these can be as simple
as:

4They remain visible via a /proc reporting interface.
5An alternative proposal is for this to be a directory holding con-

tainer path files, one for each subsystem.
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struct task_struct *p = current;
rcu_read_lock()
struct state *st =

task_subsys_state(p,
my_subsys_id);

...
<Do stuff with st>
...
rcu_read_unlock();

On most architectures, the RCU calls expand to no-
ops, and the use of inline functions and compile-time
defined subsystem ids results in the code being equiv-
alent to struct state *st = p->containers->

subsys[my_subsys_id], or two constant-offset
pointer dereferences. This involves one additional
pointer dereference (on a presumably hot cacheline)
compared to having the subsystem pointer embedded
directly in the task structure, but has a reduced space
overhead and reduced refcounting overhead at fork()
/ exit() time.

Assuming none of the registered subsystems have reg-
istered fork() / exit() callbacks, the overhead
at fork() (or exit()) is simply a kref_get()
(or kref_put()) on current->containers->

refcnt.

5 Example Subsystems

The containers patches include various examples of sub-
systems written over the generic containers framework.
These are primarily meant as demonstrations of the way
that the framework can be used, rather than as fully-
fledged resource controllers in their own right.

5.1 CPU Accounting Subsystem

The cpuacct subsystem is a simple demonstration of
a useful container subsystem. It allows the user to eas-
ily read the total amount of CPU time (in milliseconds)
used by processes in a given container, along with an
estimate of the recent CPU load for that container.

The 250-line patch consists of:

• callback hooks added to the account_*_
time() functions in kernel/sched.c to in-
form the subsystem when a particular process is
being charged for a tick.

• declaration of a subsystem in include/linux/

container_subsys.h

• Kconfig/Makefile additions

• the code in kernel/cpuacct.c to implement
the subsystem. This can focus on the actual details
of tracking the CPU for a container, since all the
common operations are handled by the container
framework.

Internally, the cpuacct subsystem uses a per-
container spinlock to synchronize access to the us-
age/load counters.

5.2 Cpusets

Cpusets is already part of the mainline kernel; as part of
the container patches it is adapted to use the generic con-
tainer framework (the primary change involved removal
of about 30% of the code, that was previously required
for process-tracking).

Cpusets is an example of a fairly complex subsystem
with hooks into substantial other parts of the kernel (par-
ticularly memory management and scheduler parame-
ters). Some of its control files represent flags, some
represent bitmasks of memory nodes and cpus, and oth-
ers report usage values. The interface provided by the
generic container framework is sufficiently flexible to
accomodate the cpusets API.

Internally, cpusets uses an additional global mutex—
callback_mutex—to synchronize container-driven
operations (moving a task between containers, or updat-
ing the memory nodes for a container) with callbacks
from the memory allocator or OOM killer.

For backwards compatibility the existing cpuset
filesystem type remains; any attempt to mount it gets
redirected to a mount of the container filesystem,
with a subsystem option of cpuset.

5.3 ResGroups

ResGroups (formerly CKRM [2]) is a hierarchical re-
source control framework that specifies the resource
limits for each child in terms of a fraction of the re-
sources available to its parent. Additionally resources
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may be borrowed from a parent if a child has reached its
resource limits.

The abstraction provided by the generic containers
framework is low-level, with free-form control files.
As an example of how to provide multiple subsys-
tems sharing a common higher-level resource abstrac-
tion, ResGroups is implemented as a container subsys-
tem library by stripping out the group management as-
pects of the code and adding container subsystem call-
backs. A resource controller can use the ResGroups
abstraction simply by declaring a container subsystem,
with the subsystem’s private field pointing to a Res-
Groups res_controller structure with the relevant
resource-related callbacks.

The ResGroups library registers control files for that
subsystem, and translates the free-form read/write in-
terface into a structured and typed set of callbacks. This
has two advantages:

• it reduces the amount of parsing code required in a
subsystem

• it allows multiple subsystems with similar (re-
source or other) abstractions to easily present the
same interface to userspace, simplifying userspace
code.

One of the ResGroups resource controllers
(numtasks, for tracking and limiting the number
of tasks created in a container) is included in the patch.

5.4 BeanCounters

BeanCounters [1] is a single-level resource accounting
framework that aims to account and control consump-
tion of kernel resources used by groups of processes. Its
resource model allows the user to specify soft and hard
limits on resource usage, and tracks high and low water-
marks of resource usage, along with resource allocations
that failed due to limits being hit.

The port to use the generic containers framework con-
verts between the raw read/write interface and the struc-
tured get/store in a similar way to the ResGroups port,
although presenting a different abstraction.

Additionally, BeanCounters allows the accounting con-
text (known as a beancounter) to be overridden in par-
ticular situations, such as when in an interrupt handler or

when performing work in the kernel on behalf of another
process. This aspect of BeanCounters is maintained un-
changed in the containers port—if a process has an over-
ride context set then that is used for accounting, else the
context reached via the css_group pointer is used.

5.5 NSProxy / Container integration

A final patch in the series integrates the NSProxy system
with the container system by making it possible to track
processes that are sharing a given namespace, and (po-
tentially in the future) create custom namespace sets for
processes. This patch is a (somewhat speculative) ex-
ample of a subsystem that provides an isolation system
rather than a resource control system.

The namespace creation paths (via fork() or
unshare()) are hooked to call container_
clone(). This is a function provided by the container
framework that creates a new sub-container of a task’s
container (in the hierarchy to which a specified subsys-
tem is bound) and moves the task into the new con-
tainer. The ns container subsystem also makes use of
the can_attach container callback to prevent arbi-
trary manipulation of the process/container mappings.

When a task changes its namespaces via either of these
two methods, it ends up in a fresh container; all of its
children (that share the same set of namespaces) are in
the same container. Thus the generic container frame-
work provides a simple way to export to userspace the
sets of namespaces in use, their hierarchical relation-
ships, and the processes using each namespace set.

6 Conclusion and Future Work

In this paper we have examined some of the existing
work on process partitioning/tracking in Linux and other
operating systems, and enumerated the requirements for
a generic framework for such tracking; a proposed de-
sign was presented, along with examples of its use.

As of early May 2007, several other groups have
proposed resource controllers based on the containers
framework; it is hoped that the containers patches can
be trialled in Andrew Morton’s -mm tree, with the aim
of reaching the mainline kernel tree in time for 2.6.23.
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