
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Where is your application stuck?

Shailabh Nagar
IBM India Research Lab
nagar1234@in.ibm.com

Balbir Singh Vivek Kashyap Chandra Seetharaman

Narasimha Sharoff Pradipta Banerjee

IBM Linux Technology Center

{balbir@linux.vnet,vivk@us,sekharan@linux.vnet}.ibm.com,
nsharoff@beaverton.ibm.com, bpradipt@in.ibm.com

Abstract

Xen migration or Container mobility promise better sys-
tem utiliztion and system performance. But how does
one know if the effort will improve the workload’s
progress? Resource management solutions promise op-
timal performance tuning. But how does one determine
the resources to be reallocated and the impact of the al-
lotment? Most customers develop their own benchmark
that is used for purchasing a solution, but how does one
know that the bottleneck is not in the customer bench-
mark?

Per-task delay accounting is a new functionality in-
troduced for the Linux kernel which provides a direct
measurement of resource constraints delaying forward
progress of applications. Time spent by Linux tasks
waiting for CPU time, completion of submitted I/O and
in resolving page faults caused by allocated real mem-
ory, delay the forward progress of the application being
run within the task. Currently these wait times are ei-
ther unavailable at a per-task granularity or can only by
obtained indirectly, through measurement of CPU us-
age and number of page faults. Indirect measurements
are less useful because they make it harder to decide
whether low usage of a resource is due to lack of de-
mand from the application or due to resource contention
with other tasks/applications.

Direct measurement of per-task delays has several ad-
vantages. They provide feedback to resource manage-
ment applications that control a task’s allocation of sys-
tem resources by altering its CPU priority, I/O priority
and real memory limits and enable them to fine tune

these parameters more quickly to adapt to resource man-
agement policies and application demand. They are also
useful for accurate metering/billing of resource usage
which is particularly useful for shared systems such as
departmental servers or hosting platforms. For desktop
users, these statistics provide a quick way of determin-
ing the resource bottleneck, if any, for applications that
are not running as fast as expected.

In this paper, we describe the design, implementation
and usage of per-task delay accounting functionality
currently available in the Linux kernel tree. We demon-
strate the utility of the feature by studying the delay pro-
files of some commonly used applications and how their
resource usage can be tuned using the feedback pro-
vided. We provide a brief description of the alternative
mechanisms proposed to address similar needs.

1 Introduction

Linux is supported on a wide range of systems, from
embedded to desktop to mainframe, running a diverse
set of applications ranging from business and scientific
to office productivity and entertainment. Linux provides
multiple metrics and “knobs” for achieving optimal per-
formance in these various deployments. There are a
myriad of well known benchmarks and tools available
to help gather and analyze and then tune the systems for
desired performance.

However, after elaborate tuning as well the applications
or system may still perform unsatisfactorily. The re-
source bottlenecks blocking the progress must be ad-
dressed through additional provisioning, resource real-

• 71 •



72 • Where is your application stuck?

location or even load-balancing by migration of the ap-
plication/service to another system.

There is on-going work such as resource groups and
‘containers’ to re-allocate resources to desired work-
loads for better system utilization and performance. Xen
and Linux containers support the notion of migrating
live workloads to consolidate systems when load is low
and migrate to other systems for better load-balancing.
However, all these mechanisms will work ‘blind’ with-
out a good method to pinpoint the resources that need
tuning.

The delay-accounting framework is built on the obser-
vation that: since ultimately the application’s progress
is most important, the bottlenecks impeding the appli-
cations progress must be easily identifiable. The delay-
accounting framework therefore gathers the time spent
on behalf of the task (or task group) in queues contend-
ing for system resources. This information may then
be utilised by workload management applications to dy-
namically increase the desired applicaton’s access to the
bottlenecked resource by raising its priority, or share of
the resource pool, or even initiating service or applica-
tion migration to a different system.

This paper discusses the design, implementation and
utility of the per-task delay accounting framework de-
veloped to address this issue. The following sectons
outline the use cases

2 Motivation

The traditional focus of operating system accounting is
the time spent by a Linux task doing a particular activ-
ity e.g. time spent by a task executing on a cpu in sys-
tem mode, user mode, in interrupts etc. There is also a
measure of the system activity that happens e.g. number
of system calls, I/O blocks transferred, network pack-
ets sent/received. While these metrics are often use-
ful for measuring overall system utilization or for high
level detection of performance anomalies, they are not
directly usable for determining what is delaying for-
ward progress of a specific application, except perhaps
by skilled and experienced system administrators.

Hence there is a need for answering the simple question:
what resource, managed by the operating system, is my
application waiting for? To start with, the resources of
interest can be high level such as cpu time, block I/O

bandwidth and physical memory. These, respectively,
translate to knowing how long a Linux task (or groups
of tasks) spend in, i.e. get delayed, in

• waiting to run on a CPU after becoming runnable
waiting for block

• I/O operations inititated by the task to complete
waiting for page

• faults to complete

The information is useful in at least two distinct scenar-
ios:

Simple hand tuning: If a favorite task seems to be
spending most of its time waiting for I/O com-
pletion, raising its I/O priority (compared to other
tasks) may help. Similarly, if a task is mainly wait-
ing on page faults, increasing its RSS limit (or run-
ning other memory hogs at a much lower cpu pri-
ority) may help alleviate the resource bottleneck.

Workload management: One of the objectives of
modern workload management tools is to manage
the forward progress of aggregates of tasks which
are involved in a given business function. The idea
being that if business function A is more impor-
tant than another one B, the applications (tasks and
processes from an OS viewpoint) involved in the
former should get preferential access to the OS re-
sources compared to B.

To achieve this, workload managers need to period-
ically know the bottlenecked resource for all tasks
running on the system and use that information, in
conjunction with policies that determine prioritiza-
tion, to adjust the resource priorities like nice val-
ues, I/O priorities and RSS limits. Workload man-
agers may also make a decision to shift a given ap-
plication off a system if it determines that priority
boosting isn’t helping.

Per-task delay accounting was designed and imple-
mented to meet the above needs. We next describe the
design considerations in detail.

3 Design and implementation

The design and implementation of per-task delay ac-
counting had to take the following three major factors
into consideration.



2007 Linux Symposium, Volume Two • 73

3.1 Measurement of delays

The design objective was to measure the most signifi-
cant sources of delay for a process to the highest accu-
racy possible, preferably at nanosecond granularity. The
approach taken was to take high resolution timestamps
at the appropriate kernel functions and accumalate the
timestamp differences into per-process data structures.

The delay sources chosen and the manner in which they
are collected are:

1. Waiting to run on a cpu after becoming runnable:
Here we needed to take timestamps when a pro-
cess was added to a cpu runqueue and again when
it was selected to be run on a cpu. The sched-
stats codebase, added to help gather cpu sched-
uler statistics for development and debugging pur-
poses, came in handy since it already had code to
gather these timestamps and take their differences.
The schedstats functions sched_info_arrive

and sched_info_depart which gathered other
statistics that were not of interest to delay account-
ing had to be refactored to minimize the perfor-
mance impact. Another decision made to keep the
performance impact low was to stick to the jiffie
level timestamp resolution used by schedstats in-
stead of higher resolution ones available in the ker-
nel.

2. Waiting for block I/O submitted to complete: Here
we had a choice of trying to accurately measure
the entire delay in submitting block I/O as well as
the delay incurred in the block device performing
the I/O. However, it was finally decided that we
would measure only the time spent by a process in
sleeping for submitted I/O to complete. Measur-
ing the delays in the I/O submission path as well
turned out to be quite complex, given the diversity
of functions that are involved in block I/O submis-
sion as well as the difficulty of correctly attributing
the delays to the right process in all these paths.
These factors would have necessitated a number of
timestamps being collected all over the kernel code
which affects maintainability. Moreover, much
of the delays seen in I/O submission cannot be
changed by the user (other than indirectly by affect-
ing the cpu scheduling of the submitting process)
whereas delays incurred after I/O submission can
be affected by tweaking the I/O scheduling priority

of the process. Hence it was decided to only mea-
sure the time spent in sched.c/io_schedule()
using high resolution timestamps.

3. Waiting for a page fault to complete We had briefly
considered measuring the delays seen in both major
and minor page faults but later concentrated only
on the former to minimize impact of delay collec-
tion code on the virtual memory management code
paths. Delays for major page faults are a subset
of the block I/O delays which were already being
measured so the only change needed was to record
the fact that a process was in the middle of a ma-
jor page fault and use this information at block I/O
delay recording time.

Delay accounting also measures and returns an interval-
based measurement of time spent running on a cpu. This
is more accurate than the sampling-based cpu time mea-
sures normally available from the kernel (via a task’s
utime, stime fields in task struct). Accurate cpu usage
times are valuable in accurate workload management.
One factor that has to be considered for cpu time is the
possibility of the kernel running as a guest OS in a virtu-
alized environment. These “guest OSes” are scheduled
by the hypervisor in accordance with its scheduling poli-
cies and priorities for the OS instance. As a result, the
times spent waiting for a particular resource need to be
measured in wall-clock times. In contrast the the uti-
lization of the resource occurs only when the Guest is
executing. This differentiation enables an educated as-
sessment of resource allocation (such as additional CPU
share) needed by the “guest” or the resources within the
the “guest OS.”

The delay accounting framework retuns both the real
and virtual cpu utilization on virtual systems (currently
implemented for LPARs on ppc64) as well as the de-
lays experienced by the individual task groups in the OS
instances.

3.2 Storing the delay accounting data

Each of the delay data recorded above needed to be
stored taking into account two important constraints:

1. The data structures should be expandable to add
other per-task delays that were deemed useful in



74 • Where is your application stuck?

future. While the current per-task delay account-
ing only looks at wait for cpu, block I/O and ma-
jor page fault delays, it is well possible that other
delays associated with kernel resource allocation
would be of interest and measured in future.

2. The data should be collected per-task and also ag-
gregated per-process (i.e. per-tgid) within the ker-
nel. This latter design constraint drew a lot of
comments when the delay accounting code was
proposed since it was felt that per-process delays
could as well be accumulated outside the kernel in
userspace. However, we had observed that accurate
measures of per-process delays were very useful
for performance analysis of bottlenecks and also
that accumalating per-task delays in userspace re-
quired far too much overhead and reduced accuracy
due to presence of short-lived tasks in a process.
Hence it was necessary to have a per-process delay
aggregating data structure that would keep the de-
lay data collected for an exiting task and make it
available until all tasks of the process exited.

The taskstats data structure, defined in include/

linux/taskstats.h, took into account these
constraints. It was versioned, mandated that new
fields would be added at the bottom and also took
into account alignment requirements for 32 and 64
bit architectures.

To meet the second constraint, two copies of
the data structure are maintained. One is per-
task, maintained within the task_struct. The
other is per-tgid, maintained within the signal_
struct associated with a tgid. The fields of struct
taskstats are large enough to serve as an accumala-
tor for per-tgid delays.

3.3 Interface to userspace to supply the data

The interface to access delay accounting data from
userspace formed a large part of the discussion preced-
ing the acceptance of delay accounting in the kernel.
The various design constraints for the interface were:

1. Efficient transfer of large volumes of delay data:
Workload managers that are monitoring the entire
system for performance bottlenecks need to gather
delay statistics from each task periodically. In or-
der to allow this period to be small, it is essential

that the data transfer of delay accounting data be
efficient while handling large volumes (due to po-
tentially large number of tasks). A similar require-
ment, albeit less severe, exists even for monitoring
a single application if its degree of multithreading
is sufficiently high.

2. Handle rapid exit rate without data loss: In order
to do workload management at the level of user-
defined groups of processes, workload managers
need to get the cumulative delays seen by a task
(and a thread group) right up to the time it exits.
Hence delay accounting data needs to be available
even after a task (or thread group) exits. Obviously
the kernel cannot keep such data around for a long
time so the choice was made to use a “push” model
(kernel->user) to send such data out to listening
userspace applications rather than require them to
“pull” the data. In such a scenario, its important to
be able to handle a rapid rate of task/thread group
exits, if not on a sustained basis, atleast for short
bursts, without losing data.

3. Exporting data as text or not: This is another
instance of the classic debate whether such data
should be exported as text through /proc or /sysfs
like interfaces allowing it be directly read in user
space using shell utilities or whether it should be
a structured binary stream requiring special user
space utilities to parse. Given the volume of data
needing to be transferred, the latter option was cho-
sen.

4. Bidirectional read/writes: There was a need for
userspace to send commands and configuration in-
formation to the kernel delay accounting and hence
interfaces like relayfs which lacked a user->kernel
write capability were not usable.

Given these constraints, we decided to use the newly in-
troduced genetlink interface. Genetlink is a generalized
version of the netlink interface. Netlink, which exports
a sockets API, has been used to handle large volumes
of kernel<->user data, primarily for networking related
transfers. But it suffered the limitation of having a lim-
ited number of sockets available for use by different ker-
nel subsystems as well as an API that was too network-
centric for some. Genetlink was created to address these
issues. It multiplexes multiple users over a single netlink
socket and simplifies the API they need to use to effect



2007 Linux Symposium, Volume Two • 75

bidirectional data transfer. Delay accounting was one
of the early adopters of the genetlink mechanism and
its usage provided inputs for refining and validating the
genetlink interface as well.

Delay accounting handles the rapid exit rate constraint
by splitting the delay data sent on exit into per-cpu
streams. A listening userspace entity has to explicitly
register interest in getting data for a given cpu in the
system. Once it does so, it receives the exit delay data
for any task which exits while last running on that cpu.
This design allows systems with many cpus (which will
typically have a correspondingly larger number of exit-
ing tasks) to balance the exit data bandwidth amongst
multiple userspace listeners, each listening to a subset
of cpus. CPUs are used as a convenient means of divid-
ing up the exit data requirements. They also help when
the cpusets mechanism is used to physically partition up
machines with very large number of cpus and some of
the physical partitions have strict performance require-
ments that prohibit exit data from being processed. Be-
ing able to regulate the sending of exit delay data by the
kernel by cpu allows fine-grain control over the perfor-
mance impact of delay accounting.

Finally, virtual machine technology enables a single sys-
tem to run multiple OS instances. These “guest OSes”
are scheduled by the hypervisor in accordance with its
scheduling policies and priorities for the OS instance.
As a result, the times spent waiting for a particular re-
source need to be measured in wall-clock times. In con-
trast the the utilization of the resource occurs only when
the Guest is executing. This differentiation enables an
educated assessment of resource allocation (such as ad-
ditional CPU share) needed by the “guest” or the re-
sources within the the “guest OS.”

The delay accounting framework retuns both the real
and virtual cpu utilization on virtual systems (currently
implemented for LPARs on ppc64) as well as the de-
lays experienced by the individual task groups in the OS
instances.

3.4 Delay accounting lifecycle

With the above elements in place, its useful to out-
line how the delay accounting works in practice. The
description is being kept generic without referring to
specifics of the interface since that can be obtained else-
where.

On system startup, the system administrator can option-
ally start userspace “listeners” who register to listen to
exit delay data on one or more cpus. The typical us-
age is to start one listener listening to all the cpus of the
system.

When a task is created (via fork), a taskstats data struc-
tures get allocated. If the task is the first one of a thread
group, a per-tgid taskstats struct is allocated as well. As
the task makes system calls, the delays it encounters get
measured and aggregated into both these data structures.

At any point during the task’s lifetime, a user can query
the delay statistics for a task, or its thread group, via the
genetlink interface by sending an appropriate command.
The reply contains the taskstats data structure for the
task or thread group.

When the task exits, its delay data is sent to any listener
which has registered interest in the cpu on which the exit
happens. If the task is the last one in its thread group,
the accumalated delay data for the thread group is addi-
tionally sent to registered listeners.

3.5 Per Task IO Accounting

An important related work are the per-task I/O account-
ing statistics by Andrew Morton which improve the ac-
curacy of measurement of I/O resource consumption by
a task. The CSA infrastructure also supports per-task IO
statistics, but the data returned by it, can be incorrect.

CSA accounts for per task IO statistics using data
read or written through the sendfile(2), read(2),
readv(2), write(2), and writev(2) system
calls. It does not account for

1. Data read through disk read ahead

2. Page fault initiated reads

3. Sharing data through the page cache. If a page is
already dirty and another task T1, writes to it, both
the task that first dirtied the page and T1 will be
charged for IO.

The following example illustrates the deficiencies of the
current per task IO accounting infrastructure. We wroter
a sample test application that maps a 1.2GB file and
writes to 1GB of the mmap’ed memory. The output be-
low shows the output of /proc/<pid of test>/io



76 • Where is your application stuck?

rchar: 1261
wchar: 237
syscr: 6
syscw: 13
read_bytes: 1048592384
write_bytes: 1317117952
cancelled_write_bytes: 0

The gathered statistics indicate that the existing account-
ing of rchar and wchar present in CSA, failed to capture
the IO that had taken place during the test.

The ideal place to account for IO, is the IO submis-
sion routine, submit_bio(). This works well for ac-
counting data being read in by the task. However, for
write operations, we need some place else to account
for the following reasons

Writes are usually delayed, which means that it is hard
to track the task that initiated the write. Furthermore,
the data might become available long after the task has
exited.

Write accounting is therefore done at page dirtying time.
The routines __set_page_dirty_nobuffers()
and __set_page_dirty_buffers() account the
data as written and charge the current task for IO.

A task can also actually cause negative IO, by truncat-
ing pagecache data, brought in by another task. In-
stead of accounting for possible negative write IO, the
data is stored in the field called cancelled_write_
bytes.

Figures 1, 2, and 3 show the call flow graph for read,
write, and truncate accounting, respectively.

Communicating the per task IO data to user space is
fairly straight forward. It uses the per task taskstats in-
terface for this purpose. The taskstats structure has been
expanded to new fields corresponding to the per task
IO accounting information. The taskstats interface au-
tomatically takes care of sending this data to user space
when either a task exits or information is requested from
user space.

4 Case studies of performance bottleneck
analysis

The following two case studies, taken from a perfor-
mance analyst who used delay accounting to debug per-
formance issues, illustrate the utility of the mechanism.

Application

...

submit_bio

read accounting

Figure 1: Read IO Accounting

1. Analysing performance issue with an MPI based
parallel application:

This is a brief on how per-task delay accounting
was used to find out the root cause for a perfor-
mance problem of an application running on ho-
mogeneous cluster. During the user acceptance test
for the cluster this application successfully com-
pleted its run within the expected time. However
some days later the same application was taking
too much time to complete. Nothing changed in
the cluster wrt to the configuration. However one
strange thing was noted - when the cluster was
compleletely isolated from the public network the
application completed its run within the expected
time. The problem happened only when the clus-
ter was open for use by everyone concerned. This
was an important lead but we didn’t have any clue
on how to proceed. The cluster was pretty large



2007 Linux Symposium, Volume Two • 77

Application

...

set_page_
dirty

__set_page_
dirty_

nobuffers

__set_page_
dirty_
buffers

write accounting

Figure 2: Write IO Accounting

and analysing each and every node manually was a
tedious task.

Some of the possible things to look for were net-
work communication delays, problems with the job
scheduler’s resource reservation functionality and
system configuration of all the nodes (just to be
sure that nothing was changed in between). Even
after doing all these activities we were not able to
identify the root cause of the problem. We didn’t
have a clue whether the issue was with any partic-
ular node/s or with the entire cluster.

Per-task delay accounting came to our rescue here.
We asked the customer not to isolate the cluster and
let it be used like in any normal day. The appli-
cation was run on all the nodes in the cluster and
subsequently the getdelays program was run so as
to get the delay accounting statistics for this partic-
ular application. After completion of the run, the
delay accounting statistics from all the nodes were
compared and it was found that there was huge IO
and CPU delay on one of the nodes in the cluster.

This was affecting the overall performance (execu-
tion time) of the application. We then focussed our
attention on this particular node. Eventually after
monitoring this node for some time, we found that
one of the users was directly running interactive
jobs on this particular node. This in turn pointed
to a security hole in the customer’s overall cluster

Application

...

cancel_dirty_
page

truncate accounting

Figure 3: Truncate IO Accounting

setup which allowed this user to bypass the access
control restrictions put in place and run the jobs di-
rectly on a particular node.

Per task delay accounting made the job of isolat-
ing the problem a lot easier. An added advantage
is that of convincing the customer becomes a lot
easier and effective.

Current per task delay accounting can be taken
a step forward by including per task network IO
delay accounting statistics also and writing a tool
based on per-task delay accounting for identifying
performance problems in a cluster.

2. There was another instance where per-task delay
accounting helped us in dealing with a customer.
The customer had a single threaded program on
a non-Linux platform. The application was later
made multi-threaded on the same platform. The
program typically read X number of records in n
seconds.

The customer ported the multi-threaded version of the
program to Linux (using C programming language).
The ported program was reading significantly less num-
ber of records in n seconds when compared to the
original program on the non-Linux platform (hardware



78 • Where is your application stuck?

configuration was same, only the OS was different).
Tools like top, vmstat, iostat were not very conclusive.
Since source code access for the program was not there,
we asked the customer to provide us with both sin-
gle threaded and multi-threaded version of the program
along with the timings and used per-task delay account-
ing to get the delay stats for both the single-threaded and
multi-threaded version of the program. We found that
for the multi-threaded version IO delay was on a higher
side when compared with the single-threaded version.
Pointed this out to the customer (as source code access
was not there). Convinced them that they need to relook
at the application code.

Per task delay accounting helped us to get specific data
pertaining to the multi-threaded program in question.

5 Summary

Detecting the bottlenecks in resource allocation that af-
fect an application’s performance on a Linux system is
an increasingly important goal for workload manage-
ment on servers and on desktops. In this paper, we de-
scribe per-task delay accounting, a new functionality we
contributed to the Linux kernel, that helps identify the
resource allocation bottleneck impeding an applications
forward progress. We also describe other important re-
lated work that improves the accuracy of CPU and I/O
bandwidth consumption. Finally we demonstrate how
these new mechanisms help identify where applications
can get "stuck" within the kernel.


