Proceedings of the
Linux Symposium

June 27th—30th, 2007
Ottawa, Ontario
Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel

Martin Bligh, Google

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.

Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Readahead: time-travel techniques for desktop and embedded systems

Michael Opdenacker
Free Electrons
michael@free—-electrons.com

Abstract

Readahead techniques have successfully been used to
reduce boot time in recent GNU/Linux distributions like
Fedora Core or Ubuntu. However, in embedded sys-
tems with scarce RAM, starting a parallel thread read-
ing ahead all the files used in system startup is no longer
appropriate. The cached pages could be reclaimed even
before accessing the corresponding files.

This paper will first guide you through the heuristics
implemented in kernelspace, as well as through the
userspace interface for preloading files or just announc-
ing file access patterns. Desktop implementations will
be explained and benchmarked. We will then detail Free
Electrons’ attempts to implement an easy to integrate
helper program reading ahead files at the most appropri-
ate time in the execution flow.

This paper and the corresponding presentation target
desktop and embedded system developers interested in
accelerating the course of Time.

1 Reading ahead: borrowing time from the fu-
ture

1.1 The page cache

Modern operating system kernels like Linux manage
and optimize file access through the page cache. When
the same file is accessed again, no disk I/O is needed
if the file contents are still in the page cache. This dra-
matically speeds up multiple executions of a program or
multiple accesses to the same data files.

Of course, the performance benefits depend on the
amount of free RAM. When RAM gets scarce because
of allocations from applications, or when the contents
of more files have to be loaded in page cache, the kernel
has to reclaim the oldest pages in the page cache.

1.2 Reading ahead

The idea of reading ahead is to speed up the access to
a file by preloading at least parts of its contents in page
cache ahead of time. This can be done when spare 1/0
resources are available, typically when tasks keep the
processor busy. Of course, this requires the ability to
predict the future!

Fortunately, the systems we are dealing with are pre-
dictable or even totally predictable in some situations!

e Predictions by watching file read patterns. If pages
are read from a file in a sequential manner, it makes
sense to go on reading the next blocks in the file,
even before these blocks are actually requested.

e System startup. The system init sequence doesn’t
change. The same executables and data files are al-
ways read in the same order. Slight variations can
still happen after a system upgrade or when the sys-
tem is booted with different external devices con-
nected to it.

o Applications startup. Every time a program is run,
the same shared libraries and some parts of the
program file are always loaded. Then, many pro-
grams open the same resource or data files at sys-
tem startup. Of course, file reading behaviour is
still subject to changes, according to how the pro-
gram was started (calling environment, command
arguments. .. ).

If enough free RAM is available, reading ahead can
bring the following benefits:

e Of course, reduced system and application startup
time.

e 97 o



98 e Readahead: time-travel techniques for desktop and embedded systems

e Improved disk throughput. This can be true for
storage devices like hard disks which incur a high
time cost moving the disk heads between random
sectors. Reading ahead feeds the I/O scheduler
with more I/O requests to manage. This sched-
uler can then reorder requests in a more efficient
way, grouping a greater number of contiguous disk
blocks, and reducing the number of disk head
moves. This is much harder to do when disk blocks
are just read one by one.

e Better overall utilization for both I/O and proces-
sor resources. Extra file I/O is performed when the
processor is busy. Context switching, which costs
precious CPU cycles, is also reduced when a pro-
gram no longer needs to sleep waiting for I/O, be-
cause the data it is requesting have already been
fetched.

2 Kernel space readahead

2.1 Implementation in stock kernels

The description of the Linux kernel readahead mecha-
nism is based on the latest stable version available at the
time of this writing, Linux 2.6.20.

When the kernel detects sequential reading on a file, it
starts to read the next pages in the file, hoping that the
running process will go on reading sequentially.

As shown in Figure 1, the kernel implements this by
managing two read windows: the current and ahead
one,

While the application is walking the pages in the current
window, I/O is underway on the ahead window. When
the current window is fully traversed, it is replaced by
the ahead window. A new ahead window is then created,
and the corresponding batch of I/O is submitted.

This way, if the process continues to read sequentially,
and if enough free memory is available, it should never
have to wait for I/O.

Of course, any seek or random I/O turns off this reada-
head mode.

The kernel actually checks how effective reading ahead
is to adjust the size of the new ahead window. If a
page cache miss is encountered, it means that some of

its pages were reclaimed before being accessed by the
process. In this case, the kernel reduces the size of
the ahead window, down to VM_MIN_READAHEAD (16
KB). Otherwise, the kernel increases this size, up to
VM_MAX_READAHEAD (128 KB).

The kernel also keeps track of page cache hits, to de-
tect situations in which the file is partly or fully in page
cache. When this happens, readahead is useless and
turned off.

Implementation details can be found in the mm/
readahead. c file in the kernel sources.!

The initial readahead implementation in Linux 2.6 is
discussed in the 2004 proceedings [7] of the Ottawa
Linux Symposium.

2.2 Adaptive readahead patches

Many improvements to the kernel readahead mecha-
nism have been proposed by Wu Fengguang through the
Adaptive readahead patchset, since September 2005 (as
announced on this LWN article [1].

In addition to the standard sequential reading scenario,

this patchset also supports:

e a readahead window which can grow up to 1 MB,
depending on the application behaviour and avail-
able free memory

e parallel / interleaved sequential scans on one file

e sequential reads across file open/close

e mixed sequential / random accesses

e sparse / skimming sequential read

e backward sequential reading

o delaying readahead if the drive is spinned down in

laptop mode

At the time of this writing the latest benchmarks [3]
show access time improvements in most cases.

This patchset and its ideas will be described in detail
by Wu Fengguang himself at this 2007 edition of the
Ottawa Linux Symposium.

A very convenient way of studying kernel source files is using a
Linux Cross Reference (LXR) website indexing the kernel sources,
suchas http://1xr.free-electrons.com.



2007 Linux Symposium, Volume Two e 99

When this page is reached:

- the ahead window becomes the current one
- a new ahead window is created

(possibly shorter or larger)

Current
read offset

A 4 >~

- <

Offset in the open file
(scale: pages)

Current read window
(already read ahead)

Ahead read window
(reading ahead in progress)

Figure 1: Stock kernel implementation

3 User-space readahead interface

We’ve seen how the kernel can do its best to predict the
future from recent and present application behaviour, to
improve performance.

However, that’s about all a general purpose kernel can
predict. Fortunately, the Linux kernel allows userspace
to let it know its own predictions. Several system call
interfaces are available.

3.1 The readahead system call

#include <fcntl.h>

ssize_t readahead(
int fd,
off6d4_t xoffset,
size_t count);

Given an open file descriptor, this system call allows ap-
plications to instruct the kernel to readahead a given seg-
ment in the file.

Though any offset and count parameters can be
given, /O is performed in whole pages. So offset
is rounded down to a page boundary and bytes are read
up to the first page boundary greater than or equal to
offset+count.

Note that readahead blocks until all data have been
read. Hence, it is typically called from a parallel thread.

See the manual page for the readahead system call
[6] for details.

3.2 The fadvise system call

Several variants of this system call exist, depending
on your system or GNU/Linux distribution: posix_
fadvise, fadviseo64d, fadviseo6d_64.

They all have the same prototype though:

#define _XOPEN_SOURCE 600
#include <fcntl.h>

int posix_fadvise (
int fd,
off_t offset,
off_t len,
int advice);

Programs can use this system call to announce an in-
tention to access file data in a specific pattern in the fu-
ture, thus allowing the kernel to perform appropriate op-
timizations.

Here is how the Linux kernel interprets the possible set-
tings for the advice argument:

POSIX_FADV_NORMAL: use the default readahead
window size.

POSIX_FADV_SEQUENTIAL: sequential access
with increasing file offsets. Double the readahead
window size.

POSIX_ FADV_RANDOM: random access. Disable

readahead.



100 e Readahead: time-travel techniques for desktop and embedded systems

POSIX_FADV_WILLNEED: the specified data will be
accessed in the near future. Initiate a non-blocking
read of the specified region into the page cache.

POSIX FADV_NOREUSE: similar, but the data will
just be accessed once.

POSIX_FADV_DONTNEED: attempts to free the
cached pages corresponding to the specified region,
so that more useful cached pages are not discarded
instead.

Note that this system call is not binding: the kernel is
free to ignore the given advise.

Full details can be found on the manual page for
posix_fadvise [5].

3.3 The madyvise system call

#include <sys/mman.h>

int madvise (
void =xstart,
size_t length,
int advice);

The madvise system call is very similar to fadvise,
but it applies to the address space of a process.

When the specified area maps a section of a file,
madvise information can be used by the kernel to
readahead pages from disk or to discard page cache
pages which the application will not need in the near
future.

Full details can be found on the manual page for
madvise [4].

3.4 Recommended usage

As the readahead system call is binding, application
developers should use it with care, and prefer fadvise
and madvise instead.

When multiple parts of a system try to be smart and
consume resources while being oblivious to the others,
this often hurts overall performance. After all, resource
management is the kernel’s job. It can be best to let it
decide what to do with the hints it receives from multi-
ple sources, balancing the resource needs they imply.

4 Implementations in GNU/Linux distribu-
tions

4.1 Ubuntu

Readahead utilities are released through the
readahead package. The following description
is based on Ubuntu 6.10 (Edgy).

Reading ahead is started early in the system startup
by the /etc/init.d/readahead init script. This
script mainly calls the /sbin/readahead-1list
executable, taking as input the /etc/readahead/
boot file, which contains the list of files to readahead,
one per line.

readahead-1ist is of course started as a daemon,
to proceed as a parallel thread while other init scripts
run. readahead-11ist doesn’t just readahead each
specified file one by one, it also orders them first.

Ordering files is an attempt to read them in the most
efficient way, minimizing costly disk seeks. To order
two files, their device numbers are first compared. When
their device numbers are identical, this means that they
belong to the same partition. The numbers of their first
block are then compared, and if they are identical, their
inode numbers are eventually compared.

The readahead-1ist package carries another util-
ity: readahead-watch. Itis used to create or update
the list of files to readahead by watching which files are
accessed during system startup.

readahead-watch is called from /etc/init.d/
readahead when the profile parameter is given in
the kernel command line. It starts watching for all files
that are accessed, using the inotify [8] system call.
This is a non trivial task, as inot i fy watches have to
be registered for each directory (including subdirecto-
ries) in the system.

readahead-watch eventually gets stopped by the
/etc/init.d/stop-readahead script, at the
very end of system startup. It intercepts this signal and
creates the /etc/readahead/boot file.

For the reader’s best convenience, C source code for
these two utilities and a copy of /etc/readahead/
boot canbefoundonhttp://free-electrons.
com/pub/readahead/ubuntu/6.10/.



4.2 Fedora Core

Readahead utilities are
readahead package.
is based on Fedora Core 6.

released through the
The following description

The readahead executable is /usr/sbin/readahead.
Its interface and implementation are similar. It also sorts
files in order to minimize disk seeks, with more sophis-
ticated optimizations for the ext2 and ext3 filesystems.

A difference with Ubuntu is that there are two reada-
head init scripts. The first one is /etc/init.d/
readahead_early, which is one of the first scripts
to be called. It preloads files listed in /etc/
readahead.d/default.early, corresponding to
libraries, executables, and files used by services started
by init scripts. The second script, /etc/init.
d/readahead_later, is one of the last executed
scripts. It uses /etc/readahead.d/default.
later, which mainly corresponds to files used by the
graphical desktop and user applications in general.

Another difference with Ubuntu is that the above lists
of files are constant and are not automatically generated
from application behaviour. They are just shipped in
the package. However, the readahead-check util-
ity (available in package sources) can be used to gener-
ate these files from templates and check for nonexistent
files.

Once more, the readahead.c source code
and a few noteworthy files can be found on
http://free-electrons.com/pub/
readahead/fedora-core/6/.

4.3 Benchmarks

The below benchmarks compare boot time with and
without readahead on Ubuntu Edgy (Linux 2.6.17-11,
with all updates as of Apr. 12, 2007), and on Fedora
Core 6 (2.6.18-1.2798.fc6, without any updates).

Boot time was measured by inserting an init script which
just copies /proc/uptime to a file. This script was
made the very last one to be executed.

/proc/uptime contains two figures: the raw uptime
in seconds, and the amount of time spent in the idle loop,
meaning the CPU was waiting for I/O before being able
to do anything else.

2007 Linux Symposium, Volume Two e 101

Disabling readahead was done by renaming the
/sbin/readahead-1ist (Ubuntu) or /usr/sbin/
readahead programs, so that readahead init scripts
couldn’t find them any more and exited at the very be-
ginning.

The Fedora Core 6 results are surprising. An explana-
tion is that readahead file lists do not only include files
involved in system startup, but also files needed to start
the desktop and its applications. Fedora Core readahead
is thus meant to reduce the execution time of programs
like Firefox or Evolution!

As a consequence, Fedora Core is reading ahead
much more files than needed (even if we disable the
readahead-later step) and it reaches the login
screen later than if readahead was not used. The even-
tual benefits in the time to run applications should still
be real. However, they are more difficult to measure.

4.4 Shortcomings

The readahead implementations that we have just cov-
ered are fairly simple, but not perfect though.

4.4.1 Reading entire files

A first limitation is that these implementations always
preload entire files, while the readahead system call
allows to fetch only specific sections in files.

It’s true that it can make sense to assume that plain data
files used in system startup are often read in their en-
tirety. However, this is not true at all with executa-
bles and shared libraries, for which each page is loaded
only when it is needed. This mechanism is called de-
mand paging. When a program jumps to a section of
its address space which is not in RAM yet, a page fault
is raised by the MMU, and the kernel loads the corre-
sponding page from disk.

Using the t op or ps commands, you can check that the
actual RAM usage of processes (RSS or RES) is much
smaller than the size of their virtual address space (VSZ
or VIRT).

So, it is a waste of I/O, time, and RAM to load pages in
executables and shared libraries which will not be used
anyway. However, as we will see in the next section,
demand paging is not trivial to trace from userspace.



102 e Readahead: time-travel techniques for desktop and embedded systems

boot time

idle time

Ubuntu Edgy without readahead

average: 48.368 s
std deviation: 0.153

average: 29.070 s
std deviation: 0.281

Ubuntu Edgy with readahead

average: 39.942 s (-17.4 %)
std deviation: 1.296

average: 22.3 s (-23.3 %)
std deviation: 0.271

Fedora Core 6 without readahead

average: 50.422 s
std deviation: 0.496

average: 28.302 s
std deviation: 0.374

Fedora Core 6 with readahead

average: 59.858 s (+18.7 %)
std deviation: 0.552

average: 35.446 (+20.2 %)
std deviation: 0.312

Table 1: Readahead benchmarks on Ubuntu Edgy and Fedora Core 6

4.4.2 Reading ahead too late

Another limitation comes from reading ahead all files in
arow, even the ones which are needed at the very end of
system startup.

We’ve seen that files are preloaded according to their
location on the disk, and not according to when they are
used in system startup. Hence, it could happen that a
file needed by a startup script is accessed before it is
preloaded by the readahead thread.

S Implementing readahead in embedded sys-
tems

5.1 Embedded systems requirements

Embedded systems have specific features and require-
ments which make desktop implementations not com-
pletely appropriate for systems with limited resources.

The main constraint, as explained before, is that free
RAM can be scarce. It is no longer appropriate to
preload all the files in a row, because some of the reada-
head pages are likely to be reclaimed before being used.
As a consequence, a requirement is to readahead files
just a little while before they are used.

Therefore, files should be preloaded according to the or-
der in which they are accessed. Moreover, most embed-
ded systems use flash instead of disk storage. There is
no disk seek cost accessing random blocks on storage.
Ordering files by disk location is futile.

Still because of the shortness of free RAM, is it also a
stronger requirement to preload only the portions of the
files which are actually accessed during system startup.

Last but not least, embedded systems also require simple
solutions which can translate in lightweight programs
and in low cpu usage.

5.2 Existing implementations

Of course, it is possible to reuse code from readahead
utilities found in GNU/Linux distributions, to readahead
a specific list of files.

Another solution is to use the readahead applet that
we added to the Busybox toolset (http://busybox.
net), which is used in most embedded systems. Thanks
to this applet, developers can easily add readahead com-
mands to their startup scripts, without having to compile
a standalone tool.

5.3 Implementation constraints and plans

Updates, code, benchmarks, and documentation will be
available through our readahead project page [2].

5.3.1 Identifying file access patterns

It is easy to identify files which are accessed during
startup, either by using inotify or by checking the
at ime attribute of files (last access time, when this fea-
ture is not disabled at mount time). However, it is much
more difficult to trace which sections are accessed in a
given file.

When the file is just accessed, not executed, it is still
possible to trace the open, read, seek, and close



system calls and deduce which parts of each file are ac-
cessed. However, this is difficult to implement.?

Anyway, when the file is executed (in the case of a pro-
gram or a shared library), there doesn’t seem to be any
userspace interface to keep track of accessed file blocks.
It is because demand paging is completely transparent
to processes.

That’s why we started to implement a kernel patch to
log all file reads (at the moment by tracing calls to the
vfs_read function), and demand paging activity (by
getting information from the £ilemap_nopage func-
tion). This patch also tracks exec system calls, by
watching the open_exec function, for reasons that we
will explain in the next section.

This patch logs the following pieces of information for
each accessed file:

inode number,

device major and minor numbers,

offset,

number of bytes read.

Code and more details can be found on our project
page [2].

At the time of this writing, this patch is just meant to as-
sess the usefulness of reading ahead only the used sec-
tions in a file. If this proves to be profitable, a clean,
long term solution will be investigated with the Linux
kernel development community.

5.3.2 Postprocessing the file access dump

We are developing a Python script to postprocess file
access information dumped from the kernel.

ZEven tracing these system calls is difficult. System call tracing
is usually done on a process and its children with the st race com-
mand or with the pt race system call that it uses. The problem is
that ptrace cannot be used for the init process, which would
have allowed tracing on all running processes at once.

Another, probably simpler solution would be to use C library in-
terposers, wrappers around the C library functions used to execute
system calls.

2007 Linux Symposium, Volume Two e 103

The main need is to translate inode and device num-
bers into file paths, as the kernel doesn’t know about
file names.

This is done by identifying the filesystem the inode be-
long to thanks to major and minor number information.
Then, each filesystem containing one of our files is ex-
haustively traversed to build a lookup table allowing to
find a file path for a given inode.

Of course, this can be very costly, but neither data gath-
ering nor this postprocessing is meant to be run on a
production system. This will only be done once during
development.

5.3.3 Improving readahead in GNU/Linux distri-
butions

Our first experiment will be to make minor changes to
the utilities used in GNU/Linux distributions, so that
they can process files lists also specifying which parts
to readahead in each file.

5.3.4 Towards a generic and efficient implementa-
tion

While preloading the right file sections is easy once file
access information is available, another requirement is
to perform readahead at the right time in the execution
flow. As explained before, reading ahead mustn’t hap-
pen too early, and mustn’t happen too late either.

Once more, the challenge is to predict the future by us-
ing knowledge about the past.

A very basic approach would be to collect time informa-
tion together with file access data. However, such infor-
mation wouldn’t be very useful to trigger readahead at
the right time, as reading ahead accelerates time. Fur-
thermore, as processes spend less time waiting for I/O,
the exact ordering of process execution can be altered.

Thus, what is needed is a way to follow the progress
of system startup, and to match the actual events with
recorded ones.

A simple idea is to use inotify to get access notifi-
cations for executables involved in system startup, and
match these notifications with recorded exec calls.



104 e Readahead: time-travel techniques for desktop and embedded systems

event10: first eventl1: second

eventl2: first

execution of execution execution of
/sbin/ifconfig. of /bin/grep. /usr/bin/dillo
v v X
- -

Previous readahead window: 1 MB

of data access recorded after event10.

<

B>

New readahead window: 1 MB
of data access recorded after event11.

Past Present

Future

Figure 2: Proposed readahead implementation

This would be quite easy to implement, as this would
just involve a list of files, without having to register re-
cursive directory based notifications.

As shown in the example in Figure 2, our idea is to man-
age readahead windows of a given data size. In this ex-
ample, when event11 is recognized, we create a new
readahead window starting from this event, correspond-
ing to 1 MB of recorded disk access starting from this
event.

Actually, we would only need to start new readahead
I/O from the end of the previous window to the end of
the new one. This assumes that the window size is large
enough to extend beyond the next event. Otherwise, if
readahead windows didn’t overlap, there would be parts
of the execution flow with no readahead at all.

Within a given window, before firing readahead I/O, we
would of course need to remove any duplicate read oper-
ations, as well as to merge consecutive ones into single
larger ones.

Here are the advantages of this approach:
e Possibility to readahead the same blocks multiple

times in the execution flow. This covers the possi-
bility that these blocks are no longer in page cache.

e For each specific system, possibility to tune the
window size according to the best achieved results.

o The window size could even be dynamically in-
creased, to make sure it goes beyond the next
recorded event.

o If window size is large enough, we expect it to
compensate for actual changes in the order of
events.

5.3.5 Open issues

Several issues have not been addressed yet in this
project.

In particular, we would need a methodology to support
package updates in standard distributions. Would file
access data harvesting be run again whenever a package
involved in system startup is updated? Or should each
package carry its own readahead information, requiring
a more complex package development process?

5.4 Conclusion

Though the proposed ideas haven’t been fully im-
plemented and benchmarked yet, we have identified
promising opportunities to reduce system startup time,
in a way that both meets the requirements of desktop
and embedded Linux systems.



If you are interested in this topic, stay tuned on the
project page [2], join the presentation at OLS 2007, dis-
cover the first benchmarks on embedded and desktop
systems, and share your experience and ideas on accel-
erating the course of Time.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

Jonathan Corbet. Lwn article: Adaptive file
readahead.
http://lwn.net/Articles/155510/,
October 2005.

Free Electrons. Advanced readahead project.
http://free—electrons.com/
community/tools/readahead/.

WU Fenguang. Linux kernel mailing list: Adaptive
readahead v16 benchmarks.
http://lkml.org/1lkml/2006/11/25/7,
November 2006.

Linux Manual Pages. madvise(2) - linux man page.
http://www.die.net/doc/linux/man/
man2/madvise.2.html.

Linux Manual Pages. posix_fadvise(2) - linux man
page. http://www.die.net/doc/linux/
man/man2/posix_fadvise.2.html.

Linux Manual Pages. readahead(2) - linux man
page. http://www.die.net/doc/linux/
man/man2/readahead.2.html.

Ram Pai, Badari Pulavarty, and Mingming Cao.
Linux 2.6 performance improvement through
readahead optimization. In Oftawa Linux
Symposium (OLS), 2004. http://www.
linuxsymposium.org/proceedings/
reprints/Reprint-Pai-0LS2004.pdf.

[8] Wikipedia. inotify. http:

//en.wikipedia.org/wiki/Inotify.

2007 Linux Symposium, Volume Two e 105



106 e Readahead: time-travel techniques for desktop and embedded systems




