Proceedings of the
Linux Symposium

June 27th—30th, 2007
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel

Martin Bligh, Google

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.

Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Cleaning up the Linux Desktop Audio Mess

Lennart Poettering
Red Hat, Inc.

lennart@poettering.net

Abstract

Desktop audio on Linux is a mess. There are just too
many competing, incompatible sound systems around.
Most current audio applications have to support every
sound system in parallel and thus ship with sound ab-
straction layers with a more or less large number of
back-end plug-ins. JACK clients are incompatible with
ALSA clients, which in turn are incompatible with OSS
clients, which in turn are incompatible with ESD clients,
and so on. “Incompatible” often means ‘“exclusive;”
e.g., if an OSS application gets access to the audio hard-
ware, all ALSA applications cannot access it.

Apple MacOS X has CoreAudio, Microsoft Windows
XP has a new user-space audio layer; both manage to
provide comprehensive APIs that make almost every
user happy, ranging from desktop users to pro audio
people. Both systems provide fairly modern, easy-to-
use audio APIs, and a vast range of features including
desktop audio “bling.”

On Linux we should be able to provide the same: a com-
mon solution that works on the desktop, in networked
thin-client setups and in pro audio environments, scal-
ing from mobile phones to desktop PCs and high-end
audio hardware.

1 Fixing the Linux Audio Stack

In my talk, I want to discuss what we can do to clean
up the mess that desktop audio on Linux is: why we
need a user-space sound system, what it should look
like, how we need to deal with the special requirements
of networked audio and pro-audio stuff, and how we
should expose the sound system to applications for al-
lowing Compiz-style desktop “bling”—but for audio. I
then will introduce the PulseAudio sound server as an
attempt to fix the Linux audio mess.

PulseAudio already provides compatibility with 90% of
all current Linux audio software. It features low-latency

audio processing and network transparency in an exten-
sible desktop sound server. PulseAudio is now part of
many distributions, and is likely to become the default
sound system on Fedora and Ubuntu desktops in the
next releases of these distributions.

The talk will mostly focus on the user-space side of
Linux audio, specifically on the low-level interface be-
tween hardware drivers and user-space applications.

2 Current State of Linux Audio

The current state of audio on Linux and other Free Soft-
ware desktops is quite positive in some areas, but in
many other areas, it is unfortunately very poor. Several
competing audio systems and APIs are available. How-
ever, none of them is useful in all types of applications,
nor does any meet the goals of being easy-to-use, scal-
able, modern, clean, portable, and complete. Most of
these APIs and systems conflict in one way or another.

On the other hand, we have a few components and
APIs for specific purposes that are well accepted and
cleanly designed (e.g., LADSPA, JACK). Also, Linux-
based systems can offer a few features that are not avail-
able on competing, proprietary systems. Among them
is network transparent audio and relatively low-latency
scheduling.

While competing, proprietary systems currently lack a
few features the Linux audio stack can offer, they man-
aged to provide a single (specific to the respective OS)
well-accepted API that avoids the balkanisation we cur-
rently have on Free Software desktops. Most notably,
Apple MacOS X has CoreAudio which is useful for the
desktop as well as for professional audio applications.
Microsoft Windows Vista, on the other hand, now ships
a new user-space audio layer, which also fulfills many of
the above requirements for modern audio systems and
APIs.

o 145 o

146 e Cleaning up the Linux Desktop Audio Mess

In the following sections, I will quickly introduce the
systems that are currently available and used on Linux
desktop, their specific features, and their drawbacks.

2.1 Advanced Linux Sound Architecture (ALSA)

The ALSA system [2] has become the most widely ac-
cepted audio layer for Linux. However, ALSA, both as
audio system and as API, has its share of problems:

e The ALSA user-space APl is relatively complicated.
o ALSA is not available on anything but Linux.

e The ALSA API makes certain assumptions about
sound devices that are only true for hardware de-
vices. Implementing an ALSA plug-in for virtual
devices (“software” devices) is not doable without
nasty hacks.

o Not “high-level” enough for many situations.
e dmix is bug-ridden and incomplete.
e Resampling is very low quality.

e You need different configurations for normal desk-
top use (dmix) and pro audio use (no dmix).

On the other hand, it also has some real advantages over
other solutions:

o It is available on virtually every modern Linux in-
stallation.

e It is very powerful.

e It is (to a certain degree) extendable.
2.2 Open Sound System (OSS)

OSS [7] has been the predecessor of ALSA in the Linux
kernel. ALSA provides a certain degree of compatibility
with OSS. Besides that the API is available on several
other Unixes. OSS is a relatively “old” API, and thus
has a number of limitations:

e Doesn’t offer all the functionality that modern sound
hardware provides which needs to be supported by
the software (such as no surround sound, no float
samples).

o Not high-level enough for almost all situations, since
it doesn’t provide sample format or sample rate
conversions. Most software silently assumes that
S16NE samples at 44100Hz are available on all sys-
tems, which is no longer the case today.

e Hardly portable to non-Unix systems.

e ioctl ()-based interface is not type-safe, not the
most user-friendly.

e Incompatible with everything else; every applica-
tion gets exclusive access to the sound device, thus
blocking all other applications from accessing it si-
multaneously.

e Almost impossible to virtualize correctly and
comprehensively. Hacks like esddsp, aoss,
artsdsp have proven to not work.

e Applications silently assume the availability of cer-
tain driver functionality that is not necessarily avail-
able in all setups. Most prominently, the 3D game
Quake doesn’t run with drivers that don’t support
mmap () -based access to the DMA audio buffer.

e No network transparency, no support for desktop
“bling.”
The good things:

e Relatively easy to use;
e Very well accepted, even beyond Linux;

e Feels very Unix-ish.

23 JACK

The JACK Audio Connection Kit [3] is a sound server
for professional audio purposes. As such, it is well ac-
cepted in the pro-audio world. Its emphasis, besides
playback of audio through a local sound card, is stream-
ing audio data between applications.

Plusses:

e Easy to use;
e Powerful functionality;
e Itis areal sound server;

e Itis very well accepted in the pro-audio world.
Drawbacks:

e Only floating point samples;
e Fixed sampling rate;

e Somewhat awkward semantics which makes it un-
usable as a desktop audio server (i.e., server doesn’t
start playback automatically, needs a manual “start”
command);

2007 Linux Symposium, Volume Two e 147

o Not useful on embedded machines;

e No network transparency.

24 aRts

The KDE sound server aRts [5] is no longer actively de-
veloped and has been orphaned by its developer. Having
a full music synthesiser as desktop sound server might
not be such a good idea, anyway.

2.5 EsounD

The Enlightened Sound Daemon (EsounD or ESD) [4]
has been the audio daemon of choice of the GNOME
desktop environment since GNOME 1.0 times. Besides
basic mixing and network transparency capabilities, it
doesn’t offer much. Latency querying, low-latency be-
haviour, and surround sound are not available at all. It
is thus hardly useful for anything beyond basic music
playback or playing event sounds (“bing!”).

2.6 PortAudio

The PortAudio API [6] is a cross-platform abstraction
layer for audio hardware access. As such it sits on top
of other audio systems, like OSS, ALSA, ESD, the Win-
dows audio stack, or MacOS X’s CoreAudio. PortAudio
has not been designed with networked audio devices in
mind, and also doesn’t provide the necessary function-
ality for clean integration into a desktop sound server.
PortAudio has never experienced wide adoption.

3 What we Need

As shown above, none of the currently available audio
systems and APIs can provide all that is necessary on
a modern desktop environment. I will now define four
major goals which a new desktop audio system should
try to achieve.

3.1 A Widely Accepted, Modern, Portable, Easy-
to-Use, Powerful, and Complete Audio API

None of the described Linux audio APIs fulfills all re-
quirements that are expected from a modern audio APL
On the other hand, Apple’s CoreAudio and Microsoft’s
new Windows Vista user-space audio layer reach this

goal, for the most part. More precisely, a modern sound
API for Free Software desktops should fulfill the follow-
ing requirements:

e Completeness: an audio API should be a general-
purpose interface; it should be suitable for simple
audio playback as well as professional audio pro-
duction.

e Scalability: usable on all kinds of different systems,
ranging from embedded systems to modern desktop
PCs and pro audio workstations.

e Modernness: provide good integration into the Free
Software desktop ecosystem.

e Proper support for networked and “‘software” (vir-
tual) devices, besides traditional hardware devices.

e Portability: the audio API should be portable across
different operating systems.

e Easy-to-use for both the user, and for the program-
mer. This includes a certain degree of automatic
fine-tuning, to provide optimal functionality with
“zero configuration.”

3.2 Routing and Filtering Audio in Software

Classic audio systems such as OSS are designed to pro-
vide an abstract API around hardware devices. A mod-
ern audio system should provide features beyond that:

e [t needs to be possible to play back multiple audio
streams simultaneously, so that they are mixed in
real time.

e Applications should be able to hook into what is cur-
rently being played back.

e Before audio is written to an output device, it might
be transferred over the network to another machine.

e Before audio is played back some kind of post-
processing might take place.

e Audio streams might need to be re-routed during
playback.

3.3 Desktop “Bling”

Free Software desktops currently lack an audio counter-
part for the well known window manager Compiz. A
modern desktop audio systems should be able to pro-
vide:

148 e Cleaning up the Linux Desktop Audio Mess

e Separate per-application and per-window volumes.
o Soft fade-ins and fade-outs of music streams.

e Automatically increasing the volume of the applica-
tion window in the foreground, decreasing the vol-
ume of the application window in the background.

e Forward a stop/start request to any music-playing
applications if a VoIP call takes place.

e Remember per-application and per-window vol-
umes and devices.

e Reroute audio to a different audio device on-the-fly
without interruption, from within the window man-
ager.

e Do “hot” switching between audio devices when-
ever a new device becomes available. For example,
when a USB headset is plugged in, automatically
start using it by switching an in-progress VoIP call
over to the new headset.

3.4 A Compatible Sound System

Besides providing the features mentioned above, a new
sound system for Linux also needs to retain a large de-
gree of compatibility with all the currently available sys-
tems and APIs, as much as possible. Optimally, all cur-
rently available Linux audio software should work si-
multaneously and without manual intervention. A major
task is to marry the pro-audio and desktop audio worlds
into a single audio system.

4 What PulseAudio already provides

The PulseAudio [1] sound server is our attempt to reach
the four aforementioned goals. It is a user-space sound
server that provides network transparency, all kinds of
desktop “bling,” relatively low-latency, and is extensible
through modules. It sits atop of OSS and ALSA sound
devices and routes and filters audio data, possibly over
the network.

PulseAudio is intended to be a replacement for systems
like ESD or aRts. The former is entirely superseded;
PulseAudio may be installed as drop-in replacement for
EsounD on GNOME desktops.

PulseAudio ships with a large set of modules (plug-ins):

e Driver modules (i.e., accessing OSS, ALSA, Win32,
Solaris drivers).

e Protocol support (i.e., native TCP-based protocol,
EsounD protocol, RTP).

e Integration into LIRC, support for multimedia key-
boards.

e Desktop integration (i.e., hooks into the X11 system
for authentication and redirecting the X11 bell).

e Integration with JACK, EsounD.
e Zeroconf support, using Avahi.

e Management: Automatically restore volumes, de-
vices of playback streams, move a stream to a dif-
ferent device if its original devices becomes unavail-
able due to a hot-plug event.

e Auto-configuration: integration with HAL for auto-
matic and dynamic configuration of the sound server
based on the available hardware.

e Combination of multiple audio devices into a single
audio device while synchronising audio clocks.

PulseAudio is not intended to be a competitor to JACK,
GStreamer, Helix, KDE Phonon, or Xine. Quite the op-
posite: we already provide good integration into JACK,
GStreamer, and Xine. We have different goals.

The PulseAudio core is carefully optimised for speed
and low latency. Local clients may exchange data with
the PulseAudio audio server over shared memory data
transfer. The PulseAudio sound server will never copy
audio data blocks around in memory unless it is abso-
lutely necessary. Most audio data operations are based
on 1iboil’s support for the extended instruction sets
of modern CPUs (MMX, SSE, AltiVec).

Currently the emphasis for PulseAudio is on networked
audio, where it offers the most comprehensive function-
ality.

PulseAudio support is already available in a large
number of applications. For others, we have pre-
pared patches. Currently we have native plug-ins,
drivers, patches, and compatibility for Xine, MPlayer,
GStreamer, 1ibao, XMMS, Audacious, ALSA, OSS
(using SLD_PRELOAD), EsounD, Music Player Dae-
mon (MPD), and the Adobe Flash player.

PulseAudio has a small number of graphical utility ap-
plications:

e Volume Control.

2007 Linux Symposium, Volume Two e 149

e Panel Applet (for quickly changing the output de-
vice, selecting it from a list of Zeroconf-announced
audio devices from the network).

e Volume Meter.

e Preferences panel, for a user-friendly configuration
of advanced PulseAudio functionality.

e A management console to introspect a PulseAudio
server’s internals.

5 PulseAudio Internals

5.1 Buffering Model

PulseAudio offers a powerful buffering model which is
an extension of the model Jim Gettys pioneered in the
networked audio server AF [9]. In contrast to traditional
buffering models it offers flexible buffering control, al-
lowing large buffers—which is useful for networked au-
dio systems—while still providing quick response to ex-
ternal events. It allows absolute and relative addressing
of samples in the audio buffer and supports a notion of
“zero latency.” Samples that have already been pushed
into the playback buffer may be rewritten at any time.

5.2 Zero-Copy Memory Management

Audio data in the PulseAudio sound server is stored in
reference-counted memory blocks. Audio data queues
contain only references to these memory blocks instead
of the audio data itself. This provides the advantage of
minimising copying of audio data in memory, and also
saves memory. In fact the PA core is written in a way
that, in most cases, data arriving on a network socket
is written directly into the sound card DMA hardware
buffer without spending time in bounce buffers or simi-
lar. This helps to keep memory usage down and allows
very low-latency audio processing.

5.3 Shared Memory Data Transfer

Local clients can exchange audio data with a local
PulseAudio daemon through shared-memory IPC. Ev-
ery process allocates a shared memory segment where
it stores the audio data it wants to transfer. Then, when
the data is sent to another process, the recipient receives
only the information necessary to find the data in that

segment. The recipient maps the segment of the origi-
nator in read-only mode and accesses the data.

The shared memory data transfer is the natural extension
of the aforementioned zero-copy memory management,
for communication between processes.

5.4 Synchronisation

Multiple streams can be synchronised together on the
server side. If this is done, it is guaranteed that the play-
back indexes of these streams never deviate. Clients can
label stream channels freely (e.g., “left,” “right,” “rear-
left,” “rear-right,” and so on). Together with the afore-
mentioned buffering model, this allows implementation

of flexible server-side multi-track mixing.
5.5 Buffer Underrun Handling

PulseAudio does its best to ensure that buffer under-
runs have no influence on the time axis. Two modes
are available: In the first mode, playback pauses when a
buffer underrun happens. This is the mode that is usu-
ally available in audio APIs such as OSS. In the sec-
ond mode playback never stops, and if data is available
again, enough data is skipped so that the time function
experiences no discontinuities.

6 Where we are going

While the PulseAudio project in the current state fulfills
a large part of the aforementioned requirements, it is not
complete yet. Compatibility with many sound systems,
a wide range of desktop audio “bling,” networked au-
dio, and low-latency behaviour are already available in
current versions of PulseAudio. However we are still
lacking in other areas:

e Better low-latency integration into JACK.

e Some further low-latency fixes can be made.

e Better portability to systems which don’t support
floating-point numbers.

e The client API PulseAudio currently offers is com-
paratively complicated and difficult to use.

Besides these items, there are also a lot of minor issues
to be solved in the PulseAudio project. In the follow-
ing subsections, I quickly describe the areas we are cur-
rently working on.

150 e Cleaning up the Linux Desktop Audio Mess

6.1 Threaded Core

The current PulseAudio core is mostly single-threaded.
In most situations this is not a problem, since we care-
fully make sure that no operation blocks for longer than
necessary. However, if more than one audio device
is used by a single PulseAudio instance, or when ex-
tremely low latencies must be reached, this may become
a problem. Thus the PulseAudio core is currently be-
ing moved to a more threaded design: every PulseAu-
dio module that is important in low-latency situations
will run its own event loop. Communication between
those separate event loops, the main event loop, and
other local clients is (mostly) done in a wait-free fash-
ion (mostly not lock-free, however). The design we are
currently pursuing allows a step-by-step upgrade to this
new functionality.

6.2 libsydney

During this year’s Foundation of Open Media Software
(FOMS) conference in January in Sydney, Australia, the
most vocally expressed disappointment in the Linux au-
dio world is the lack of a single well-defined, powerful
audio API which fulfills the requirements of a modern
audio API as outlined above. Since the current native
PulseAudio API is powerful but unfortunately overly
complex, we took the opportunity to define a new API
at that conference. People from Xiph, Nokia, and I sat
down to design a new APL

Of course, it might appear as a paradox to try fix the
balkanisation of Linux audio APIs by adding yet an-
other one, but given the circumstances, and after care-
ful consideration, we decided to pursue this path. This
new API was given the new name libsydney [8],
named after the city we designed the first version of the
APl in. 1ibsydney will become the only supported
API in future PulseAudio versions. Besides working on
top of PulseAudio, it will natively support ALSA, OSS,
Win32, and Solaris targets. This means that developing
a client for PulseAudio will offer cross-platform support
for free. 1ibsydney is currently in development; by
the time of the OLS conference, an initial public version
will be made available.

6.3 Multi-User

Currently the PulseAudio audio server is intended to be
run as a session daemon. This becomes a problem if

multiple users are logged into a single machine simulta-
neously. Before PulseAudio can be adopted by modern
distributions, some kind of hand-over of the underlying
audio devices will need to be implemented to support
these multi-user setups properly.

7 Where you can get it

PulseAudio is already available in a large number of
distributions, including Fedora, Debian, and Ubuntu.
Since it is a drop-in replacement for EsounD, it is triv-
ial to install it and use it as the desktop sound server in
GNOME.

Alternatively, you may download a version from our
web site [1].

It is planned for PulseAudio to replace EsounD in the
default install in the next versions of Fedora and Ubuntu.

8 Who we are

PulseAudio has been and is being developed by Lennart
Poettering (Red Hat, Inc.) and Pierre Ossman (Cendio
AB).

References

[1] PulseAudio, http://pulseaudio.org/
[2] ALSA, http://alsa-project.org/

[3] JACK Audio Connection Kit,
http://jackaudio.org/

[4] EsounD, http://www.tux.org/
~ricdude/overview.html

[5] aRts, http://www.arts-project.org/
[6] PortAudio, http://www.portaudio.com/

[7] Open Sound System,
http://www.opensound.com/oss.html

[8] libsydney,
http://0Opointer.de/cgi-bin/
viewcvs.cgi/trunk/?root=1libsydney

[9] AF, http://tns—www.lcs.mit.edu/vs/
audiofile.html

