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Abstract

Steven Rostedt (srostedt@redhat . com)

Over the past few years, Ingo Molnar and others have
worked diligently to turn the Linux kernel into a vi-
able Real-Time platform. This work is kept in a patch
that is held on Ingo’s page of the Red Hat web site [7]
and is referred to in this document as the RT patch.
As the RT patch is reaching maturity, and slowly slip-
ping into the upstream kernel, this paper takes you into
the depths of the RT patch and explains exactly what it
is going on. It explains Priority Inheritance, the con-
version of Interrupt Service Routines into threads, and
transforming spin_locks into mutexes and why this all
matters. This paper is directed toward kernel developers
that may eventually need to understand Real-Time (RT)
concepts and help them deal with design and develop-
ment changes as the mainline kernel heads towards a
full fledge Real-Time Operating System (RTOS). This
paper will offer some advice to help them avoid pitfalls
that may come as the mainline kernel comes closer to an
actual RTOS.

The RT patch has not only been beneficial to those
in the Real-Time industry, but many improvements to
the mainline kernel have come out of the RT patch.
Some of these improvements range from race conditions
that were fixed to reimplementation of major infrastruc-
tures.! The cleaner the mainline kernel is, the easier it
is to convert it to an RTOS. When a change is made to
the RT patch that is also beneficial to the mainline ker-
nel, those changes are sent as patches to be incorporated
into mainline.

Isuch as hrtimers and generic IRQs

Darren V. Hart
IBM Linux Technology Center

dvhltc@us.ibm.com

1 The Purpose of a Real-Time Operating Sys-
tem

The goal of a Real-Time Operating System is to create
a predictable and deterministic environment. The pri-
mary purpose is not to increase the speed of the system,
or lower the latency between an action and response, al-
though both of these increase the quality of a Real-Time
Operating System. The primary purpose is to eliminate
“surprises.” A Real-Time system gives control to the
user such that they can develop a system in which they
can calculate the actions of the system under any given
load with deterministic results. Increasing performance
and lowering latencies help in this regard, but they are
only second to deterministic behavior. A common mis-
conception is that an RTOS will improve throughput and
overall performance. A quality RTOS still maintains
good performance, but an RTOS will sacrifice through-
put for predictability.

To illustrate this concept, let’s take a look at a hypothet-
ical algorithm that on a non Real-Time Operating Sys-
tem, can complete some calculation in 250 microsec-
onds on average. An RTOS on the same machine may
take 300 microseconds for that same calculation. The
difference is that an RTOS can guarantee that the worst
case time to complete the calculation is known in ad-
vanced, and the time to complete the calculation will
not go above that limit.> The non-RTOS can not guar-
antee a maximum upper limit time to complete that algo-
rithm. The non-RTOS may perform it in 250 microsec-
onds 99.9% of the time, but 0.1% of the time, it might
take 2 milliseconds to complete. This is totally unac-
ceptable for an RTOS, and may result in system failure.
For example, that calculation may determine if a device
driver needs to activate some trigger that must be set
within 340 microseconds or the machine will lock up.
So we see that a non-RTOS may have a better average

2when performed by the highest priority thread.
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performance than an RTOS, but an RTOS guarantees to
meet its execution time deadlines.

The above demonstrates an upper bound requirement for
completing a calculation. An RTOS must also imple-
ment the requirement of response time. For example, a
system may have to react to an asynchronous event. The
event may be caused by an external stimulus (hitting a
big red button) or something that comes from inside the
system (a timer interrupt). An RTOS can guarantee a
maximum response time from the time the stimulant oc-
curs to the time the reaction takes place.

1.1 Latencies

The time between an event is expected to occur and the
time it actually does is called latency. The event may be
an external stimulus that wants a response, or a thread
that has just woken up and needs to be scheduled. The
following is the different kinds and causes of latencies
and these terms will be used later in this paper.

e Interrupt Latency — The time between an
interrupt triggering and when it is actually ser-
viced.

e Wakeup Latency — The time between the
highest priority task being woken up and the time
it actually starts to run. This also can be called
Scheduling Latency.

e Priority Inversion — The time a high pri-
ority thread must wait for a resource owned by a
lower priority thread.

e Interrupt Inversion — The time a high
priority thread must wait for an interrupt to perform
a task that is of lower priority.

Interrupt latency is the easiest to measure since it cor-
responds tightly to the time interrupts are disabled. Of
course, there is also the time that it takes to make it to
the actual service routine, but that is usually a constant
value.> The duration between the waking of a high pri-
ority process and it actually running is also a latency.
This sometimes includes interrupt latency since waking
of a process is usually due to some external event.

3except with the RT kernel, see Section 2.

Priority inversion is not a latency but the effect of pri-
ority inversion causes latency. The amount of time a
thread must wait on a lower priority thread is the la-
tency due to priority inversion. Priority inversion can
not be prevented, but an RTOS must prevent unbounded
priority inversion. There are several methods to address
unbounded priority inversion, and Section 6 explains the
method used by the RT patch.

Interrupt inversion is a type of priority inversion where
a thread waits on an interrupt handler servicing a lower
priority task. What makes this unique, is that a thread
is waiting on an interrupt context that can not be pre-
empted, as opposed to a thread that can be preempted
and scheduled out. Section 2 explains how threaded in-
terrupts address this issue.

2 Threaded Interrupts

As mentioned in Section 1.1, one of the causes of la-
tency involves interrupts servicing lower priority tasks.
A high priority task should not be greatly affected by
a low priority task, for example, doing heavy disk IO.
With the normal interrupt handling in the mainline ker-
nel, the servicing of devices like hard-drive interrupts
can cause large latencies for all tasks. The RT patch
uses threaded interrupt service routines to address this
issue.

When a device driver requests an IRQ, a thread is cre-
ated to service this interrupt line.* Only one thread can
be created per interrupt line. Shared interrupts are still
handled by a single thread. The thread basically per-
forms the following:

while (!kthread_should_stop()) {
set_current_state
(TASK_INTERRUPTIBLE) ;
do_hardirg(desc);
cond_resched() ;
schedule () ;

}

Here’s the flow that occurs when an interrupt is trig-
gered:

The architecture function do_ TRQ () > calls one of the
following chip handlers:

4See kernel/irg/manage.c do_irqgd.
5See arch/<arch>/kernel/irq.c. (May be different in
some architectures.)



handle_simple_irqg

handle_level_irqg

handle_fasteoi_irqg

e handle_edge_irqg

handle_percpu_irqg

Each of these sets the IRQ descriptor’s status flag
IRQ_INPROGRESS, and then calls redirect_
hardirqg().

redirect_hardirqg() checks if threaded interrupts
are enabled, and if the current IRQ is threaded (the
IRQ flag TRQ_NODELAY is not set) then the associ-
ated thread (do_irqgd) is awaken. The interrupt line
is masked and the interrupt exits. The cause of the inter-
rupt has not been handled yet, but since the interrupt line
has been masked, that interrupt will not trigger again.
When the interrupt thread is scheduled, it will handle
the interrupt, clear the IRQ_ INPROGRESS status flag,
and unmask the interrupt line.

The interrupt priority inversion latency time is only the
time from the triggering of the interrupt, the masking of
the interrupt line, the waking of the interrupt thread, and
returning back to the interrupted code, which takes on a
modern computer system a few microseconds. With the
RT patch, a thread may be given a higher priority than a
device handler interrupt thread, so when the device trig-
gers an interrupt, the interrupt priority inversion latency
is only the masking of the interrupt line and waking the
interrupt thread that will handle that interrupt. Since the
high priority thread may be of a higher priority than the
interrupt thread, the high priority thread will not have to
wait for the device handler that caused that interrupt.

2.1 Hard IRQs That Stay Hard

It is important to note that there are cases where an inter-
rupt service routine is not converted into a thread. Most
notable example of this is the timer interrupt. The timer
interrupt is handled in true interrupt context, and is not
serviced by a thread. This makes sense since the timer
interrupt controls the triggering of time events, such as,
the scheduling of most threads.

A device can also specify that its interrupt handler shall
be a true interrupt by setting the interrupt descriptor flag
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IRQ_NODELAY. This will force the interrupt handler
to run in interrupt context and not as a thread. Also
note that an TRQ_NODELAY interrupt can not be shared
with threaded interrupt handlers. The only time that
IRQO NODELAY should be used is if the handler does
very little and does not grab any spin_locks. If the han-
dler acquires spin_locks, it will crash the system in full
CONFIG_PREEMPT_RT mode.®

It is recommended never to use the IRQ_NODELAY flag
unless you fully understand the RT patch. The RT patch
takes advantage of the fact that interrupt handlers run
as threads, and allows for code that is used by interrupt
handlers, that would normally never schedule, to sched-
ule.

2.2 Soft IRQs

Not only do hard interrupts run as threads, but all soft
IRQs do as well. In the current mainline kernel,’
soft IRQS are usually handled on exit of a hard in-
terrupt. They can happen anytime interrupts and soft
IRQs are enabled. Sometimes when a large number of
soft IRQs need to be handled, they are pushed off to
the ksoftirqgd thread to complete them. But a soft
IRQ handler can not assume that it will be running in a
threaded context.

In the RT patch, the soft IRQs are only handled in
a thread. Furthermore, they are split amongst several
threads. Each soft IRQ has its own thread to handle
them. This way, the system administrator can control
the priority of individual soft IRQ threads.

Here’s a snapshot of soft IRQ and hard IRQ threads,
using ps —eo pid, pri, rtprio, cmd.

bsee Section 4.
72.6.21 as the time of this writing.
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PID PRI RTPRIO CMD
4 90 50 [softirq-high/0]
5 90 50 [softirg-timer/0]
6 90 50 [softirg-net-tx/]
7 90 50 [softirg-net-rx/]
8 90 50 [softirg-block/0]
9 90 50 [softirg-tasklet]
10 90 50 [softirg-sched/0]
11 90 50 [softirg-hrtimer]
12 90 50 [softirg-rcu/0]
304 90 50 [IRQ-8]
347 90 50 [IRQ-15]
381 90 50 [IRQ-12]
382 90 50 [IRQ-1]
393 90 50 [IRQ-4]
400 90 50 [IRQ-16]
401 90 50 [IRQ-18]
402 90 50 [IRQ-17]
413 90 50 [IRQ-19]

3 Kernel Preemption

A critical section in the kernel is a series of operations
that must be performed atomically. If a thread accesses a
critical section while another thread is accessing it, data
can be corrupted or the system may become unstable.
Therefore, critical sections that can not be performed
atomically by the hardware, must provide mutual exclu-
sion to these areas. Mutual exclusion to a critical section
may be implemented on a uniprocessor (UP) system by
simply preventing the thread that accesses the section
from being scheduled out (disable preemption). On a
symmetric multiprocessor (SMP) system, disabling pre-
emption is not enough. A thread on another CPU might
access the critical section. On SMP systems, critical
sections are also protected with locks.

An SMP system prevents concurrent access to a critical
section by surrounding it with spin_locks. If one CPU
has a thread accessing a critical section when another
CPU’s thread wants to access that same critical section,
the second thread will perform a busy loop (spin) until
the previous thread leaves that critical section.

A preemptive kernel must also protect those same criti-
cal sections from one thread accessing the section before
another thread has left it. Preemption must be disabled
while a thread is accessing a critical section, otherwise
another thread may be scheduled and access that same
critical section.

Linux, prior to the 2.5 kernel, was a non-preemptive ker-
nel. That means that whenever a thread was running
in kernel context (a user application making a system
call) that thread would not be scheduled out unless it
volunteered to schedule (calls the scheduler function).
In the development of the 2.5 kernel, Robert Love in-
troduced kernel preemption [2]. Robert Love realized
that the critical sections that are protected by spin_locks
for SMP systems, are also the same sections that must
be protected from preemption. Love modified the ker-
nel to allow preemption even when a thread is in kernel
context. Love used the spin_locks to mark the critical
sections that must disable preemption.?

The 2.6 Linux kernel has an option to enable kernel pre-
emption. Kernel preemption has improved reaction time
and lowered latencies. Although kernel preemption has
brought Linux one step closer to an RTOS, Love’s im-
plementation contains a large bottleneck. A high prior-
ity process must still wait on a lower priority process
while it is in a critical section, even if that same high
priority process did not need to access that section.

4 Sleeping Spin Locks

Spin_locks are relatively fast. The idea behind a
spin_lock is to protect critical sections that are very
short. A spin_lock is considered fast compared to sleep-
ing locks because it avoids the overhead of a schedule.
If the time to run the code in a critical section is shorter
than the time of a context switch, it is reasonable to
use a spin_lock, and on contention, spin in a busy loop,
while waiting for a thread on another CPU to release the
spin_lock.

Since spin_locks may cause a thread on another CPU
to enter a busy loop, extra care must be given with the
use of spin_locks. A spin_lock that can be taken in
interrupt context must always be taken with interrupts
disabled. If an interrupt context handler that acquires
a spin_lock is triggered while the current thread holds
that same spin_lock, then the system will deadlock. The
interrupt handler will spin on the spin_lock waiting for
the lock to be released, but unfortunately, that same in-
terrupt handler is preventing the thread that holds the
spin_lock from releasing it.

A problem with the use of spin_locks in the Linux ker-
nel is that they also protect large critical sections. With

8other areas must also be protected by preemption (e.g., interrupt
context).



the use of nested spin_locks and large sections being
protected by them, the latencies caused by spin_locks
become a big problem for an RTOS. To address this, the
RT patch converts most spin_locks into a mutex (sleep-
ing lock).

By converting spin_locks into mutexes, the RT patch
also enables preemption within these critical sections.
If a thread tries to access a critical section while another
thread is accessing it, it will now be scheduled out and
sleep until the mutex protecting the critical section is re-
leased.

When the kernel is configured to have sleeping
spin_locks, interrupt handlers must also be converted
to threads since interrupt handlers also use spin_locks.
Sleeping spin_locks are not compatible with not-
threaded interrupts, since only a threaded interrupt may
schedule. If a device interrupt handler uses a spin_lock
and also sets the interrupt flag TRQ_ NODELAY, the sys-
tem will crash if the interrupt handler tries to acquire the
spin_lock when it is already taken.

Some spin_locks in the RT kernel must remain a busy
loop, and not be converted into a sleeping spin_lock.
With the use of type definitions, the RT patch can mag-
ically convert nearly all spin_locks into sleeping mu-
texes, and leave other spin_locks alone.

5 The Spin Lock Maze

To avoid having to touch every spin_lock in the kernel,
Ingo Molnar developed a way to use the latest gcc ex-
tensions to determine if a spin_lock should be used as
a mutex, or stay as a busy loop.” There are places in
the kernel that must still keep a true spin_lock, such as
the scheduler and the implementation of mutexes them-
selves. When a spin_lock must remain a spin_lock
the RT patch just needs to change the type of the
spin_lock from spinlock_t to raw_spinlock_t.
All the actual spin_lock function calls will determine at
compile time which type of spin_lock should be used.
If the spin_lock function’s parameter is of the type
spinlock_t it will become a mutex. If a spin_lock
function’s parameter is of the type raw_spinlock_t
it will stay a busy loop (as well as disable preemption).

Looking into the header files of spinlock.h will drive
a normal person mad. The macros defined in those

also called raw_spin_lock.
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headers are created to actually facilitate the code by
not having to figure out whether a spin_lock function
is for a mutex or a busy loop. The header files, unfor-
tunately, are quite complex. To make it easier to under-
stand, I will not show the actual macros that make up
the spin_lock function, but, instead, I will show what it
looks like evaluated slightly.

fdefine spin_lock (lock)
if (TYPE_EQUAL((lock),
raw_spinlock_t))
_ _spin_lock (lock);
(TYPE_EQUAL ( (lock),
spinlock_t))

else if

_spin_lock (lock);
else __bad_spinlock_type();

The TYPE_EQUAL is defined as _ _builtin_types_
compatible_p (typeof (lock), type =) whichis
a gcc internal command that handles the condition at
compile time. The _ bad_spinlock_type function
is not actually defined, if something other than a spin-
lock_t or raw_spinlock_t is passed to a spin_lock func-
tion the compiler will complain.

The ___spin_lock () 10 acts like the original spin_lock
function, and the _spin_lock () 1T evaluates to the mu-
tex, rt_spin_lock (), defined in kernel/rtmutex.
C.

6 Priority Inheritance

The most devastating latency that can occur in an RTOS
is unbounded priority inversion. As mentioned earlier,
priority inversion occurs when a high priority thread
must wait on a lower priority thread before it can run.
This usually occurs when a resource is shared between
high and low priority threads, and the high priority
thread needs to take the resource while the low prior-
ity thread holds it. Priority inversion is natural and can
not be completely prevented. What we must prevent is
unbounded priority inversion. That is when a high pri-
ority thread can wait an undetermined amount of time
for the lower priority thread to release the resource.

The classic example of unbounded priority inversion
takes place with three threads, each having a different
priority. As shown in Figure 1, the CPU usage of three

0prefixed with two underscores.
Hprefixed with one underscore.
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threads, A (highest priority) B (middle priority), and C
(lowest priority). Thread C starts off and holds some
lock, then thread A wakes up and preempts thread C.
Thread A tries to take a resource that is held by thread
C and is blocked. Thread C continues but is later pre-
empted by thread B before thread C could release the re-
source that thread A is blocked on. Thread B is of higher
priority than thread C but lower priority than thread
A. By preempting thread C it is in essence preempt-
ing thread A. Since we have no idea how long thread B
will run, thread A is now blocked for an undetermined
amount of time. This is what is known as unbounded
priority inversion.

There are different approaches to preventing unbounded
priority inversion. One way is just simply by design.
That is to carefully control what resources are shared as
well as what threads can run at certain times. This is
usually only feasible by small systems that can be com-
pletely audited for misbehaving threads. The Linux ker-
nel is far too big and complex for this approach. An-
other approach is priority ceiling [3], where each re-
source (lock) knows the highest priority thread that will
acquire it. When a thread takes a resource, it is tem-
porarily boosted to the priority of that resource while
it holds the resource. This prevents any other thread
that might acquire that resource from preempting this
thread. Since pretty much any resource or lock in the
Linux kernel may be taken by any thread, you might as
well just keep preemption off while a resource is held.
This would include sleeping locks (mutexes) as well.

What the RT patch implements is Priority Inheritance
(PD). This approach scales well with large projects, al-
though it is usually criticized that the algorithms to im-
plement PI are too complex and error prone. PI algo-
rithms have matured and it is easier to audit the PI al-
gorithm than the entire kernel. The basic idea of PI is
that when a thread blocks on a resource that is owned
by a lower priority thread, the lower priority thread in-
herits the priority of the blocked thread. This way the
lower priority thread can not be preempted by threads
that are of lower priority than the blocked thread. Fig-
ure 2 shows the same situation as Figure 1 but this time
with PI implemented.

The priority inheritance algorithm used by the RT patch
is indeed complex, but it has been vigorously tested and
used in production environments. For a detailed expla-
nation of the design of the PI algorithm used not only by
the RT patch but also by the current mainline kernel PI

futex, see the kernel source documentation [9].

7 What’s Good for RT is Good for the Kernel

The problem with prior implementations of RT getting
accepted into mainline Linux, was that too much was
done independently from mainline development, or was
focused strictly on the niche RT market. Large intru-
sive changes were made throughout the kernel in ways
that were not acceptable by most of the kernel maintain-
ers. Finally, one day Ingo Molnar noticed the benefits
of RT and started developing a small project that would
incorporate RT methods into the Linux kernel. Molnar,
being a kernel maintainer, could look at RT from a more
general point of view, and not just from that of a niche
market. His approach was not to force the Linux kernel
into the RT world, but rather to bring the beneficial parts
of the RT world to Linux.

One of the largest problems back then (2004) was this
nasty lock that was all over the Linux kernel. This
lock is know as the Big Kernel Lock (BKL). The BKL
was introduced into Linux as the first attempt to bring
Linux to the multiprocessor environment. The BLK
would protect concurrent accesses of critical sections
from threads running on separate CPUs. The BKL was
just one big lock to protect everything. Since then,
spin_locks have been introduced to separate non related
critical sections. But there are still large portions of
Linux code that is still protected by the BKL.

The BKL was a spin_lock that was large and intrusive,
and would cause large latencies. Not only was it a spin-
ning lock, but it was also recursive.'> It also had the
non-intuitive characteristic that a process holding a BKL
is allowed to voluntarily sleep. Spin locks could cause
systems to lock up if a thread were to sleep while hold-
ing one, but the BKL was special, in that the scheduler
magically released the BKL, and would reacquire the
lock when the thread resumes.

Molnar developed a way to preempt this lock [6]. He
changed the BKL from a spin lock into a mutex. To
preserve the same semantics, the BKL would be re-
leased if the thread voluntarily scheduled, but not when
the thread was preempted. Allowing threads to be
preempted while holding the BKL greatly reduced the
scheduling latencies of the kernel.

12 Allowed the same owner to take it again while holding it, as
long as it released the lock the same number of times.
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Blocked

Figure 1: Priority Inversion
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Figure 2: Priority Inheritance

7.1 Death of the Semaphore

Semaphores are powerful primitives that allow one or
more threads access to a resource. The funny thing
is, they were seldom used for multiple accesses. Most
of the time they are used for maintaining mutual ex-
clusion to a resource or to coordinate two or more
threads. For coordination, one thread would down
(lock) a semaphore and then wait on it.'> Some other
thread, after completing some task, would up (unlock)
the semaphore to let the waiting threads know the task
was completed.

Busually the semaphore was just created as locked.

The latter can be replaced by a completion [4]. A
completion is a primitive that has the purpose of no-
tifying one or more threads when another thread has
completed an event. The use of semaphores for this
purpose is now obsolete and should be replaced with
completions.

There was nothing available in the mainline kernel to re-
place the semaphore for a single mutual exclusion lock.
The ability of a semaphore to handle the case of multiple
threads accessing a resource produces an overhead when
only acting as a mutex. Most of the time this overhead
is unnecessary. Molnar implemented a new primitive
for the kernel called mutex. The simpler design of the
mutex makes it much cleaner and slightly faster than a
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semaphore. A mutex only allows a single thread access
to a critical section, so it is simpler to implement and
faster than a semaphore. So the addition of the mutex
to the mainline kernel was a benefit for all. But Molnar
had another motive for implementing the mutex (which
most people could have guessed).

Semaphores, with the property of allowing more than
one thread into a critical section, have no concept
of an owner. Indeed, one thread may even release
a semaphore while another thread acquires it.'"* A
semaphore is never bound to a thread. A mutex, on the
other hand, always has a one-to-one relationship with a
thread when locked. The mutex may be owned by one,
and only one, thread at a time. This is key to the RT ker-
nel, as it is one of the requirements of the PI algorithm.
That is, a lock may have one, and only one, owner. This
ensures that a priority inheritance chain stays a single
path, and does not branch with multiple lock owners
needing to inherit a priority of a waiting thread.

7.2 The Path to RT

Every mainline release includes more code from the RT
patch. Some of the changes are simply clean-ups and
fixes for race conditions. An RTOS on a single CPU sys-
tem exposes race conditions much easier than an 8 way
SMP system. The race windows are larger due to the
preemptive scheduling model. Although race conditions
are easier to exposed on an RT kernel, those same race
conditions still exist in the mainline kernel running on
an SMP system. There have been arguments that some
of the fixed race conditions have never been reported, so
they most likely have never occurred. More likely, these
race conditions have crashed some server somewhere,
but since the race window is small, the crash is hard to
reproduce. The crash would have been considered an
anomaly and ignored. With the RT patch exposing rare
bugs and the RT patch maintainers sending in fixes, the
mainline kernel has become more stable with fewer of
these seemingly unreproducable crashes.

In addition to clean-ups and bug fixes, several major fea-
tures have been already incorporated into the mainline
kernel.

e gettimeofday (2.6.18) — John Stultz’s re-
design of the time infrastructure.

14in the case of completions.

e Generic IRQS (2.6.18) — Ingo Molnar’s
consolidation of the IRQ code to unify all the ar-
chitectures.

e High Resolution Timers Pt. 1
(2.6.16) — Thomas Gleixner’s separation
of timers from timeouts.

e High Resolution Timers Pt. 2
(2.6.21) — Thomas Gleixner’s change to
the timer resolution. Now clock event resolution
is no longer bound to jiffies, but to the underlining
hardware itself.

One of the key features for incorporating the RT patch
into mainline is PI. Linus Torvalds has previously stated
that he would never allow PI to be incorporated into
Linux. The PI algorithm used by the RT patch can also
be used by user applications. Linux implements a user
mutex that can create, acquire, and release the mutex
lock completely in user space. This type of mutex is
known as a futex (fast mutex) [1]. The futex only enters
the kernel on contention. RT user applications require
that the futex also implements PI and this is best done
within the kernel. Torvalds allowed the PI algorithm to
be incorporated into Linux (2.6.18), but only for the use
with futexes.

Fortunately, the core PI algorithm that made it into the
mainline Linux kernel is the same algorithm that is used
by the RT patch itself. This is key to getting the rest
of the RT patch upstream and also brings the RT patch
closer to mainline, and facilitates the RT patch mainte-
nance.

8 RT is the Gun to Shoot Yourself With

The RT patch is all about determinism and being able
to have full control of the kernel. But, like being root,
the more power you give the user the more likely they
will destroy themselves with it. A common mistake for
novice RT application developers is writing code like
the following:

x = 0;
/* let another thread set x */
while (!x)

sched_yield();

Running the above with the highest priority on an
RTOS, and wondering why the system suddenly freezes.



This paper is not about user applications and an RT ker-
nel, but the focus is on developers working within the
kernel and needing to understand the consequences of
their code when someone configures in full RT.

8.1 yield() is Deadly

As with the above user land code, the kernel has a simi-
lar devil called yield (). Before using this, make sure
you truly understand what it is that you are doing. There
are only a few locations in the kernel that have legiti-
mate uses of yield (). Remember in the RT kernel,
even interrupts may be starved by some device driver
thread looping on a yield (). yield() is usually
related to something that can also be accomplished by
implementing a completion.

Any kind of spinning loop is dangerous in an RTOS.
Similar to using a busy loop spin_lock without disabling
interrupts, and having that same lock used in an interrupt
context handler, a spinning loop might starve the thread
that will stop the loop. The following code that tries to
prevent a reverse lock deadlock is no longer safe with
the RT patch:

retry:
spin_lock (A7) ;
if (!spin_trylock(B)) {
spin_unlock (A);
goto retry;

}

Note: The code in £s/jbd/commit . c has such a sit-
uation.

8.2 rwlocks are Evil

Rwlocks are a favorite with many kernel developers.
But there are consequences with using them. The
rwlocks (for those that don’t already know), allow mul-
tiple readers into a critical section and only one writer.
A writer is only allowed in when no readers are access-
ing that area. Note, that rwlocks which are also imple-
mented as busy loops on the current mainline kernel, are
now sleeping mutexes in the RT kernel.!

Any type of read/write lock needs to be careful, since
readers can starve out a writer, or writers can starve

5 mainline kernel also has sleeping rwlocks implemented with

up_read and down_read.
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out the readers. But read/write locks are even more
of a problem in the RT kernel. As explained in Sec-
tion 6, PI is used to prevent unbounded priority inver-
sion. Read/write locks do not have a concept of own-
ership. Multiple threads can read a critical section at
the same time, and if a high priority writer were to need
access, it would not be able to boost all the readers at
that moment. The RT kernel is also about determinism,
and known measurable latencies. The time a writer must
wait, even if it were possible to boost all readers, would
be the time the read lock is held multiplied by all the
readers that currently have that lock.'®

Presently, to solve this issue in the RT kernel, the
rwlocks are not simply converted into a sleeping lock
like spin_locks are. Read_locks are transformed into a
recursive mutex so that two different threads can not en-
ter a read section at the same time. But read_locks still
remain recursive locks, meaning that the same thread
can acquire the same read_lock multiple times as long as
it releases the lock the same number of times it acquires
it. So in the RT kernel, even read_locks are serialized
among each other. RT is about predictable results, over
performance. This is one of those cases that the over-
all performance of the system may suffer a little to keep
guaranteed performance high.

8.3 Read Write seqlocks are Mischievous

As with rwlocks, read/write seqlocks can also cause a
headache. These are not converted in the RT kernel.
So it is even more important to understand the usage of
these locks. Recently, the RT developers came across a
regression with the introduction of some of the new time
code that added more instances of the xtime_lock.
This lock uses read/write seqlocks to protect it. The way
the read/write seqlocks work, is that the read side enters
a loop starting with read_seqglock () and ending
with read_sequnlock (). If no writes occurred be-
tween the two, the read_sequnlock () returns zero,
otherwise it returns non-zero. If something other than
zero is returned by the read_seqglock (), the loop
continues and the read is performed again.

The issue with the read/write seqlocks is that you can
have multiple writes occur during the read seqlock. If
the design of the seqlocks is not carefully thought out,
you could starve the read lock. The situation with the

16Some may currently be sleeping.
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xtime_lock was even present in the 2.6.21-rc series.
The xtime_lock should only be written to on one
CPU, but a change that was made in the -rc series that
allowed the xt ime_ 1ock to be written to on any CPU.
Thus, one CPU could be reading the xt ime_1ock but
all the other CPUs could be queueing up to write to
it. Thus the latency of the read_seqlock is not only the
time the read_seqlock is held, but also the sum of all
the write_seqlocks that are run on each CPU. A poorly
designed read/write seqlock implementation could even
repeat the write_seqlocks for the CPUs. That is to say,
while CPU 1 is doing the read_seqlock loop, CPU 2
does a write_seqlock, then CPU 3 does a write_seqlock,
then CPU 4 does a write_seqlock, and by this time,
CPU 2 is doing another write_seqlock. All along, leav-
ing CPU 1 continually spinning on that read_seqlock.

8.4 Interrupt Handlers Are No Longer Supreme

Another gotcha for drivers that are running on the RT
kernel is the assumption that the interrupt handler will
occur when interrupts are enabled. As described in sec-
tion threaded-interrupts, the interrupt service routines
are now carried out with threads. This includes handlers
that are run as soft IRQs (e.g., net-tx and net-rx). If a
driver for some reason needs a service to go off period-
ically so that the device won’t lockup, it can not rely on
an interrupt or soft IRQ to go off at a reasonable time.
There may be cases that the RT setup will have a thread
at a higher priority than all the interrupt handlers. It is
likely that this thread will run for a long period of time,
and thus, starve out all interrupts.!” If it is necessary
for a device driver to periodically tickle the device then
it must create its own kernel thread and put it up at the
highest priority available.

9 Who Uses RT?

The RT patch has not only been around for development
but there are also many users of it, and that number is
constantly growing.

The audio folks found out that the RT patch has sig-
nificantly helped them in their recordings (http://
ccrma.stanford.edu/planetccrma/software).

IBM, Red Hat and Raytheon are bringing the
RT patch to the Department of Defense (DoD).

7besides the timer interrupt.

(http://www-03.ibm.com/press/us/en/
pressrelease/21033.wss)

Financial institutions are expressing interest in using the
RT kernel to ensure dependably consistent transaction
times. This is increasingly important due to recently en-
acted trading regulations [8].

With the growing acceptance of the RT patch, it won’t
be long before the full patch is in the mainline kernel,
and anyone can easily enjoy the enhancements that the
RT patch brings to Linux.

10 RT Benchmarks

Darren V. Hart (dvhltc@us.ibm. com)

Determinism and latency are the key metrics used to
discuss the suitability of a real-time operating system.
IBM’s Linux Technology Center has contributed sev-
eral test cases and benchmarks which test these met-
rics in a number of ways. The results that follow are
a small sampling that illustrates the features of the RT
patch as well as the progress being made merging these
features into the mainline Linux kernel. The tests were
run on a 4 CPU Opteron system with a background load
of make -78 2.6.16 kernel build. Source for the tests
used are linked to from the RT Community Wiki.'® Full
details of these results are available online [5].

10.1 gettimeofday() Latency

With their dependence on precise response times, real-
time systems are prone to making numerous system
calls to determine the current time. A determin-
istic implementation of gettimeofday () is criti-
cal. The gtod_latency test measures the differ-
ence between the time reported in pairs of consecutive
gettimeofday () calls.

The scatter plots for 2.6.18 (Figure 3) and 2.6.18-
rt7 (Figure 4) illustrate the reduced latency and
improved determinism the RT patch brings to the
gettimeofday () system call. The mainline kernel
experiences a 208 us maximum latency, with a number
of samples well above 20 us. Contrast that with the 17
us maximum latency of the 2.6.18-rt7 kernel (with the
vast majority of samples under 10 us).

Bhttp://rt.wiki.kernel.org/index.php/IBM_
Test_Cases



10.2 Periodic Scheduling

Real-time systems often create high priority periodic
threads. These threads perform a very small amount
of work that must be performed at precise intervals.
The results from the sched_latency measure the
scheduling latency of a high priority periodic thread,
with a 5 ms period.

Prior to the high resolution timer (hrtimers) work, timer
latencies were only good to about three times the pe-
riod of the periodic timer tick period (about 3ms with
HZ=1000). This level of resolution makes accurate
scheduling of periodic threads impractical since a task
needing to be scheduled even a single microsecond af-
ter the timer tick would have to wait until the next tick,
as illustrated in the latency histogram for 2.6.16 (Fig-
ure 5).!° With the hrtimers patch included, the RT ker-
nel demonstrates low microsecond accuracy (Figure 6),
with a max scheduling latency of 25 us. The mainline
2.6.21 kernel has incorporated the hrtimers patch.

10.3 Asynchronous Event Handling

As discussed in Section 2, real-time systems depend
on deterministic response times to asynchronous events.
async_handler measures the latency of waking a
thread waiting on an event. The events are generated
using POSIX conditional variables.

Without the RT patch, the 2.6.20 kernel experiences a
wide range of latencies while attempting to wake the
event handler (Figure 7), with a standard deviation of
3.69 us. 2.6.20-rt8 improves on the mainline results,
reducing the standard deviation to 1.16 us (Figure 8).
While there is still some work to be done to reduce the
maximum latency, the RT patch has greatly improved
the deterministic behavior of asynchronous event han-
dling.
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Figure 3: 2.6.18 gtod_latency scatter plot
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Figure 5: 2.6.16 sched_latency histogram
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Figure 7: 2.6.20 async_handler scatter plot
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Figure 4: 2.6.18-rt7 gtod_latency scatter plot
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Figure 6: 2.6.20-rt8 sched_latency histogram
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Figure 8: 2.6.20-rt8 async_handler scatter plot



