Proceedings of the
Linux Symposium

June 27th—30th, 2007
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel

Martin Bligh, Google

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.

Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

lguest: Implementing the little Linux hypervisor

Rusty Russell
IBM OzLabs

rusty@rustcorp.com.au

Abstract

Lguest is a small x86 32-bit Linux hypervisor for run-
ning Linux under Linux, and demonstrating the paravir-
tualization abilities in Linux since 2.6.20. At around
5,000 lines of code including utilities, it also serves as
an excellent springboard for mastering the theory and
practice of x86 virtualization.

This talk will cover the philosophy of Iguest and then
dive into the implementation details as they stand at this
point in time. Operating System experience is required,
but x86 knowledge isn’t. By the time the talk is fin-
ished, you should have a good grounding in the range of
implementation issues facing all virtualization technolo-
gies on Intel, such as Xen and KVM. You should also be
inspired to create your own hypervisor, using your own
pets as the logo.

1 Introduction

Around last year’s OLS I was having discussions with
various technical people about Linux support for par-
avirtualization, and Xen in particular. (Paravirtualiza-
tion is where the guest knows it’s being run under a hy-
pervisor, and changes its behaviour).

I wanted the Linux kernel to support Xen, without wed-
ding the Linux kernel to its interface: it seemed to me
that now Xen showed that Free Software virtualization
wasn’t hard, we’d see other virtualization technologies
worth supporting. There was already VMWare’s pro-
posed VMI standard, for example, but that wasn’t a
proven ABI either.

The result was paravirt_ops. This is a single structure
which encapsulates all the sensitive instructions which a
hypervisor might want to override. This was very sim-
ilar to the VMI proposal by Zach Amsden, but some
of the functions which Xen or VMI wanted were non-
obvious to me.

So, I decided to write a trivial, self-contained Linux-
on-Linux hypervisor. It would live in the Linux kernel
source, run the same kernel for guests as for host, and
be as simple as possible. This would serve as a third
testbed for paravirt_ops.

2 Post-rationale for Iguest

There turned out to be other benefits to writing such a
hypervisor.

e [t turned out to be around 5,000 lines, including
the 1,000 lines of userspace code. This means it is
small enough to be read and understood by kernel
coders.

e It provides a complete in-tree example of how to
use paravirt_ops.

e It provides a simple way to demonstrate the effects
of a new Linux paravirtualization feature: you only
need to patch one place to show the new feature and
how to use it.

e [t provides a testbed for new ideas. As other hyper-
visors rush to “productize” and nail down APIs and
ABIs, lguest can be changed from kernel to kernel.
Remember, Iguest only promises to run the match-
ing guests and host (i.e., no ABI).

My final point is more social than technical. I said
that Xen had shown that Free Software paravirtualiza-
tion was possible, but there was also some concern that
its lead and “buzz” risked sucking up the groundwater
from under other Free hypervisors: why start your own
when Xen is so far ahead? Yet this field desperately
needs more independent implementations and experi-
mentation. Creating a tiny hackable hypervisor seemed
to be the best way to encourage that.

e 173 o

174 e Iguest: Implementing the little Linux hypervisor

As it turned out, I needn’t have worried too much. The
KVM project came along while I was polishing my
patches, and slid straight into the kernel. KVM uses
a similar “linux-centric” approach to lguest. But on the
bright side, writing lguest taught me far more than I ever
thought I’d know about the horribly warty x86 architec-
ture.

3 Comparing With Other Hypervisors

As you’d expect from its simplicity, lguest has fewer
features than any other hypervisor you’re likely to have
heard of. It doesn’t currently support SMP guests, sus-
pend and resume, or 64-bit. Glauber de Oliveira Costa
and Steven Rostedt are hacking on lguest64 furiously,
and suspend and resume are high on the TODO list.

Lguest only runs matching host and guest kernels. Other
hypervisors aim to run different Operating Systems as
guests. Some also do full virtualization, where unmodi-
fied OSs can be guests, but both KVM and Xen require
newer chips with virtualization features to do this.

Lguest is slower than other hypervisors, though not al-
ways noticeably so: it depends on workload.

On the other hand, lguest is currently 5,004 lines for a
total of 2,009 semicolons. (Note that the documentation
patch adds another 3,157 lines of comments.) This in-
cludes the 983 lines (408 semicolons) of userspace code.

The code size of KVM and Xen are hard to compare to
this: both have features, such as 64-bit support. Xen
includes IA-64 support, and KVM includes all of gemu
(yet doesn’t use most of it).

Nonetheless it is instructive to note that KVM 19 is
274,630 lines for a total of 99,595 semicolons. Xen
unstable (14854:039daabebad5) is 753,242 lines and
233,995 semicolons (the 53,620 lines of python don’t
carry their weight in semicolons properly, however).

4 Lguest Code: A Whirlwind Tour
Iguest consists of five parts:

1. The guest paravirt_ops implementation,

2. The launcher which creates and supplies external
I/O for the guest,

3. The switcher which flips the CPU between host and
guest,

4. The host module (Ig.ko) which sets up the switcher
and handles the kernel side of things for the
launcher, and

5. The awesome documentation which spans the
code.!

4.1 Guest Code

How does the kernel know it’s an lguest guest? The
first code the x86 kernel runs are is startup_32 in
head. S. This tests if paging is already enabled: if it is,
we know we’re under some kind of hypervisor. We end
up trying all the registered paravirt_probe func-
tions, and end up in the one in drivers/lguest/
lguest.c. Here’s the guest, file-by-file:

drivers/lguest/lguest.c Guests know that they can’t do
privileged operations such as disable interrupts:
they have to ask the host to do such things via
hypercalls. This file consists of all the replace-
ments for such low-level native hardware opera-
tions: we replace the struct paravirt_ops
pointers with these.

drivers/lguest/Iguest_asm.S The guest needs several
assembler routines for low-level things and placing
them all in 1guest . c was a little ugly.

drivers/lguest/lguest_bus.c Lguest guests use a very
simple bus for devices. It’s a simple array of device
descriptors contained just above the top of normal
memory. The Iguest bus is 80% tedious boilerplate
code.

drivers/char/hvc_lguest.c A trivial console driver: we
use lguest’s DMA mechanism to send bytes out,
and register a DMA buffer to receive bytes in. It is
assumed to be present and available from the very
beginning of boot.

drivers/block/lguest_blk.c A simple block driver
which appears as /dev/lgba, lgbb, lgbc,
etc. The mechanism is simple: we place the
information about the request in the device page,

'Documentation was awesome at time of this writing. It may
have rotted by time of reading.

2007 Linux Symposium, Volume Two e 175

then use the SEND_DMA hypercall (containing the
data for a write, or an empty “ping” DMA for a
read).

drivers/net/lguest_net.c This is very simple, a virtual
network driver. The only trick is that it can talk di-
rectly to multiple other recipients (i.e., other guests
on the same network). It can also be used with only
the host on the network.

4.2 Launcher Code

The launcher sits in the Documentation/lguest directory:
as lguest has no ABI, it needs to live in the kernel tree
with the code. It is a simple program which lays out
the “physical” memory for the new guest by mapping
the kernel image and the virtual devices, then reads re-
peatedly from /dev/lguest to run the guest. The
read returns when a signal is received or the guest sends
DMA out to the launcher.

The only trick: the Makefile links it statically at a high
address, so it will be clear of the guest memory region.
It means that each guest cannot have more than 2.5G of
memory on a normally configured host.

4.3 Switcher Code

Compiled as part of the “Ig.ko”” module, this is the code
which sits at 0xFFC00000 to do the low-level guest-
host switch. It is as simple as it can be made, but it’s
naturally very specific to x86.

4.4 Host Module: 1g.ko

It is important to that Iguest be “just another” Linux ker-
nel module. Being able to simply insert a module and
start a new guest provides a “low commitment” path to
virtualization. Not only is this consistent with Iguest’s
experimential aims, but it has potential to open new sce-
narios to apply virtualization.

drivers/Iguest/Iguest_user.c This contains all the
/dev/lguest code, whereby the userspace
launcher controls and communicates with the
guest. For example, the first write will tell us the
memory size, pagetable, entry point, and kernel
address offset. A read will run the guest until a

signal is pending (-EINTR), or the guest does a
DMA out to the launcher. Writes are also used to
get a DMA buffer registered by the guest, and to
send the guest an interrupt.

drivers/lguest/io.c The I/O mechanism in Iguest is sim-
ple yet flexible, allowing the guest to talk to the
launcher program or directly to another guest. It
uses familiar concepts of DMA and interrupts, plus
some neat code stolen from futexes.

drivers/lguest/core.c This contains run_ guest ()
which actually calls into the host«sguest switcher
and analyzes the return, such as determining if the
guest wants the host to do something. This file
also contains useful helper routines, and a couple
of non-obvious setup and teardown pieces which
were implemented after days of debugging pain.

drivers/lguest/hypercalls.c Just as userspace programs
request kernel operations via a system call, the
guest requests host operations through a “hyper-
call.” As you’d expect, this code is basically one
big switch statement.

drivers/lguest/segments.c The x86 architecture has
segments, which involve a table of descriptors
which can be used to do funky things with virtual
address interpretation. The segment handling code
consists of simple sanity checks.

drivers/lguest/page_tables.c The guest provides a
virtual-to-physical mapping, but the host can nei-
ther trust it nor use it: we verify and convert it
here to point the hardware to the actual guest pages
when running the guest. This technique is referred
to as shadow pagetables.

drivers/lguest/interrupts_and_traps.c This file deals
with Guest interrupts and traps. There are three
classes of interrupts:

1. Real hardware interrupts which occur while
we’re running the guest,

2. Interrupts for virtual devices attached to the
guest, and

3. Traps and faults from the guest.

Real hardware interrupts must be delivered to the
host, not the guest. Virtual interrupts must be de-
livered to the guest, but we make them look just
like real hardware would deliver them. Traps from

176 e Iguest: Implementing the little Linux hypervisor

the guest can be set up to go directly back into the
guest, but sometimes the host wants to see them
first, so we also have a way of “reflecting” them
into the guest as if they had been delivered to it di-
rectly.

4.5 The Documentation

The documentation is in seven parts, as outlined in
drivers/lguest/README. It uses a simple script in
Documentation/lguest to output interwoven code
and comments in literate programming style. It took
me two weeks to write (although it did lead to many
cleanups along the way). Currently the results take
up about 120 pages, so it is appropriately described
throughout as a heroic journey. From the README file:

Our Quest is in seven parts:

Preparation: In which our potential hero is flown
quickly over the landscape for a taste of its scope.
Suitable for the armchair coders and other such per-
sons of faint constitution.

Guest: Where we encounter the first tantalising wisps
of code, and come to understand the details of the
life of a Guest kernel.

Drivers: Whereby the Guest finds its voice and become
useful, and our understanding of the Guest is com-
pleted.

Launcher: Where we trace back to the creation of the
Guest, and thus begin our understanding of the
Host.

Host: Where we master the Host code, through a long
and tortuous journey. Indeed, it is here that our
hero is tested in the Bit of Despair.

Switcher: Where our understanding of the intertwined
nature of Guests and Hosts is completed.

Mastery: Where our fully fledged hero grapples with
the Great Question: “What next?”

5 Benchmarks

I wrote a simple extensible GPL’d benchmark program
called virtbench.? It’s a little primitive at the moment,

Zhttp://ozlabs.org/~rusty/virtbench

but it’s designed to guide optimization efforts for hyper-
visor authors. Here are the current results for a native
run on a UP host with 512M of RAM and the same con-
figuration running under lguest (on the same Host, with
3G of RAM). Note that these results are continually im-
proving, and are obsolete by the time you read them.

l Test Name | Native | Lguest | Factor ‘
Context switch via 2413 ns 6200 ns 26
pipe)
One Copy-on- | 35556 | 9822ns | 2.8
Write fault
Exec client once 302 us 776 us 2.6
One fork/exit/ wait 120 us 407 us 37
One int-0x80 | 269 ng 266ns | 1.0
syscall
One syscall via libc 127 ns 276 1s 29
Two PTE updates 1802 ns 6042 ns 34
256KB read from | 333336 | 4172505 | 1
disk
One disk read 113 us 185 us 1.6
Inter-guest ping- | 53850 ns | 149795 ns 2.8
pong
Inter-guest 4MB | 1635 us | 334437 us 20
TCP
Inter-guest — 4MB | 14906 us | 309791 us 28
sendfile
Kernel Compile 10m39 13m48s 1.3

Table 1: Virtbench and kernel compile times

6 Future Work

There is an infinite amount of future work to be done. It
includes:

1. More work on the I/O model.
2. More optimizations generally.
3. NO_HZ support.

4. Framebuffer support.

5. 64-bit support.

6. SMP guest support.

7. A better web page.

7 Conclusion

Lguest has shown that writing a hypervisor for Linux
isn’t difficult, and that even a minimal hypervisor can
have reasonable performance. It remains to be seen how
useful Iguest will be, but my hope is that it will become
a testing ground for Linux virtualization technologies,
a useful basis for niche hypervisor applications, and an
excellent way for coders to get their feet wet when start-
ing to explore Linux virtualization.

2007 Linux Symposium, Volume Two e 177

178 e lIguest: Implementing the little Linux hypervisor

