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Abstract

Now that the tickless(/dynticks) infrastructure is inte-
grated into the base kernel, this paper talks about var-
ious add on changes that makes tickless kernels more
effective.

Tickless kernel pose some hardware challenges that
were primarily exposed by the requirement of continu-
ously running per-CPU timer. We will discuss how this
issue was resolved by using HPET in a new mode. Elim-
inating idle periodic ticks causes kernel process sched-
uler not do idle balance as frequently as it would do oth-
erwise. We provide insight into how this tricky issue of
saving power with minimal impact on performance, is
resolved in tickless kernel.

We will also look at the kernel and user level daemons
and drivers, polling for things with their own timers and
its side effect on overall system idle time, with sug-
gestions on how to make these daemons and drivers
tickless-friendly.

1 Introduction

Traditionally, SMP Linux (just as most other operat-
ing systems) kernel uses a global timer (present in the
chipset of the platform) to generate a periodic event
for time keeping (for managing time of the day) and
periodic local CPU timer event for managing per-CPU
timers. Timers are basically events that the kernel wants
to happen at a specified time in the future (either for its
own use or on behalf of an application). An example of
such a timer is the blinking cursor; the GUI wants the
cursor to blink every 1.2 seconds so it wants to schedule
an operation every 600 milliseconds into the future. In
the pre tickless kernel, per-CPU “timers” were imple-
mented using the periodic timer interrupt on each CPU.
When the timer interrupt happens, the kernel checks if
any of the scheduled events on that CPU are due and if
so, it performs the operation associated with that event.

Old Linux kernels used a 100 Hz frequency (every
10 milliseconds) timer interrupt, newer Linux uses a
1000 Hz (1ms) or 250 Hz (4ms) timer interrupt. The
frequency of the timer interrupt determines how fine
grained you can schedule future events. Since the kernel
knows this frequency, it also knows how to keep time:
every 100 / 250 / 1000 timer interrupts another second
has passed.

This periodic timer event is often called “the timer tick.”
This timer tick is nice and simple but has two severe
downsides: First of all, this timer tick happens period-
ically irrespective of the processor state (idle Vs busy)
and if the processor is idle, it has to wake up from its
power saving sleep state every 1, 4, or 10 milliseconds,
which costs quite a bit of energy (and hence battery life
in laptops). Second of all, in a virtualization environ-
ment, if a system has 50 guests that each have a 1000
Hz timer tick, the total system will have a 50,000 ef-
fective ticks. This is not workable and highly limits the
number of possible guests.

Tickless(/Dynticks) kernel is designed to solve these
downsides. This paper will briefly look into the current
tickless kernel implementation and then look in detail
about the various add-ons the authors added to make the
tickless kernel more effective. Section 2 will look into
the current tickless kernel infrastructure. Section 3 will
look at the impact of different timers in the kernel and
its impact on tickless kernel. Section 4 will address the
hardware challenges that were exposed by the require-
ment of per-CPU timer.

Section 5 will talk about the impact on process load bal-
ancing in tickless idle kernels and the problem resolu-
tion. Section 6 will look at the impact of the different
timers (and polling) in user level daemons and drivers
on the power savings aspect of the tickless kernel.
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2 Tickless Kernel

Tickless kernel, as the name suggests, is a kernel with-
out the regular timer tick. Tickless kernel depends on
architecture independent generic clocksource and clock-
event management framework, which got into the main-
line in the recent past [7]. Generic timeofday and clock-
source management framework moved lot of timekeep-
ing code into architecture independent portion of code,
with architecture portion reduced to defining and man-
aging low level hardware pieces of clocksources. While
clock sources provide read access to the monotonically
increasing time value, clock event devices are used to
schedule the next event interrupt(s). The setup and se-
lection of the event devices is hardwired into the archi-
tecture dependent code. The clock events provides a
generic framework to manage clock event devices and
their usage for the various clock event driven kernel
functionalities.

Linux kernel typically provided timers which are of tick
(HZ) based timer resolution. clockevents framework in
the newer kernels enabled the smooth implementation
of high resolution timers across architectures. Depend-
ing on the clock source and clock event devices that are
available in the system, kernel switches to the hrtimer
[8] mode and per CPU periodic timer tick functionality
is also provided by the per CPU hrtimers (managed by
per-CPU clockevent device).

Hrtimer based periodic tick enabled the functionality of
tickless idle kernel. When a CPU goes into idle state,
timer framework evaluates the next scheduled timer
event and in case that the next event is further away than
the next periodic tick, it reprograms the per-CPU clock-
event device to this future event. This will allow the idle
CPU to go into longer idle sleeps without the unneces-
sary interruption by the periodic tick.

The current solution in 2.6.21 [4] eliminates the tick dur-
ing idle and as such it is not a full tickless or dynamic
tick implementation. However, eliminating the tick dur-
ing idle is a great first step forward. Future trend how-
ever is to completely remove the tick, irrespective of the
busy or idle CPU state.

2.1 Dynticks effectiveness data

Effectiveness of dynticks can be measured using dif-
ferent system information like power consumption, idle

time etc. Following sections of this paper looks at the
dynticks effectiveness in terms of three measurements
done on a totally idle system.

e The number of interrupts per second.
e The number of timer events per second.

e Average amount of time CPU stays in idle state
upon each idle state entry.

These measurements, collectively, gives an easy approx-
imation to actual system power and battery consump-
tion.

These measurements reported were taken on a totally
idle system, few minutes after reboot. The number of in-
terrupts in the system, per second, is computed by taking
the average from output of vmstat. The value reported
is the number of interrupts per second on the whole
system (all CPUs). The number of events reported is
from /proc/timer_stats and the value reported is
events per second. Average CPU idle time per call is
the average amount of time spent in a CPU idle state
per entry into idle. The time reported is in uS and this
data is obtained by using /proc/acpi/processor/
CPUx/power. All these three measurements are at the
system level and includes the activity of all CPUs.

The system used for the measurement is a Mobile ref-
erence system with Intel® Core™ 2 Duo CPUs (2 CPU
cores), running i386 kernel with a HZ rate of 1000.

2.1.1 Baseline measurement

Table 1 show the data with and without dynticks en-
abled.

As the data indicates, dyntick eliminates the CPU timer
ticks when CPUs idle and hence reduces the number of
interrupts in the system drastically. This reduction in
number of interrupts also increases the amount of time
CPU spends in an idle state, once entering that idle state.

Is this the best that can be done or is there scope to do
more changes within the kernel to reduce the number of
interrupts and/or reduce the number of events? Follow-
ing sections addresses this specific question.



2007 Linux Symposium, Volume Two e 203

# interrupts

With ticks
Tickless

2002
118

#events | Avg CPU idle
residency (uS)
59.59 651
60.60 10161

Table 1: System activity during idle with and without periodic ticks

3 Keeping Kernel Quiet

One of the noticeable issue with the use of timers, in-
side core kernel, in drivers and also in userspace, is that
of staggered timers. Each user of a timer does not know
about other timers that may be setup on the system at
the particular time and picks a particular time based on
its own usage restrictions. Most of the time, this spe-
cific usage restriction does not mandate a strict hard time
value. But, each timer user inadvertently end up setting
the timer on their own and hence resulting in a bunch of
staggered timers at the system level.

To prevent this in kernel space, a new APl ___round_
jiffies () is introduced [6] in the kernel. This API
rounds the jiffy timeout value to the nearest second. All
users of timeout, who are really not interested in precise
timeout should use this API while setting their timeout.
This will cause all such timers to coalesce and expire at
the same jiffy, preventing the staggered interrupts.

Another specific issue inside the kernel that needed spe-
cial attention are the timer interrupts from drivers which
are only important when CPU is busy and not really as
important to wake the CPU from idle and service the
timer. Such timer can tolerate the latency until some
other important timer or interrupt comes along, at which
time this timer can be serviced as well. Classic example
of this usage model is cpufreq ondemand governor.

ondemand governor monitors each processor utilization
at periodic intervals (many times per second) and tries to
manage the processor frequency, keeping it close to the
processor utilization. When a processor is totally idle,
there is no pressing need for ondemand to periodically
wakeup the processor just to look at its utilization. To
resolve this issue, anew APl of deferrable timers
was introduced [1] in the recent kernel.

Deferrable timer is a timer that works as a normal timer
when processor is active, but will be deferred to a later
time when processor is idle. The timers thus deferred

will be handled when processor eventually comes out of
idle due to a non-deferrable timer or any other interrupts.

Deferrable timer is implemented using a special state bit
in the timer structure, overloaded over one of the fields
in the current structure, which maintains the nature of
the timer (deferrable or not). This state bit is preserved
as the timer moves around in various per-CPU queues
and _ _next_timer_interrupt () skips over all
the deferrable timers and picks the timer event for next
non-deferrable timer in the timer queue.

This API works very well with ondemand, reducing the
number of interrupts and number of events on an idle
system as shown in the Table 2. As shown, this feature
nearly doubles the average CPU idle residency time, on
a totally idle system. This API may also have limited
usages with other timers inside the kernel like machine
check or cache reap timers and has the potential to re-
duce the number of wakeups on an idle system further
down.

Note that this timer is only available for in kernel us-
age at this point and usage for user apps is not yet con-
ceptualized. It is not straight forward to extend this to
userspace as user timer are not directly associated with
per-CPU timer queues and also there can be various
dependencies across multiple timers, which can result
in timer reordering depending on what CPU they are
scheduled on and whether that CPU is idle or not.

4 Platform Timer Event Sources

Dynticks depends on having a per-CPU timer event
source. On x86, LAPIC timer can be used as a de-
pendable timer event source. But, when the platform
supports low power processor idle states (ACPI C2, C3
states), on most current platforms LAPIC timer stops
ticking while CPU is in one of the low power idle states.
Dynticks uses a nice workaround to address this issue,
with the concept of broadcast timer. Broadcast timer is
an always working timer, that will be shared across a
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# interrupts | #events | Avg CPU idle
residency (uS)
Ondemand 118 60.60 10161
Ondemand + 89 17.17 20312
deferrable timer

Table 2: System activity during idle with and without deferrable timer usage in ondemand

pool of processors and has the responsibility to send a
local APIC timer interrupt to wakeup any processor in
the pool. Such broadcast timers are platform timers like
PIT or HPET [3].

PIT/8254: is a platform timer that can run either in one-
shot or periodic mode. It has a frequency of 1193182
Hz and can have a maximum timeout of 27462 uS.

HPET: Is based on newer standard, has a set of memory
mapped timers. These timers are programmable to work
in different modes and frequency of this timer is based
on the particular hardware. On our system under test,
HPET runs at 14318179 Hz freq and can have a max
timeout of more than 3 seconds (with 32-bit timer).

HPET is superior than PIT, in terms of max timeout
value and thus can reduce the number of interrupts when
the system is idle. Most of the platforms today has built
in HPET timers in the chipset. Unfortunately, very few
of the platforms today enable HPET timer and/or adver-
tise the existence of HPET timer to OS using the ACPI
tables. As a result, Linux kernel ends up using PIT
for broadcast timer. This is not an issue on platforms
which do not support low power idle state (e.g., today’s
servers) as they have always working local APIC time.
But, this does cause issue on laptops that typically sup-
port low power idle states.

4.1 Force detection of HPET

To resolve this issue of BIOS not enabling/advertising
HPET, there is a kernel feature to forcefully detect and
enable HPET on various chipsets, using chipset specific
PCI quirks. Once that is done, HPET can be used in-
stead of PIT to reduce the number of interrupts on an
idle system further. On our test platform, data that we
got after forcefully detecting and enabling HPET timer
is in Table 3.

Note that this patch to force enable HPET was in
proposal-review state at the time of writing this paper
and was not available in any standard kernel yet.

4.2 HPET as a per-CPU timer

Linux kernel uses “legacy replacement” mode of HPET
timer today to generate timer events. In this mode,
HPET appears like legacy PIT and RTC to OS gener-
ating interrupts on IRQO and IRQS8 for HPET channel 0
and channel 1 timer respectively. There is a further op-
timization possible, where HPET can be programmed
in “standard” interrupt delivery mode and use different
channels of HPET to send “per-CPU” interrupt to differ-
ent processors. This will help laptops that have 2 logical
CPUs and at least 2 HPET timer channels available. Dif-
ferent channels of HPET can be used to program timer
for each CPU, thereby avoiding the need for broadcast
timer altogether and eliminating the LAPIC timers as
well. This feature, which is still under development at
the time of writing this paper, brings an incremental ben-
efit on systems with more than one logical CPUs and
that support deep idle states (most laptop systems with
dual core processors). Table 4 shows the data with and
without this feature on such a system.

In comparison to base tickless data (as shown in Ta-
ble 1), features we have talked so far (as shown in Ta-
bles 2, 3, and 4) have demonstrated the increase in idle
residency time by approximately 7 times.

5 Idle Process Load balancing

In the regular kernel, one of the usages of the periodic
timer tick on each processor is to perform periodic pro-
cess load balancing on that particular processor. If there
is a process load imbalance, load balancer will pull the
process load from a busiest CPU, ensuring that the load
is equally distributed among the available processors in
the system. Load balancing period and the subset of
processors which will participate in the load balancing
will depend on different factors, like the busy state of
the processor doing the load balance, the hierarchy of
scheduler domains that this processor is part of and the



# interrupts | #events | Avg CPU idle
residency (uS)
PIT 89 17.17 20312
HPET 32 15.15 56451

Table 3: System activity during idle with PIT Vs HPET
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# interrupts | #events | Avg CPU idle

residency (uS)
global HPET 32 15.15 56451
percpu HPET 22 15.15 73514

Table 4: System activity during idle with global vs. per-CPU HPET channels

Garbage collector | Perf Regression
parallel 6.3%
gencon 7.7%

Table 5: SPECjbb2000 performance regression with
Tickless kernel. Tickless Idle load balancing enhance-
ments recovered this performance regression.

process load in the system. Compared to busy CPUs,
idle CPUs perform load balancing more often (mainly
because it has nothing else to do and can immediately
start executing the pulled load, the load otherwise was
waiting for CPU cycles on another busy CPU). In ad-
dition to the fairness, this will help improve the system
throughput. As such, idle load balancing plays a very
important role.

Because of the absence of the periodic timer tick in tick-
less kernel, idle CPU will potentially sleep for longer
time. This extended sleep will delay the periodic load
balancing and as such the idle load balancing in the sys-
tem doesn’t happen as often as it does in the earlier ker-
nels. This will present a throughput and latency issue,
especially for server workloads.

To measure the performance impact, some experiments
were conducted on an 8 CPU core system (dual package
system with quad-core) using SPECjbb2000 benchmark
in a 512MB heap and 8 warehouses configuration. Per-
formance regression with tickless 2.6.21-rc6-rt0 kernel
[5] is shown in Table 5.

Recovering this performance regression in the tickless
kernel with no impact on power savings is tricky and

challenging. There were some discussions happened
in the Linux kernel community on this topic last year,
where two main approaches were discussed.

First approach is to increase the back off interval of pe-
riodic idle load balancing. Regular Linux kernel already
does some sort of backoff (increasing the load balance
period up to a maximum amount) when the CPU do-
ing the load balance at a particular sched domain finds
that the load at that level is already balanced. And if
there is an imbalance, the periodic interval gets reset
to the minimum level. Different sched domains in the
scheduler domain hierarchy uses different minimum and
maximum busy/idle intervals and this back off period
increases as one goes up in the scheduler domain hier-
archy. Current back off intervals are selected in such a
fashion that there are not too many or too less load bal-
ancing attempts, so that there is no overdoing the work
when the system is well balanced and also react in rea-
sonable amount of time, when the load changes in the
system.

To fix the performance regression, this approach sug-
gests to further increase the backoff interval for all the
levels in the scheduler domain hierarchy but still retain-
ing the periodic load balancing on each CPU (by regis-
tering a new periodic timer event which will trigger the
periodic load balancing). Defining the interval increase
will be tricky and if it is too much, then the response
time will also be high and won’t be able to respond for
sudden changes in the load. If it is small, then it won’t
be able to save power, as the periodic load balancing will
wake up the idle CPU often.

Second mechanism is some sort of a watchdog mech-
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anism where the busy CPU will trigger the load bal-
ance on an idle CPU. This mechanism will be making
changes to the busy load balancing (which will be do-
ing more load balancing work, while the current busy
task on that CPU is eagerly waiting for the CPU cycles).
Busy load balancing is quite infrequent compared to idle
load balancing attempts. Similar to the first mechanism,
this mechanism also won’t be able to respond quickly
to changes in load. And also figuring out that a CPU is
heavily loaded and where that extra load need to moved,
is some what difficult job, especially so in the case of
hierarchical scheduler domains.

This paper proposes a third route which nominates an
owner among the idle CPUs, which does the idle load
balancing (ILB) on behalf of the other idle CPUs in the
system. This ILB owner will have the periodic tick ac-
tive in idle state and uses this tick to do load balancing
on behalf of all the idle CPUs that it tracks, while the
other idle CPUs will be in long tickless sleeps. If there
is an imbalance, ILB owner will wakeup the appropri-
ate CPU from its idle sleep. Once all the CPUs in the
system are in idle state, periodic tick on the ILB owner
will also stop (as there is no other CPU generating load
and hence no reason for checking the load imbalance).
New idle load balancing owner will be selected again,
as soon as there is a busy CPU in the system.

This solution is in 2.6.21 -mm kernels and the experi-
ments showed that this patch completely recovered the
performance regression seen earlier (Table 5) in the tick-
less kernels with SPECjbb workload. If this ILB owner
selection is done carefully (like an idle core in a busy
package), one can minimize the power wasted also.

6 Keeping Userspace Quiet

Tickless idle kernel alone is not sufficient to enable the
idle processor to go into long and deep sleeps. In addi-
tion to the kernel space, applications in the user space
also need to quite down during idle periods, which will
ensure that the whole system goes to long sleeps, ulti-
mately saving power (and thus enhancing battery life in
case of laptops).

Dave Jones” OLS2006 talk [9] entitled “Why Userspace
Sucks” revealed to the Linux community that the
userspace really doesn’t quiet down as one would hope
for, on an otherwise idle system. Number of applica-
tions and daemons wakeup at frequent intervals (even on

a completely idle system) for performing a periodic ac-
tivity like polling a device, cursor blinking, querying for
a status change to modify the graphical icon accordingly
and so on (for more information about the mischeivous
application behaviors look into references [9, 10, 2]).

A Number of fixes went into applications and libraries
over the course of the last year to fix these prob-
lems [2]. Instead of polling periodically for checking
status changes, applications and deamons should use
some sort of event notification where ever possible and
perform the actions based on the triggered event. For ex-
ample, the hal daemon used to poll very frequently to
check for media changes and thus making the idle pro-
cessor wakeup often. Newer SATA hardware supports
a feature called Asynchronous Notification, which will
notify the host at a media change event. With the re-
cent changes in the community, hal daemon will avoid
the polling on platforms which has the support of this
asynchronous notification.

Even in the case where the application has to rely on pe-
riodic timers, application should use intelligent mecha-
nisms to avoid/minimize the periodic timers when pos-
sible. Instead of having scattered timers across the pe-
riod of time, it will be best to group them and expire
the bunch of timers at the same instance. This group-
ing will minimize the number of instances a processor
will be wokenup, while still servicing the same number
of timers. This will enable the processor to sleep longer
and go into the lowest power state that is possible.

For example all gnome applications use the glib timer
g_timeout_add () API for their timers, which expire
at scattered instances. A second API, g_timeout_
add_seconds () has now been added which causes all
recurring timers to happen at the start of the second, en-
abling the system wide grouping of timers. The start
of the second is offset by a value which is system wide
but system-specific to prevent all Linux machines on the
internet doing network traffic at the same time.

New tools are getting developed [10] for identify-
ing the applications (and even the kernel level com-
ponents) which behave badly by wakingup more of-
ten than required. These tools use the kernel in-
terfaces (like /proc/timer_stats, /proc/acpi/
processor/CPUx*/power, /proc/interrupts) and
report the biggest offenders and also the average C-
state residency information of the processor. Developers
should use these tools to identify if their application is



on the hitlist and if so, fix them based on the above men-
tioned guidelines.

7 Conclusions

Tickless kernel infrastructure is the first and important
step forward in making the idle system go into long and
deep sleeps. Now that this is integrated into Linux ker-
nel, enhancements mentioned in this paper will increase
the mileage out of the tickless kernel, by minimizing
the unnecessary wakeups in an otherwise idle system.
Going forward, responsibility of saving power lies with
both system and user level software. As an evolutionary
step, in coming days we can expect the Linux kernel to
be fully (both during idle and busy) dynamic tick capa-
ble.
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