
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Kernel Support for Stackable File Systems

Josef Sipek, Yiannis Pericleous, and Erez Zadok
Stony Brook University

{jsipek,yiannos,ezk}@fsl.cs.sunysb.edu

Abstract

Although it is now possible to use stackable (layered)
file systems in Linux, there are several issues that should
be addressed to make stacking more reliable and effi-
cient. To support stacking properly, some changes to
the VFS and VM subsystems will be required. In this
paper, we discuss some of the issues and solutions pro-
posed at the Linux Storage and Filesystems workshop
in February 2007, our ongoing work on stacking sup-
port for Linux, and our progress on several particular
stackable file systems.

1 Introduction

A stackable (layered) file system is a file system that
does not store data itself. Instead, it uses another file
system for its storage. We call the stackable file system
the upper file system, and the file systems it stacks on
top of the lower file systems.

Although it is now possible to use stackable file sys-
tems, a number of issues should be addressed to improve
file system stacking reliability and efficiency. The Linux
kernel VFS was not designed with file system stacking
in mind, and therefore it comes as no surprise that sup-
porting stacking properly will require some changes to
the VFS and VM subsystems.

We use eCryptfs and Unionfs as the example stackable
file systems to cover both linear and fan-out stacking,
respectively.

eCryptfs is a cryptographic file system for Linux that
stacks on top of existing file systems. It provides func-
tionality similar to that of GnuPG, except that encrypt-
ing and decrypting the data is transparent to the applica-
tion [1, 3, 2].

Unionfs is a stackable file system that presents a series
of directories (branches) from different file systems as

one virtual directory, as specified by the user. This is
commonly referred to as namespace unification. Previ-
ous publications [4, 5, 6] provide detailed description
and some possible use cases.

Both eCryptfs and Unionfs are based on the FiST stack-
able file system templates, which provide support for
layering over a single directory [7]. As shown in Fig-
ures 1(a) and 1(b), the kernel’s VFS is responsible for
dispatching file-system–related system calls to the ap-
propriate file system. To the VFS, a stackable file sys-
tem appears as if it were a standard file system. How-
ever, instead of storing or retrieving data, a stackable file
system passes calls down to lower-level file systems. In
this scenario, NFS is used as a lower-level file system,
but any file system can be used to store the data as well
(e.g., Ext2, Ext3, Reiserfs, SQUASHFS, isofs, tmpfs,
etc.).

To the lower-level file systems, a stackable file system
appears as if it were the VFS. Stackable file system de-
velopment can be difficult because the file system must
adhere to the conventions of both the file systems for
processing VFS calls, and of the VFS for making VFS
calls.

Without kernel support, stackable file systems suffer
from inherent cache coherency problems. These issues
can be divided into two categories: (1) data coherency of
the page cache contents, and (2) meta-data coherency of
the dentry and inode caches. Changes to the VFS
and the stackable file systems are required to remedy
these problems.

Moreover, lockdep, the in-kernel lock validator, “ob-
serves” and maps all locking rules as they dynamically
occur, as triggered by the kernel’s natural use of locks
(spinlocks, rwlocks, mutexes, and rwsems). Whenever
the lock validator subsystem detects a new locking sce-
nario, it validates this new rule against the existing set of
rules. Unfortunately, stackable file systems need to lock

• 223 •



224 • Kernel Support for Stackable File Systems

NFS

eCryptfs
nfs_rename()

User Process
rename()

vfs_rename()

Virtual File System

K
er

ne
l

U
se

r

ecryptfs_rename()

(a) eCryptfs layers over a single directory.

Unionfs

... NFStmpfs

tmpfs_rename() nfs_rename()

RORW

User Process
rename()

vfs_rename()

unionfs_rename()

Virtual File System

K
er

ne
l

U
se

r

(b) Unionfs layers over multiple directories.

Figure 1: The user processes issue system calls, which the kernel’s virtual file system (VFS) directs to stackable file
systems. Stackable file systems in turn pass the calls down to lower-level file systems (e.g., tmpfs or NFS).

many of the VFS objects in a recursive manner, trigger-
ing lockdep warnings.

To maintain the upper to lower file system mapping of
kernel objects (such as dentrys, inodes, etc.), many
stackable file systems share much of the basic infras-
tructure. The 2.6.20 kernel introduced fs/stack.c,
a new file that contains several helper functions useful
to stackable file systems.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss the cache coherency issues. In Sec-
tion 3 we discuss the importance of locking order. In
Section 4 we discuss fsstack, the emerging Linux
kernel support for stacking. In Section 5, we discuss
a persistent store prototype we developed for Unionfs,
which can be of use to others. Finally, we conclude in
Section 6.

2 Cache Coherency

There are two different cache coherency issues that
stackable file systems must overcome: data and meta-
data.

2.1 Data Coherency

Typically, the upper file system maintains its own set of
pages used for the page cache. Under ideal conditions,

all the changes to the data go through the upper file sys-
tem. Therefore, either the upper file system’s write
inode operation or the writepage address space op-
eration will have a chance to transform the data as nec-
essary (e.g., eCryptfs needs to encrypt all writes) and
write it to the lower file system’s pages.

Data incoherency occurs when data is written to the
lower pages directly, without the stacked file system’s
knowledge. There are two possible solutions to this
problem:

Weak cache coherency – NFS also suffers from cache
coherency issues as the data on the server may be
changed by either another client or a local server
process. NFS uses a number of assertions that are
checked before cached data is used. If any of these
assertions fail, the cached data is invalidated. One
such assertion is a comparison of the ctime with
what is cached, and invalidating any potentially
out-of-date information.

Strong cache coherency – Another possible solution
to the cache coherency problem is to modify the
VFS and VM to effectively inform the stackable
file systems that the data has changed on the lower
file system. There are several different ways of ac-
complishing this, but all involve maintaining point-
ers from lower VFS objects to all upper ones. Re-
gardless of how this is implemented, the VFS/VM



2007 Linux Symposium, Volume Two • 225

must traverse a dependency graph of VFS objects,
invalidate all pages belonging to the corresponding
upper addresses spaces, and sync all of the pages
that are part of the lower address spaces.

Both approaches have benefits and drawbacks.

The major benefit of the weak consistency approach is
that the VFS does not have to be modified at all. The
major downside is that every stackable file system needs
to contain a number of these checks. Even if helper
functions are created, calls to these functions need to
be placed throughout the stackable file systems. This
leads to code duplication, which we try to address with
fsstack (see Section 4).

The most significant benefit of the stronger coherency
approach is the fact that it guarantees that the caches are
always coherent. At the same time, it requires that the
file system use the page cache properly, and that the file
system supplies a valid address space operations vector.
Some file systems do not meet these requirements. For
example, GPFS (created by IBM) only has readpage
and writepage, but does not have any other address
space operations. If the cache coherency is maintained
at the page-cache level, the semantics of using a lower
file system that does not define the needed operations
would be unclear.

2.2 Meta-Data Coherency

Similar to the page cache, many VFS objects, such as
the cached inode and dentry objects, may become
inconsistent. The meta-data contained in these caches
includes the {a,c,m}times, file size, etc.

Just as with data consistency, either a strong or a weak
cache coherency model may be used to prevent the up-
per and lower VFS objects from disagreeing on the file
system state. The benefits and drawbacks stated previ-
ously apply here as well (e.g., weak coherency requires
code duplication in most stackable file systems).

2.3 File Revalidation

The VFS currently allows for dentry revalidation.
NFS and other network file system are the few users of
this. A useful addition to this dentry revalidation op-
eration would be an equivalent file operation. Given

a struct file, this would allow the file system to
check for validity and repair any inconsistencies.

Unionfs works around the lack of file revalidation
by calling its own helper function in the appropriate
struct file operations. The reason Unionfs re-
quires this is due to the possibility of a branch man-
agement operation changing the number or order of
branches, and the lower struct file pointers need
to be updated.

3 Locking Order

Since stackable file systems must behave as both a file
system and the VFS, they need to lock many of the
VFS objects in a recursive manner, triggering warnings
about potential deadlocks. The in-kernel lock valida-
tor, lockdep, dynamically monitors the kernel’s usage
of locks (spinlocks, rwlocks, mutexes and rwsems) and
creates rules. Whenever the lock validator subsystem
detects a new locking scenario, it validates this new rule
against the existing set of rules.

The lockdep system is aware of locking dependency
chains, such as: parent→ child→ xattr→ quota. How-
ever, it does not understand that a stackable file system
may cause recursion in the VFS. For example, the VFS
may indirectly (but safely) call itself; vfs_readdir
can call a stackable file system on one directory, which
can in turn call vfs_readdir again on other lower
directories. Each time vfs_readdir is called, the
corresponding i_mutex is taken. This triggers a
lockdep warning, as it considers this situation a po-
tential place for a deadlock, and warns accordingly. In
other words, lockdep needs to be informed of the hi-
erarchies between stacked file systems. This, however,
would require adding a “stacked” argument to many
functions in the VFS, and passing that information to
lockdep.

4 fsstack

The code duplication found in many stackable file sys-
tems (such as eCryptfs, Unionfs, and our upcoming
cachefs) is another problem. The 2.6.20 kernel intro-
duced fs/stack.c, a new file, which contains sev-
eral useful helper functions. We are working on further
abstractions to the stacking API in Linux.



226 • Kernel Support for Stackable File Systems

Each stackable file system must maintain a set of point-
ers from the upper (stackable file system) objects to the
lower objects. For example, each Unionfs inodemain-
tains a series of lower inode pointers.

Currently, there are two ways to keep track of lower
objects. Linear (one lower pointer) and fan-out (sev-
eral lower pointers). Fan-out is the more interesting
case, as linear stacking is just a special case of fan-
out, with only one branch. Quite frequently, Unionfs
needs to traverse all the branches. This creates the
need for a for_each_branch macro (analogous to
for_each_node), which would decide when to ter-
minate.

A “reference” stackable file system, much like NullFS in
many BSDs, would allow stackable file system authors
to easily create new stackable file systems for Linux.
This reference file system should use as many of the
fsstack interfaces as possible. Currently, the clos-
est thing to this is Wrapfs [7], which can be generated
from FiST. Unfortunately, the generated code does not
follow proper coding style and general code cleanliness.

In Section 2.1, we considered a weaker form of the
cache coherency model. This model suffers from the
fact that a large number of the coherency checks (e.g.,
checking the {a,c,m}times) will need to be dupli-
cated in each stackable file system. Using fsstack
avoids this problem by making use of generic functions
to perform operations common to all stackable file sys-
tems. The code necessary to invalidate and revalidate
the upper file system objects could be shared by several
file systems. However, each file system must call these
helper functions. If a bug is discovered in one stackable
file system (e.g., a helper function should be called but is
not), the fix may have to be ported to other file systems.

Stackable file systems must behave as a file system from
the point of view of the VFS, yet they must behave as
the VFS from the point of view of the file systems it is
stacked on top of. Generally, the most complex code oc-
curs in the file system lookup code. One idea, proposed
at the 2007 Linux Storage and Filesystem workshop,
was to divide the current VFS lookup code into two por-
tions, and to allow the file system to override part of the
functionality via a new inode operation. The default
operation would have functionality identical to the cur-
rent lookup code. The flexibility allowed by this code
refactoring would simplify some of the code in more
complex file systems. For example, Ext2 could use the

generic lookup code provided by the VFS, while a file
system requiring more complex lookup code, such as
Unionfs, can provide its own lookup helper which per-
forms the necessary operations (e.g., to perform names-
pace unification).

5 On Disk Format (ODF)

We have developed an On Disk Format (ODF) to help
Unionfs 2.0 persistently store any meta-data it needs,
such as whiteouts. ODF is a small file system on a
partition or loop device. The ODF has helped us re-
solve most of the critical issues that Unionfs 1.x had
faced, such as namespace pollution, inode persistence,
readdir consistency and efficiency, and more. Since,
all the meta-data is kept in a separate file system instead
of in the branches themselves, Unionfs can be stacked
on top of itself and have overlapping branches.

Such a format can be used by any stackable file system
that needs to store meta-data persistently. For example,
a versioning file system may use it to store information
about the current version of a file, a caching file system
may use it to store information about the status of the
cached files. Unionfs benefits in many ways as well, for
example there is no namespace pollution, and Unionfs
can be stacked on itself.

By keeping all the meta-data together in a separate file
system, simply creating an in-kernel mount can be used
to easily hide it from the user, assuring that the user will
not temper with the meta-data. Also, it becomes easier
to backup the state of the file system by simply creat-
ing a backup of the ODF file system. If a file system
which statically allocates inode tables is used, the user
must estimate the number of inodes and data blocks
the ODF will need before hand. Using a file system
which allocates inode blocks dynamically (e.g., XFS)
fixes this problem. This is a shortcoming of the file sys-
tem, and not ODF itself.

The ODF can use another file system, such as Ext2 or
XFS, to store the meta-data. Another possibility we are
looking at for the future is to build an ODF file sys-
tem that will have complete control of how it stores this
meta-data, thus allowing us to make it more efficient,
flexible and reusable.



2007 Linux Symposium, Volume Two • 227

6 Conclusion

Stackable file systems can be used today on Linux.
There are some issues which should be addressed to in-
crease their reliability and efficiency. The major issues
include the data and meta-data cache coherency between
the upper and lower file systems, code duplication be-
tween stackable file systems, and the recursive nature of
stacking causing lockdep to warn about what it infers
are possible deadlocks. Addressing these issues will re-
quire changes to the VFS/VM.

7 Acknowledgements

The ideas presented in this paper were inspired and mo-
tivated by numerous discussions with the following peo-
ple: Russel Catalan, Dave Chinner, Bruce Fields, Steve
French, Christoph Hellwig, Eric Van Hensbergen, Val
Henson, Chuck Lever, Andrew Morton, Trond Mykle-
bust, Eric Sandeen, Theodore Ts’o, Al Viro, Peter Zijl-
stra, and many others.

This work was partially made possibly by NSF Trusted
Computing Award CCR-0310493.

References

[1] M. Halcrow. ecryptfs: a stacked cryptographic
filesystem. Linux Journal, (156), April 2007.

[2] M. A. Halcrow. Demands, Solutions, and
Improvements for Linux Filesystem Security. In
Proceedings of the 2004 Linux Symposium, pages
269–286, Ottawa, Canada, July 2004. Linux
Symposium.

[3] M. A. Halcrow. eCryptfs: An Enterprise-class
Encrypted Filesystem for Linux. In Proceedings of
the 2005 Linux Symposium, pages 201–218,
Ottawa, Canada, July 2005. Linux Symposium.

[4] D. Quigley, J. Sipek, C. P. Wright, and E. Zadok.
UnionFS: User- and Community-oriented
Development of a Unification Filesystem. In
Proceedings of the 2006 Linux Symposium,
volume 2, pages 349–362, Ottawa, Canada, July
2006.

[5] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versatility

and unix semantics in namespace unification. ACM
Transactions on Storage (TOS), 2(1):1–32,
February 2006.

[6] C. P. Wright and E. Zadok. Unionfs: Bringing File
Systems Together. Linux Journal, (128):24–29,
December 2004.

[7] E. Zadok and J. Nieh. FiST: A Language for
Stackable File Systems. In Proc. of the Annual
USENIX Technical Conference, pages 55–70, San
Diego, CA, June 2000. USENIX Association.



228 • Kernel Support for Stackable File Systems


