
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Request-based Device-mapper multipath and Dynamic load balancing

Kiyoshi Ueda
NEC Corporation

k-ueda@ct.jp.nec.com

Jun’ichi Nomura
NEC Corporation

j-nomura@ce.jp.nec.com

Mike Christie
Red Hat, Inc.

mchristi@redhat.com

Abstract

Multipath I/O is the ability to provide increased perfor-
mance and fault tolerant access to a device by address-
ing it through more than one path. For storage devices,
Linux has seen several solutions that were of two types:
high-level approaches that live above the I/O scheduler
(BIO mappers), and low-level subsystem specific ap-
proaches. Each type of implementation has its advan-
tage because of the position in the storage stack in which
it has been implemented. The authors focus on a solu-
tion that attempts to reap the benefits of each type of
solution by moving the kernel’s current multipath layer,
dm-multipath, below the I/O scheduler and above the
hardware-specific subsystem. This paper describes the
block, Device-mapper, and SCSI layer changes for the
solution and its effect on performance.

1 Introduction

Multipath I/O provides the capability to utilize multiple
paths between the host and the storage device. Multiple
paths can result from host or storage controllers having
more than one port, redundancy in the fabric, or having
multiple controllers or buses.

As can be seen in Figure 1(a), multipath architectures
like MD Multipath or the Device-mapper (DM) layer’s
multipath target have taken advantage of multiple paths
at a high level by creating a virtual device that is com-
prised of block devices created by the hardware subsys-
tem.

In this approach, the hardware subsystem is unaware of
multipath, and the lower-level block devices represent
paths to the storage device which the higher-level soft-
ware routes I/Os in units of BIOs over [1]. This design
has the benefit that it can support any block device, and
is easy to implement because it uses the same infrastruc-
ture that software RAID uses. It has the drawback that it

does not have access to detailed error information, and it
resides above the I/O scheduler and I/O merging, which
makes it difficult to make load-balancing decisions.

Another approach to multipath design modifies the
hardware subsystem or low-level driver (LLD) to be
multipath-aware. For the Linux SCSI stack (Fig-
ure 1(b)), Host Bus Adapter (HBA) manufacturers, such
as Qlogic, have provided LLDs for their Fibre Channel
and iSCSI cards which hide the multipath details from
the OS [2]. These drivers coalesce paths into a single
device which is exposed to the kernel, and route SCSI
commands or driver-specific structures. There have also
been multipath implementations in the SCSI layer that
are able to route SCSI commands over different types
of HBAs. These can be implemented above the LLD
in the SCSI mid-layer or as a specialized SCSI upper-
layer driver [3]. These designs benefit from being at a
lower level, because they are able to quickly distinguish
transport problems from device errors, can support any
SCSI device including tape, and are able to make more
intelligent load-balancing decisions.

This paper describes a multipath technique, Request-
based DM, which can be seen in Figure 1(c), that is lo-
cated under the I/O scheduler and above the hardware
subsystem, and routes struct requests over the de-
vices created by the hardware specific subsystem. (To
distinguish from the general meaning of request, request
is used in this paper to mention the struct request.)
As a result of working with requests instead of BIOs or
SCSI commands, this new technique is able to bridge
the multipath layer with the lower levels because it has
access to the lower-level error information, and is able
to leverage the existing block-layer statistics and queue
management infrastructure to provide improved load
balancing.

In Section 2, we will give an overview of the Linux
block and DM layer. Then Section 3 describes in more
detail the differences between routing I/O at the BIO-
level versus the request-level, and what modifications to

• 235 •

236 • Request-based Device-mapper multipath and Dynamic load balancing

(c) Request-based DM multipath

Request-based DM

I/O scheduler

File system Direct I/O

Hardware subsystem (SCSI, IDE)

(b) SCSI multipath

SCSI upper level driver
disk (sd), tape (st), and CD (sr).

SCSI mid layer

Low level driver
(Qlogic qla2xxx, Emulex lpfc)

I/O scheduler

File system Direct I/O

(a) BIO mapper multipath

BIO mapper (dm-multipath)

I/O scheduler

File system Direct I/O

Hardware subsystem (SCSI, IDE)

Figure 1: Multipath implementations

the block, SCSI, and DM layers are necessary to support
Request-based multipath. Finally, we will detail perfor-
mance results and load-balancing changes in Section 4
and Section 5.

2 Overview of Linux Block I/O and DM

In this section, we look into the building blocks of mul-
tipath I/O, specifically, how the applications’ read/write
operations are translated into low-level I/O requests.

2.1 Block I/O

When a process, or kernel itself, reads or writes to a
block device, the I/O operation is initially packed into
a simple container called a BIO. (See Figure 2.) The
BIO uses a vector representation pointing to an array of
tuples of <page, offset, len> to describe the I/O
buffer, and has various other fields describing I/O pa-
rameters and state that needs to be maintained for per-
forming the I/O [4].

Upon receiving the BIO, the block layer attempts to
merge it with other BIOs already packed into requests
and inserted in the request queue. This allows the block
layer to create larger requests and to collect enough of
them in the queue to be able to take advantage of the
sorting/merging logic in the elevator [4].

page

BIO

block layer

file system, etc.

low-level device driver

read, write

submit_bio

unplug

Request

Figure 2: Relationship between page, BIO, and request

This approach to collecting multiple larger requests be-
fore dequeueing is called plugging. If the buffers of
two BIOs are contiguous on disk, and the size of the
BIO combined with the request it is to be merged with
is within the LLD and hardware’s I/O size limitations,
then the BIO is merged with an existing request; other-
wise the BIO is packed into a new request and inserted
into the block device’s request queue. Requests will
continue to be merged with incoming BIOs and adja-
cent requests until the queue is unplugged. An unplug
of the queue is triggered by various events such as the

2007 Linux Symposium, Volume Two • 237

plug timer firing, the number of requests exceeding a
given threshold, and I/O completion.

When the queue is unplugged the requests are passed
to the low-level driver’s request_fn() to be exe-
cuted. And when the I/O completes, subsystems like
the SCSI and IDE layer will call blk_complete_

request() to schedule further processing of the re-
quest from the block layer softirq handler. From
that context, the subsystem will complete process-
ing of the request by asking the block layer to re-
queue it, or by calling end_request(), or end_

that_request_first()/chunk() and end_that_

request_last() to pass ownership of the request
back to the block layer. To notify upper layers of the
completion of the I/O, the block layer will then call
each BIO’s bi_end_io() function and the request’s
end_io() function.

During this process of I/O being merged, queued and
executed, the block layer and hardware specific subsys-
tem collect a wide range of I/O statistics such as: the
number of sectors read/written, the number of merges
occurred and accumulated length of time requests took
to complete.

2.2 DM

DM is a virtual block device driver that provides a
highly modular kernel framework for stacking block de-
vice filter drivers [1]. The filter drivers are called target
drivers in DM terminology, and can map a BIO to mul-
tiple block devices, or can modify a BIO’s data or simu-
late various device conditions and setups. DM performs
this BIO manipulation by performing the following op-
erations:

• Cloning

– When a BIO is sent to the DM device, a
near identical copy of that BIO is created by
DM’s make_request() function. The ma-
jor difference between the two BIOs is that
the clone will have a completion handler that
points to DM’s clone_endio() function.

• Mapping

– The cloned BIO is passed to the target driver,
where the clone’s fields are modified. By tar-
gets that map or route I/O, the bi_bdev field

is set to the device it wants to send the BIO
to.

– The cloned BIO is submitted to the underly-
ing device.

• Completion

– DM’s completion handler calls the target-
specific completion handler where the BIO
can be remapped or completed.

– Original BIO is completed when all cloned
BIOs are completed.

2.3 dm-multipath

dm-multipath is the DM target driver that imple-
ments multipath I/O functionality for block devices. Its
map function determines which device to route the BIO
to using a path selection module and by ordering paths
in priority groups (Figure 3). Currently, there is only
the round-robin path selector, which sends N number of
BIOs to a path before selecting a new path.

Original BIOs

sector=100
length=100

dm-multipath

clone

map

DM device

sector=0
length=100

sector=0
length=100

sector=100
length=100 Cloned BIOs

Block device A

I/O scheduler

low-level driver

Block device B

I/O scheduler

low-level driver

Path selector

Figure 3: current (BIO-based) dm-multipath

238 • Request-based Device-mapper multipath and Dynamic load balancing

3 Request-based DM

3.1 Limitations of BIO-based dm-multipath

There are three primary problems which Request-based
multipath attempts to overcome:

1. Path selection does not consider I/O scheduler’s be-
havior.

2. Block layer statistics are difficult for DM to use.

3. Error severity information is not available to DM.

dm-multipath’s path selection modules must balance
trying to plug the underlying request queue and creat-
ing large requests against making sure each path is fully
utilized. Setting the number of BIOs that cause a path
switch to a high value will assure that most BIOs are
merged. However, it can cause other paths to be un-
derused because it concentrates I/O on a single path for
too long. Setting the BIO path-switching threshold too
low would cause small requests to be sent down each
path and would negate any benefits that plugging the
queue would bring. At its current location in the storage
stack, the path selector module must guess what will be
merged by duplicating the block layer tests or duplicate
the block layer statistics so it can attempt to make rea-
sonable decisions based on past I/O trends.

Along with enhancing performance, multipath’s other
duty is better handling of disruptions. The LLD and
the hardware subsystem have a detailed view of most
problems. They can decode SCSI sense keys that may
indicate a storage controller on the target is being main-
tained or is in trouble, and have access to lower level er-
ror information such as whether a connection has failed.
Unfortunately, the only error information DM receives
is the error code value -EIO.

Given that these issues are caused by the location of the
dm-multipath map and completion functions, Request-
based DM adds new DM target drivers call outs, and
modifies DM and the block layer to support mapping
at the request-level. Section 3.2 will explain the design
and implementation of Request-based DM. Section 3.3
discusses the issues that are still being worked on and
problems that were discovered with the Request-based
approach. Finally, Section 3.4 describes user interface
changes to DM.

3.2 Design and implementation

Request-based DM is based on ideas from the block
layer multipath [5] patches, which were an experiment
that moved the multipath layer down to the request-
level. The goal of Request-based DM is to integrate into
the DM framework so that it is able to utilize existing ap-
plications such as multipath-tools and dmsetup.

As explained in Section 2.2, DM’s key I/O operations
are cloning, mapping, and completion of BIOs. To al-
low these operations to be executed on requests, DM
was modified to take advantage of following block layer
interfaces:

BIO Submission make_request_fn
Completion bio->bi_end_io

Request Submission request_fn
Completion request->end_io

queue

queue

DM device

Underlying device

Hardware

BIO-based DM

queue

BIO

Request

Hardware specific (SCSI command, etc.)

Request-based DM

clone and map

generic_make_request() request_fn()

clone and map

make_request_fn()

make_request_fn()

request_fn() request_fn()

generic_make_request() generic_make_request()

make_request_fn()

I/O scheduler

I/O scheduler

Figure 4: Difference of I/O submission flow

As can be seen in Figure 4, with BIO-based DM, BIOs
submitted by upper layers through generic_make_

request() are sent to DM’s make_request_fn()

where they are cloned, mapped, and then sent to a de-
vice below DM. This device could be another virtual

2007 Linux Symposium, Volume Two • 239

device, or it could be the real device queue—in which
case the BIO would be merged with a request or packed
in a new one and queued, and later executed when the
queue is unplugged.

Conversely, with Request-based DM, DM no longer
uses a specialized make_request_fn() and instead
uses the default make_request_fn(), __make_

request(). To perform cloning and mapping, DM
now implements its request_fn() callback, which is
called when the queue is unplugged. From this call-
back, the original request is cloned. The target driver
is asked to map the clone. And then the clone is inserted
directly into the underlying device’s request queue us-
ing __elv_add_request().

To handle I/O completion, the Request-based DM
patches allow the request’s end_io() callback to be
used to notify upper layers when an I/O is finished.
More details on this implementation in Section 3.3. DM
only needs to hook into the cloned request’s completion
handler—similar to what is done for BIO completions.
(Figure 5).

default completion handler

DM completion handler

Original

Cloned

Hardware

Success Failure

Retry

Result visible to upper layer

= BIO or Request

Figure 5: Completion handling of cloned I/O

3.3 Request-based DM road bumps

A lot of the Request-based details have been glossed
over, so they could be discussed in this section. While
working with requests simplifies the mapping operation,
it complicates the cloning path, and requires a lot of new
infrastructure for the completion path.

3.3.1 Request cloning

A clone of the original request is needed, because a
layer below DM may modify request fields, and the use
of a clone simplifies the handling of partial completions.
To allocate the clone, it would be best to use the exist-
ing request mempools [6], so DM initially attempted to
use get_request(). Unfortunately, the block layer
and some I/O schedulers assume that get_request()
is called in the process context in which the BIO was
submitted, but a request queue’s request_fn() can be
called from the completion callback which can be run in
a softirq context.

Removing the need for cloning or modifying get_

request() to be usable from any context would be
the preferable solutions, but both required too many
changes to the block layer for the initial release. Instead,
DM currently uses a private mempool for the request
clones.

3.3.2 Completion handling

dm-multipath’s completion handler has to do the fol-
lowing:

• Check completion status.

• Setup a retry if an error has occurred.

• Release its private data if a retry is not needed.

• Return a result to the upper layer.

When segments of a BIO are completed, the upper lay-
ers do not begin processing the completion until the en-
tire operation has finished. This allows BIO mappers
to hook at a single point—the BIO’s bi_end_io()

callback. Before sending a BIO to generic_make_

request(), DM will copy the mutable fields like the
size, starting sector, and segment/vector index. If an er-
ror occurs, DM can wait until the entire I/O has com-
pleted, restore the fields it copied, and then retry the BIO
from the beginning.

Requests, on the other hand, are completed in two
parts: __end_that_request_first(), which com-
pletes BIOs in the request (sometimes partially), and
end_that_request_last(), which handles statis-
tics accounting, releases the request, and calls its end_

240 • Request-based Device-mapper multipath and Dynamic load balancing

4 8 16 32 64 128 256 512

0

25

50

75

100

125

150

175

200

0

5000

10000

15000

20000

25000

30000

35000

read

Throughput Number of
dispatched
requests

max_sectors[KB]

T
h
ro

u
g

h
p
u
t[

M
B

/s
]

4 8 16 32 64 128 256 512

0

25

50

75

100

125

150

175

200

0

5000

10000

15000

20000

25000

30000

35000

write

Throughput Number of
dispatched
requests

max_sectors[KB]

T
h
ro

u
g

h
p
u
t[

M
B

/s
]

Command: dd if=/dev/<dev|zero> of=/dev/<null|dev> bs=16777216 count=8

Figure 6: Performance effects of I/O merging

io() function. This separation creates a problem for er-
ror processing, because Request-based DM does not do
a deep copy of the request’s BIOs. As a result, if there
is an error, __end_that_request_first() will end
up calling the BIO’s bi_end_io() callback and return-
ing the BIO to the upper layer, before DM has a chance
to retry it.

A simple solution might be to add a new hook in __

end_that_request_first(), where the new hook
is called before a BIO is completed. DM would then be
responsible for completing the BIO when it was ready.
However, it just imposes additional complexity on DM
because DM needs to split its completion handler into
error checking and retrying as the latter still has to wait
for end_that_request_last(). It is nothing more
than a workaround for the lack of request stacking.

True request stacking

To solve the problem, a redesign of the block layer re-
quest completion interfaces, so that they function like
BIO stacking, is necessary. To accomplish this, Re-
quest-based DM implements the following:

• Provide a generic completion handler for requests
which are not using their end_io() in the cur-
rent code. __make_request() will set the de-
fault handler.

• Modify existing end_io() users to handle the new
behavior.

• Provide a new helper function for device drivers to
complete a request. The function eventually calls
the request’s end_io() function. Device drivers
have to be modified to call the new helper function
for request completion. (end_that_request_
*() are no longer called from device drivers.) If
the helper function returns 0, device drivers can as-
sume the request is completed. If the helper func-
tion returns 1, device drivers can assume the re-
quest is not completed and can take actions in re-
sponse.

3.4 User-space DM interface

dm-multipath has a wide range of tools like
multipath-tools and installers for major distribu-
tions. To minimize headaches caused by changing the
multipath infrastructure, not only did Request-based
multipath hook into DM, but it also reused the BIO-
based dm-multipath target. As a result, the only
change to the user-space DM interface is a new flag for
the DM device creation ioctl. The existence of the
flag is checked at the ioctl handler and, if it is turned on,
the device will be set up for Request-based DM.

2007 Linux Symposium, Volume Two • 241

1 2 5 10 50 100 1000

0

5000

10000

15000

20000

25000

30000

35000

read

BIO-based DM Request-based
DM

rr_min_io

T
o
ta

l
n
u
m

b
e
r

o
f

d
is

p
a
tc

h
e
d

 r
e
q

u
e
s
ts

(S
m

a
ll
e
r

is
 b

e
tt

e
r)

1 2 5 10 50 100 1000

0

5000

10000

15000

20000

25000

30000

35000

write

BIO-based DM Request-based
DM

rr_min_io

T
o
ta

l
n
u
m

b
e
r

o
f

d
is

p
a
tc

h
e
d

 r
e
q

u
e
s
ts

(S
m

a
ll
e
r

is
 b

e
tt

e
r)

Command: dd if=/dev/<dev|zero> of=/dev/<null|dev> bs=16777216 count=8

Figure 7: Effects of frequent path changes on I/O merging

4 Performance testing

One of the main purposes of Request-based
dm-multipath is to reduce the total number of
requests dispatched to underlying devices even when
path change occurs frequently.

In this section, performance effects of I/O merging
and how Request-based dm-multipath reduces the
number of requests under frequent path change are
shown. The test environment used for the measurement
is shown in Table 1.

Host CPU Intel Xeon 1.60[GHz]
Memory 2[GB]
FC HBA Emulex LPe1150-F4 * 2

Storage Port 4[Gbps] * 2
Cache 4[GB]

Switch Port 2[Gbps]

Table 1: Test environment

4.1 Effects of I/O merging

Sequential I/O results are shown in Figure 6. The
throughput for a fixed amount of reads and writes on a
local block device was measured using the dd command
while changing the queue’s max_sectors parameter.

In the test setup, the Emulex driver’s max segment size
and max segment count are set high enough, so that

max_sectors controls the request size. It is expected
that when the value of max_sectors becomes smaller,
the number of dispatched requests becomes larger. The
results in Figure 6 appear to confirm this, and indicate
that I/O merging, or at least larger I/Os, is important to
achieve higher throughput.

4.2 Effects of Request-based dm-multipath on
I/O merging

While the results shown in the previous section are ob-
tained by artificially reducing the max_sectors pa-
rameter, such situations can happen when frequent path
changes occur in BIO-based dm-multipath.

Testing results for the same sequential I/O pattern
on a dm-multipath device when changing round-
robin path selector’s rr_min_io parameter which cor-
responds to the frequency of path change is shown in
Figure 7.

This data shows that, when path change occurs fre-
quently, the total number of requests increases with
BIO-based dm-multipath. While under the same con-
dition, the number of requests is low and stable with
Request-based dm-multipath.

4.3 Throughput of Request-based dm-multipath

At this point in time, Request-based dm-multipath

still cannot supersede BIO-based dm-multipath in se-
quential read performance with a simple round-robin

242 • Request-based Device-mapper multipath and Dynamic load balancing

HBA0

sda sdb

HBA1

sddsdc

Port0

LUN0

Port1

LUN1

Path1Path0

multipath device0

Path2 Path3

multipath device1

Host0

Cable1Cable0

Figure 8: Examples of targets sharing cables

path selector. The performance problem is currently un-
der investigation.

5 Dynamic load balancing

The benefit of moving multipath layer below the I/O
scheduler is not only for the efficiency of I/O merging.

This section reviews the other important feature of Re-
quest-based dm-multipath, dynamic load balancing.

5.1 Needs of dynamic load balancing

There are two load balancing types in general, static and
dynamic. dm-multipath currently supports a static
balancer with weighted round-robin. It may be suffi-
cient in an ideal environment where all paths and storage
controllers are symmetric and private to the host system.
But in an environment where the load of each path is
not same or dynamically changes, round-robin does not
work well.

For example, suppose there is a multipath configura-
tion described in Figure 8 and Path0(sda) is be-
ing used heavily for multipath device0. It means
Cable0 is heavily loaded. In this situation, multipath
device1 should use Path3(sdd) to avoid heavily
loaded Cable0. However, the round-robin path selector

does not care about that, and will select Path2(sdb)
at next path selection for multipath device1. It will
cause congestion on Cable0.

To get better performance even in such environments, a
dynamic load balancer is needed.

5.2 Load parameters

It is important to define good metrics to model the load
of a path. Below is an example of parameters which
determine the load of a path.

• Number of in-flight I/Os;

• Block size of in-flight I/Os;

• Recent throughput;

• Recent latency; and

• Hardware specific parameters.

Using information such as the number of in-flight I/Os
on a path would be the simplest way to gauge traffic.
For BIO-based DM, it was described in Section 2.2 the
unit of I/O is the BIO, but BIO counters do not take into
account merges. Request-based DM, on the other hand,
is better suited for this type of measurement. Its use of
requests allows it to measure traffic in the same units of
I/O that are used by lower layers, so it is possible for
Request-based DM to take into account a lower layer’s
limitations like HBA, device, or transport queue depths.

Throughput or latency is another valuable metric. Many
lower layer limits are not dynamic, and even if they
were, could not completely account for every bottleneck
in the topology. If we used throughput as the load of a
path, path selection could be done with the following
steps.

1. Track block size of in-flight I/Os on each path
. . . in-flight size.

2. At path selection time, calculate recent throughput
of each path by using generic diskstats (sectors
and io_ticks) . . . recent throughput.

3. For each path, calculate the time which all in-
flight I/Os will finish by using (in-flight size)/
(recent throughput).

2007 Linux Symposium, Volume Two • 243

4. Select the path of which Step 3 is the shortest time.

We plan to implement such dynamic load balancers after
resolving the performance problems of Section 4.3.

6 Conclusion

Request-based multipath has some potential improve-
ments over current dm-multipath. The paper focused
on the I/O merging, which affects load balancing, and
confirmed the code works correctly.

There is a lot of work to be done to modify the block
layer so that it can efficiently and elegantly handle rout-
ing requests. And there are a lot of interesting directions
the path selection modules can take, because the multi-
path layer is now working in the same units of I/O that
the storage device and LLD are.

References

[1] Edward Goggin, Linux Multipathing Proceedings
of the Linux Symposium, 2005.

[2] Qlogic, Qlogic QL4xxx QL2xxx Driver
README, http://www.qlogic.com.

[3] Mike Anderson, SCSI Mid-Level Multipath,
Proceedings of the Linux Symposium, 2003.

[4] Jens Axboe, Notes on the Generic Block Layer
Rewrite in Linux 2.5, Documentation/block/
biodoc.txt, 2007.

[5] Mike Christie, [PATCH RFC] block layer (request
based) multipath,
http://lwn.net/Articles/156058/.

[6] Jonathan Corbet, Driver porting: low-level
memory allocation,
http://lwn.net/Articles/22909/.

244 • Request-based Device-mapper multipath and Dynamic load balancing

