
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Short-term solution for 3G networks in Linux: umtsmon

Klaas van Gend
MontaVista Software, Inc.

klaas.van.gend@mvista.com

Abstract

When not at home and in need of Internet access, one
can search for an open Wifi access point. But if there
is none available, you’ll have to set up a connection
through a mobile network—GPRS, EDGE, UMTS, HS-
DPA, or WCDMA networks. For laptops, there are spe-
cial PCMCIA cards that can do that; most mid- or high-
end mobile phones can do this through USB or Blue-
tooth as well. To manage such a connection, one needs
special software—it works differently from a regular
phone dial-up, Wifi, or Ethernet connection.

umtsmon was created to address this need. The au-
thor wanted to have a simple tool that works for all cur-
rent Linux distributions. umtsmon is not the final mo-
bile network manager application—at some point, the
functionality of umtsmon will have to be integrated into
Network Manager and its GUI apps. But umtsmon will
definitely serve as a playground to find out what users
really want, so only the really used features will be im-
plemented the right way into Network Manager. Also:
umtsmon is available now as a simple download and
run—it is usable for existing Linux users. The inte-
grated Network Manager will only help future distribu-
tions.

In this talk, Klaas will discuss mobile networks in gen-
eral, how the various brands of pccards work, and what
umtsmon can and cannot do yet.

1 Short history of 3G networks

For Western European consumers, mobile communica-
tion networks started in the early 80s. Back then, most
countries had their own analog standards and equipment
was heavy—mainly due to the batteries and antennas. It
was also rather easy to listen into conversations and it
was expensive.

The organisation GSM, Groupe Spécial Mobile, was
started in 1982 by the joint European telecom operators

to address the issues. By the end of the eighties, the
GSM standard was close to finished and was tranferred
to a standardization body, ETSI. The new standard used
digital transmission, performed frequency hopping, and
prevented tapping of conversations.

The first network to go live was in Finland in 1991; by
the end of 1993, networks were operational in 48 coun-
tries with a total of one million subscribers.

The popularity of GSM surprised many—by now every
person in the Netherlands (including newlyborns and the
elderly) owns more than one mobile handset. This un-
expected surge in users caused telecom operators to start
hunting for expansion of their networks—they feared
overloading of their networks.

Also, GSM features a direct tunnel from handset to local
cell antenna, and users are charged for the duration of
the connection. This is less useful for data connections,
so an extension to the GSM standard was made: GPRS.
This allowed for a packet-switching-based connection,
therefore not requiring a tunnel. Charging per amount
of data was possible. However, GSM/GPRS only allows
for small bandwidths—typically comparable to old ana-
log modem speeds—max 28k8 kbits/s if you are lucky.

UMTS was created to address these two needs—
relieving the load of the GSM networks and addressing
higher bandwidth data communication. Different radio
technology required new antennas, thus requiring new

• 245 •

246 • Short-term solution for 3G networks in Linux: umtsmon

radio frequencies and equipment. Governments across
Europe saw their chance and auctioned the new radio
frequencies for astronomic sums of money. Several
telecom operators nearly went bankrupt because they
were forced to buy into expensive frequencies in several
countries.

A deafening silence followed.

UMTS requires a lot of antennas. To get a decent cov-
erage, there are far more antennas required for UMTS
than there are for a normal GSM network. The year
2004 through the first half 2006 saw a heated debate on
the dangers of radio transmitters in cell phones and an-
tennas to the public health. All kind of research either
suggested that one would get sick from living close to an
antenna, or would get a heated brain from using a cell
phone. Also some people advised against wearing a cell
in one’s trouser pockets as it might reduce virility (?!).
This made several local municipalities refuse UMTS an-
tennas within their territory. These “white spots” in
UMTS coverage might endanger the timely roll-out of
the UMTS networks. . .

So, telecom operators invested in frequencies, invested
in equipment. And just some Internet junkies bought
into it and bought PCCards for laptops or expensive
phones that used the new network. At the same time,
most operators added new GSM antennas to their new
UMTS stations. By creating more cells, the average
number of users in a cell decreased—the GSM technol-
ogy was saved from overload.

PCCards and especially Blackberries were the first killer
apps for UMTS—these devices use UMTS (if available)
to get their users access to their e-mail. The reduction
of the rates helped adoption of UMTS, but still many
consider it too expensive. Nowadays, most telecom op-
erators are on break-even for their 3G networks—when
not counting in payment of the original radio licenses.

By now, telecom operators see the danger of competing
technologies like WiMax and Wifi. So they are moving
their UMTS networks forward to HSPA (HSDPA and
HSUPA) which require yet new devices.

2 Analysis of a PCMCIA UMTS card

All telecom operators sell PCCards for laptops. How-
ever, all are OEM products, manufactured by small

specialised companies like Option (Belgium), Nova-
tel Wireless (USA), 3GSystems (Germany) and Sierra
Wireless (USA).

� �

������
��	
��

�
��

����

�������������

��
���
������

��
���

���	����

��� ��� ����� 	��
�

�������

������

��	
��

������
��	
��

Figure 1: a PCMCIA card and its contents

The first generation of UMTS cards as pioneered by Op-
tion, have an interesting hardware architecture as de-
picted in Figure 1. If one inserts the card into a laptop
running Linux, Linux will recognize a new USB inter-
face. Three (or four) usbserial devices are connected
(via a hub) to that USB interface. Standard Linux ker-
nels do not recognize the VendorID/Product ID for us-
bserial, but if forced to load by hand, three new serial
ports appear on /dev/ttyUSBx.

Most other vendors have cards with similar design—this
is mainly due to the fact that there are very limited man-
ufacturers of chipsets for UMTS data. In most cases,
this is QualComm.

QualComm decided to go a different route for the HS-
DPA cards. No longer serial2usb interfaces, but spe-
cialised connections that require a specialised driver.
With help from other people, Paul Hardwick from Op-
tion ported the existing Windows driver to Linux. This
driver is now known as the Nozomi driver. Its path to
inclusion in the Linux kernel is interesting—of course it
was rejected for inclusion because it was not written the
“Linux way.” With help from Greg Kroah-Hartman, the
driver is taking shape now.

3 Analysis of a “Zero CD” USB UMTS brick

To reduce packaging costs, some vendors now ship a
technology called “ZeroCD.” It was pioneered by Op-
tion in their ICON USB box (see Figure 2), but there
are also PCCards available. Essential is that the device

2007 Linux Symposium, Volume Two • 247

� �

�����������	
���

���
��

�� ����

�	���

�������	
����
���	��
�
���

���

���
��

�����
��

��

���
���

��������	��
���

Figure 2: a “ZeroCD” USB box and its contents

boots up as a USB Mass Storage Device. For Windows
users, an autorun.inf file will automatically take
care of installing the software. Afterwards, the driver
will send a magic string to the USB Hub. The USB Hub
then disconnects the Mass Storage and connects the mo-
dem ports, either through USBSerial or the above men-
tioned Nozomi. For this type of device, vendors do not
need to ship installation CDs. For users, the installation
is simplified: just plugging it in is enough.

The major disadvantage of the current ZeroCD chipset
is the power consumption—it requires two USB plugs
because one USB plug can only carry 5W. . . Be care-
ful and remove the device if your laptop runs on battery
power!

4 Back to the AT commands era

Whether the card supports serial or nozomi, after load-
ing the right driver, you will run into serial ports
on /dev/ttyUSBx, /dev/ttyACMx, or /dev/
nozomiX.

Adventurous Penguins immediately type minicom
/dev/ttyUSB0 to see what’s on the serial devices.
Hopefully, they are old enough to remember the good
old Hayes-compatible modem era, where one could play
with AT Commands and PPP settings for ages before the
first connection to the outside world was successful.

Actually, they need to—because that’s exactly what you
get: all three interfaces are connected to an UMTS mo-
dem with an AT Command set. However, standard-
ization committee 3GPP has standardized the AT com-
mands for 3G network modems, so there are standard-
ized commands to talk to the modem to enter PIN codes,

select the network of a mobile operator, send an SMS,
and such. There are multiple interfaces to the modem
to allow one interface to be used by PPP for the actual
network connection, whereas one can use another inter-
face to send AT commands to retrieve the status of the
modem, network, or SIM card.

A few examples of new AT commands:

• AT+COPS=? will (after 30 seconds) return a list of
all mobile networks that are available, with info on
which networks you are allowed to connect to.

• AT+CPIN="1234" to enter a PIN code for the
smart card.

• AT+CSQ returns the signal strength of the mobile
connection.

So we’re stuck with AT interfaces. Let’s re-install ppp
and go back to the old days. Or install umtsmon—which
will interact with the modem and do all the AT com-
mands for you.

5 Single Serial Port devices

The most popular cards in Europe all have multiple in-
terfaces. This means that we can, for example, use
/dev/ttyUSB0 to connect PPP to, whilst we can si-
multaneously send AT commands to /dev/ttyUSB2.
However, some cards (like the Sony Ericsson GC79,
most Sierra Wireless cards, and some of the Novatels)
only have a single serial port. This means that AT com-
mands and PPP data need to share the same port. Tech-
nically, this is not a problem—software like kppp im-
plements this functionality already. However, the Open-
Moko project also spawned a new project called the
GSM Daemon that also can do this. This might be an
interesting road for the future—at the cost of another
external dependency.

6 umtsmon system design—dependencies

As stated before, umtsmon was designed to work on as
wide a range of Linuxes as possible. This is why we
attempt to make as few assumptions about the operat-
ing system as possible. Yet we have to rely on a few
packages to be present:

248 • Short-term solution for 3G networks in Linux: umtsmon

• PPP
We need PPP to make the actual network connec-
tion and change routing and such.

• QT3
The QT library is needed for the UI. umtsmon
cannot run without it. QT in itself also has a few
dependencies, like X.

For versions of umtsmon beyond 0.6, we probably will
add a few more requirements:

• pcmcia-utils
This one obviously is not necessary for the ICON
and other USB-only devices. We want to use
pcmcia-utils to enable users to reset the card
(pccard eject and pccard insert) and/or
to simplify the autodetection code.

• libusb
At this moment, a lot of the autodetection is
done by browsing through the /sys filesystem.
This is rather complex to code consistently for
all Linux kernel revisions. Using libusb should
solve that problem for us and again simplify the
autodetection code. It might be wise to move the
libusb-dependent code into a shared library that is
dlopen()ed at runtime to prevent umtsmon from
trying to run if libusb isn’t present or if it is too old
to work.

• icon_switch
This is a small utility that switches the ICON box
from mass storage to modem operation. Unfortu-
nately, it is rather unreliable and it needs exten-
sions for the other ZeroCD devices that have dif-
ferent USB IDs and may require different code se-
quences. umtsmon at this moment requires PPP to
be SUID—umtsmon calls pppd directly with argu-
ments controlling the connection. umtsmon will
complain to the user if PPP is not set SUID and
ask the user if it is allowed to fix it. This is a se-
curity hole: in theory people could start writing
malicious dialers dialing expensive foreign num-
bers. This should be addressed in a future re-
vision by having umtsmon create profiles in the
/etc/ppp/peers/ directory.

7 umtsmon software design

Internally, umtsmon is written to follow the MVC de-
sign pattern. MVC means Model View Controller. Ba-
sically, this comes down to a separation of concerns—
a class should only contain code that represents data
(=model), changes data (=controller), or displays it
(=view).

Central in the umtsmon 0.6 design are the classes Query,
SerialPort, ConnectionInfo, and PPPConnection. Any
AT Command sequence that is to be sent to the card is
represented as a Query instance. The Query class also
contains rudimentary parsing and will strip off echos
and such. Query connects to a SerialPort instance for
the actual communication.

The following paragraphs discuss some details of the
design of umtsmon.

7.1 PPPConnection

PPPConnection is the beating heart of the application.
As can be seen in Figure 3, the main GUI class Main-
Window subscribes one of its attributes, the MainWin-
dowPPPObserver, to receive any state changes of the
PPP daemon. If someone outside umtsmon or umtsmon
itself then starts the ppp daemon to make a connection,
the PPPConnection class with call all its attached Ob-
servers to notify the state changes. MainWindow re-
sponds to that by enabling/disabling buttons and menu
items.

At this moment, only MainWindow is subscribed to re-
ceive the PPP state changes. This will change in the near
future when we start talking about the NetworkManager
integration—that will require another Observer to the
PPP state.

7.2 (Inhibiting) ConnectionInfo

ConnectionInfo regularly polls the card to ask for the
mobile operator, signal strength, and such. On some oc-
casions, ConnectionInfo must be prevented from send-
ing out Queries, like during the PPP connection setup or
whilst AT+COPS=? (see Section 4) is running. In such
cases, the PPPConnection or NetworkChanger class just
creates a ConnectionInfoInhibitor instance. Creation
of the Inhibitor instance will increase a counter inside

2007 Linux Symposium, Volume Two • 249

PPPObserverInterface

+ newPPPState()

+ ~ PPPObserverInterface()

MainWindowPPPObserver

PPPConnection

+ PPPConnection()
+ setSerialPortName()
+ ~ PPPConnection()
+ startPPP()
+ stopPPP()
+ getCounterBytesSent()
+ getCounterBytesReceived()
+ refreshPPPStats()
+ isPPPStarting()
+ hasErrors()

MainWindow

+ newPPPState()

QMainWindow

from the QT library

PPPObserverInterface
ObserverManager

- theObserverList : ObserverList
- theObserverListIterator : typename ObserverList::iterator
+ ObserverManager()
+ ~ ObserverManager()
+ attach()
+ detach()
firstObserver()
nextObserver()

attach/detach

newPPPState

startPPP/stopPPP

Figure 3: Class Diagram of PPPConnection and interacting classes

ConnectionInfo
- theRegistrationValue : Registration
- theSignalQuality : int
- theRadioType : int
- theOperatorName : QString
- theInhibitionCount : int

PPPConnection

+ PPPConnection()
+ setSerialPortName()
+ ~ PPPConnection()
+ startPPP()
+ stopPPP()
+ getCounterBytesSent()
+ getCounterBytesReceived()
+ refreshPPPStats()
+ isPPPStarting()
+ hasErrors()

Runner

+ Runner()
+ ~ Runner()
+ getPath()
+ isSUID()
+ amIRoot()
+ runCommand()

«friend to ConnectionInfo»
ConnectionInfoInhibitor

SIMHandler

+ SIMHandler()
+ ~ SIMHandler()
+ askForPIN()
+ isPinCodeRequired()
+ setPUK()
+ setPIN()
+ setDeviceInfo()
+ isPINProtectionEnabled()
+ setPINActive()
+ setNewPIN()

created on demand

created on demand

create on demand

modifies theInhibitionCount

Figure 4: Class Diagram of ConnectionInfo and interacting classes

250 • Short-term solution for 3G networks in Linux: umtsmon

«Singleton»
TheSettingsSingleton

+ getQSRef()
+ me()
+ removeSubTree()
+ makeChangesPersistant()

Profile

QSettings

ProfileDialog

from QT3 library

MainWindow

+ newPPPState()

QDialogQMainWindow

PPPConnection

+ PPPConnection()
+ setSerialPortName()
+ ~ PPPConnection()
+ startPPP()
+ stopPPP()
+ getCounterBytesSent()
+ getCounterBytesReceived()
+ refreshPPPStats()
+ isPPPStarting()
+ hasErrors()

use data

startPPP/stopPPP

creates

modifies

Figure 5: Class Diagram of Profile and interacting classes

ConnectionInfo; upon destruction, the counter will au-
tomatically be decreased. PPPConnection uses an in-
stance of the Runner class to manage the execution of
/usr/sbin/pppd. This is shown in Figure 4. In the
case of single serial port cards, the AT commands and
the PPP data stream need to be sent over the same serial
port. In that case, ConnectionInfo never can run when a
PPP connection exists.

7.3 Profile Management

Refer to Figure 5 for a class diagram. Once the user
clicks on the connect button in MainWindow, PPPCon-
nection gets called with a reference to a Profile. PP-
PConnection will use the info inside the Profile class
to setup the connection. To change a profile, the user
selects Profile Management in the menu in the GUI.
The ProfileDialog will be instantiated and filled with
the data from the active Profile. Users then can choose
to create another profile, change the current one, etc.
The data is stored to disk in a key=data formatted
~/.umtsmon/umtsmonrc file. The QSettings class
takes care of that. Because settings need to be accessed
throughout the program, possibly even before main()
is started, settings are always retrieved through a Single-
ton pattern class. This also solves the issue that a QSet-
tings class only saves its data upon destruction. Call-

ing makeChangesPersistent() will thus cause
the QSettings instance to be destroyed.

8 NetworkManager integration and/or
takeover

High on the wish list is to integrate at least a little with
NetworkManager. The big annoyance is that at the mo-
ment, even if a UMTS connection is made, software
like Gaim and Firefox will refuse to connect because
according to them there is no connection. Apparently
they use libnm to ask NetworkManager if the system
is on-line or not. As stated before, umtsmon should
run, regardless of NetworkManager’s presence. How-
ever, this is only loose coupling—we’re not discussing
adding UMTS support to Network Manager yet. In the
end, UMTS connections should be just another item that
is implemented in NetworkManager and its GUIs. We
currently view umtsmon as a playing ground for that.
What features are actually used? How to implement
stuff? Where to put security constraints? It all is eas-
ier to do in a small program than in the collection of
binaries that makes up NetworkManager. Yet Network-
Manager is the future—it is the most convenient way
for users to manage yet another networking connection.
It remains to be seen if the current umtsmon team will
actually do the NetworkManager implementation.

2007 Linux Symposium, Volume Two • 251

Brand model type remarks
Sony Ericsson GC79 single-port serial GPRS and EDGE only
Option GT GPRS EDGE
Option 3G Quad three of four port usb2serial need kernel module usbse-

rial.ko with parameters or
the specialised option ker-
nel module.

Huawei E612
Option nozomi need nozomi kernel module
Option ICON external usb box ZeroCD chipset, need

switching
3GSystems XSPlug3
Sierra Wireless 7xx series PCMCIA serial modem single serial port
Novatel U630/U530
Novatel XU870 dual serial port, only first usable first Expresscard to be sup-

ported
Kyocera KPC650 dual serial port serial ports don’t communi-

cate.
various mobile
phones

various connect through either serial,
USB or Bluetooth

handled as a single serial
port card

Table 1: Hardware support of umtsmon

9 Device, Commercial and Distribution sup-
port

At this moment, umtsmon supports a wide variety of
hardware. The 0.6 release will support devices from No-
vatel, 3G Systems, Sony Ericsson, Option, Sierra Wire-
less, and Huawei. Also mobile phones that have a lap-
top connection through USB, Bluetooth, or serial can
be supported, with a few limitations. See Table 1 for a
more complete list.

None of the device vendors is cooperating with the de-
velopment, however. The development team is currently
investigating creating a fund to buy all available hard-
ware and distribute it amongst the developers to ensure
that all hardware is supported and remains operational.

Network operator T-Mobile Germany sponsored the de-
velopment by providing a laptop and devices to one
of the developers, who happened to also have done an
internship on UMTS on Linux for T-Mobile. The in-
ternship resulted in a lot of improvements to umtsmon,
thanks Christofer!

At the moment of writing this paper, umtsmon is
available as a standard package in OpenSuse (starting
umtsmon 0.3 in OpenSuse 10.2) and Gentoo (starting
with umtsmon 0.5, currently in ~amd64 and ~x86 only).

10 Conclusions

• Support for UMTS cards is in the same position as
hardware enablement projects like ALSA were a
few years ago. Several devices work—mostly the
devices owned by the developers. Manufacturers
don’t see the need to cooperate yet, nor to fund de-
velopment.

• All known 3G mobile devices implement serial in-
terfaces, either directly or through drivers.

• UMTS is just another radio technology reusing ex-
isting communication standards: AT commands.

• umtsmon was created to handle the AT commands
exchange for the user and start the PPP daemon.

• umtsmon is not really integrated into Linux—it’s a
standalone application.

• NetworkManager integration should start from
scratch, possibly inheriting the GSM multiplexing
daemon from OpenMoko to solve the single serial
port problem correctly.

• Writing a paper for OLS is a good stimulus for
coders to finally write down some parts of their
software design.

252 • Short-term solution for 3G networks in Linux: umtsmon

11 Links

The umtsmon website:
http://umtsmon.sourceforge.net/

PharScape (HOWTOs and support forum for all Option
based cards and the Nozomi drivers):
http://www.pharscape.org/

The 3GPP approved AT command set:
http://www.3gpp.org/ftp/Specs/latest/

Rel-7/27_series/

