
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



The GFS2 Filesystem

Steven Whitehouse
Red Hat, Inc.

swhiteho@redhat.com

Abstract

The GFS2 filesystem is a symmetric cluster filesystem
designed to provide a high performance means of shar-
ing a filesystem between nodes. This paper will give
an overview of GFS2’s make subsystems, features and
differences from GFS1 before considering more recent
developments in GFS2 such as the new on-disk layout of
journaled files, the GFS2 metadata filesystem, and what
can be done with it, fast & fuzzy statfs, optimisations of
readdir/getdents64 and optimisations of glocks
(cluster locking). Finally, some possible future develop-
ments will be outlined.

To get the most from this talk you will need a good
background in the basics of Linux filesystem internals
and clustering concepts such as quorum and distributed
locking.

1 Introduction

The GFS2 filesystem is a 64bit, symmetric cluster
filesystem which is derived from the earlier GFS filesys-
tem. It is primarily designed for Storage Area Network
(SAN) applications in which each node in a GFS2 clus-
ter has equal access to the storage. In GFS and GFS2
there is no such concept as a metadata server, all nodes
run identical software and any node can potentially per-
form the same functions as any other node in the cluster.

In order to limit access to areas of the storage to main-
tain filesystem integrity, a lock manager is used. In
GFS2 this is a distributed lock manager (DLM) [1]
based upon the VAX DLM API. The Red Hat Cluster
Suite provides the underlying cluster services (quorum,
fencing) upon which the DLM and GFS2 depend.

It is also possible to use GFS2 as a local filesystem with
the lock_nolock lock manager instead of the DLM.
The locking subsystem is modular and is thus easily sub-
stituted in case of a future need of a more specialised
lock manager.

2 Historical Detail

The original GFS [6] filesystem was developed by Matt
O’Keefe’s research group in the University of Min-
nesota. It used SCSI reservations to control access to
the storage and ran on SGI’s IRIX.

Later versions of GFS [5] were ported to Linux, mainly
because the group found there was considerable advan-
tage during development due to the easy availability of
the source code. The locking subsystem was devel-
oped to give finer grained locking, initially by the use
of special firmware in the disk drives (and eventually,
also RAID controllers) which was intended to become a
SCSI standard called dmep. There was also a network
based version of dmep called memexp. Both of these
standards worked on the basis of atomically updated ar-
eas of memory based upon a “compare and exchange”
operation.

Later when it was found that most people preferred
the network based locking manager, the Grand Unified
Locking Manager, gulm, was created improving the per-
formance over the original memexp based locking. This
was the default locking manager for GFS until the DLM
(see [1]) was written by Patrick Caulfield and Dave Tei-
gland.

Sistina Software Inc, was set up by Matt O’Keefe and
began to exploit GFS commercially in late 1999/early
2000. Ken Preslan was the chief architect of that version
of GFS (see [5]) as well as the version which forms Red
Hat’s current product. Red Hat acquired Sistina Soft-
ware Inc in late 2003 and integrated the GFS filesystem
into its existing product lines.

During the development and subsequent deployment of
the GFS filesystem, a number of lessons were learned
about where the performance and administrative prob-
lems occur. As a result, in early 2005 the GFS2 filesys-
tem was designed and written, initially by Ken Preslan



254 • The GFS2 Filesystem

and more recently by the author, to improve upon the
original design of GFS.

The GFS2 filesystem was submitted for inclusion in Li-
nus’ kernel and after a lengthy period of code review
and modification, was accepted into 2.6.16.

3 The on-disk format

The on-disk format of GFS2 has, intentionally, stayed
very much the same as that of GFS. The filesystem is
big-endian on disk and most of the major structures have
stayed compatible in terms of offsets of the fields com-
mon to both versions, which is most of them, in fact.

It is thus possible to perform an in-place upgrade of GFS
to GFS2. When a few extra blocks are required for some
of the per node files (see the metafs filesystem, Subsec-
tion 3.5) these can be found by shrinking the areas of the
disk originally allocated to journals in GFS. As a result,
even a full GFS filesystem can be upgraded to GFS2
without needing the addition of further storage.

3.1 The superblock

GFS2’s superblock is offset from the start of the disk
by 64k of unused space. The reason for this is entirely
historical in that in the dim and distant past, Linux used
to read the first few sectors of the disk in the VFS mount
code before control had passed to a filesystem. As a
result, this data was being cached by the Linux buffer
cache without any cluster locking. More recent versions
of GFS were able to get around this by invalidating these
sectors at mount time, and more recently still, the need
for this gap has gone away entirely. It is retained only
for backward compatibility reasons.

3.2 Resource groups

Following the superblock are a number of resource
groups. These are similar to ext2/3 block groups in
that their intent is to divide the disk into areas which
helps to group together similar allocations. Addition-
ally in GFS2, the resource groups allow parallel alloca-
tion from different nodes simultaneously as the locking
granularity is one lock per resource group.

On-disk, each resource group consists of a header block
with some summary information followed by a number

Bit Pattern Block State
00 Free
01 Allocated non-inode block
10 Unlinked (still allocated) inode
11 Allocated inode

Table 1: GFS2 Resource Group bitmap states

of blocks containing the allocation bitmaps. There are
two bits in the bitmap for each block in the resource
group. This is followed by the blocks for which the re-
source group controls the allocation.

The two bits are nominally allocated/free and data (non-
inode)/inode with the exception that the free inode state
is used to indicate inodes which are unlinked, but still
open.

In GFS2 all metadata blocks start with a common header
which includes fields indicating the type of the metadata
block for ease of parsing and these are also used exten-
sively in checking for run-time errors.

Each resource group has a set of flags associated with
it which are intended to be used in the future as part of
a system to allow in-place upgrade of the filesystem. It
is possible to mark resource groups such that they will
no longer be used for allocations. This is the first part
of a plan that will allow migration of the content of a
resource group to eventually allow filesystem shrink and
similar features.

3.3 Inodes

GFS2’s inodes have retained a very similar form to those
of GFS in that each one spans an entire filesystem block
with the remainder of the block being filled either with
data (a “stuffed” inode) or with the first set of pointers
in the metadata tree.

GFS2 has also inherited GFS’s equal height metadata
tree. This was designed to provide constant time ac-
cess to the different areas of the file. Filesystems such
as ext3, for example, have different depths of indirect
pointers according to the file offset whereas in GFS2,
the tree is constant in depth no matter what the file off-
set is.

Initially the tree is formed by the pointers which can be
fitted into the spare space in the inode block, and is then



2007 Linux Symposium, Volume Two • 255

grown by adding another layer to the tree whenever the
current tree size proves to be insufficient.

Like all the other metadata blocks in GFS2, the indirect
pointer blocks also have the common metadata header.
This unfortunately also means that the number of point-
ers they contain is no longer an integer power of two.
This, again, was to keep compatibility with GFS and
in the future we eventually intend to move to an extent
based system rather than change the number of pointers
in the indirect blocks.

3.3.1 Attributes

GFS2 supports the standard get/change attributes
ioctl() used by ext2/3 and many other Linux filesys-
tems. This allows setting or querying the attributes listed
in Table 2.

As a result GFS2 is directly supported by the
lsattr(1) and chattr(1) commands. The hashed
directory flag, I, indicates whether a directory is hashed
or not. All directories which have grown beyond a cer-
tain size are hashed and section 3.4 gives further details.

3.3.2 Extended Attributes & ACLs

GFS2 supports extended attribute types user, system and
security. It is therefore possible to run selinux on a
GFS2 filesystem.

GFS2 also supports POSIX ACLs.

3.4 Directories

GFS2’s directories are based upon the paper “Extendible
Hashing” by Fagin [3]. Using this scheme GFS2 has
a fast directory lookup time for individual file names
which scales to very large directories. Before ext3
gained hashed directories, it was the single most com-
mon reason for using GFS as a single node filesystem.

When a new GFS2 directory is created, it is “stuffed,”
in other words the directory entries are pushed into the
same disk block as the inode. Each entry is similar to an
ext3 directory entry in that it consists of a fixed length
part followed by a variable length part containing the file
name. The fixed length part contains fields to indicate

the total length of the entry and the offset to the next
entry.

Once enough entries have been added that it’s no longer
possible to fit them all in the directory block itself, the
directory is turned into a hashed directory. In this case,
the hash table takes the place of the directory entries
in the directory block and the entries are moved into a
directory “leaf” block.

In the first instance, the hash table size is chosen to be
half the size of the inode disk block. This allows it to
coexist with the inode in that block. Each entry in the
hash table is a pointer to a leaf block which contains
a number of directory entries. Initially, all the pointers
in the hash table point to the same leaf block. When
that leaf block fills up, half the pointers are changed to
point to a new block and the existing directory entries
moved to the new leaf block, or left in the existing one
according to their respective hash values.

Eventually, all the pointers will point to different blocks,
assuming that the hash function (in this case a CRC-
32) has resulted in a reasonably even distribution of di-
rectory entries. At this point the directory hash table
is removed from the inode block and written into what
would be the data blocks of a regular file. This allows
the doubling in size of the hash table which then occurs
each time all the pointers are exhausted.

Eventually when the directory hash table hash reached
a maximum size, further entries are added by chaining
leaf blocks to the existing directory leaf blocks.

As a result, for all but the largest directories, a single
hash lookup results in reading the directory block which
contains the required entry.

Things are a bit more complicated when it comes to the
readdir function, as this requires that the entries in
each hash chain are sorted according to their hash value
(which is also used as the file position for lseek) in
order to avoid the problem of seeing entries twice, or
missing them entirely in case a directory is expanded
during a set of repeated calls to readdir. This is dis-
cussed further in the section on future developments.

3.5 The metadata filesystem

There are a number of special files created by
mkfs.gfs2 which are used to store additional meta-
data related to the filesystem. These are accessible by



256 • The GFS2 Filesystem

Attribute Symbol Get or Set
Append Only a Get and set on regular inodes
Immutable i Get and set on regular inodes
Journaling j Set on regular files, get on all inodes
No atime A Get and set on all inodes
Sync Updates S Get and set on regular files
Hashed dir I Get on directories only

Table 2: GFS2 Attributes

mounting the gfs2meta filesystem specifying a suit-
able gfs2 filesystem. Normally users would not do this
operation directly since it is done by the GFS2 tools as
and when required.

Under the root directory of the metadata filesystem
(called the master directory in order that it is not con-
fused with the real root directory) are a number of files
and directories. The most important of these is the re-
source index (rindex) whose fixed-size entries list the
disk locations of the resource groups.

3.5.1 Journals

Below the master directory there is a subdirectory which
contains all the journals belonging to the different nodes
of a GFS2 filesystem. The maximum number of nodes
which can mount the filesystem simultaneously is set
by the number of journals in this subdirectory. New
journals can be created simply by adding a suitably ini-
tialised file to this directory. This is done (along with the
other adjustments required) by the gfs2_jadd tool.

3.5.2 Quota file

The quota file contains the system wide summary of all
the quota information. This information is synced pe-
riodically and also based on how close each user is to
their actual quota allocation. This means that although it
is possible for a user to exceed their allocated quota (by
a maximum of two times) this is in practise extremely
unlikely to occur. The time period over which syncs of
quota take place are adjustable via sysfs.

3.5.3 statfs

The statfs files (there is a master one, and one in each
per_node subdirectory) contain the information re-
quired to give a fast (although not 100% accurate) re-
sult for the statfs system call. For large filesys-
tems mounted on a number of nodes, the conventional
approach to statfs (i.e., iterating through all the re-
source groups) requires a lot of CPU time and can trig-
ger a lot of I/O making it rather inefficient. To avoid
this, GFS2 by default uses these files to keep an approx-
imation of the true figure which is periodically synced
back up to the master file.

There is a sysfs interface to allow adjustment of the sync
period or alternatively turn off the fast & fuzzy statfs
and go back to the original 100% correct, but slower
implementation.

3.5.4 inum

These files are used to allocate the no_formal_ino

part of GFS2’s struct gfs2_inum structure. This is
effectively a version number which is mostly used by
NFS, although it is also present in the directory entry
structure as well. The aim is to give each inode an addi-
tional number to make it unique over time. The master
inum file is used to allocate ranges to each node, which
are then replenished when they’ve been used up.

4 Locking

Whereas most filesystems define an on-disk format
which has to be largely invariant and are then free to
change their internal implementation as needs arise,
GFS2 also has to specify its locking with the same de-
gree of care as for the on-disk format to ensure future
compatibility.



2007 Linux Symposium, Volume Two • 257

Lock type Use
Non-disk mount/umount/recovery
Meta The superblock
Inode Inode metadata & data
Iopen Inode last closer detection
Rgrp Resource group metadata
Trans Transaction lock
Flock flock(2) syscall
Quota Quota operations
Journal Journal mutex

Table 3: GFS2 lock types

GFS2 internally divides its cluster locks (known as
glocks) into several types, and within each type a 64 bit
lock number identifies individual locks. A lock name
is the concatenation of the glock type and glock num-
ber and this is converted into an ASCII string to be
passed to the DLM. The DLM refers to these locks as
resources. Each resource is associated with a lock value
block (LVB) which is a small area of memory which
may be used to hold a few bytes of data relevant to that
resource. Lock requests are sent to the DLM by GFS2
for each resource which GFS2 wants to acquire a lock
upon.

All holders of DLM locks may potentially receive call-
backs from other intending holders of locks should the
DLM receive a request for a lock on a particular re-
source with a conflicting mode. This is used to trigger
an action such as writing back dirty data and/or invali-
dating pages in the page cache when an inode’s lock is
being requested by another node.

GFS2 uses three lock modes internally, exclusive,
shared and deferred. The deferred lock mode is effec-
tively another shared lock mode which is incompatible
with the normal shared lock mode. It is used to ensure
that direct I/O is cluster coherent by forcing any cached
pages for an inode to be disposed of on all nodes in the
cluster before direct I/O commences. These are mapped
to the DLMs lock modes (only three of the six modes
are used) as shown in table 4.

The DLM’s DLM_LOCK_NL (Null) lock mode is used as
a reference count on the resource to maintain the value
of the LVB for that resource. Locks for which GFS2
doesn’t maintain a reference count in this way (or are
unlocked) may have the content of their LVBs set to zero
upon the next use of that particular lock.

5 NFS

The GFS2 interface to NFS has been carefully designed
to allow failover from one GFS2/NFS server to another,
even if those GFS2/NFS servers have CPUs of a differ-
ent endianness. In order to allow this, the filehandles
must be constructed using the fsid= method. GFS2
will automatically convert endianness during the decod-
ing of the filehandles.

6 Application writers’ notes

In order to ensure the best possible performance of an
application on GFS2, there are some basic principles
which need to be followed. The advice given in this
section can be considered a FAQ for application writers
and system administrators of GFS2 filesystems.

There are two simple rules to follow:

• Make maximum use of caching

• Watch out for lock contention

When GFS2 performs an operation on an inode, it first
has to gain the necessary locks, and since this potentially
requires a journal flush and/or page cache invalidate on
a remote node, this can be an expensive operation. As
a result for best performance in a cluster scenario it is
vitally important to ensure that applications do not con-
tend for locks for the same set of files wherever possible.

GFS2 uses one lock per inode, so that directories may
become points of contention in case of large numbers of
inserts and deletes occurring in the same directory from
multiple nodes. This can rapidly degrade performance.

The single most common question asked relating to
GFS2 performance is how to run an smtp/imap email
server in an efficient manner. Ideally the spool direc-
tory is broken up into a number of subdirectories each of
which can be cached separately resulting in fewer locks
being bounced from node to node and less data being
flushed when it does happen. It is also useful if the lo-
cality of the nodes to a particular set of directories can
be enhanced using other methods (e.g. DNS) in the case
of an email server which serves multiple virtual hosts.



258 • The GFS2 Filesystem

GFS2 Lock Mode DLM Lock Mode
LM_ST_EXCLUSIVE DLM_LOCK_EX (exclusive)
LM_ST_SHARED DLM_LOCK_PR (protected read)
LM_ST_DEFERRED DLM_LOCK_CW (concurrent write)

Table 4: GFS2/DLM Lock modes

6.1 fcntl(2) caveat

When using the fcntl(2) command F_GETLK note
that although the PID of the process will be returned in
the l_pid field of the struct flock, the process
blocking the lock may not be on the local node. There is
currently no way to find out which node the lock block-
ing process is actually running on, unless the application
defines its own method.

The various fcntl(2) operations are provided via the
userspace gfs2_controld which relies upon ope-
nais for its communications layer rather than using the
DLM. This system keeps on each node a complete copy
of the fcntl(2) lock state, with new lock requests
being passed around the cluster using a token passing
protocol which is part of openais. This protocol ensures
that each node will see the lock requests in the same or-
der as every other node.

It is faster (for whole file locking) for applications to use
flock(2) locks which do use the DLM. In addition it
is possible to disable the cluster fcntl(2) locks and
make them local to each node, even in a cluster con-
figuration for higher performance. This is useful if you
know that the application will only need to lock against
processes local to the node.

6.2 Using the DLM from an application

The DLM is available through a userland interface in
order that applications can take advantage of its clus-
ter locking facility. Applications can open and use
lockspaces which are independent of those used by
GFS2.

7 Future Development

7.1 readdir

Currently we have already completed some work relat-
ing to speeding up readdir and also considered the

way in which readdir is used in combination with
other syscalls, such as stat.

There has also been some discussion (and more recently
in a thread on lkml [2]) relating to the readdir in-
terface to userspace (currently via the getdents64
syscall) and the other two interfaces to NFS via the
struct export_operations. At the time of
writing, there are no firm proposals to change any of
these, but there are a number of issues with the current
interface which might be solved with a suitable new in-
terface. Such things include:

• Eliminating the sorting in GFS2’s readdir for
the NFS getname operation where ordering is ir-
relevant.

• Boosting performance by returning more entries at
once.

• Optionally returning stat information at the same
time as the directory entry (or at least indicating the
intent to call stat soon).

• Reducing the problem of lseek in directories
with insert and delete of entries (does it result in
seeing entries twice or not at all?).

7.2 inotify & dnotify

GFS2 does not support inotify nor do we have any plans
to support this feature. We would like to support dnotify
if we are able to design a scheme which is both scalable
and cluster coherent.

7.3 Performance

There are a number of ongoing investigations into vari-
ous aspects of GFS2’s performance with a view to gain-
ing greater insight into where there is scope for further
improvement. Currently we are focusing upon increas-
ing the speed of file creations via open(2).



2007 Linux Symposium, Volume Two • 259

8 Resources

GFS2 is included in the Fedora Core 6 kernel (and
above). To use GFS2 in Fedora Core 6, install the
gfs2-utils and cman packages. The cman pack-
age is not required to use GFS2 as a local filesystem.

There are two GFS2 git trees available at kernel.org.
Generally the one to look at is the -nmw (next merge
window) tree [4] as that contains all the latest develop-
ments. This tree is also included in Andrew Morton’s
-mm tree. The -fixes git tree is used to send occa-
sional fixes to Linus between merge windows and may
not always be up-to-date.

The user tools are available from Red Hat’s CVS
at: http://sources.redhat.com/cgi-bin/

cvsweb.cgi/cluster/?cvsroot=cluster

References

[1] “DLM—Kernel Distributed Lock Manager,”
Patrick Caulfield, Minneapolis Cluster Summit
2004, http://sources.redhat.com/
cluster/events/summit2004/
presentations.html#mozTocId443696

[2] Linux Kernel Mailing List. Thread “If not
readdir() then what?” started by Ulrich Drepper
on Sat, 7 Apr 2007.

[3] “Extendible Hashing,” Fagin, et al., ACM
Transactions on Database Systems, Sept., 1979.

[4] The GFS2 git tree:
git://git.kernel.org/pub/scm/
linux/git/steve/gfs2-2.6-nmw.git
(next merge window)

[5] “64-bit, Shared Disk Filesystem for Linux,”
Kenneth W. Preslan, et al., Proceedings of the
Seventh NASA Goddard Conference on Mass
Storage, San Diego, CA, March, 1999.

[6] “The Global File System,” S. Soltis, T. Ruwart,
and M. O’Keefe, Fifth NASA Goddard Conference
on Mass Storage Systems and Technologies,
College Park, MD, September, 1996.



260 • The GFS2 Filesystem


