Proceedings of the
Linux Symposium

June 27th—30th, 2007
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel

Martin Bligh, Google

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.

Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Linux readahead: less tricks for more

Fengguang Wu

Hongsheng Xi

Jun Li

University of Science and Technology of China

wfgQustc.edu,

{xihs, Ljun}@ustc.edu.cn

Nanhai Zou
Intel Corporation
nanhai.zou@intel.com

Abstract

The Linux 2.6 readahead has grown into an elaborate
work that is hard to understand and extend. It is con-
fronted with many subtle situations. This paper high-
lights these situations and proposes alternative solutions
to them. By adopting new calling conventions and data
structures, we demonstrate that readahead can be made
more clean, flexible and reliable, which opens the door
for more opportunities.

1 Introduction

1.1 Background

Readahead is a widely deployed technique to bridge the
huge gap between the characteristics of disk drives and
the inefficient usage by applications. At one end, disk
drives are good at large sequential accesses and bad at
seeks. At the other, applications tend to do a lot of tiny
reads. To make the two ends meet, modern kernels and
disk drives do readahead: to bring in the data before it
is needed and try to do so in big chunks.

Readahead brings three major benefits. Firstly, I/O de-
lays are effectively hidden from the applications. When
an application requests a page, it has been prefetched
and is ready to use. Secondly, disks are better utilized
by large readahead requests. Lastly, it helps amortize
request processing overheads.

Readahead typically involves actively detecting the ac-
cess pattern of all read streams and maintaining infor-
mation about them. Predictions based on on where and
how much data will be needed in the near future are

made. Finally, carefully selected data is read in before
being requested by the application.

There exist APIs (posix_fadvise (2),
madvise (2)) for the user-space to inform the
kernel about its access pattern or more precise actions
about data, but few applications bother to take advan-
tage of them. They are mostly doing sequential or
random reads, and expecting the kernel to serve these
common and simple cases right.

So the kernel has to guess. When done right, readahead
can greatly improve I/O throughput and reduce applica-
tion visible I/O delays. However, a readahead miss can
waste bandwidth and memory, and eventually hurt per-
formance.

1.2 A brief history

Linux 2.6 implements a generic readahead heuristic in
its VFS layer.

The unified readahead framework was first introduced
[1] in the early 2.5 time by Andrew Morton. It fea-
tures the current/ahead windows data structure; read-
ahead/read-around heuristics; protection against read-
ahead thrashing, aggressive cache hits [2] and congested
queues [3]. The mmap read-around logic was later taken
out by Linus Torvalds[4]. The separation of read-ahead
and read-around yields better solutions for both. The
rather chaotic mmap reads from executables can now
be prefetched aggressively, and the readahead logic can
concentrate on detecting sequential reads from random
ones.

Handling sequential and random reads right, however,
turned out to be a surprisingly hard mission. One big

274 e Linux readahead: less tricks for more

challenge comes from some mostly random database
workloads. In three years, various efforts were made
to better support random cases [5, 6, 7, 8, 9]. Finally,
Steven Pratt and Ram Pai settled it down by passing the
read request size into page_cache_readahead ()
[10, 11]. The addition of read size also helped another
known issue: when two threads are doing simultaneous
pread () s, they will be overwriting each other’s read-
ahead states. The readahead logic may see lots of 1-page
reads, instead of the true pread () sizes. The old solu-
tion, in the day when page_cache_readahead ()
was called once per page, was to take a local copy
of readahead state in do_generic_mapping_read
[12, 13].

1.3 Moving on

Linux 2.6 is now capable of serving common ran-
dom/sequential access patterns right. That may be suffi-
cient for the majority, but it sure can do better.

So comes the adaptive readahead patch [14], an effort
to bring new readahead capabilities to Linux. It aims to
detect semi-sequential access patterns by querying the
page-cache context. It also measures the read speed of
individual files relative to the page-cache aging speed.
That enables it to be free from readahead thrashing, and
to manage the readahead cache in an economical way.

The lack of functionality is not an issue with regard to
readahead, in fact the complexity of the code actually
prevents further innovation. It can be valuable to sum-
marize the experiences we learned in the past years, to
analyze and reduce the source of the complexity is what
motivated us to do the work of required for this paper.

We propose a readahead algorithm that aims to be clean.
It is called on demand, which helps free readahead
heuristics from most of the chores that the current al-
gorithm suffers from. The data structure is also revised
for ease of use, and to provide exact timing information.

1.4 Overview of the rest of the paper

In Section 2, we first discuss the readahead algorithm
as in Linux 2.6.20, then proceed to discuss and propose
new solutions to the three major aspects (data structure,
call scheme, and guideline) of readahead. In Section 3,
we analyze how the old/new readahead algorithms work
out in various situations. Finally, Section 4 gives bench-
mark numbers on their overheads and performance.

2 Readahead Algorithms

2.1 Principles of 2.6 readahead

Figure 1 is a brief presentation of the readahead algo-
rithm in Linux 2.6.20. The heuristics can be summa-
rized in four aspects:

sequential detection If the first read at the start of a
file, or a read that continues from where the previ-
ous one ends, assume a sequential access. Other-
wise it is taken as a random read.

The interface demands that it be informed of ev-
ery read requests. prev_page is maintained to
be the last page it saw and handled. An over-
size read (read_size > max_readahead)
will be broken into chunks of no more than max__
readahead and fed to the readahead algorithm
progressively.

readahead size There are three phases in a typical
readahead sequence:

initial When there exists no current_window
or ahead_window, the size of initial read-
ahead is mainly inferred from the size of cur-
rent read request. Normally readahead_
size will be 4 or 2 times read_size.

ramp-up When there is a previous readahead, the size
is doubled or x4.

full-up When reaching max_readahead.

It is possible to jump directly into full-up
phase, if the request size is large enough (e.g.
sendfile (10M)).

readahead pipelining To maximally overlap applica-
tion processing time and disk I/O time, it maintains
two readahead windows: current_window is
where the application expected to be working on;
ahead_window is where asynchronous I/O hap-
pens. ahead_window will be opened/renewed in
advance, whenever it sees a sequential request that

® is oversize
e hasonly current_window

e crossed into ahead_window

O J oy U W N

AR R D D R DWW WWWWWWWWNNNNNNDMNNONNDNNNE R R R P B RP R
W J o U WNEFE O WOW-LOoU ™ WNERE OWOW-UOoU D WNFE O WO U WNR O W

do_generic_mapping_read:

call page_cache_readahead
for each page
if is prev_page + 1
call page_cache_readahead
if page not cached
report cache miss
leave cache hit mode

page_cache_readahead:

handle unaligned read
set prev_page to current page index
if in cache hit mode
return
shift prev_page to the last requested page,
but no more than max_readahead pages
if is sequential read and no current_window
make current_window
call blockable_page_cache_readahead
if is oversize read
call make_ahead_window
elif is random read
clear readahead windows
limit size to max_readahead
call blockable_page_cache_readahead
elif no ahead_window
call make_ahead_window
elif read request crossed into ahead_window
advance current_window to ahead_window
call make_ahead_window
ensure prev_page do not overrun ahead_window

make_ahead_window:

if have seen cache miss

clear cache miss status

decrease readahead size by 2
else

x4 or x2 readahead size

limit size to max_readahead
call blockable_page_cache_readahead

blockable_page_cache_readahead:

if is blockable and queue congested
return

submit readahead io

if too many continuous cache hits
clear readahead windows
enter cache hit mode

2007 Linux Symposium, Volume Two e 275

Figure 1: readahead in 2.6.20

276 e Linux readahead: less tricks for more

cache hit/miss A generic cache hit/miss happens
when a page to be accessed is found to be
cached/missing. However, the terms have specific
meanings in 2.6 readahead.

A readahead cache hit happens when a page to
be readahead is found to be cached already. A
long run of readahead cache hits indicates an al-
ready cached file. When the threshold VM_MAX__
CACHE_HIT (=256) is reached, readahead will
be turned off to avoid unnecessary lookups of the
page-cache.

A readahead cache miss happens when a page that
was brought in by readahead is found to be lost on
time of read. The page may be relaimed prema-
turely, which indicates readahead thrashing. The
readahead size can be too large, so decrease it by 2
for the next readahead.

2.2 Readahead windows

The 2.6 readahead adopts dual windows to achieve read-
ahead pipelining: while the application is walking in the
current_window, I/O is underway in the ahead_
window. Although it looks straightforward, the imple-
mentation of this concept is not as simple as one would
think.

For the purpose of pipelining, we want to issue I/O for
the next readahead before the not-yet-consumed read-
ahead pages fall under a threshold, lookahead size. A

value of lookahead_size = 0 disables pipelining,
whereas lookahead_size = readahead_size
opens full pipelining.

The current/ahead windows scheme is one obvious way
to do readahead pipelining. It implies 1ookahead_
size tobe readahead _size - read_sizel for
the initial readahead. It then ranges from readahead_
size to readahead_size + read_size for the fol-
lowing ones. It is a vague range due to the fact that
2.6.20 readahead pushes forward the windows as early
as it sees the read request (instead of one realtime page
read) crossing into the ahead_window.

However, the scheme leads to obscure information and
complicated code. The lookahead size is implicitly
coded and cannot be freely tuned. The timing informa-
tion for the previous readahead may be too vague to be

lagsume read_size <= max_readahead

useful. The two windows bring three possible combina-
tions of on/off states. The code has to probe for the exis-
tence of current_window and/or ahead_window
before it can do any query or action on them. The heuris-
tics also have to explicitly open ahead_window to
start readahead pipelining.

Now let’s make a study of the information necessary for
a sequential readahead:

1. To work out the position of next read-
ahead, that of the previous one will be
sufficient: We normally apply a simple
size ramp up rule: (offset, size) =>

(offset+size, sizex2).

2. Optionally, in case the previous readahead pages
are lost, the timing information of their first en-
queue to inactive_11st would be helpful. As-
sume the reader is now at of fset, and was at
page la_index when the lost pages were first
brought in, then thrashing_threshold =
offset - la_index.

3. To achieve pipelining, indicating a lookahead page
would be sufficient: on reading of which it should
be invoked to do readahead in advance.

We revised the data structure (Figure 2) to focus on the
previous readahead, and to provide the exact timing in-
formation. The changes are illustrated in Figure 3 and
compared in Table 1.

2.3 Readahead on demand

The 2.6 readahead works by inspecting all read re-
quests and trying to discover sequential patterns from
them. In theory, it is a sound way. In practice, it
makes a lot of fuss. Why should we call excessively
into page_cache_readahead () only to do noth-
ing? Why handle cache hits/misses in convoluted feed-
back loops?

In fact, there are only two cases that qualify for a read-
ahead:

sync readahead on cache miss A cache miss oc-
curred, the application is going to do I/O anyway.
So try readahead and check if some more pages
should be piggybacked.

2007 Linux Symposium, Volume Two e 277

struct file_ra_ state {

- unsigned long start; /+ Current window =/
- unsigned long size;
- unsigned long ahead_start; /+ Ahead window x/
- unsigned long ahead_size;
- unsigned long cache_hit; /* cache hit count =x/
- unsigned long flags; /+* RA_FLAG_MISS | RA_FLAG_INCACHE =*/
+ pgoff_t la_index; /+ enqueue time x/
+ pgoff_t ra_index; /* begin offset =/
+ pgoff_t lookahead_index; /* time to do next readahead =/
+ pgoff_t readahead_index; /* end offset «/
unsigned long prev_page; /+ Cache last read() position =/
unsigned long ra_pages; /* Maximum readahead window =*/

Figure 2: revising readahead data structure

(a) 2.6.20 readahead

start ~“ahead_start

(b) on—-demand readahead

|———— = readahead size -—>|

| -———— reader on the way —--->|-- lookahead size ——>|

===|= # === ===f=== =
la_index ra_index lookahead_index readahead_index

Figure 3: tracking readahead windows

question on-demand readahead 2.6.20 readahead

when to do next read- | lookahead_index around ahead_start or start

ahead

where to do next read- | readahead_index start + size or

ahead ahead_start +
ahead_size

the time of previous|la_index maybe/roughly start

readahead

the size of previous | readahead_index - ra_index |size orahead_size

readahead

Table 1: deciding the next readahead

278 e Linux readahead: less tricks for more

async readahead on lookahead page The application
is walking onto a readahead page with flag PG_
readahead, or a lookahead mark. It indicates
that the readahead pages in the front are dropping
to lookahead_size, the threshold for pipelin-
ing. So do readahead in advance to reduce applica-
tion stalls.

When called on demand, the readahead heuristics can
be liberated from a bunch of special cases. The details
about them will be covered in Section 3.

2.4 The new algorithm

Figure 4 shows the proposed on-demand readahead al-
gorithm. It is composed of a list of condition-action
blocks. Each condition tests for a specific case (Table
2), and most actions merely fill the readahead state with
proper values (Table 3).

random A small, stand-alone read. Take it as a random
read, and read as is.

lookahead It is lookahead time indicated by the read-
ahead state, so ramp up the size quickly and do the
next readahead.

readahead It is readahead time indicated by the read-
ahead state. We can reach here if the lookahead
mark was somehow ignored (queue congestion) or
skipped (sparse read). Do the same readahead as in
lookahead time.

initial First read on start of file. It may be accessing the
whole file, so start readahead.

oversize An oversize read. It cannot be submitted in
one huge I/0, so do it progressively as a readahead
sequence.

miss A sequential cache miss. Start readahead.

interleaved A lookahead hit without a supporting read-
ahead state. It can be some interleaved sequential
streams that keep invalidating each other’s read-
ahead state. The lookahead page indicates that the
new readahead will be at least the second one in the
readahead sequence. So get the initial readahead
size and ramp it up once.

The new algorithm inherits many important behaviors
from the current one, such as random reads, and the size
ramp up rule on sequential readahead. There are also
some notable changes:

1. A new parameter page is passed into
ondemand_readahead (). It tells whether
the current page is present. A value of NULL
indicates a synchronous readahead, otherwise an
asynchronous one.

2. A new parameter begin_offset is introduced
to indicate where the current read request begins.
prev_page now simply tracks the last accessed
page of previous request. Hence the new sequen-
tial access indicator becomes: sequential =
(begin_offset - prev_page <= 1).

3. 1/O for overlapped random reads may not be sub-
mitted as early. Suppose a 8-page random read,
whose first 4 pages are overlapped with a previous
read. The 2.6 readahead will emit request for all of
the 8 pages before accessing the first page. While
the on-demand readahead will ask for the remain-
ing 4 pages on accessing the 5th page. Hence it
avoids some unnecessary page-cache lookups, at
the cost of not being able to overlap transfer of
the leading cached pages with I/O for the follow-
ing ones.

4. Linux 2.6.20 only does readahead for sequential
read requests. In the new design, we loosen the cri-
teria a bit: the lookahead hit alone can trigger the
next readahead. It enables detection of interleaved
reads.

It is not as safe to ignore sequentialness, but the risk
is pretty low. Although we can create a set of random
reads to trigger a long run of readahead sequences, it
is very unlikely in reality. One possible candidate may
be stride reads. But it cannot even cheat the algorithm
through the size ramp-up phase, where the lookahead
pages distribute in a non-uniform way.

The support of interleaved reads is minimal. It makes no
extra efforts to detect interleaved reads. So the chances
of discovering them is still low. Interleaved sequential
reads may or may not be readahead, or may be served
intermittently.

QO J oy U W N

I I SR R R R e e e e e e
B WNEHEOWOOTJo U & Wl HFH O W

2007 Linux Symposium, Volume Two e 279

do_generic_mapping_read:
for each page
if page not cached
call ondemand_readahead
if page has lookahead mark
call ondemand_readahead
set prev_page to last accessed page

ondemand_readahead:
if is asynchronous readahead and queue congested
return
if at start of file
set initial sizes
elif is small random read in wild
read as is
return
elif at lookahead_index or readahead_index
ramp up sizes
else
set initial sizes
if has lookahead mark
ramp up size
fill readahead state
submit readahead io
set lookahead mark on the new page at new lookahead_index

Figure 4: on-demand readahead algorithm

case description condition

initial read on start of file loffset

oversize random oversize read !page && !sequential && size > max
random random read 'page && !sequential

lookahead | lookahead hit offset == ra->lookahead_index
readahead | readahead hit offset == ra->readahead_index

miss sequential cache miss Ipage

interleaved | lookahead hit with no context | page

Table 2: detecting access patterns

case ra_index ra_size la_size
random offset size 0
lookahead,readahead | ra->readahead_index get_next_ra_size(ra)
initial,oversize,miss offset get_init_ra_size (size, max) 1
interleaved offset + 1 get_init_ra_size(...) * 4 1

Table 3: deciding readahead parameters

280 e Linux readahead: less tricks for more

3 Case Studies

In this section, we investigate special situations the read-
ahead algorithm has to confront:

1. Sequential reads do not necessary translate into
incremental page indexes: multi-threaded reads,
retried reads, unaligned reads, and sub-page-size
reads.

2. Readahead should not always be performed on se-
quential reads: cache hits, queue congestion.

3. Readahead may not always succeed: out of mem-
ory, queue full.

4. Readahead pages may be reclaimed before being
read: readahead thrashing.

3.1 Cache hits

Ideally, no readahead should ever be performed on
cached files. If a readahead is done on a cached file,
then this can cost many pointless page cache lookups. In
a typical system, reads are mostly performed on cached
pages. Cache hits can far outweigh cache misses.

The 2.6 readahead detects excessive cache hits via
cache_hit. It counts the continuous run of readahead
pages that are found to be already cached. Whenever
it goes up to VM_MAX_CACHE_HIT (=256), the flag
RA_FLAG_INCACHE will be set. It disables further
readahead, until a cache miss happens, which indicates
that the application have walked out of the cached seg-
ment.

In summary,

1. Always call page_cache_readahead();
2. Disable readahead after 256 cache hits; and

3. Enable readahead on cache miss.
That scheme works, but is not satisfactory.

1. It only works for large files. If a file is fully
cached but smaller than 1MB, it won’t be able to
see the light of RA_FLAG_INCACHE, which can
be a common case. Imagine a web server that
caches a lot of small to medium html/png files
and desktop systems.

2. Pretend that it happily enters cache-hit-no-
readahead mode for a sendfile (100M) and
avoids page-cache lookups. Now another over-
head arises: page_cache_readahead () that
used to be called once every max_readahead
pages will be called on each page to ensure in time
restarting of readahead after the first cache miss.

The above issues are addressed in on-demand readahead
by the following rules:

1. Call ondemand_readahead () on cache miss;

2. Call ondemand_readahead () on lookahead
mark; and

3. Only set lookahead mark on a newly allocated
readahead page.

Table 4 compares the two algorithms’ behavior on var-
ious cache hit situations. It is still possible to apply the
threshold of vM_MAX_CACHE_HIT in the new algorithm,
but we’d prefer to keep it simple. If a random cached
page happens to disable one lookahead mark, let it be.
It would be too rare and non-destructive to ask for atten-
tion. As for real-time applications, they need a different
policy—to persist on cache hits.

3.2 Queue Congestion

When the I/O subsystem is loaded, it becomes question-
able to do readahead. In Linux 2.6, the load of each disk
drive is indicated by its request queue. A typical re-
quest queue can hold up to BLKDEV_MAX_RQ (=128)
requests. When a queue is 7/8 full, it is flagged as
congested; When it is completely full, arriving new re-
quests are simply dropped. So in the case of a congested
queue, doing readahead risks wasting the CPU/memory
resources: to scan through the page-cache, allocate a
bunch of readahead pages, get rejected by the request
system, and finally free up all the pages—a lot of fuss
about nothing.

Canceling readahead requests on high I/O pressure can
help a bit for the time being. However, if it’s only about
breaking large requests into smaller ones, the disks will
be serving the same amount of data with much more
seeks. In the long run, we hurt both I/O throughput and
latency.

2007 Linux Symposium, Volume Two e 281

ondemand_readahead ()

page_cache_readahead ()

large cached chunk

called on every page to recheck

full cached small files | not called

prefetched chunks called to do readahead

small cached chunk may or may not be called

cache miss called and do readahead now restart readahead after first miss

Table 4: readahead on cache hits

So the preferred way is to defer readahead on a con-
gested queue. The on-demand readahead will do so for
asynchronous readaheads. One deferred asynchronous
readahead will return some time later as a synchronous
one, which will always be served. The process helps
smooth out the variation of load, and will not contribute
more seeks to the already loaded disk system.

The current readahead basically employs the same pol-
icy. Only that the decisions on whether to force a read-
ahead are littered throughout the code, which makes it
less obvious.

3.3 Readahead thrashing

In a loaded server, the page-cache can rotate pages
quickly. The readahead pages may be shifted out of the
LRU queue and reclaimed, before a slow reader is able
to access them in time.

Readahead thrashing can be easily detected. If a cache
miss occurs inside the readahead windows, readahead
thrashing happened. In this case, the current readahead
decreases the next readahead size by 2. By doing so it
hopes to adapt to the thrashing threshold. Unfortunately,
the algorithm does not remember it. Once it steps slowly
off to the thrashing threshold, the thrashings stop. It
then immediately reverts back to the normal behavior of
ramping up the window size by 2 or 4. Which starts a
new round of thrashings. On average, about half of the
readahead pages can be thrashed.

It would be even more destructive for disk throughput.
Suppose that current_window is thrashed when an
application is walking in the middle of it. The 2.6
readahead algorithm will be notified via handle_ra_
miss (). But it merely sets a flag RA_FLAG_MISS,
and takes no action to recover the current_window
pages to be accessed. do_generic_mapping_
read () then starts to fault in them one by one, gen-
erating a lot of disk seeks. Overall, up to half pages may
be faulted in this crude way.

The on-demand readahead takes no special action
against readahead thrashing. Once thrashed, an initial
readahead will be started from the current position. It
does not cut down the number of thrashed pages, but
does avoid the catastrophic seeks. Hence it performs
much better on thrashing.

3.4 Unaligned reads

File operations work on byte ranges, while the read-
ahead routine works on page offsets. When an appli-
cation issues 10000B sized reads, which do not align
perfectly to the 4K page boundary, the readahead code
will see an of fset + size flow of 043,2+2,44 3,7+
2,943,1242,1443,1742,19+3,.... Note that some
requests overlap for one page. It’s no longer an obvious
sequential pattern.

Unaligned reads are taken care of by allowing
offset == prev_page [15] in 2.6 readahead and
on-demand readahead.

3.5 Retried reads

Sometimes the readahead code will receive an interest-
ing series of requests[16] that looks like: 0+ 1000, 10+
990,20 + 980,30 4+ 970,.... They are one normal read
followed by some retried ones. They may be issued by
the retry-based AIO kernel infrastructure, or retries from
the user space for unfinished sendfile ()s.

This pattern can confuse the 2.6.20 readahead. Explicit
coding is needed to ignore the return of reads that have
already been served.

The on-demand readahead is not bothered by this issue.
Because it is called on the page to be accessed now, in-
stead of the read request.

282 e Linux readahead: less tricks for more

case 2.6.20 | on-demand | overheads | reasoning

sequential re-read in 4KB 20.30 20.05 —1.2% | no readahead invocation

sequential re-read in 1MB 37.68 36.48 —32%

small files re-read (tar /1ib)| 49.13 48.47 —1.3% | no page-cache lookup

random reading sparse file 81.17 80.44 +0.9% | one extra page-cache lookup per cache miss
sequential reading sparse file 389.26 387.97 —0.3% | less readahead invocations

Table 5: measuring readahead overheads

0.8 T
)
0.6 f
0.4
e / Kx/t”ﬂ‘x
E o2 | e
= : / W SN
-0.4 i /
-0.6 8k —— 4
16k
32k —x— |
08 / 64k —=—
128k
1 n |

0 100 200 300 400 500 600 700 800 900 1000
random reads (MB)

0.3

16k —o—
9 32k —x—
0.2 64k —=—
:‘ 128k —=—
0.1 | Bt Za
RN -
s ST
o -0.1 N P T R, S
|) e =
-0.3 \ G
o —f A
\ P-N
-0.4 u N =R
05 Y

0 500 1000 1500 2000 2500 3000 3500 4000
random reads (MB)

Figure 5: timing overlapped random reads

3.6 Interleaved reads

When multiple threads are reading on the same file de-
scriptor, the individual sequential reads get interleaved
and look like random ones to the readahead heuristics.
Multimedia files that contain separated audio/video sec-
tions may also lead to interleaved access patterns.

Interleaved reads will totally confuse the current read-
ahead, and are also beyond the mission of on-demand
readahead. However, it does offer minimal support
that may help some interleaved cases. Take, for ex-
ample, the 1-page requests consisting of two streams:
0,100,1,101,2,102,.... The stream starting from 0 will
get readahead service, while the stream from 100 will
still be regarded as random reads. The trick is that the
read on page O triggers a readahead (the initial case),
which will produce a lookahead mark. The following
reads will then hit the lookahead mark, make further
readahead calls and push forward the lookahead mark
(the lookahead case).

4 Performance

4.1 Benchmark environment

The benchmarks are performed on a Linux 2.6.20 that is
patched with the on-demand readahead. The basic setup
is

e 1MB max readahead size

2.9GHz Intel Core 2 CPU

2GB memory

160G/8M Hitachi SATA II 7200 RPM disk

4.2 Overheads

Table 5 shows the max possible overheads for both algo-
rithms. Each test is repeated sufficient times to get the
stable result. When finished, the seconds are summed
up and compared.

Cache hot sequential reads on a huge file are now faster
by 1.2% for 1-page reads and by 3.2% for 256-page

reads. Cache hot reads on small files (tar /1ib) see
a 1.3% speed up.

We also measured the maximum possible overheads on
random/sequential reads. The scenario is to do 1-page
sized reads on a huge sparse file. It is 0.9% worse for
random reads, and 0.3% better for sequential ones. But
don’t take the two numbers seriously. They will be lost
in the background noise when doing large sized reads,
and doing it on snail-paced disks.

4.3 Overlapped random reads

We benchmarked 8/16/32/64 /128 KB random reads on
a 500/2000MB file. The requests are aligned to small
4K B boundaries and therefore can be overlapping with
each other. On every 50/200MB read, the total seconds
elapsed are recorded and compared. Figure 5 demon-
strates the difference of time in a progressive way. It
shows that the 128K B case is unstable, while others con-
verge to the range (—0.2%,0.1%), which are trivial vari-
ations.

4.4 iozone throughput

We ran the iozone benchmark with the command
iozone -c -tl -s 4096m -r 64k. That’s doing
64KB non-overlapping reads on a 4GB file. The
throughput numbers in Table 6 show that on-demand
readahead keeps roughly the same performance.

access pattern 2.6.20 on-demand gain
Read | 62085.61 | 62196.38 | +0.2%
Re-read | 62253.49 | 6222499 | —0.0%
Reverse Read | 50001.21 50277.75 +0.6%
Stride read | 8656.21 8645.63 —0.1%
Random read | 13907.86 13924.07 | +0.1%
Mixed workload | 19055.29 | 19062.68 | +0.0%
Pread | 62217.53 | 62265.27 | +0.1%

Table 6: iozone throughput benchmark (KB/s)

4.5 Readahead thrashing

We boot the kernel with mem=128m single, and
start a 100KB/s stream on every second. Various statis-
tics are collected and showed in Figure 6. The thrashing
begins at 20sec. The 2.6 readahead starts to overload
the disk at 40sec, and eventually achieved SMB/s max-
imum network throughput. The on-demand readahead
throughput keeps growing, and the trend is going up to
15SMB/s. That’s three times better.

2007 Linux Symposium, Volume Two e 283

25

2.6.20 disk ——
2.6.20 net
on-demand disk T
20 | on-demand net |
|
‘\
o T ‘
an)
S 157 | ‘ B
5
2 Al
g 101 i | i 1 [
s) I A
‘ |l [‘\‘l ‘}\Jh \%TTT“ “X&”&T
2 1l 1L E‘\# ‘\“ P AT
| R ek
° i m“f*‘ e *“ w W T
Kk i
0 ‘ ‘ ‘
0 50 100 150 200
time (s)
(a) disk/net throughput on loaded disk
350 —— 110

X

300 |

a S Ly
P " 2.6.20 reg-size i
250 ”/ N N4 2.6.20 disk-util ——— 80
L *% . * on-demand reg-size 1 70
200 k on-demand disk-util

60
50
40
30
20
10

150 F|

request size (KB)
disk utilization (%)

100 j

50 . $s

0
80 100 120 140 160 180 200
time (s)

0 20 40 60

(b) average 1/O size and disk utilization

Figure 6: performance on readahead thrashing

5 Conclusion

This work greatly simplified Linux 2.6 readahead al-
gorithm. We successfully eliminated the complexity
of dual windows, cache hit/miss, unaligned reads, and
retried reads. The resulting code is more clean and
should be easier to work with. It maintains roughly the
same behavior and performance for common sequen-
tial/random access patterns. Performance on readahead
thrashing and cache hits are improved noticeably.

6 Future Work

The algorithm is still young and imperfect. It needs
more benchmarks, real-world tests, and fine tuning.
Look-ahead size may be a bit smaller, especially for the
initial readahead. It does not impose strict sequential

284 e Linux readahead: less tricks for more

checks, which may or may not be good. The overlapped
random reads may also be improved.

Then we can embrace all the fancy features that were
missed for so long time. To name a few: in-
terleaved reads from multimedia/multi-threaded appli-
cations; clustered random reads and chaotic semi-
sequential reads from some databases; backward reads
and stride reads in scientific arenas; real thrashing pre-
vention and efficient use of readahead cache for file
servers. Sure there are more. They can be packed into an
optional kernel module for ease of use and maintenance.

References

[1] Andrew Morton, [PATCH] readahead, git commit

b546b96d0969deOff55a3942c7l413392cf86d2a2

[2] Andrew Morton, [PATCH] readahead
optimisations, git commit
213f035476c932921d6281e4d5d39585f214a2eb

[3] Andrew Morton, [PATCH] rework readahead for
congested queues, git commit
10d05dd588a3879£9b40725a9073bc97£cd44776

[4] Linus Torvalds, [PATCH] Simplify and speed up
mmap read-around handling, git commit
d5cfelb35c4e81f4cddc5139bd446£04870eb 90

[5] Andrew Morton, [PATCH] Allow VFS readahead
to fall to zero, git commit
71ddf2489c68cf145fb3f11cbab152ded9e02793

[6] Ram Pai, [PATCH] readahead: multiple
performance fixes, git commit
2bb300733b3647462bddb9b993a6£32d6chedbbe

[7] Ram Pai, [PATCH] speed up readahead for seeky
loads, git commit
efl2b3clabce83e8e25d27bdaab6380238e792ff

[8] Suparna Bhattacharya, Ram Pai, [PATCH]
adaptive lazy readahead, git commit
87698a351b86822dabbd8cla34c8abd3e62e5a77

[9] Ram Pai, Badari Pulavarty, Mingming Cao, Linux
2.6 performance improvement through readahead
optimization, http://www.
linuxsymposium.org/proceedings/
reprints/Reprint-Pai-0LS2004.pdf

2all git commits are accessible from
http://git.kernel.org/?p=linux/kernel/git/
torvalds/old-2.6-bkcvs.git

[10] Simplified Readahead,
http://groups.google.com/group/
linux.kernel/browse_thread/
thread/e5f475d4al1759%a/
697d85a0d86458d372&hl=en#
697d85a0d486458d3

[11] Steven Pratt, Ram Pai, [PATCH] Simplified
readahead, git commit
e8eb956c01529%eccc6d7407ab9529ccc6522600fF

[12] Linux: Random File I/O Regressions In 2.6,
http://kerneltrap.org/node/3039

[13] Andrew Morton, [PATCH] readahead: keep
file->f_ra sane, git commit
2ea7dd3fc9bc35ad0c3c17485949519¢cb691c097

[14] Linux: Adaptive Readahead,
http://kerneltrap.org/node/6642

[15] Oleg Nesterov, [PATCH] readahead: improve
sequential read detection, git commit
03a554d2325e£5£3160514359330965fd7640e81

[16] Suparna Bhattacharya, John Tran, Mike Sullivan,
Chris Mason, Linux AIO Performance and
Robustness for Enterprise Workloads,
http://www.linuxsymposium.org/
proceedings/reprints/
Reprint-Bhattacharya-0LS2004.pdf

