
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Regression Test Framework and Kernel Execution Coverage

Hiro Yoshioka
Miracle Linux Corporation

hyoshiok@miraclelinux.com

Abstract

We have developed a Linux kernel regression test
framework (“crackerjack”) and a branch coverage test
tool (hereinafter “btrax”) to capture kernel regression.
Crackerjack is a harness program and a set of test pro-
grams. It runs test programs, records the results, and
then compares the expected results. Therefore, if a
particular system call failed in a release and was then
fixed in a later release, crackerjack records this as non-
favorable because of incompatibility. The btrax is an
integrated component of crackerjack and is a tool to as-
sess test programs’ effectiveness. It uses Intel proces-
sor’s branch trace capability and records how much code
was traced by a test program. Crackerjack is initially de-
signed for Linux kernel system call testing, but care has
been taken to allow future expansion to other types of
software.

1 Introduction

1.1 Test Early, Test Often

The Linux kernel development process does not explic-
itly define an automated mechanism for maintenance of
compatibility. Unintended introduction of incompatibil-
ities as the result of a bugfix and/or an upgrade do not get
detected in an automated way. The basis of testing in the
Linux kernel development community is predicated on
frequent releases, with feedback and review by a large
number of contributors. Therefore, end-users and mid-
dleware developers can find incompatibility problems
only after the release of a kernel.

Developers may introduce new functionality which, in-
tentionally or unintentionally, introduced incompatibil-
ity but there are few cases which describe the incom-
patibility explicitly. For example, you may write in the
change log, “Function XXX is added” but you may not

write “There is an incompatibility YYY because of in-
troducing function XXX.”

The cost of validating such incompatibility for middle-
ware developers is increasing, therefore we need some
mechanism to find such incompatibility.

If you find the incompatibility early, then analysing the
issue and fixing it is very easy.

However, if you find the issue very late, some applica-
tions may already make use of this incompatible behav-
ior and therefore you can not change or fix the behavior,
even the fix is trivial.

Therefore, finding incompatibility very early has practi-
cal benefit not only for Linux kernel developers but also
for middleware developers.

1.2 Regression Testing

1.2.1 Necessities of Regression Testing

The word regression has a negative connotation; de-
grade also has a bad image. Incompatibility is not al-
ways a bad thing. We have to have some incompatibility
to introduce new features, bug fixes, and performance
improvements.

Although the word regression has negative connotation,
we will use the word in this paper, because the term “re-
gression test” is commonly used in the testing commu-
nity.

Regression testing is a mechanism to find different (diff)
behavior of implementation. Maintaining compatibility
is very important. But it is not always possible, we have
to have some tradeoff.

• 285 •

286 • Regression Test Framework and Kernel Execution Coverage

1.2.2 Automatic Test

Testing is a boring process but we’d like to change so it
is a fun and easy process.

We need a systematic way to find a regression of the
Linux Kernel and OSS.

Regression testing is an automatic process which runs
a test and compares the expected results, then validates
the compatibility of the software. Regression testing is a
common practice in commercial software developments
but not well done in the open source software.

As such, we have developed a compatibility testing tool
for the Linux kernel interface, the goal of which is to
avoid unintended introduction of incompatibilities, and
to effectively reduce application development cost by
detecting such incompatibilities upfront. This tool is
different from standard certification tests such as Linux
Standard Base, in that the tool can detect incompatibil-
ities between a particular version of a kernel and its re-
vised versions.

The test tool includes following features.

• Automatically assess kernel behaviors and storing
the results.

• Detect differences between stored results and point
out incompatibilities.

• Manage (register, modify, remove) test results and
expected test results.

We will promote the development of this test tool by
communicating with the Linux kernel community, the
test community, the North-east Asia OSS Promotion
Forum, etc. from an early stage, through the so-called
bazaar model.

1.2.3 Expected Usage

Linux kernel developer

Bugfix of an existing kernel: Verify that the bugfix does
not destroy previous features in an incompatible way.
Add a test program for the bug in question and verify
that the existing kernel includes the bug and the bugfix
version does not.

Development of new features: Verify that the new fea-
ture in question does not destroy previous features in an
incompatible way. If the feature extension was an in-
compatible extension, verify the extent of such incom-
patibility. Add test program for the new feature to main-
tain compatibility in the future.

Middleware developer

These developers should execute a regression test
against a new version of kernel, and if incompatibili-
ties are found, specifically understand the extent of the
incompatiblity. It will be easy to find kernel regression,
if middleware tests are prepared and run.

1.2.4 Non Goals

The following are non goals.

• Certification Tests e.g. POSIX, LSB

• Performance Tests, e.g. Benchmarks

We don’t build certification tests nor performance tests.
They are non goals.

1.3 Summary of theme

Develop a regression test framework, the regression
tests, and the test coverage measurement tool, as shown
in figure 1. Regression test framework is a framework
that executes each of the test sets, and is a basis for
the framework of this Linux kernel compatibility test-
ing tool.

2 Regression Test Framework - crackerjack

Crackerjack is a regression test framework which pro-
vides 1) execution of test sets, 2) reporting based on re-
sults of test set execution, and 3) management of test
programs, expected results, test sets, and test results.

It is implemented using Ruby on Rails. Ruby makes it
easy to modify, ensuring a low maintenance cost.

Regression testing is defined as testing two builds of
software, with emphasis on detection of regression (in-
compatibility of functionality).

2007 Linux Symposium, Volume Two • 287

In Figure 1, the result (Rn) of a test executed on a cer-
tain version of software (Vn) is compared against an ex-
pected result (En). The initial expectation (E1) is typi-
cally identical to R1.

V1----- V2----- V3----- V4
R1----- R2----- R3----- R4
^ ----- ^ ----- ^ ----- ^

compare | ~~~~~ | ~~~~~ | ~~~~~ |
v ----- v ----- v ----- v
E1----> E2----> E3----> E4

Figure 1: Comparison between test results (Rn) and ex-
pected results (En)

To detect a regression, the results from two separate
builds have to be compared. If a result from a system
call can be statically determined to be correct, such a
comparison would return a valid result (OK) and or not
(NG). We can add a comparison routine to determine the
results.

pid = getpid ()
if (pid > 5000 && pid < 66536) {

printf ("OK\n");
} else {

printf ("NG\n");
}
return EXIT_SUCCESS

Figure 2: Example – Exact Match

pid = get_pid
printf ("%d\n", pid)
return EXIT_SUCCESS

Figure 3: Example - Range

In the first example above (see Figure 2), the test pro-
gram statically determines whether the function call re-
turned a valid result (’OK’) or not (’NG’). In the second
example (see Figure 3), the test program only outputs
the function call result, for later comparison.

The comparison method may vary between test pro-
grams. Therefore, it is the test program developer’s re-
sponsibility to define a comparison method for that test
program.

The objective of the crackerjack system is to perform
regression tests. crackerjack consists of (1) framework,
(2) a collection of test programs, and (3) branch tracer

(btrax). It is outside the scope of crackerjack project, to
measure performance or certify compatibility.

2.1 Software Functionality

The framework provides the following functions.

• Run both GUI (Graphical User Interface) mode and
CUI (Character User Interface) mode.

• Execute test programs.

• Compare test execution results and expected re-
sults.

• Report based on results of test set execution.

• Manage test programs, expected results, test sets,
test target, and test results.

• Define compare programs.

The expected end-users of crackerjack are kernel devel-
opers, middleware developers, and test program devel-
opers.

For more information, please refer to the Appendix.

3 Branch Tracer for Linux – btrax

3.1 btrax

We have integrated a branch tracer for Linux (known as
btrax hereinafter) in the crackerjack to find the execution
coverage of regression tests.

This program (btrax) traces the branch executions of the
target program, analyzes the trace log file, and displays
coverage information and execution path. It’s possible
to trace it for an application program, a library, a kernel
module, and the kernel.

The btrax consists of the following commands.

1. Collect the branch trace log via bt_collect_
log,

2. Report the coverage information via bt_
coverage,

288 • Regression Test Framework and Kernel Execution Coverage

3. Report the execution path via bt_execpath, and

4. Split the branch trace log by each process via bt_
split.

The btrax collects a branch trace information using In-
tel’s last branch record capability. bt_collect_log
stores the branch trace log, bt_coverage and bt_
execpath report the branch coverage and the execu-
tion path information respectively.

3.2 Coverage

The coverage information gathered includes function,
branch, and state coverage. Usually, it would be dis-
played in address value order.

The branch tracer (bt_collect_log) collects the
last branch information using Intel’s last branch record
capability.

bt_coverage analyzes the ELF files such as kernel,
module, etc. and gets the branch and function-call in-
formation. Then, it analyzes the traced log(s) with this
information, and displays the coverage information.

Function coverage displays how many functions were
executed among total functions. Displayed functions are
almost compatible with objdump’s output. Note that it
would not show the “function call coverage.” (See Fig-
ure 12.)

Branch coverage displays how many conditional
branches (i.e. both branch and fall-through) were exe-
cuted among total ones. (See Figure 13.)

State (basic block) coverage shows how many states
(basic block) were executed among total states. State
means straight-line piece of code without any jumps
or jump targets in the middle (a.k.a. basic block). In
the previous “switch case” example, if the codes of the
“case 0” and “case 2” were both executed three times,
then each state and coverage would be as follows. (See
Figure 15.)

A chain of function calls is displayed, for example, func-
tion FA calls function FB, and function FB calls function
FC, and so on. If you would like to limit the coverage
target to the functions which are included in function
call tree, -I option can be used. In this case, the function

call tree would be displayed with other coverage infor-
mation (such as function/branch/state coverage). Exam-
ple of the function call tree is shown below. (See Fig-
ure 16.)

4 Linux Kernel System Call Test Coverage

We made test programs which use Linux system calls
and used the crackerjack with the btrax. We measured
the function coverage, the branch coverage, and the state
coverage of the each test program execution (Table 1).

We selected 50 system call test programs of LTP and
measured the execution coverages of them as our bench-
mark. (Table 2)

We know the LTP is comprehensive test suite but the
execution coverage is not large enough.

The average function coverage, branch coverage, and
state coverage are 41.39%, 23.1%, and 30.94% respec-
tively. (Note: 38%, 10%, and 12% of the test programs
exceeded 50% of function, branch, and state coverage.)

It is very difficult to increase the execution coverage.
The following are the reasons.

• exception/error condition: Making an exception
program is not easy. Making an Error condition
is not easy. Sometimes it is not feasible.

• asynchronous processing: For example, making
spin/lock, spin/wait condition is not easy.

• excluding functions from coverage measures: For
example, a common routine like printk has a lot of
execution path. If a given system call uses printk,
it contains a lot of execution path which are not
covered the test programs.

We need to exclude some functions from the coverage
measurement but it is hard to find such functions. Prun-
ing unnecessary code path is difficult. If a given system
call has more than three digits of function calls, it im-
plies insufficient pruning.

It is almost impossible to run codepaths for low memory
situations. It is even questionable that such test could
even run.

2007 Linux Symposium, Volume Two • 289

System call
Func

coverage %
branch

coverage %
state

coverage %
13 time 100.0 70.0 88.24
20 getpid 0.00 100.00 0.00
20 getpid (wb) 100.00 100.00 100.00
25 stime 69.23 41.67 50.68
27 alarm 14.19 2.50 5.65
30 utim (wb) 30.77 10.79 16.73
30 utime 23.56 8.81 13.38
42 pipe 67.74 31.91 49.79
42 pipe (wb) 82.26 47.04 65.60
45 brk 23.88 8.96 12.74
45 brk (wb) 23.13 9.12 12.53
66 setsid 29.41 12.08 18.10
78 gettimeofday 87.50 52.00 70.31
79 settimeofday 77.78 45.19 57.04
82 old_select 3.96 1.78 2.67
87 swapon 19.12 9.05 12.21
90 old_mmap 7.14 2.91 3.54
91 munmap 13.74 5.78 7.66
92 truncate 4.48 1.06 1.77
93 ftruncate 0.88 0.11 0.20

101 ioperm 19.78 8.84 10.91
103 syslog 5.45 1.67 2.44
104 setitimer 3.79 1.44 2.02
105 getitimer 1.35 0.45 0.61
110 iopl 100.00 50.00 81.82
115 swapoff 12.28 4.12 6.18
116 sysinfo 15.11 3.31 5.79
120 clone 19.30 6.79 9.92
121 setdomainname 7.46 1.88 3.15
124 adjtimex 5.67 1.05 1.79
125 mprotect 7.82 3.90 5.28
142 select 3.96 1.78 2.67
144 msync 1.52 0.42 0.62
147 getsid 72.73 46.67 61.70
150 mlock 2.08 0.37 0.72
151 munlock 1.66 0.31 0.56
152 mlockall 24.12 9.29 12.62
153 munlockall 1.66 0.21 0.44
162 nanosleep 31.76 13.41 18.67
163 mremap 13.83 6.21 8.71
168 poll 2.30 0.95 1.47
187 sendfile 1.01 0.11 0.19
193 truncate64 4.48 1.06 1.77
194 ftruncate64 0.88 0.11 0.2
203 setreuid 1.27 0.23 0.38
204 setregid 100.00 20.00 46.43
205 getgroups 1.54 0.25 0.41
206 setgroups 1.26 0.10 0.23
208 setresuid 1.27 0.26 0.41
209 getresuid 66.67 33.33 60.00
210 setresgid 100.00 18.42 45.16
211 getresgid 66.67 33.33 60.00
218 mincore 0.62 0.06 0.10
219 madvise 1.60 0.50 0.73

Table 1: Summary of coverage of tests %

System call
Func

coverage %
branch

coverage %
state

coverage %
13 time 75.00 60.00 82.35
20 getpid 100.00 100.00 100.00
25 stime 61.54 35.42 47.95
27 alarm 53.45 15.58 25.03
30 utime 28.85 9.83 15.27
42 pipe 77.42 44.08 61.32
45 brk 13.43 6.76 8.88
66 setsid 23.53 7.92 12.76
78 gettimeofday 87.50 44.00 67.19
79 settimeofday 66.67 32.69 45.77
82 old_select No exist No exist No exist
87 swapon 29.08 11.40 16.80
90 old_mmap 17.41 11.25 13.11
91 munmap 21.15 9.45 13.24
92 truncate 19.77 6.21 9.73
93 ftruncate 15.48 4.38 7.22

101 ioperm 4.27 1.56 2.02
103 syslog 26.32 13.64 14.13
104 setitimer 48.44 11.01 21.05
105 getitimer 67.86 24.65 40.64
110 iopl 100.00 100.00 84.62
115 swapoff 20.61 5.90 9.75
116 sysinfo 86.96 40.35 59.06
120 clone 27.52 11.48 16.80
121 setdomainname 100.00 50.00 71.43
124 adjtimex 57.14 16.18 26.49
125 mprotect 11.53 5.70 7.57
142 select 10.88 4.72 6.61
144 msync 5.50 2.45 3.25
147 getsid 72.73 26.67 48.94
150 mlock 20.60 8.39 12.23
151 munlock 5.32 3.12 3.76
152 mlockall 17.82 7.08 9.88
153 munlockall 2.31 0.39 0.69
162 nanosleep 58.82 15.16 25.32
163 mremap 17.57 7.68 11.04
168 poll 6.12 1.86 3.13
187 sendfile 12.77 3.72 6.05
193 truncate64 No exist No exist No exist
194 ftruncate64 No exist No exist No exist
203 setreuid 11.76 4.08 5.69
204 setregid 100.00 96.43 96.43
205 getgroups 83.33 40.00 60.78
206 setgroups 9.43 2.95 4.55
208 setresuid 10.92 4.14 5.68
209 getresuid 66.67 50.00 80.00
210 setresgid 100.00 68.42 96.88
211 getresgid 66.67 50.00 80.00
218 mincore 13.57 4.85 7.04
219 madvise 11.43 4.03 6.15

Table 2: Summary of coverage of tests (LTP)%

290 • Regression Test Framework and Kernel Execution Coverage

In spin lock situations, program code normally runs
through locked side path. It is hard to prepare condi-
tions for competing locks.

Making race condition is also hard to test.

There is a common function called from gettimeofday
/ settimeofday. In this common function, paths are
uniquely determined by get / set. So other execution
paths have never been executed.

5 Discussion

5.1 Kernel Tests – Writing a Good Test is Very
Hard

5.1.1 Test Coverage

Writing good kernel tests is very difficult. Our data
shows that the execution coverage is low. As discussed
above, it is very hard to increase the execution coverage.

5.1.2 man Pages are Not Enough

Some man pages do not have enough detail information.
For example, utime does not have a description of error
return values.

If we don’t have clear definition, we can not determine
if the test result is OK or NG.

5.1.3 Behavior of 2.4 vs. 2.6

2.6 introduced more strict parameter checking. We dis-
covered a condition where 2.4 did not report errors but
2.6 did. (We discovered implementation-dependent in-
compatibility.)

For example, settimeofday second had loose error
checking, but 2.6 introduced more strict error checking.

We think fixing a bug is important but changing behav-
ior may introduce other incompatibility. So we need to
know as early as possible to assess it.

5.2 Finding Incompatibility

For portability, middleware developers should prefer-
ably not be using implementation-dependent and unde-
fined functions. However there are cases when such
functions are used without intention.

There is a large hidden cost to avoid unintended intro-
duction of incompatibility. It is said that the most costly
activity in development of commercial software is the
maintenance of backward compatibility.

Crackerjack detects not only unintended incompatibili-
ties, but also intended incompatibilities. Both are im-
portant for notification to middleware developers. It is
important to notify the changes in behavior, in a timely
manner. We can detect behavior diffs across versions.

For example, the memory range acquired from brk()
is static but the memory range is randomized by turning
on the exec shield. Crackerjack detects such a specifica-
tion change.

We can write user-defined compare program not only
simple OK/NG but allows some statistical allowance.

6 Related Work

6.1 LTP

LTP (Linux Test Project) is a set of Linux test programs
which includes the Linux kernel test, stress tests, bench-
mark tests, and so on. LTP is a comprehensive test suite
but it is not intended to be a regression test suite.

The Linux kernel test validates the POSIX definition of
the kernel therefore it does not cover features like im-
plementation defined, implementation dependent, and
or undefined functionality.

On the other hand, crackerjack is a test harness and tries
to capture all execution behavior and difference between
each version. Such behavior includes not only standard
features but also implementation defined, implementa-
tion dependent, and undefined by the standard.

Crackerjack finds the diff of implementation behavior.

We can integrate crackerjack with the LTP. For example,
adding some regression tests to LTP and invoke them
from crackerjack.

2007 Linux Symposium, Volume Two • 291

6.2 gcov/lcob

The gcov/lcob is a coverage tool. There is a kernel patch
to measure the test coverage of the Linux kernel. The
gcov uses gcc to get the coverage data but you need to
patch the kernel.

The btrax uses Intel’s last branch record capability and
you don’t need any patch nor rebuild kernel. So you can
measure your standard kernel without rebuilding kernel.

6.3 autotest

The autotest is a harness program of invoking several
tests program including LTP, benchmark programs and
so on.

We can plug crackerjack into autotest.

7 Future Work

7.1 Kernel Development Process

We believe finding incompatibility in an early stage is
very important and all of us can get much benefit from
it.

It is good thing to run regression tests on every kernel
release. Adding this practice into the kernel develop-
ment process is our big challenge. We need to show our
benefit to the kernel community and convince them to
use it.

7.2 Expanding the Area

The concept of regression testing is very simple, just
find the diff of the implementation between releases.
Crackerjack can be used on other types of software in-
terfaces, for example, the /proc file system, glibc, and
so on.

The system calls are very stable and we don’t see much
incompatibility in them. However, /proc file system is
much more flexible, so we may easily find some incom-
patibility.

7.3 Crackerjack

A richer set of default compare programs for crackerjack
is needed. Today we have to add compare programs if
the default does not match your needs.

We need methodology to relieve the test program devel-
opers. It might be a test pattern, convention or environ-
ment.

Crackerjack has to record system information, environ-
ment, and reproducible information.

Current development focuses on regression test frame-
work and test coverage tool. Extending the test to all of
Linux kernel functions, and sustained execution of re-
gression tests, would wait until the next project.

7.4 Community Activity

Our development is supported by a working group of
Japan OSS promotion forum which consists of private
sector and public sector. There is a collaboration with
China and Korea groups too.

We’d like to expand this activity with the Linux and test
community.

8 Acknowledgements

This project is supported by the Information Technology
Promotion Agency (IPA), Japan.

We would like to thank my colleagues and their con-
tributions. Satoshi Fujiwara (Hitachi) implements the
btrax. Takahiro Yasui (Hitachi) and Masato Taruishi
(Red Hat KK) wrote kernel tests and measured the
Linux kernel execution and the branch coverage. Kazuo
Yagi (Miracle Linux) implements the crackerjack.

The project team: Hitachi team; Satoshi Fujiwara
(btrax), Takahiro Yasui (kernel test programs), Hisashi
Hashimoto, Yumiko Sugita, and Tomomi Suzuki.

Miracle Linux team; Kazuo Yagi (crackerjack and ker-
nel test programs), Ryo Yanagiya, and Hiro Yoshioka.

Red Hat KK team; Masato Taruishi (kernel test pro-
grams) and Toshiyuki Takamiya.

292 • Regression Test Framework and Kernel Execution Coverage

References

[1] Linux Test Project
http://ltp.sourceforge.net/

[2] autotest
http://test.kernel.org/autotest/

[3] ABAT http://test.kernel.org

[4] Test Tools Wiki(OSS Testing Summit)
http://developer.osdl.org/dev/test_

tools/index.php/Main_Page

[Eric Raymond] The Cathedral and the Bazaar
http://www.catb.org/~esr/writings/

cathedral-bazaar/cathedral-bazaar

[5] Ruby on Rails
http://www.rubyonrails.org/

Appendix:

A crackerjack – Getting Started

A.1 Get the Code and make

The latest source code is always available at
https://crackerjack.svn.sourceforge.
net/svnroot/crackerjack/

You can get it by Subversion. For example, see the Fig-
ure 4 “Getting Source code and make.”

$ svn co \
https://crackerjack.svn.sourceforge.net/svnroot/crackerjack/

A crackerjack/trunk
A crackerjack/trunk/crackerjack
(...snip...)
Checked out revision 477.

$ make
(...snip...)

Figure 4: Getting Source Code and make

If a test program has compiler errors, then try make
-k. Some system calls are not available in old Linux
kernels, for example, 2.6.9 does not have mkdirat, mkn-
odat etc.

$ su -

Password:

cd /usr/src/crackerjack/trunk/crackerjack/

./crackerjack

crackerjack>h
number push test program to stack
d Delete(pop) stack
e register test program result

on stack as Expected result
h help
l List the test programs
p Print stack
x eXecute test program on stack

Figure 5: Invoke crackerjack

crackerjack>l
0000) access
0001) adjtimex
0002) adjtimex/whitebox
0003) alarm
...

Figure 6: List the Tests Command

A.2 Invoke crackerjack

Become the root user and run crackerjack.

Read help with ’h’ command. (See Figure 5)

List the test programs with ’l’ command. (See Figure 6)

Push the test programs to the stack with “number” which
corresponds to the test program you want. You can look
the contents of stack with p command, and pop the test
programs from stack with d command.

Execute the test program on stack with the ’x’ com-
mand. (See Figure 7.)

Quit the crackerjack with the ’q’ command. (See Figure
8.)

A.3 Run in Non-interactive way

You can execute test programs from a file which indi-
cates the order of tests (order file). (See Figure 9.)

You can create an order-file using the ’l’ command sim-
ilar to the following then execute the test. (See Figure
10.)

2007 Linux Symposium, Volume Two • 293

crackerjack>1

1

crackerjack>2

1 2

crackerjack>3

1 2 3

crackerjack>4

1 2 3 4

crackerjack>5

1 2 3 4 5

crackerjack>x
Action SystemCallName Id
X adjtimex 20070412133111
X adjtimex/whitebox 20070412133111
X alarm 20070412133111
X alarm/whitebox 20070412133111
X brk/basic 20070412133111

Figure 7: Execute Tests

crackerjack>q
#

Figure 8: Quit with the ’q’ Command

A.4 GUI mode

Invoke the GUI server similar to the following then use a
web browser to access localhost:3000. (See Figure 11.)

You may need to install the Ruby on Rails.

B btrax – Getting Started

B.1 Basic Concept

This program (btrax) traces the branch executions of the
target program, analyzes the trace log file, and displays
coverage information and execution path. It’s possible
to trace it for an application program, a library, a kernel
module, and the kernel.

The btrax consists of the following commands.

./crackerjack -h
USGE: crackerjack [option] [FILE]
-l list the test programs
-x FILE execute the test program on reading order from file
-e FILE register the current result as the expected result
-c result_kerv,result_id,expected_kerv,expected_id

compare the current result to the expected result
-b execute with btrax, avaiable with -e option
-h show this help
-v show version

Figure 9: crackerjack Non-interactive Mode

./crackerjack -l > m.order
./crackrjack -x m.order

Figure 10: crackerjack Non-interactive with ’l’ and ’x’
Commands

./crackerjack-gui-server

Figure 11: crackerjack GUI Mode

1. Collect the branch trace log via bt_collect_
log,

2. Report the coverage information via
bt_coverage,

3. Report the execution path via bt_execpath,

4. Split the branch trace log by each process via bt_
split.

The btrax collects a branch trace information using In-
tel’s last branch record capability. bt_collect_log
stores the branch trace log, bt_coverage and bt_
execpath report the branch coverage and the execu-
tion path information respectively.

B.2 Coverage

The coverage information includes function coverage,
branch coverage and state coverage. Usually, it would
be displayed in address value order.

B.2.1 bt_coverage

bt_coverage analyzes the ELF files such as kernel,
module, etc. and get the branch and function-call in-
formation. Then, it analyzes the traced log(s) with this
information, and displays the coverage information.

bt_coverage tries to show the source information
such as source file name and line number, but if there
is no debug information in the ELF file, it shows only
the address value.

You can check whether the source code was executed or
not by using html output (for this, it needs debug infor-
mation in the ELF file and the source code files). Note
that inline functions and macros would not be colorized

294 • Regression Test Framework and Kernel Execution Coverage

correctly in the html files. It is because they were ex-
panded to the other functions and could not be found in
the ELF file.

You can also compare the two log files’ kernel coverage
by generating html files. Even if the log files were gen-
erated on the different kernels, bt_coverage can still
compare them.

B.2.2 Function Coverage

It displays how many functions were executed among
total functions. Displayed functions are almost compat-
ible with objdump’s output. Note that it would not show
the “function call coverage.” For example, refer to the
below chart (‘//’ means comment). (See Figure 12.)

(example source code)
funcA(); // executed once
funcB(); // executed once
...
funcB();
...
funcB();
funcC();

(then, coverage output would be...)
---- function coverage (2/3=66.67%) ----
(OK) <funcA> (1) // funcA executed once
(OK) <funcB> (1) // funcB executed once
(NT) <funcC> (0) // funcC not executed

Figure 12: Function Coverage

B.2.3 Branch Coverage

It displays how many conditional branches (i.e. both
branch and fall-through) were executed among total
ones. For example, branch coverage counting for each
coverage case is as follows. (See Figure 13.)

There is a case that the branch address would be de-
termined by indirect addressing such as “switch case”
code. In this case, it is impossible to know the branch
addresses and number of these by analyzing the ELF
file. (See Figure 14.)

We call this kind of branch as “unknown branch.” Un-
known branches are counted whether the branch was
executed or not, and are counted separate from normal
branches. In this example, if all of the switch case codes
were not executed, branch coverage would be as fol-
lows.

(example source code)
Address C Assembler

1: if (xxx) jxx LABEL
2: aaa; aaa
3: bbb; LABEL: bbb

(coverage counting for each case)

branch
(1->3)

fall-
through
(1->2)

coverage
counting

symbols

not executed not executed 0/2=0.00% NT
not executed executed 1/2=50.00% HT
executed not executed 1/2=50.00% HT
executed executed 2/2=100.00% OK

(if branch was executed 3 times, and fall-through was executed 1 time, then coverage output would

be. . .)

---- branch coverage (OK:1,HT:0,NT:0/2=100.00% UK:0/0=100.00%)

(OK) 1 [3/1] 3:2 // 1->3 3 times, and 1->2 1 time executed

Figure 13: Branch Coverage

(example source code)
Address C Assembler
------- ------------------- -------------------

1: switch (xxx) { jmp *(%eax)
2: case 0: aaa; aaa
3: break; jmp LABEL
4: case 1: bbb; bbb
5: break; jmp LABEL
6: case 2: ccc; ccc
7: break; LABEL:
8: }

Figure 14: Branch Coverage

---- branch coverage (OK:0,HT:0,NT:0/0=100.00% UK:0/1=0.00%)
(UN) 1 [0/x] ----------:xxxxxxxxxxx // 1 jumps nowhere

Or, if the codes of the “case 0” and “case 2” were both
executed 3 times, then branch coverage would be as fol-
lows.

---- branch coverage (OK:0,HT:0,NT:0/0=100.00% UK:1/1=100.00%)
(UT) 1 [3/x] 2:xxxxxxxxxxx // 1->2 executed 3 times
(UT) 1 [3/x] 6:xxxxxxxxxxx // 1->6 executed 3 times

In the coverage output, you cannot check that how many
branches were executed for the unknown branches.
But each case block’s execution information would be
showed in state coverage. Although you can check that
in html output.

B.2.4 State (Basic Block) Coverage

It shows how many states (basic block) were executed
among total states. State means straight-line piece of
code without any jumps or jump targets in the middle
a.k.a. basicblock. In the previous ’switch case’ exam-
ple, if the codes of the “case 0” and “case 2” were
both executed three times, then each state and coverage
would be as follows. (See Figure 15.)

2007 Linux Symposium, Volume Two • 295

(example source code)
Address C Assembler
------- ----------------- -------------------

1: switch (xxx) { jmp *(%eax)
- - - - - - - - - - - - -// state border

2: case 0: aaa; aaa
3: break; jmp LABEL

- - - - - - - - - - - - - -
4: case 1: bbb; bbb
5: break; jmp LABEL

- - - - - - - - - - - - - -
6: case 2: ccc; ccc

- - - - - - - - - - - - - -
7: break; LABEL:
8: }

(coverage output would be...)
------ state coverage (4/5=80.00%) ------
(OK) 1 // state from address 1 was executed
(OK) 2
(NT) 4 // state from address 4 was not executed
(OK) 6
(OK) 7

Figure 15: State (basic block) Coverage

B.2.5 Function Call Tree

It means the chain of function call, for example, function
FA calls function FB, and function FB calls function FC,
and so on. If you would like to limit the coverage tar-
get to the functions which are included in function call
tree, -I option can be used. In this case, function call
tree would be displayed with other coverage informa-
tion (such as function/branch/state coverage). Example
of the function call tree is shown below. (See Figure 16.)

==== includes: sys_open ======
==== excludes: schedule,printk,dump_stack,panic,show_mem ====
==== function tree (59/498=11.85%) ======
(OK) <sys_open>:fs/open.c,1101 (3, F:498)
(OK) +-<do_sys_open>:fs/open.c,1079 (3, F:497)
(OK) +-+-<do_filp_open>:fs/open.c,874 (3, F:196)
(OK) +-+-+-<nameidata_to_filp>:fs/open.c,942 (3, F:4)
(OK) +-+-+-+-<__dentry_open>:fs/open.c,799 (3, F:3)
(NT) +-+-+-+-+-<wake_up_process>:kernel/sched.c,1521 (0, F:1)
//... snip ...
(UT) <generic_file_open>:fs/open.c,1216 (2)
(UT) <dummy_inode_follow_link>:security/dummy.c,324 (1)
//... snip ...

Figure 16: Function Call Tree

In this example, we can see that the sys_open was ex-
ecuted (it is seen as ‘OK’) 3 times and it contains 498
functions including itself (it is seen as (3, F:498)).
If the function was already displayed, then it is dis-
played with (--) symbol instead of (OK) or (NT).

A function call tree may contain unnecessary functions
for the user. In this case, it could be excluded by us-
ing -E option. You can also check that if it would be
excluded, then how many functions would be decreased
by using “F:N” information (we call it “function exclud-
ing guidance”) in the function call tree.

Function excluding guidance is also displayed in the

“function coverage,” and each function’s information is
sorted by this value.

There is the function call whose address would be de-
termined by indirect addressing such as “function call
by using function pointer.” In this case, it is impossible
to know the function address by analyzing the ELF file.
So, this kind of functions would not be displayed in the
function tree. Example of this kind of function call is
shown below.

(example source code)
Address C Assembler
------- ----------------------------------- ----------------

1: int call_function(void (*func),,,)
2: {
3: func(); call *0x84(%edx)
4: }

If you would like to include this kind of function to
the coverage target, you must check the source code
if there is no information. To improve this situation,
(bt_coverage) also analyzes the trace log(s) and
shows the functions which were executed by indirect ad-
dressing. This kind of function is displayed with (UT)
mark (we call it “function including guidance”). Read
the man page for more information.

B.3 Get the Code, Build and Install

The project home page is the following, Download the
tarball from the project page.

http://sourceforge.net/projects/
btrax/

Read the README and follow the instruction. (See
Figure 17.)

B.4 Checking System Call Coverage

In order to determine the correctness of our regression
test, we measure the execution branch coverage of tests.
The following subsections show the steps to take to mea-
sure the branch coverage using the btrax.

B.4.1 Create a program calling system call

Create a regression test which uses a system call(s).
(You can use LTP as an example.)

296 • Regression Test Framework and Kernel Execution Coverage

Build and Install.

$ cd $(WHERE_YOUR_WORK_DIRECTORY)
$ tar jxvf btrax-XXX.tar.bz2
$ cd btrax-XXX

Install the command.

$ make
$ su (input super-user password here)
make install

Create relayfs mount point.

mkdir /mnt/relay

Figure 17: Build and Install

B.4.2 Start Branch Trace

Start branch trace. (See Figure 18.) Note that
syscall_name must be defined in the kernel’s sys_
call_table.

bt_collect_log --syscall \
$(syscall_name) -d $(ODIR)\
-c $(program)

Figure 18: Start branch trace

B.4.3 Checking Coverage

To check the system call coverage summary, do the next
command. (See Figure 19.)

cd $(ODIR)
bt_coverage --ker -f \

‘echo $(ls cpu*)|sed ’s/\s\+/,/g’‘ \
-I $(syscall_name) -s

Figure 19: Checking coverage

To check the system call coverage detail, do the next
command. (See Figure 20.)

If you want to exclude the function(s) from coverage
result, use the -E option. (See Figure 21.) To check
whether the code in that system call was executed or
not, do the next. (See Figure 22.) Note that html files are
using the Javascript. If you have some trouble browsing,
check the Javascript setting.

bt_coverage --ker -f \
‘echo $(ls cpu*)|sed ’s/\s\+/,/g’‘ \
-I $(syscall_name)

Figure 20: Checking Call coverage

bt_coverage --ker -f \
‘echo $(ls cpu*)|sed ’s/\s\+/,/g’‘ \
-I $(syscall_name) \
-E schedule,dump_stack,printk

Figure 21: Excluding functions

bt_coverage --ker -f \
‘echo $(ls cpu*)|sed ’s/\s\+/,/g’‘ \
-I $(syscall_name) \
-E schedule,dump_stack,printk \
-o $(HTML_OUT_DIR) -S $(KERN_SRC_DIR)

(mozilla) file://$(HTML_OUT_DIR)/top.html

Figure 22: Excluding functions

B.4.4 Compare System Call Coverage

bt_coverage --ker \
-I $(syscall_name)\
-E schedule,dump_stack,printk \
-o $(HTML_OUT_DIR)\
-S $(KERN_SRC_DIR)\
-f ‘echo $(log1/cpu*)|sed ’s/\s\+/,/g’‘ \
--f2 ‘echo $(log2/cpu*)|sed ’s/\s\+/,/g’‘

(mozilla) file://$(HTML_OUT_DIR)/top.html

Figure 23: Comparing the system call coverage

To compare same kernel’s system call coverage, do the
next command line which uses the -S, -f and –f2 op-
tions. In this example, each log directory is log1 and
log2. (See Figure 23.)

bt_coverage --ker\
-I $(syscall_name)\
-E schedule,dump_stack,printk \
-o $(HTML_OUT_DIR)\
-u uname_r1 --u2 uname_r2\
-S src1 --S2 src2 \
-f ‘echo $(log1/cpu*)|sed ’s/\s\+/,/g’‘\
--f2 ‘echo $(log2/cpu*)|sed ’s/\s\+/,/g’‘
(mozilla) file://$(HTML_OUT_DIR)/top.html

Figure 24: Comparing the system call coverage

If you had traced different kernel’s system calls, you can
also compare these logs. To compare the different ker-
nel’s system call coverage, use the next command line
which also employs the -u option. In this example, each
log directory is log1 and log2, each kernel version is
uname_r1 and uname_r2, and each kernel source di-
rectory is src1 and src2. (See Figure 24.)

