
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Enabling Linux* Network Support of Hardware Multiqueue Devices

Zhu Yi
Intel Corp.

yi.zhu@intel.com

Peter P. Waskiewicz, Jr.
Intel Corp.

peter.p.waskiewicz.jr@intel.com

Abstract

In the Linux kernel network subsystem, the Tx/Rx
SoftIRQ and Qdisc are the connectors between the net-
work stack and the net devices. A design limitation is
that they assume there is only a single entry point for
each Tx and Rx in the underlying hardware. Although
they work well today, they won’t in the future. Modern
network devices (for example, E1000 [8] and IPW2200
[6]) equip two or more hardware Tx queues to enable
transmission parallelization or MAC-level QoS. These
hardware features cannot be supported easily with the
current network subsystem.

This paper describes the design and implementation
for the network multiqueue patches submitted to net-
dev [2] and LKML [1] mailing lists early this year,
which involved the changes for the network scheduler,
Qdisc, and generic network core APIs. It will also dis-
cuss breaking the netdev->queue_lock with fine-
grained per-queue locks in the future. At the end of the
paper, it takes the IPW2200 and E1000 drivers as an
example to illustrate how the new network multiqueue
features will be used by the network drivers.

1 A Brief Introduction for the Linux Network
Subsystem

When a packet is passed from the user space into the
kernel space through a socket, an skb (socket kernel
buffer) is created to represent that packet in the kernel.
The skb is passed through various layers of the network
stack before it is handed to the device driver for trans-
mission. Inside the Linux kernel, each network device
is represented by a struct net_device structure.
All the struct net_device instances are linked
into a doubly linked list with a single pointer list head
(called hlist); the list head is named dev_base.
The struct net_device contains all information
and function pointers for the device. Among them there

is a qdisc item. Qdisc stands for queuing discipline.
It defines how a packet is selected on the transmission
path. A Qdisc normally contains one or more queues
(struct sk_buff_head) and a set of operations
(struct Qdisc_ops). The standard .enqueue
and .dequeue operations are used to put and get pack-
ets from the queues by the core network layer. When a
packet first arrives to the network stack, an attempt to
enqueue occurs. The .enqueue routine can be a sim-
ple FIFO, or a complex traffic classification algorithm.
It all depends on the type of Qdisc the system adminis-
trator has chosen and configured for the system. Once
the enqueue is completed, the packet scheduler is in-
voked to pull an skb off a queue somewhere for trans-
mission. This is the .dequeue operation. The skb is
returned to the stack, and is then sent to the device driver
for transmission on the wire. The network packets trans-
mission can be started by either dev_queue_xmit()
or the TX SoftIRQ (net_tx_action()) depending
on whether the packet can be transmitted immediately
or not. But both routines finally call qdisc_run() to
dequeue an skb from the root Qdisc of the netdev and
send it out by calling the netdev->hard_start_
xmit() method.

When the hardware Tx queue of a network device is
full (this can be caused by various reasons—e.g., carrier
congestion, hardware errors, etc.), the driver should call
netif_stop_queue() to indicate to the network
scheduler that the device is currently unusable. So the
qdisk_restart() function of the network sched-
uler won’t try to transmit the packet (with the device’s
.hard_start_xmit() method) until the driver ex-
plicitly calls netif_start_queue() or netif_
wake_queue() to indicate the network scheduler its
hardware queue is available again. The netdev->
hard_start_xmit() method is responsible for
checking the hardware queue states. If the device
hardware queue is full, it should call netif_stop_
queue() and returns NETDEV_TX_BUSY. On the
other side, when the network scheduler receives the

• 305 •

306 • Enabling Linux Network Support of Hardware Multiqueue Devices

NETDEV_TX_BUSY as the return value for netdev->
hard_start_xmit(), it will reschedule. Note that
if a driver returns NETDEV_TX_BUSY without call-
ing netif_stop_queue() in the hard_start_
xmit() method when the hardware transmit queue is
full, it will chew tons of CPU.

For a normal network device driver, the general rules to
deal with the hardware Tx queue are:

• Driver detects queue is full and calls netif_
stop_queue();

• Network scheduler will not try to send more pack-
ets through the card any more;

• Even in some rare conditions (dev->hard_
start_xmit() is still called), calls into the
driver from top network layer always get back a
NETDEV_TX_BUSY;

• EOT interupt happens and driver cleans up the TX
hardware path to make more space so that the core
network layer can send more packets (driver calls
netif_start_queue())

• Subsequent packets get queued to the hardware.

In this way, the network drivers use netif_stop_

queue() and netif_start_queue() to provide
feedback to the network scheduler so that neither packet
starvation nor a CPU busy loop occurs.

2 What’s the Problem if the Device has Multi-
ple Hardware Queues?

The problem happens when the underlying hardware has
multiple hardware queues. Multiple hardware queues
provide QoS support from the hardware level. Wire-
less network adapters such as the Intel R© PRO/Wireless
3945ABG, Intel R© PRO/Wireless 2915ABG, and Intel R©

PRO/Wireless 2200BG Network Connections have al-
ready provided this feature in hardware. Other high
speed ethernet adapters (i.e., e1000) also provide mul-
tiple hardware queues for better packet throughput by
parallelizing the Tx and Rx paths. But the current Qdisc
interface isn’t multiple-hardware-queue aware. That is,
the .dequeue method is not able to dequeue the cor-
rect skb according to the device hardware queue states.
Take a device containing two hardware Tx queues for

an example: if the high-priority queue is full while the
low one is not, the Qdisc will still keep dequeueing
the high priority skb. But it will always fail to trans-
mit in the high-priority queue because the correspond-
ing hardware queue is full. To make the situation even
worse, netif_stop_queue() and friends are also
ignorant of multiple hardware queues. There is no way
to schedule Tx SoftIRQ based on hardware queues (vs.
based on the global netdev). For example, if the low-
priority hardware queue is full, should the driver call
netif_stop_queue() or not? If the driver does,
the high priority skbs will also be blocked (because the
netdev Tx queue is stopped). If the driver doesn’t, the
high CPU usage problem we mentioned in Section 1 will
happen when low priority skbs remain in the Qdisc.

3 How to Solve the Problem?

Since the root cause for this problem is that the network
scheduler and Qdisc do not expect the network devices
to have multiple hardware queues, the obvious fix is to
add the support for multi-queue features to them.

4 The Design Considerations

The main goal of implementing support for multiple
queues is to prevent one flow of traffic from interfer-
ing with another traffic flow. Therefore, if a hardware
queue is full, the driver will need to stop the queue.
With multiqueue, the driver should be able to stop an in-
dividual queue, and the network stack in the OS should
know how to check individual queue states. If a queue is
stopped, the network stack should be able to pull pack-
ets from another queue and send them to the driver for
transmission.

One main consideration with this approach is how the
stack will handle traffic from multiqueue devices and
non-multiqueue devices in the same system. This must
be transparent to devices, while maintaining little to no
additional overhead.

5 The Implementation Details

The following details of implementation are under dis-
cussion and consideration in the Linux community at the
writing of this paper. The concepts should remain the
same, even if certain implementation details are changed
to meet requests and suggestions from the community.

2007 Linux Symposium, Volume Two • 307

The first part of implementation is how to represent
queues on the device. Today, there is a single queue
state and lock in the struct net_device. Since
we need to manage the queue’s state, we will need a
state for each queue. The queues need to be accessible
from the struct net_device so they can be vis-
ible to both the stack and the driver. This is added to
include/linux/netdevice.h:

Inside struct net_device:

struct net_device
{

...

struct net_device_subqueue

*egress_subqueue;

unsigned long
egress_subqueue_count;

...

}

Here, the netdev has the knowledge of the queues, and
how many queues are supported by the device. For all
non-multiqueue devices, there will be one queue allo-
cated, with an egress_subqueue_count of 1. This is
to help the stack run both non-multiqueue devices and
multiqueue devices simultaneously. The details of this
will be discussed later.

When a network driver is loaded, it needs to allocate
a struct net_device and a structure represent-
ing itself. In the case of ethernet devices, the func-
tion alloc_etherdev() is called. A change to this
API provides alloc_etherdev_mq(), which allows
a driver to tell the kernel how many queues it wants to
allocate for the device. alloc_etherdev() is now a
macro that calls alloc_etherdev_mq() with a queue
count of 1. This allows non-multiqueue drivers to trans-
parently operate in the multiqueue stack without any
changes to the driver.

Ultimately, alloc_etherdev_mq() calls the new
alloc_netdev_mq(), which actually handles the
kzalloc(). In here, egress_subqueue is as-
signed to the newly allocated memory, and egress_

subqueue_count is assigned to the number of allo-
cated queues.

On the deallocation side of things, free_netdev()
now destroys the memory that was allocated for each
queue.

The final part of the multiqueue solution comes with the
driver being able to manipulate each queue’s state. If
one hardware queue runs out of descriptors for whatever
reason, the driver will shut down that queue. This oper-
ation should not prevent other queues from transmitting
traffic. To achieve this, the network stack should check
the state for the global queue state, as well as the indi-
vidual queue states, before deciding to transmit traffic
on that queue.

Queue mapping in this implementation happens in the
Qdisc, namely PRIO. The mapping is a combination of
which PRIO band an skb is assigned to (based on TC
filters and/or IP TOS to priority mapping), and which
hardware queue is assigned to which band. Once the skb
has been classified in prio_classify(), a lookup to
the band2queue mapping is done, and assigned to a
new field in the skb, namely skb->queue_mapping.
The calls to netif_subqueue_stopped() will pass
this queue mapping to know if the hardware queue to
verify is running or not. In order to help performance
and avoid unnecessary requeues, this check is done in
the prio_dequeue() routine, prior to pulling an skb
from the band. The check will be done again before the
call to hard_start_xmit(), just as it is done today on
the global queue. The skb is then passed to the device
driver, which will need to look at the value of skb->
queue_mapping to determine which Tx ring to place
the skb on in the hardware. At this point, multiqueue
flows have been established.

The network driver will need to manage the queues
using the new netif_{start|stop|wake}_

subqueue() APIs. This way full independance
between queues can be established.

6 Using the Multiqueue Features

6.1 Intel R© PRO/Wireless 2200BG Network Con-
nection Driver

This adapter supports the IEEE 802.11e standard [3] for
Quality of Service (QoS) on the Medium Access Con-
trol (MAC) layer. Figure 1 shows the hardware imple-
mentation. Before a MSDU (MAC Service Data Unit)
is passed to the hardware, the network stack maps the

308 • Enabling Linux Network Support of Hardware Multiqueue Devices

Mapping to AC

(MSDU, UP)

Transmit queues
for ACs

Per-queue EDCA
functions with
internal conclision
resolution

Figure 1: MAC level QoS implementation

frame type or User Priority (UP) to Access Category
(AC). The NIC driver then pushes the frame to the cor-
responding one of the four transmit queues according to
the AC. There are four independent EDCA (enhanced
distributed channel access) functions in the hardware,
one for each queue. The EDCA function resolves inter-
nal collisions and determines when a frame in the trans-
mit queue is permitted to be transmitted via the wireless
medium.

With the multiqueue devices supported by the network
subsystem, such hardware-level packet scheduling is
easy to enable. First, a specific PRIO Qdisc queue map-
ping for all the IEEE 802.11 wireless devices is created.
It maps the frame type or UP to AC according to the
mapping algorithm defined in [3]). With this specific
queue mapping, the IEEE 802.11 frames with higher
priority are always guaranteed to be scheduled before
the lower priority ones by the network scheduler when
both transmit queues are active at the time. In other
cases, for example, the higher priority transmit queue is
inactive while the lower priority transmit queue is active,
and the lower priority frame is scheduled (dequeued).
This is the intention because the hardware is not going
to transmit any higher priority frames at this time. When
the dev->hard_start_xmit() is invoked by the
network scheduler, the skb->queue_mapping is al-
ready set to the corresponding transmit queue index for
the skb (by the Qdisc .dequeue method). The driver
then just needs to read this value and move the skb to
the target transmit queue accordingly. In the normal

Core 1 Core 1Core 2 Core 2

E1000 network adapter

CPU 1 CPU 2

Tx queue 1 Tx queue 2

Figure 2: Mapping CPU cores to multiple Tx queues on
SMP system

cases, the queue will still remain active since the net-
work scheduler has just checked its state in the Qdisc
.dequeue method. But in some rare cases, a race
condition would still happen during this period to make
the queue state inconsistent. This is the case where the
Qdisc .requeue method is invoked by the network
scheduler.

6.2 Intel R© PRO/ 1000 Adapter Driver

This adapter with MAC types of 82571 and higher sup-
ports multiple Tx and Rx queues in hardware. A big
advantage with these multiple hardware queues is to
achieve packets transmission and reception paralleliza-
tion. This is especially useful on SMP and multi-core
systems with a lot of processes running network loads
on different CPUs or cores. Figure 2 shows an e1000
network adapter with two hardware Tx queues on a
multi-core SMP system.

With the multiqueue devices supported by the network
subsystem, the e1000 driver can export all its Tx queues
and bind them to different CPU cores. Figure 3 il-
lustrates how this is done in the e1000 multiqueue
patch [4]. The per-CPU variable adapter->cpu_
tx_ring points to the mapped Tx queue for the cur-
rent CPU. After the e1000 queue mapping has been
setup, the access for the Tx queues should always be
referenced by the adapter->cpu_tx_ring instead
of manipulating the adapter->tx_ring array di-
rectly. With spreading CPUs on multiple hardware Tx

2007 Linux Symposium, Volume Two • 309

netdev = alloc_etherdev_mq(sizeof(struct e1000_adapter), 2);
netdev->features |= NETIF_IF_MULTI_QUEUE;

...

adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);

lock_cpu_hotplug();
i = 0;
for_each_online_cpu(cpu) {

*per_cpu_ptr(adapter->cpu_tx_ring, cpu) =
&adapter->tx_ring[i % adapter->num_tx_queues];

i++;
}
unlock_cpu_hotplug();

Figure 3: E1000 driver binds CPUs to multiple hardware Tx queues

queues, transmission parallelization is achieved. Since
the CPUs mapped to different Tx queues don’t con-
tend for the same lock for packet transmission, LLTX
lock contention is also reduced. With breaking the
netdev->queue_lock into per-queue locks in the
future, this usage model will perform and scale even
better. The same parallelization is also true for packet
reception.

Comparing with the multiqueue usage model for the
hardware QoS scheduler by the wireless devices, the
e1000 usage model doesn’t require a special frame type
to queue mapping algorithm in the Qdisc. So any type
of multiqueue-aware Qdiscs can be configured on top of
e1000 hardware by the system administrator with com-
mand tc, which is part of the iproute2 [7] package.
For example, to add the PRIO Qdisc to your network
device, assuming the device is called eth0, run the fol-
lowing command:

tc qdisc add dev eth0 root \
handle 1: prio

As of the writing of this paper, there are already patches
in the linux-netdev mailing list [5] to enable the multi-
queue features for the pfifo_fast and PRIO Qdiscs.

7 Future Work

In order to extend flexibility of multiqueue network de-
vice support, work on the Qdisc APIs can be done. This
is needed to remove serialization of access to the Qdisc
itself. Today, the Qdisc may only have one transmitter
inside it, governed by the __LINK_STATE_QDISC_
RUNNING bit set on the global queue state. This bit will
need to be set per queue, not per device. Implications
with Qdisc statistics will need to be resolved, such as
the number of packets sent by the Qdisc, etc.

Per-queue locking may also need to be implemented in
the future. This is dependent on performance of higher
speed network adapters becoming throttled by the single
device queue lock. If this is determined to be a source of
contention, the stack will need to change to know how
to independently lock and unlock each queue during a
transmit.

8 Conclusion

The multiqueue devices support for network scheduler
and Qdisc enables modern network interface controllers
to provide advanced features like hardware-level packet
scheduling and Tx/Rx parallelization. As processor
packages ship with more and more cores nowadays,
there is also a trend that the network adapter hardware
may equip more and more Tx and Rx queues in the fu-
ture. The multiqueue patch provides the fundamental
features for the network core to enable these devices.

310 • Enabling Linux Network Support of Hardware Multiqueue Devices

Legal

This paper is Copyright c© 2007 by Intel Corporation. Re-
distribution rights are granted per submission guidelines; all
other rights are reserved.

*Other names and brands may be claimed as the property of
others.

References

[1] Linux kernel mailing list.
linux-kernel@vger.kernel.org.

[2] Linux network development mailing list.
linux-netdev@vger.kernel.org.

[3] IEEE Computer Society. LAN/MAN Committee.
IEEE Standard for Information technology –
Telecommunications and information exchange
between systems – Local and metropolitan area
networks – Specific requirements Part 11: Wireless
LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications Amendment 8: Medium
Access Control (MAC) Quality of Service
Enhancements. 3 Park Avenue New York, NY
10016-5997, USA, November 2005.

[4] Peter P Waskiewicz Jr. E1000 example
implementation of multiqueue network device api.
http:
//marc.info/?l=linux-netdev&m=
117642254323203&w=2.

[5] Peter P Waskiewicz Jr. Multiqueue network device
support implementation. http:
//marc.info/?l=linux-netdev&m=
117642230823028&w=2.

[6] James Ketrenos and the ipw2200 developers.
Intel R© PRO/Wireless 2200BG Driver for Linux.
http://ipw2200.sf.net.

[7] Alexey Kuznetsov and Stephen Hemminger.
Iproute2: a collection of utilities for controlling
TCP / IP networking and Traffic Control in Linux.
http://linux-net.osdl.org/index.
php/Iproute2.

[8] John Ronciak, Auke Kok, and the e1000
developers. The Intel R© PRO/10/100/1000/10GbE
Drivers. http://e1000.sf.net.

