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Abstract

In this paper we present a concurrent pagecache for
Linux, which is a continuation of the existing lockless
pagecache work [5].

Currently the pagecache is protected by a reader/writer
lock. The lockless pagecache work focuses on removing
the reader lock, however, this paper presents a method to
break the write side of the lock. Firstly, since the page-
cache is centered around the radix tree, it is necessary to
alter the radix tree in order to support concurrent mod-
ifications of the data structure. Secondly, we adapt the
pagecache, by removing all non-radix tree consumers
of the lock’s protection, and extend the pageflag, intro-
duced by the lockless pagecache, into a second per page
lock. Then we can fully utilize the radix tree’s new func-
tionality to obtain a concurrent pagecache. Finally, we
analyze the improvements in performance and scalabil-
ity.

1 Introduction

In order to provide some background for this work, we
will give a quick sketch of the Linux memory manage-
ment. For a more in depth treatment see Mel Gorman’s
excellent book on the subject [2].

1.1 Pagecache

As we know, in Linux, the pagecache caches on-disk
data in memory per file. So the Linux pagecache
stores and retrieves disk pages based on the (inode,
offset)-tuple. This per inode page-index is imple-
mented with a radix tree [3].

The typical consumer of this functionality is the VFS,
Virtual File-System. Some system-interfaces, such as
read(2) and write(2), as well as mmap(2), op-
erate on the pagecache. These instantiate pages for the

pagecache when needed, after which, the newly allo-
cated pages are inserted into the pagecache, and possi-
bly filled with data read from disk.

1.1.1 Page Frames

Each physical page of memory is managed by a
struct page. This structure contains the minimum
required information to identify a piece of data, such as
a pointer to the inode, and the offset therein. It also con-
tains some management state, a reference counter for
instance, to control the page’s life-time, as well as vari-
ous bits to indicate status, such as PG_uptodate and
PG_dirty. It is these page structures which are in-
dexed in the radix tree.

1.1.2 Page Reclaim

In a situation when a free page of memory is requested,
and the free pages are exhausted, a used page needs to
be reclaimed. However the pagecache memory can only
be reclaimed when it is clean, that is, if the in-memory
content corresponds to the on-disk version.

When the page is not clean, it is called dirty, and requires
data to be written back to disk. The problem of finding
all the dirty pages in a file is solved by tags, which is a
unique addition to the Linux radix tree (see Section 2.1).

1.2 Motivation

The lockless pagecache work by Nick Piggin [5] shows
that the SMP scalability of the pagecache is greatly im-
proved by reducing the dependency on high-level locks.
However, his work focuses on lookups.

While lookups are the most frequent operation per-
formed, other operations on the pagecache can still form
a significant amount of the total operations performed.
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Therefore, it is necessary to investigate the other opera-
tions as well. They are:

• insert an item into the tree;

• update an existing slot to point at a new item;

• remove an item from the tree;

• set a tag on an existing item;

• clear a tag on an existing item.

2 Radix Tree

The radix tree deserves a thorough discussion, as it is
the primary data structure of the pagecache.

The radix tree is a common dictionary-style data struc-
ture, also know as Patricia Trie or crit bit tree. The Linux
kernel uses a version which operates on fixed-length in-
put, namely an unsigned long. Each level repre-
sents a fixed number of bits of this input space (usually
6 bits per tree level - which gives a maximum tree height
of d64/6e = 11 on 64-bit machines). See Figure 1 for
a representation of a radix tree with nodes of order 2,
mapping an 8-bit value.
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Figure 1: 8-bit radix tree

2.1 Tags

A unique feature of the Linux radix tree is its tags-
extension. Each tag is basically a bitmap index on top
of the radix tree. Tags can be used in conjunction with
gang lookups to find all pages which have a given tag
set within a given range.

The tags are maintained in per-node bitmaps, so that on
each given level we can determine whether or not the
next level has at least a single tag set. Figure 2 shows
the same tree as before, but now with two tags (denoted
by an open and closed bullet respectively).
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Figure 2: 8-bit radix tree with 2 bitmap indices

2.2 Concurrency Control

Traditionally, the radix tree is locked as a whole, and
does not support concurrent operations. Lock con-
tention of this high-level lock is where the scalability
problems come from.

Linux currently uses a reader/writer lock, called tree_
lock, to protect the tree. However, on large SMP ma-
chines it still does not scale properly due to cache line
bouncing; the lock also fully serialises all modifications.

2.3 RCU Radix Tree

The RCU radix tree enables fully concurrent lookups
(cf. [4]), which is done by exploiting the Read-Copy-
Update technique [1].

RCU basically requires us to atomically flip pointers
from one version of a (partial) data structure to a new
version, while it will keep the old one around until the
system passes through a quiescent state. At this point
it is guaranteed that there are no more users of the old
structure, and therefore it can be freed safely.

However, the radix tree structure is sufficiently static, so
that often modifications are nothing but a single atomic
change to the node. In this case we can just keep using
the same node.
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The radix-tree modifications still need to be serialised
with respect to each other. The lookups, however, are
no longer serialised with respect to modifications.

This allows us to replace the reader/writer lock with a
regular one, and thus reduce the cache-line bouncing by
not requiring an exclusive access to the cache line for
the lookups.

2.4 Concurrent Radix Tree

With lookups fully concurrent, modifying operations
become a limiting factor. The main idea is to ‘break’
the tree lock into many small locks.1

The obvious next candidate for locking would be the
nodes.

When we study the operations in detail, we see that they
fall into two categories:

• uni-directional;

• bi-directional.

The most simple of the two is the uni-directional oper-
ations; they perform only a single traversal of the tree:
from the root to a leaf node. These include: insert, up-
date and set tag.

The bi-directional operations are more complex, since
they tend to go back up the tree after reaching the leaf
node. These are the remaining operations: remove and
clear tag.

2.4.1 Ladder Locking aka Lock-Coupling

This technique, which is frequently used in the database
world, allows us to walk a node-locked tree in a sin-
gle direction (bi-directional traffic would generate dead-
locks).

If all modifiers alter the tree top-to-bottom, and hold a
lock on the node which is being modified, then walk-
ing down is as simple as taking a lock on a child, while

1Ideally we reduce the locks so far that we end up with single
atomic operations. However tags and deletion (the back tracking op-
erations) seem to make this impossible; this is still being researched.

holding the node locked. We release the node lock as
soon as the child is locked.

In this situation concurrency is possible, since another
operation can start its descent as soon as the root node
is unlocked. If their paths do not have another node in
common, it might even finish before the operation which
started earlier. The worst case, however, is pipelined
operation, which is still a lot better than a fully serialised
one.

2.4.2 Path Locking

Obviously, this model breaks down when we need to
walk back up the tree again, for it will introduce cyclic
lock dependencies. This implies that we cannot release
the locks as we go down, which will seriously hinder
concurrent modifications.

An inspection of the relevant operations shows that the
upwards traversal has distinct termination conditions. If
these conditions were reversed, so that we could posi-
tively identify the termination points during the down-
ward traversal, then we could release all locks upwards
of these points.

In the worst case, we will hold the root node lock, yet for
non-degenerate trees the average case allows for good
concurrency due to availability of termination points.

clear tag Clearing a tag in the radix tree involves
walking down the tree, locating the item and clearing
its tag. Then we go back up the tree clearing tags, as
long as the child node has no tagged items.

Thus, the termination condition states:

we terminate the upward traversal if we en-
counter a node, which still has one or more
entries with the tag set after clearing one.

Changing this condition, in order to identify the termi-
nation points during downwards traversal, gives:

the upwards traversal will terminate at nodes
which have more tagged items than the one
we are potentially clearing.

So, whenever we encounter such a node, it is clear that
we will never pass it on our way back up the tree, there-
fore we can drop all the locks above it.
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remove Element removal is a little more involved: we
need to remove all the tags for a designated item, as well
as remove unused nodes. Its termination condition cap-
tures both of these aspects.

The following termination condition needs to be satis-
fied when walking back up the tree:

the upward traversal is terminated when we
encounter a node which is not empty, and
none of the tags are unused.

The condition, identifying such point during the down-
ward traversal, is given by:

we terminate upwards traversal when a node
that has more than two children is encoun-
tered, and for each tag it has more items than
the ones we are potentially clearing.

Again, this condition identifies points that will never be
crossed on the traversal back up the tree.

So, with these details worked out, we see that a node-
locked tree can achieve adequate concurrency for most
operations.

2.4.3 API

Concurrent modifications require multiple locking con-
texts and a way to track them.

The operation that has the richest semantics is radix_
tree_lookup_slot(). It is used for speculative
lookup, since that requires rcu_dereference() to
be applied to the obtained slot. The update operation
is performed using the same radix tree function, but by
applying rcu_assign_pointer() to the resulting
slot.

When used for update, the encompassing node should
still be locked after return of radix_tree_lookup_
slot(). Hence, clearly, we cannot hide the locking in
the radix_tree_*() function calls.

Thus we need an API which elegantly captures both
cases; lookup and modification.

We also prefer to retain as much of the old API as pos-
sible, in order to leave the other radix tree users undis-
turbed.

Finally, we would like a CONFIG option to disable the
per-node locking for those environments where the in-
creased memory footprint of the nodes is prohibitive.

We take the current pattern for lookups as an example:

struct page **slot, *page;

rcu_read_lock();
slot = radix_tree_lookup_slot(

&mapping->page_tree, index);
page = rcu_dereference(*slot);
rcu_read_unlock();

Contrary to lookups, which only have global state (the
RCU quiescent state), the modifications need to keep
track of which locks are held. As explained before, this
state must be external to the operations, thus we will
need to instantiate a local context to track these locks.

struct page **slot;
DEFINE_RADIX_TREE_CONTEXT(ctx,

&mapping->page_tree);

radix_tree_lock(&ctx);
slot = radix_tree_lookup_slot(

ctx.tree, index);
rcu_assign_pointer(*slot, new_page);
radix_tree_unlock(&ctx);

As can be seen above, radix_tree_lock() oper-
ation locks the root node. By giving ctx.tree as
the tree root instead of &mapping->page_tree, we
pass the local context on, in order to track the held locks.
This is done by using the lower bit of the pointer as a
type field.

Then we adapt the modifying operations, in order to
move the lock downwards:

void **radix_tree_lookup_slot(
struct radix_tree *root,
unsigned long index)

{
...
RADIX_TREE_CONTEXT(context, root);
...
do {

...
/* move the lock down the tree */
radix_ladder_lock(context, node);
...

} while (height > 0);
...

}
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The RADIX_TREE_CONTEXT() macro extracts the con-
text and the actual root pointer.

Note that unmodified operations will be fully exclusive
because they do not move the lock downwards.

This scheme captures all the requirements mentioned at
the beginning of this section. The old API is retained
by making the new parts fully optional; and by mov-
ing most of the locking specific functionality into a few
macros and functions, it is possible to disable the fine
grained locking at compile time using a CONFIG op-
tion.

3 Pagecache Synchronisation

The lockless pagecache paper [5] discusses the page-
cache synchronisation in terms of guarantees provided
by the read and write side of the pagecache lock. The
read side provides the following guarantees (by exclud-
ing modifications):

• the existence guarantee;

• the accuracy guarantee.

The write side provides one additional guarantee (by be-
ing fully exclusive), namely:

• the no-new-reference guarantee.

The existence guarantee ensures that an object will ex-
ist during a given period. That is, the struct page
found must remain valid. The read lock trivially guar-
antees this by excluding all modifications.

The accuracy guarantee adds to this by ensuring that
not only will the object stay valid, but it will also stay
in the pagecache. The existence only avoids dealloca-
tion, while the accuracy ensures that it keeps referring
to the same (inode, offset)-tuple during the en-
tire time. Once again, this guarantee is provided by the
read lock by excluding all modifications.

The no-new-reference guarantee captures the fully ex-
clusive state of the write lock. It excludes lookups from
obtaining a reference. This is especially relevant for el-
ement removal.

3.1 Lockless Pagecache

The lockless pagecache focuses on providing the guar-
antees, introduced above, in view of the full concurrency
of RCU lookups. That is, RCU lookups are not excluded
by holding the tree lock.

3.1.1 Existence

The existence guarantee is trivially satisfied by observ-
ing that the page structures have a static relation with
the actual pages to which they refer. Therefore they are
never deallocated.

A free page still has an associated struct page,
which is used by the page allocator to manage the free
page. A free page’s reference count is 0 by definition.

3.1.2 Accuracy

The accuracy guarantee is satisfied by using a
speculative-get operation, which tries to get a reference
on the page returned by the RCU lookup. If we did ob-
tain a reference, we must verify that it is indeed the page
requested. If either the speculative get, or the verifica-
tion fails, e.g. the page was freed and possibly reused
already, then we retry the whole sequence.

The important detail here is the try-to-get-a-reference
operation, since we need to close a race with freeing
pages, i.e. we need to avoid free pages from temporarily
having a non-zero reference count. The reference count
is modified by using atomic operations, and to close the
race we need an atomic_inc_not_zero() opera-
tion, which will fail to increment when the counter is
zero.

3.1.3 No New Reference

The no-new-reference guarantee is met by introducing a
new page flag, PG_nonewrefs, which is used to syn-
chronise lookups with modifying operations. That is,
the speculative get should not return until this flag is
clear. This allows atomic removal of elements which
have a non-zero reference count (e.g. the pagecache it-
self might still have a reference).
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3.1.4 Tree Lock

When we re-implement all lookup operations to take
advantage of the speculative get, and re-implement the
modifying operations to use PG_nonewrefs, then the
read-side of the tree_lock will have no users left.
Hence we can change it into a regular spinlock.

3.2 Concurrent Pagecache

The lockless pagecache leaves us with a single big lock
serialising all modifications to the radix tree. However,
with the adaptations to the radix tree, discussed in Sec-
tion 2.4, the serialisation, required to meet the synchro-
nisation guarantees of Section 3, is per page.

3.2.1 PG_nonewrefs vs. PG_locked

Since we need to set/clear PG_nonewrefs around
most modifying operations, we might as well do it
around all modifying operations, and change PG_
nonewrefs into an exclusion primitive, which seri-
alises each individual pagecache page modification.

We can’t reuse PG_locked for this because, they have
a different place in the locking hierarchy.

inode->i_mutex
inode->i_alloc_sem
mm->mmap_sem

PG_locked
mapping->i_mmap_lock

anon_vma->lock
mm->page_table_lock or pte_lock

zone->lru_lock
swap_lock

mmlist_lock
mapping->private_lock
inode_lock

sb_lock
mapping->tree_lock

Figure 3: mm locking hierarchy

Figure 3 represents the locking hierarchy. As we can
see, PG_locked is an upper level lock, whereas the
tree_lock (now to be replaced by PG_nonewrefs)
is at the bottom.

Also, PG_locked is a sleeping lock, whereas tree_
lock must be a spinning lock.

3.2.2 Tree-Lock Users

Before we can fully remove the tree_lock, we need
to make sure that there are no other users left.

A close scrutiny reveals that nr_pages is also seri-
alised by the tree_lock. This counter needs to pro-
vide its own serialisation, for we take no lock covering
the whole inode. Changing it to an atomic_long_t
is the easiest way to achieve this.

Another unrelated user of the tree lock is architecture
specific dcache flushing. However, since its use of the
tree lock is a pure lock overload, it does not depend on
any other uses of the lock. We preserve this usage and
rename the lock to priv_lock.

3.2.3 No New Reference

The lockless pagecache sets and clears
PG_nonewrefs around insertion operations, in
order to avoid half inserted pages to be exposed to
readers. However, the insertion could be done without
PG_nonewrefs by properly ordering the operations.

On the other hand, the deletion fully relies on PG_
nonewrefs. It is used to hold off the return of the
speculative get until the page is fully removed. Then
the accuracy check, after obtaining the speculative refer-
ence, will find that the page is not the one we requested,
and will release the reference and re-try the operation.
We cannot rely on atomic_inc_not_zero() fail-
ing in this case, because the pagecache itself still has a
reference on the page.

By changing PG_nonewrefs into a bit-spinlock and
using it around all modifying operations, thus serialising
the pagecache on page level, we satisfy the requirements
of both the lockless and the concurrent pagecache.

4 Performance

In order to benchmark the concurrent radix tree, a new
kernel module is made. This kernel module exercises
the modifying operations concurrently.

This module spawns a number of kernel threads, each
of which applies a radix tree operation on a number of
indices. Two range modes were tested: interleaved and
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sequential. The interleaved mode makes each thread it-
erate over the whole range, and pick only those elements
which match i mod nr_threads = nr_thread. The se-
quential mode divides the full range into nr_thread sep-
arate sub ranges.

These two patterns should be able to highlight the im-
pact of cache-line bouncing. The interleaved pattern has
a maximal cache-line overlap, whereas the sequential
pattern has a minimal cache-line overlap.

4.1 Results

Here we present results obtained by running the new
kernel module, mentioned above, on a 2-way x86-64
machine, over a range of 16777216 items. The numbers
represent the runtime (in seconds).

The interleaved mode gives:

operation serial concurrent gain
insert 16.006 19.485 -22%
tag 14.989 15.538 -4%
untag 17.515 16.982 3%
remove 14.213 16.506 -16%

The sequential mode gives:

operation serial concurrent gain
insert 15.768 14.792 6%
tag 15.110 14.581 4%
untag 18.138 15.027 17%
remove 14.607 16.250 -11%

As we see from the results, the lock induced cache-line
bouncing is a real problem, even on small SMP systems.
The locking overhead is not prohibitive however.

5 Optimistic Locking

Now that the pagecache is page-locked, and the basic
concurrency control algorithms are in place, effort can
be put into investigating more optimistic locking rules
for the radix tree.

For example, for the insertion we can do an RCU lookup
of the lowest possible matching node, then take its lock

and verify that the node is still valid. After this, we
continue the operation in a regular locked fashion. By
doing this we would avoid locking the upper nodes in
many cases, and thereby significantly reduce cache-line
bouncing.

Something similar can be done for the item removal:
find the lowest termination point during an RCU traver-
sal, lock it and verify its validity. Then continue as a
regular path-locked operation.

In each case, when the validation fails, the operation
restarts as a fully locked operation.

Since these two examples cover both the ladder-locking
model in Section 2.4.1, and the path-locking model in
Section 2.4.2, they can be generalised to cover all other
modifying operations.

5.1 Results

Rerunning the kernel module, in order to test the con-
current radix tree performance with this new optimistic
locking model, yields much better results.

The interleaved mode gives:

operation serial optimistic gain
insert 16.006 12.034 25%
tag 14.989 7.417 51%
untag 17.515 4.135 76%
remove 14.213 6.529 54%

The sequential mode gives:

operation serial optimistic gain
insert 15.768 3.446 78%
tag 15.110 5.359 65%
untag 18.138 4.126 77%
remove 14.607 6.488 56%

These results are quite promising for larger SMP ma-
chines.

Now we see that, during the interleaved test, the threads
slowly drifted apart, thus naturally avoiding cache-line
bouncing.
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6 Availability

This work resulted in a patch-set for the Linux kernel,
and is available at:

http://programming.kicks-ass.net/

kernel-patches/concurrent-pagecache/
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