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completely unsettled. Even if the skin depth is com-
parable to the dimension of the specimen, there will be
coupling between the microwave magnetic field and all
of the spin waves in the pathological region. No tech-
nique for calculating the skin-depth width has occurred
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to us which would not require the diagonalization of the
Hamiltonian. We have in fact verified that in a case of
practical importance in metallic ferromagnetic reso-
nance, i.e., the flat-plate specimen, position dependence
does also occur in the dipole-wave sums.
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The role of electron-electron interactions in determining the
electron-phonon interaction in metals is investigated by extending
the Bohm-Pines collective description to take into account the
ionic motion. Collective coordinates are introduced to describe
the long-range electron-ionic correlations, and it is shown by a
series of canonical transformations that these give rise to plasma
waves and to coupled electron-ion waves which correspond to
longitudinal sound waves. The dispersion relation for the sound
waves is identical with that derived by Toya and Nakajima by
self-consistent field methods. The velocity of these sound waves
is calculated from first principles for sodium and is found to be in

1. INTRODUCTION

N the coupled motion of electrons and ions in a metal,
the tendency of the electrons to screen out the field
of the ions is of primary importance. This screening
greatly influences the effective matrix element for the
electrical conductivity of the metal; it is also deter-
mining for the longitudinal sound wave velocity. The
extent and effectiveness of this screening depend, in
turn, on the electron-electron interaction in the metal.
The usual theories of metallic electrical conduction
treat these electron interactions on an independent-
particle model in which each electron is assumed to
move independently in a self-consistent field determined
by the ions and the other electrons. Often no attempt is
made to determine this self-consistent field; instead an
empirical constant is introduced to describe the elec-
tron-lattice interaction. In 1937, one of us extended the
self-consistent field method to take into account the
motion of the ions, and thus to determine the matrix
element for electron-lattice interactions.! The electron-
electron interactions were treated in the Hartree
approximation. More recently Nakajima? has given a
simple field-theoretic treatment of this problem which
also invokes the Hartree approximation and which
leads to results essentially equivalent to 4.
* This research was supported in part by the Office of Ordnance
Research, U. S. Army.
1 Now at: Palmer Physical Laboratory, Princeton University,
Princeton, New Jersey.
IAI. Bardeen, Phys. Rev. 52, 688 (1937), hereafter referred to
as2 S. Nakajima, Proceedings of the International Conference on

Theoretical Physics, Kyoto and Tokyo, September, 1953 (Science
Council of Japan, Tokyo, 1954).

good agreement with experiment. The effective matrix element
for the electron-phonon interaction is determined and is found to
be identical for long wavelengths with that found earlier by
Bardeen using a self-consistent field method which neglects
exchange and correlation effects. The agreement with the earlier
work is explained by the fact that the residual electron-electron
interaction is of quite short range, so that an independent-
particle treatment is rather well justified. The effects of Coulomb
correlations on superconductivity are likewise shown to be small,
so that the neglect of Coulomb interactions in the formulation of
the superconductivity problem is justified.

The independent-particle model has been success-
fully applied to a wide variety of problems. This
success is somewhat surprising, because the marked
correlations in electronic positions due to Coulomb
interaction and exchange have been neglected. One of
the main objects of this paper is to give a justification
for this approach to the theory of conductivity.

The question of electronic correlations is of particular
importance in the theory of superconductivity. Here
one would expect that the large Coulomb correlation
energy would play a more important role than the
relatively small electron-lattice interaction energy in
determining the transition from the normal to the
superconducting state. However, experimentally this is
not the case, as is shown by the isotope effect. We shall
show why this is to be expected on theoretical grounds,
and thereby justify the application of the independent-
particle model to the formulation of this problem.

The physical basis for the unimportance of electron-
electron correlations in conductivity and supercon-
ductivity arises from the tendency of the electrons to
stay apart from one another in such a way that the
field of a given electron is screened out within a distance
of the order of the inter-particle spacing. Bohm and
one of the authors have established this by showing
that the long-range part of the Coulomb interaction
leads only to coherent plasma oscillations of the electron
gas and may be described in terms of these oscillations.?
Energies of the plasma quanta are so high that the

3D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951); 85, 338
(1952); 92, 609 (1953); and D. Pines, Phys. Rev. 92, 626 (1953),
hereafter referred to as BP I, BP II, BP III, and P IV respectively.
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oscillations are not excited thermally. There remains
the short-range screened interaction between the afore-
mentioned electrons. This analysis shows why elec-
tron-electron collisions are not important for either
thermal or electrical conduction in metals. Abrahams*
has estimated the collision cross section and mean free
path for electrons interacting via the screened Coulomb
interaction in alkali metals. While the cross sections are
of a reasonable order of magnitude (~107'% cm?) the
scatterings possible are so greatly restricted by the
exclusion principle that collisions are infrequent. The
electron-electron mean free path is long compared with
the electron-phonon mean free path at all temperatures
of interest.

The BP collective description is extended here to
treat the coupled system of moving electrons and ions.
Plasma coordinates are introduced to take into account
the effect of electron-electron interactions on the elec-
tron-ion system. It is found that the effect of the long-
range interactions may then be described rather simply,
and explicit expressions are derived for the effective
electron-phonon matrix element and for the sound wave
frequencies. There remains the short-range electron-
electron interaction which, as we have mentioned, does
not influence the motion of a given electron appreciably,
so that it is not surprising that superconductivity is
little affected by the electronic Coulomb correlations.

The results we obtain for the influence of the elec-
tronic response on the electron-phonon interaction are
in good agreement with those obtained in A. This
problem has also been treated from another point of
view by Bohm and Staver,® who describe the ions and
electrons as a set of coupled plasmas. They used a semi-
classical approach closely related to BP II, and ob-
tained the phonon dispersion relation. Our dispersion
relation reduces to theirs in the appropriate limit.

The foregoing collective description is not applicable
in the short wavelength region (corresponding to
Fourier components of the electron-electron or electron-
phonon interaction of wave vector greater than about
the inverse particle spacing). Here the electron response
to the ionic motion is probably best accounted for
using the formulation of Nakajima. However, this
formulation should be extended to include exchange
effects, for it is precisely in this region (distances com-
parable or small compared to an electron de Broglie
wavelength) that exchange begins to play an important
role. We discuss the Nakajima method with exchange,
but do not attempt to apply it to a detailed calculation
because of the mathematical difficulties encountered in
so doing.

2. DERIVATION OF HAMILTONIAN
We shall derive here for a monatomic crystal the
Hamiltonian which will be used in the subsequent dis-

4 E. Abrahams, Phys. Rev. 95, 839 (1954).
5 D. Bohm and T. Staver, Phys. Rev. 84, 836 (1952); T. Staver,
Ph.D. thesis, Princeton University, 1952 (unpublished).
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cussion. A number of approximations are made in
order to simplify the calculations. It is assumed, as is
usually done in the Bloch theory, that the matrix
elements of the electron-lattice and Coulomb inter-
actions depend only on the difference in wave vectors
of the initial and final states. Another approximation is
that lattice waves are either longitudinal or transverse,
and that the electrons interact only with the longi-
tudinal component. Both of these amount to neglect
of anisotropic effects which greatly complicate the
equations are probably important only for detailed
quantitative calculations.
The general Hamiltonian is of the form

H=3%; (p/2m)+3; j v(xi— X))
+Hi0n-i0n+IICoul- (2.1)

where 7 runs over the valence electrons, j over the
ions, v(x;—X;) represents the electron-ion interaction,
Hon-ion includes the Coulomb and exchange repulsion
of the ion cores and Hcou the Coulomb interaction of
the electrons. There are no=ZN electrons/cm?® where Z
is the valency and N the ionic density. In order to
eliminate infinities which appear in the separate terms
of (2.1) (although not in the sum) we suppose there is
subtracted from the electron-ion interaction the inter-
action of each electron with a uniform positive charge,
from the electron-electron interaction the seli-energy
of a uniform negative charge, and from the ion-ion
interaction the self-energy of a uniform positive charge.
The sum of these adds to zero, so that the energy is
unchanged. The ion-ion interaction energy less the
self-energy of a uniform positive charge is equivalent to
the energy of the ions in a uniform negative sea,
including the self-energy of the negative charge.

We describe the electron wave function in second
quantization by occupation numbers of a set of Bloch
functions. It is assumed that the individual electrons
move in a potential ¥ (x) which is the potential of the
ions compensated by a uniform negative charge:

V(x)=3; v(x—X;)4comp. charge. (2.2)
The Bloch equation is

We have used the extended zone scheme, so that « is
not necessarily in the first Brillouin zone. A discrete
set of % values is obtained in the usual way by intro-
duction of periodic boundary conditions, with N the
number of atoms in a fundamental period of unit
volume. Creation and destruction operators, cys*, Ccs,
are defined in the usual way and obey commutation
laws for Fermi particles:

[Cx's’*;cxs]+= 5xx’6ss’- (24)
We shall omit the spin index s except where necessary

for clarity.
The departure of the ions from equilibrium positions,
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may be expressed in terms of normal coordinates,
qk" (6:17 27 3):

6Xj= (NM)—'% Zkv Qko€ko exp[}k . onj, (26)

in which e, is a unit vector in the direction of polariza-
tion of the lattice waves, taken in the same sense for k
and —k so that ¢_,=g;*. We assume that one of these
directions is longitudinal and two transverse, and that
the transverse frequencies are determined entirely from
ion-ion interactions. These assumptions are not really
valid, particularly for short wavelengths for which the
distinction between longitudinal and transverse waves
is no longer sharp. While much of the analysis can be
carried through without making these assumptions,
the slight additional generality gained does not seem
warranted by the increase in complexity of the equa-
tions. We shall use the symbol ¢, without polarization
subscript to denote the longitudinal mode. In some of
the summations, k may run out of the first zone. In
such a case, we always mean the gy for the corresponding
k in the first zone. The phonon Hamiltonian is

Hon=% 2 sone (0¥t +U2qc*qr),

where Q2 is determined solely from ion-ion interactions.
Calculation of the correct frequency, wi, which requires
inclusion of the electron-lattice interactions, is dis-
cussed later.

The remaining parts of the Hamiltonian are ex-
pressed in terms of the ¢’s. The electron-lattice inter-
action may be written

2iiv(xe— X)) =24 ;v (xi— X;?)
- (NM)_% Zk € Vv(x—Xj")qk exp[ik- on:l.

The first term may be combined with the kinetic energy
of the electrons to give

H€l: Zi [(p,Q/Zm) + V (X,{) ] = sz Encxs*cxs-

The second term of (2.8) may be expressed in terms of
the matrix elements,

2.7

(2.8)

(2.9)

oi= — (NIM)~ f Ve 5 Vo(xi— X)

Xexp[ik - X Pdr, (2.10)
assumed to be independent of x, to give
Hint= Zxks Ci+k, s*cx, stvki= Zk qukip—k; (2- 1 1)
where
Pre= Zl(s Cx—k, S*CK, sy P—k= sz Cy, S*cx—k,‘s- (2. 12)

The sum over k and « extend over all values; g; refers
to the reduced vector in the first zone. Note that
(v)*=1v_4*. The Coulomb interaction may be expressed
in the form

Heour=3% 2 & Mip—rpr, (2.13)

where for free electrons, M?=4mwe?/k% It has again
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been assumed that the matrix elements depend only
on the vector difference between initial and final states.
The Hamiltonian is now expressed in the form

H= Eion-ion+Htr+H17
where
H,=H+Hpp+Hin+Hcoul, (2.14)

and Ejen-ion is the ion-ion interaction energy for the ions
in equilibrium positions, Hi is the Hamiltonian for
transverse phonons, and the terms in H, are given by
(2.7, (2.9), (2.11), and (2.13). From now on, we shall
be concerned with the Hamiltonian H;. In Sec. III, we
discuss earlier methods for calculation of the electron-
lattice interaction by self-consistent field methods and
in Sec. 4 we introduce plasma coordinates to treat
the long-range part of the Coulomb interaction.

3. EARLIER METHODS FOR THE CALCULATION
OF Vg AND Wg

We are concerned in this section with a review of
calculations which have been made of the effect of the
shielding of the valence electrons on the interaction
potential and on the sound-wave vibrational frequencies.
For long wavelengths, the interaction of a given electron
with the ionic motion is radically altered by the field
due to the other electrons, which in the course of
responding to the ionic motion move in just such a way
as to produce a field which very nearly cancels the ionic
field. The effective matrix element for the electron-
lattice interaction, v, may be written as the sum of v°
due to the motion of the ions and v;* due to the motion
of the electrons:

(3.1)

Vo=V 0xP.

In A, w* was computed by what amounts to a Hartree
self-consistent field calculation. It was assumed that
the wave functions of the individual electrons change
adiabatically with the ion motion. Recently Toya has
determined the longitudinal sound wave frequency, wy,
using this same model.® We here give a simple derivation
of the effect of the electron response on v, and w;, which
agrees in the long wavelength limit with the foregoing
calculations. Our treatment parallels in some respects
that of Bohm and Staver.

According to (2.14) the equation of motion of the
kth sound wave amplitude is

et = —v_x'pp. (3.2)

The electronic density fluctuation p, consists of two
parts; one, p;°, associated with the motion of electrons
in the absence of a sound wave, and another, 8p; which
represents the motion of the electrons associated with
the sound wave. For pure Coulomb interactions be-
tween free electrons 6py is related to the Fourier com-
ponent of that part of the effective one-electron inter-
action potential v, associated with the electronic re-

6 T. Toya, Busseiron Kenkyu 59, 179 (1952).
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sponse v, by Poisson’s equation; k2v,°q,=4me%py, or
more generally,

0P Qe= M 20pr. (3.3)
Thus we may write for our sound-wave, g,
Gt onqe= —v_1"px", 3.4

with wy specified by the dispersion relation

wi2 =2+ M 20_ ", (35)
Equation (3.4) describes the interaction of the sound
waves with the independently moving electrons (here
described in terms of their density fluctuation p;°) and
in principle the resistance may be calculated from it.
The matrix element v,* may be simply calculated in
the Fermi-Thomas approximation.” In this approxi-
mation the electron density, p(x), is proportional to
[Ey—6V (x)]%, where Eo is the energy of an electron at
the top of the Fermi distribution and 8V (x) is the
effective potential acting on the electrons due to the
ionic motion. We then have for the density change
dp(x) associated with the sound-wave potential 6V (x),

3 2
8p(X) = —— — 8V (x). (3.6)
2E

0
We Fourier-analyze (3.6) and apply (3.1) to obtain

3 Mo 3 ) .
Opr=—~ —Ugr=—— — (U0 .
EO 2 E()

3.7

If we now compare (3.7) with (3.3), we see that the
requirement that our treatment be self-consistent yields

._vki

VP

= . (3.8)
’ 1+ (2E0/31’L0M/G2)

For long wavelengths, M;? is given by its free-electron
value, 4me?/k?, and we have

—_ 'l)ki . 132'1)()2
. (R S
1-F (B2062/300,2) 30,?

where vy is the velocity of an electron at the top of the
Fermi distribution and

(3.10)

is the square of the plasma frequency. Thus we see
that the effect of the field of the other electrons is to
screen out the “bare” electron-ion interaction within a
distance of order w,/v,. For long wavelengths the
effective matrix element for electron-phonon inter-
action is thus drastically reduced to

9= (k200%/ 3w, %) vk 3.11)
The corresponding expression for the sound-wave fre.
7 See also A. W. Overhauser, Phys. Rev. 89, 689 (1953).

wpl=4mne*/m
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quencies is
K k%vy?
wk2=9k2__v—klvkz(1— ) (3.12)
4mre? 3w ,?

Our expressions (3.9) for v and (3.12) for w; agree in
this limit with the corresponding results of A and
of Toya.

We may obtain a quite general expression for wy, if we
neglect the effect of lattice periodicity on the Q; and
and consider only Coulombic electron-ion and ion-ion
interactions. This corresponds to treating the positive
ions as a plasma; the “bare” phonon frequency is then

U= Qp?=47NZ%*/ M. (3.13)
The v are given by
v — (4nZe%i/k) (N/ M) (3.14)
We then have
wi?= k*0*Qp%/3wp?=mZv*k?/3M . (3.15)

Thus in this approximation the square of the phonon
frequency has been reduced by the same factor as the
electron-phonon interaction matrix element,® the phonon
frequency is altered from a constant to one linear in k,
with a sound velocity ¢;, which depends only on the
density and which is given by

ci=mZvo/N3M. (3.16)

Equation (3.16) was first obtained by Bohm and
Staver, and as shown by Staver® is in fairly good
agreement with the experimental observations. The
extent of this agreement (~209, for the alkali metals,
no worse than a factor of two for any metal) indicates
that one can get a good order of magnitude estimate, by
such simple Coulombic considerations. In Appendix A,
we discuss the results obtained with our more accurate
dispersion relation (3.12). It is interesting to note that
this same simplified model leads to a Sommerfeld-
Bethe interaction constant C= Ep/V2.

Nakajima’s field-theoretic derivation for v and wy
goes somewhat beyond the adiabatic approximation
but gives nearly equivalent results. We sketch his
derivation here because as we shall see, it offers the best
framework for the treatment of the short wavelength
electron-phonon interaction. Frohlich® has used a field-
theoretic method which differs in some respects. He
used an individual particle model which did not include
Coulomb interactions between the electrons. His choice
of creation and destruction operators and method of
analyzing is such as to give the correct result for his
problem when the change in the frequency from elec-
tron-phonon interactions is small. However, his dis-

8 The same shielding factor occurs because in the limit we are
considering we may write w?= k2’ (v;*+1”) /m, so that the sound
wave frequencies are proportional to the effective matrix ele-
ment vz.

9 H. Frohlich, Proc. Roy. Soc. (London) A215, 291 (1952).
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persion relation is not correct when the change in
frequency is large.

Nakajima writes the Hamiltonian, H;, in a form
equivalent to the following:

H 1= sz Excxs*cxs+% Z zone (Pk*?k+wk2q10*q1c)
+ 2k vigro—t5 Lk Miorp—it 2k (0'— 1) gror
+% Zzone (ka—wﬁ)qk*qk. (317)

A canonical transformation is made to eliminate the
first linear term in ¢,. The interaction v is determined
so as to eliminate the second linear terms in g, the
second line, and w,? is chosen so as to cancel diagonal
terms in ¢;*g in the last line.

The transformed Hamiltonian is

1= 5P 5= Hy it [,

— 1 [[H,,S],STHete. (3.18)
For S we take
S=1 > et oer f(K)gr—ig(kx)p_r].  (3.19)
The required commutators are:
>k Ec*c,ST1=1 2. (Ex— Ec)ccFcer
X[ f(kx)gr—ig(k,x)p_i]. (3.20)
[3 X (0 petoie*an),S1=1 2 afocr
X{—ihp_if(k,x)+hwgg(k,x)}. (3.21)
Lo—rpr,ST= p—+[ £, 1+ Lo, Jo- (3.22)
LouyST=12 2 1,57 {OuxrComte™ Cor—tr — Ot xiCer* ¥}
X{f (K ) g —ig(K' %) pw}.  (3.23)

Diagonal terms are obtained if k’=k. If we keep only
these, we may treat [p,S7] as a c-number. This is the
procedure which Nakajima used, and is essentially
equivalent to the Hartree approximation since there
are evidently diagonal exchange terms in p_i[px,S ]
which are neglected. In this approximation, then,

3 g Mk2[P—kPkyS]=i > Mkzp—k{"(K— k)‘”(“)}

X {f(k}K)gk_' 'Lg(k:K)P—k} .

Elimination of linear terms in ¢ and p_ in the first
line gives the following for f and g:

(3.24)

nf(k,x

g(kx)= ) ) ) (3.25)
h (Ex_ En—k) Vg

f(k,x)= (3.26)

(E,‘ - E,‘_k) 2 ﬁzwkz.

Principal parts are to be taken in the sums over the
energy denominators. Elimination of linear terms in g
from the second line then gives

2k MiH{n(x—k)—n(x)} f(kx) =% (vi—w), (3.27)
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or, substituting for f(k,x),
. (Ex— E_t) (n(x)—n(x—K))
Ui — = — M0 2
s (Bx— Ex1)*— Ban®

n(x)—n(x—k
it s "R
L x—k"'Ex_’_hwk

(3.28)

which can be solved readily to give . Terms in p_;
vanish for a symmetrical distribution, such that
n(x)=n(—x).

Finally, elimination of diagonal terms in g¢y*q: gives
the following equation for w?:

n(k—k)—n(x
Qk2_wk2= — S’U._ki'l)]c Z —)._.__)

. (3.29)
K8 Ex»—lc_'Ex_i_ﬁwlc

The x on the left refers to the reduced vector in the
first Brillouin zone. The sum 8§ on the right is over all k
which correspond to this same reduced wave vector,
so that transitions due to Umklapp processes may be
included. Contributions of electrons from different
bands, if treated separately should also be added to
the right-hand side. An alternative expression is

Qk2“ wk2 = SMk—%_ki (i)k’:— i)k) . (330)

This is of the same form as Eq. (3.5). Equation (3.28)
for the matrix element agrees with the 1937 result if
#iwr in the denominator is neglected. Since 7iw,~10"2Ep,
where Er is the Fermi energy, the term will have
practically no effect on the matrix element or frequency.

It should be noted that the Coulomb interaction be-
tween electrons still appears in the transformed Hamil-
tonian and we are still left with the problem of taking
into account correlation effects on electron motion. The
transformation does serve to introduce a set of oscil-
lators which to second order are not coupled with the
individual electrons. Scattering of electrons by oscil-
lators is accounted for by interactions which conserve
energy; i.e., those with zero energy denominators in the
expansion. When summed by taking principal parts,
these give a negligible contribution to the matrix
element.

The exchange terms which Nakajima neglects are
considered in Appendix B. Perhaps the most important
effect of these terms is to add an exchange energy, W,,
to the individual particle energy. It is known that such
a term leads to an abnormally small density of states
at the Fermi surface, and a correspondingly small low-
temperature specific heat, which is contrary to obser-
vation.’ This has been explained by the collective
description in which the fields of the individual elec-
trons are effectively screened by the other electrons.
The exchange terms are drastically reduced, and one
finds that the calculated specific heat is not far from
the free-electron value neglecting exchange.'' It is

10 T Bardeen, Phys. Rev. 50, 1098 (1936).

1 See P IV for a derivation of this result.
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likely that inclusion of the unshielded exchange energy
in the Nakajima calculation would lead to an incorrect
electron-lattice interaction for long wavelengths. We
shall show in Sec. 4 that the collective description is
such as to introduce a shielded interaction into the
calculation of the short-wavelength exchange terms,
and no exchange effects at all appear for long wave-
lengths.

There remains the question of convergence of the
expansion of the canonical transformation in a power
series in v. The transformation is such as to introduce
new individual particle wave functions which depend
on the gi’s. The expansion coefficients are, neglecting
%%w? in the denominator,

) Vi
1 (kx)>——m—

k—k— Lok

(3.31)

One may expect that the expansion will converge
rapidly if
VUG G

2 ——————(EK‘IG_EK)Z (3.32)

The v, are small and difficulty arises only from the
terms for which the energy denominators are corre-
spondingly small.

We shall now show that since principal parts are
used, terms with small energy denominators contribute
a negligible amount to the calculation of the matrix
elements and frequency. Our analysis is similar to that
of Frohlich® who suggested omitting from the trans-
formation those f(k,x) which have small energy de-
nominators, i.e., those for which

|E,i—E.| <AE. (3.33)

When the same is done in our calculation, we find that
we can choose AE large enough so that (3.32) is satisfied
and small enough to have a negligible effect on the self-
consistent field. To estimate the orders of magnitude
involved, let us replace the matrix element by an
average value, so that (3.32) becomes

BE—AE N (E)dE
[ v | Aﬁ[ f —
0 (E_Ex)2

N LEF N(E)dE

l<<1, (3.34)
«t+aE (E—E,)?

where N(E) is the density of states in energy. This is
roughly equivalent to

N (E.) | vegi| w*<AE. (3.35)
If terms which satisfy (3.33) are omitted, what is the

effect on the principal parts summation? The integral

is of order:
Er N(E)dE
f L N(B).
0

(3.36)

'K
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The omitted terms contribute roughly

BetAE N(EYAE — dN
f AR, (3.37)
BEx-a8 E—E, dE
The relative error is thus of order
2 dN AE
— (3.38)

AF~—.
N(E)dE  Er

The left-hand side of (3.35) is of order #wmax~10"4Ep
for most metals. Thus if one takes AE~10"2Ey, one
may satisfy (3.32) and at the same time not affect
appreciably the calculation of the matrix element and
vibrational frequency.

It is, however, just these omitted terms which are all
important in the theory of superconductivity.!? In fact,
the criterion for the occurrence of superconductivity is
roughly that

N (E) | 1gs | n*> Feomas. (3.39)

The conclusion is that even though the electron-lattice
interaction is so large as to give superconductivity, one
may still use the expansion in powers of v, for those
terms which give almost the entire contribution to the
matrix element and vibrational frequency. This is true
because the virtual transitions which give difficulty are
only a very small fraction of the total and do not con-
tribute abnormally.

4. COLLECTIVE DESCRIPTION OF
ELECTRON-ION INTERACTION

In this section we wish to treat the electron response
to the ionic motion by describing the electrons in terms
of the appropriate plasma variables. As pointed out.by
BP, such a description of the electrons is only appropri-
ate for long wavelengths, corresponding to 2 <k., where
k. is a critical wave vector (or the order of ko) which is
determined by minimizing the total system energy as
discussed in BP IIL. In this section we shall therefore
only apply the collective description to the long-wave-
length phonons, their interaction with the electrons,
and the long-range electron-electron interactions (all
corresponding to Fourier components with wave vectors
less than &;). We follow a procedure closely related to
that used by one of us in dealing with the electron-
electron interaction problem in the absence of ionic
motion.*

Our basic aim in the collective description is the
introduction of a new set of field variables which de-
scribe the independent plasma oscillations of the system
as a whole. We may do this by first introducing a new
field into our basic Hamiltonian, and then carrying out
a series of canonical transformations which enable us
to relate this field variable to the plasma oscillations we

2 H. Frohlich, Phys. Rev. 79, 845 (1950); J. Bardeen, Revs.
Modern Phys. 23, 261 (1951).

( 13D, Pines, Report to the Tenth Solvay Conference, Brussels
1954).



1146 J.

wish to describe. As a first step, we add a field-energy
term to our initial Hamiltonian, (2.14) so that our
Hamiltonian is now

k| <kc

(4.1)

The Py are here a quite arbitrary set of field variables,
as yet undefined, which commute with all operators
appearing in H;. In order that the energy and number
of degrees of freedom of our system remain unchanged
by this field, we must further impose a set of subsidiary
conditions on our combined system wave function:

Py=0 (|k|<E,). (4.2)

We now wish to transform to a representation in which
the P, will describe independent plasma oscillations.
In the absence of ionic motion, the px in the long-wave-
length limit describe almost free collective oscillation,
and the appropriate transformation would relate the
Py, to the p;. In our case, since the electrons also interact
with the phonons, we would expect that it is only some
linear combination of density fluctuations and phonon
field variables which would carry out uncoupled col-
lective plasma oscillation. Thus we are led to try a
canonical transformation which relates the P to both
or and the gi. The first transformation we consider is
generated by

S= 3 (—iMwp_it1ug-1)Qs,

|k|<ke

(4.3)

where Q. is the coordinate conjugate to the plasma
field momentum Py, and u, is a real constant to be
determined. After this transformation our subsidiary
condition, (4.2) becomes

e‘is/theis/”\I/ = [Pk— lep_k—I-qu_}c]‘I’ =0.
Our Hamiltonian (4.1) is transformed to

H=3Y E.c’tct+i | 2 D et (2 — ) g i}

k|<ke

(4.4)

+5 X APPit (0, we?) Qi Ok}

|k|<ke

+ > {wi—iMunyqort 2 QO

| k| <ke | k| <ke

ik
- Z MK_" ‘ (K - %k) CK*CK—Ich

k| <ke,x m

+3 > (ot g gl 2 veiqeo—s

1k[>ke | k[>ke

+3 2 Mio_ipe.

Ik|>ke

(4.5)

In obtaining this expression we have made use of the
new subsidiary condition, (4.4), and we have applied
the “random phase’ approximation of BP.* We have

14 Tf the phonon terms in (4.5) are suppressed (and uz=0), it
may be seen that the form of (4.5) is identical with the Hamil-

tonian used in BP III as the starting point for the collective
description.
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also applied the effective mass approximation, E(x)
= 1%/ 2m.15

The first three terms of our new Hamiltonian, (4.5),
describe the one-electron energy levels, the phonon
field, and the plasma field. The next three describe the
electron-phonon interaction, plasma-phonon interac-
tion, and plasma-electron interaction, while the re-
maining terms describe the short-wavelength phonons,
their interaction with the electrons, and the short-range
electron-electron interaction. We see that we have here
redescribed the long-range electron-electron interactions
in terms of the plasma oscillations, which however are
not yet “isolated,” in the sense that there remains a
plasma-electron and plasma-phonon interaction, and
the plasma field variable still appears in the subsidiary
condition. The effect of the electron-electron inter-
actions on the effective interaction matrix element and
on the sound wave frequency is contained in the uy,
which as we see measure the coupling between the
plasma waves and the phonons. The #; are simply
related to the v we introduced in the preceding section
to describe the effect of electron shielding on the wv;
we have
(4.6)

WP = — leMk

Our remaining problem is thus the determination of
and the new sound wave frequencies.

We may actually do this without explicitly solving
for the effect of the electron-plasma interaction and
plasma-phonon interaction on the problem at hand.
For, as is the case in the absence of ionic motion, the
coupling between the electrons and the plasma oscilla-
tions is weak. Furthermore, because of the great dis-
parity between the plasma frequencies and phonon
frequencies (a disparity of order m/M), the coupling
between the plasma waves and the phonons is likewise
weak. Both of these interactions may easily be taken
into account by appropriate canonical transformations;
however because of the weakness of the coupling, such
transformations will leave the relevant terms in our
Hamiltonian essentially unaltered, so we do not need
to carry them out explicitly here.

How, then, do we choose the #;? It is clear from the
discussion of the preceding section that we must choose
the u; in such a way that our treatment is self-con-
sistent. The requirement of self-consistency appears in
the following guise. In our problem the electrons and
phonons are coupled not only in the Hamiltonian (4.8)
but in the subsidiary condition (4.9) as well. The re-
quirement of self-consistency is then just the require-
ment that the coupling via the subsidiary condition be
completely equivalent to the coupling via the Hamil-

15 The use of the effective mass approximation for this problem
is discussed by J. Hubbard, Proc. Phys. Soc. (London) A67, 1058
(1954); P. Wolff, Phys. Rev. 95, 56 (1954). E. N. Adams IIL
[Phys. Rev. 98, 947 (1955)] has pointed out that interband
transitions may have an important effect. N. F. Mott [Proceed-
ings of the Tenth Solvay Conference, Brussels (1954)] has

given reasons for expecting that the free electron mass rather
than an effectual mass would appear in many cases.
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tonian. This guarantees that we introduced the correct
admixture of phonon coordinates (as determined by
the electron-phonon interaction) in the plasma oscilla-
tion amplitude. We obtain an explicit solution for the
ur, and the sound-wave frequencies wy, by carrying out a
canonical transformation which eliminates to a given
order of accuracy the electron-phonon interaction terms
in the Hamiltonian, (4.5). Our self-consistency require-
ment is then that to this same order of accuracy there
be no coupling of the sound waves to the electrons in
the transformed subsidiary condition; this will be the
case if the phonon variable no longer appears in the
transformed subsidiary condition in this order.

Our desired canonical transformation is just that
generated by (3.19), since we have identified v, with
o, —iMp_i. As before f(k,x) and g(k,x) are defined
through (3.25) and (3.26), and as discussed in the
preceding section a perturbation theory expansion in
powers of v is valid. Our transformed Hamiltonian is'®

H=Y E.c*ct3 X {p¥prtonqo)

k| <ke

+3 2 AP Pt (w0p+ ) Qr*0r)

|k[<kc

hk
- ¥ M— (x—1ik)cFoiOr
|k|<ke,x m

+3 X (0ot g+ 2 wkigep—

K[>k [KI>ke
+3 > MiPowo—s
P
-3 X wmaraag(kx).  (4.7)
| k|<kec,x

The dispersion relation for our “uncoupled” phonons is

—k—-
wp?= Q2 — w2032 Z ”(K ) ”(K)

——  (4.8a)
© hopt Eq— Ex

We further find, using (3.23) that our self-consistency
requirement that g, no longer appear in the subsidiary
condition yields:

n(x—k)—n(x)

« hop+E(k—Kk)— E(x)

(4.8b)

On applying (4.6) we see that this choice of #; (or ) is
in complete agreement with the result of Nakajima
(3.28). Furthermore, on combining (4.8a) with (4.8b)
we obtain the by now familiar dispersion relation (3.5).

A transformation similar to that of Nakajima may
be used to eliminate the terms linear in g for |k|> k..
The result of both transformations is to replace the
electron-lattice interaction by an interaction between
electrons:

Hy=—% 2

&, | k| <ke

v_gpictCerg (Kyx)

-3 ¥

K, [ k[>ke

v_ilorcteerg (Kyx).  (4.9)

16 We have omitted the weak plasma-phonon interaction term.
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Note that the unshielded interaction, v_;¢, appears from
the Nakajima transformation. Since v_j® becomes
infinite while v_; approaches zero as k—0, the difference
is particularly important when k is small.

The interaction term, Ho, is similar to one derived by
Frohlich® without explicit introduction of Coulomb
interactions. His interaction constant is to be identified
with the shielded interaction, v. As he points out, the
usual second-order perturbation theory expression for
the electron-lattice interaction energy is the sum of the
diagonal component of Hs (which Frohlich calls E;) and
the change in zero-point energy of the oscillators. It is
the true frequency, wg, rather than @, which enters into
these expressions.

There are several other important differences between
our treatment and that of Nakajima. In (4.7) the long-
range Coulomb interactions no longer appear, but have
been redescribed by the high-frequency plasma oscilla-
tions. There remains the weak plasma-electron inter-
action but this may be easily transformed away, as is
done in BP III, and it may then be seen that only
effective residual electron-electron interaction is that
described by

Hs‘r. = % Z Mk2PkP—k-
|k|>ke

Thus the long-range electron-electron correlations have
been described in terms of the plasma oscillations, and
are seen explicitly not to affect the electron response to
the long wavelength phonons. We further note that no
exchange effects are associated with the long-range part
of the electron-electron interactions, so that the use of
the Hartree approximation in determining v, for | k| <k,
is completely justified.

There remains the complication introduced by the
transformed subsidiary condition, which on applying
(4.8b) agrees with that for the electron-plasma system
in the absence of ionic motion:

(Py—iMip_i)¥=0. (4.10)

This complication has been discussed in BP III. The
same transformation which eliminates the plasma-elec-
tron interaction in the Hamiltonian (4.7) also eliminates
the plasma momentum from the subsidiary condition
(4.10). There remains then a subsidiary condition
acting on the electrons alone. As shown in BP III this
subsidiary condition will be automatically satisfied for
the lowest state of the system. It will influence the.
excited states in such a way as to reduce the effective
number of electronic degrees of freedom slightly, but
because the number of plasma degrees of freedom is
relatively small (of order 59,-109,) this reduction
should be correspondingly small.

We still have in our Hamiltonian (4.7) the short-
wavelength terms corresponding to | k| > k,; the short-
wavelength phonons, their interaction with the elec-
trons, and the short-range part of the electron-electron
interaction. As mentioned earlier, these terms may be
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treated by the method of Nakajima in order to deter-
mine the effective electron-lattice interaction and sound
wave frequencies. As discussed in Appendix B, for this
wavelength region exchange effects are of importance.
However, they are in principle calculable and should
not lead to anomalous results, since the effective elec-
tron interaction is screened. Because of the mathe-
matical complexity of the system of coupled equations
obtained in Appendix B, we have not been able to
obtain an explicit solution for the short wavelength v
and w; when exchange effects are included.

The short-range electron-electron interaction occur-
ring in (4.7) will not have an appreciable effect on the
electronic wave functions. For as is shown in P IV, the
range of this interaction is of the order of the inter-
particle spacing, and it may consequently in fact be
treated as a relatively small perturbation on the elec-
tronic motion, and thus on the electronic wave
functions.

5. CONCLUSIONS

We are led to the following physical picture of the
coupled motion of ions and electrons in a metal. As the
ions move, the electrons tend to follow their motion so
as to screen out the ion field in a distance comparable
with the interparticle spacing. Thus the fluctuations in
potential caused by the motion of the ions are greatly
reduced. The effective matrix element for electron-
lattice interaction is determined by a screened field
which can be calculated rather accurately for long wave-
lengths by elementary considerations. The positions of
the electrons are correlated so that the field of a given
electron is also screened out in a distance of the order
of the interparticle spacing. Long-range correlation
effects, according to the collective description, give rise
to plasma waves and to coupled ion-electron waves
which correspond to longitudinal sound waves. The
remaining short-range interactions can be taken into
account in a satisfactory way by the individual par-
ticle model.

In the collective description, extra coordinates are
introduced to describe the plasma oscillations, and
introduction of these requires that the system wave
function satisfy supplementary conditions. A series of
canonical transformations is made in order to isolate
the plasma oscillations and the longitudinal sound
waves. The effective matrix element for electron-phonon
interaction is thereby determined and found to be
identical for long wavelengths with that found earlier
by self-consistent field methods which neglect effects of
exchange and correlation. There remain in the trans-
formed Hamiltonian terms which describe individual
particles which interact with each other with a screened
Coulomb force and are coupled with the phonon field in
the usual way. The screened interaction is sufficiently
weak so that it can be treated by perturbation methods
and does not have a large effect on the particle wave
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functions. In this way we see that the usual empirical
individual-particle model is justified.

An expression is derived for phonon frequencies of
long wavelength and is found to be identical with that
derived by Toya and Nakajima by self-consistent field
methods. An explicit calculation for monovalent metals,
given in an appendix, yields, when applied to Na, good
agreement with values calculated from observed elastic
constants. Our calculation makes use of matrix ele-
ments derived in A by the self-consistent field method.
The elastic constants may also be obtained by a direct
calculation of the energy of a distorted crystal, as has
been done by Fuchs. The close agreement both with
the observed values and with the direct calculation
makes one confident that the general method for calcu-
lating matrix elements and vibrational frequencies is
correct.

The calculation of the matrix elements and vibra-
tional frequencies for short wavelengths is less reliable,
because we have not been able to take into account the
influence of exchange on these quantities. Perhaps the
best procedure in calculations of conductivity at room
temperatures, where short wavelength phonons and
Umklapp processes are important, is to introduce an
empirical scattering factor, as has recently been sug-
gested by Ziman.'?

In the formulation of the superconductivity problem,
it is probably a reasonably good approximation to use
an empirical interaction constant, %, and to omit
explicit introduction of Coulomb interaction terms, as
has been done by Frohlich and by Bardeen. The fact
that % rather than v, appears in the interaction
Hamiltonian, Hs, in (4.9) for | k|> k. raises some doubt
about this procedure, but the difference is not large for
these short wavelengths.

Except for terms which correspond to transitions
which nearly satisfy the conservation of energy,

| Ey— Elior| <AE, (5.1)

the electron-lattice interaction can be eliminated by a
canonical transformation such that in the final Hamil-
tonian the lattice oscillators are not coupled with the
electrons. It is the remaining interaction terms which
do satisfy (5.1) that are responsible for scattering of
electrons and also presumably account for supercon-
ductivity. The value of AE always can be chosen suffi-
ciently small so that these terms have a negligible effect
on the electron-lattice matrix element and on the
vibrational frequency. On the other hand, they cannot
be treated by perturbation theory, and so can have a
pronounced effect on the electron wave functions.

In the theory of superconductivity, then, one need
only consider virtual transitions which satisfy an ex-
pression of the form (5.1). This approach was followed
by one of the authors,'? with AE chosen to be of the
order of the electron-lattice interaction energy resulting

17 J. M. Ziman, Proc. Roy Soc. (London) A226, 432 (1954).
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from these virtual transitions. This gives [see Eq.

(3.35)] ,
AE~N (E){| vqs| *a, (5.2)

which is an order of magnitude or so larger than kT,
(T .= transition temperature) for most superconductors.
If one assumes that these interactions contribute to the
superconducting state, but not to the normal state, one
would have far too large an energy difference between
the two phases. About the correct order of magnitude
for this energy difference is obtained if we arbitrarily
take AE~ET,; that is if electrons with energies within
~FkT, of the Fermi surface have their energies lowered
by ~kT,.. Undoubtedly the virtual transitions deter-
mined by (5.2) contribute to both the normal and
superconducting states, and only a very small fraction
of the interaction energy is involved in the change of
state. It is evident that better pictures of both the
normal and superconducting phases are required. The
equations we have presented here should provide a good
basis for development of an adequate theory.

APPENDIX A: CALCULATION OF w; FOR A
MONOVALENT METAL

We give here an explicit calculation of the sound-
wave frequencies for the long wavelength limit, k—0,
by making use of the matrix elements of the electron-
lattice interaction in Eq. (3.12). The Nakajima ex-
pression, Eq. (3.30), gives equivalent results in this
limit. The matrix elements used are those derived
originally for a calculation of the conductivity of
monovalent metals.

Determining the frequencies for long wavelengths is
equivalent to calculating the elastic constants, which
are usually obtained by a direct calculation of the
energy of a distorted crystal. Compressibilities of
monovalent metals have been determined by a Wigner-
Seitz calculation of the energy as a function of volume.
Fuchs'® has shown that the shear constants of the
alkali metals are given quite closely by the Coulomb
interactions of the ions in a uniform negative sea.
Although important for the noble metals, repulsion
between the closed shells is almost negligible for the
alkalis.

It is most convenient to determine the sum of the
squares of the frequencies for the three different direc-
tions of polarization, since thus sum is independent of
the direction of propagation. Kohn'® has shown that
the sum for the Coulomb interactions of the ions alone
is just the square of the plasma frequency for a gas of
the same density:

(A1)

18 X, Fuchs, Proc. Roy. Soc. (London) 153, 662 (1936); 157,
444 (1936).

19 W. Kohn (private communication). We should like to thank
Professor Kohn for communitating his results to us in advance of
publication.
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Only the longitudinal component is affected by the
electron-lattice interaction, so that, from Eq. (3.12),

ko k’Ep
S =Y szk.,ﬂ———lw( - ) (A2)
4 v 4rre? 6w Ne?
where
Ep= ﬁ2k02/2m (As)
is the Fermi energy. In terms of the elastic constants
Zv wk02= ZVMk2 (611+ 2644) . (A4)

The expression for the matrix element ;' is taken
from reference 1,

[F——

ik t 4w Ne?

il e-5]

I 3(sinkrs— kr, coskr,)
(krs)?

where 7, is the radius of a sphere of atomic volume,
Vo(r)=0 is the potential at the boundary of the
s-sphere, E, is the energy of the lowest state, and
v=|o(rs) | 2/ o (r)Hn. Both Vo and E, refer to a poten-
tial in which the field of the ions is compensated by a
uniform negative charge. Wigner and Seitz calculated
the energy, &o, for a cell in which the field is that of the
bare ion at the center. If »o(#;) is the corresponding
potential, there is the approximate relation

Vo(rs) — Eo=1vo(rs) — 80— 0.2¢2/7,.

], (A3)

(A6)

There is also the following relation, originally derived
by Frohlich:

¥s dg()

__——=’y(7}0(7’s)_ g())

A7
3 dr, (A7)

An expansion of (AS5) in a power series in % is

_ dre? fN \ ? k2y
D= — i —) {1+
E\M 47N e?

[Vo(rs) - EO]

1

B2t .. }
10

dre? fN \* k?
e
E \M 4wNe?

X[V[VO(fs)—EOJ—;(‘);]-F .. ] (A8)

where we have used N=23/4xr?. Substitution of (A8)
into (A2) gives after some reduction

k2 (2 6e?
> wk72=ﬁ{§EF+i)‘_"— 2y[Vo(rd)— EoJ+- - - },
o 7 s



1150 J.

so that, from (A4),

6¢?

2
cut2cu=N{-Ept+—— ZYEVO(rs)—E0]+ ol
3 107,

Inserting appropriate values for sodium, with the free-
electron value for Er and y=1, we find

2.6X10%2{3.34+6.6—0.6} X 10~12=2.4 X 10! ergs/cm?,
while
c11+2c4={0.9542(0.59) } X 1011=2.13X 10! ergs/cm?.

The difference between calculated and observed values
is only about 109,. This agreement gives one confidence
in the method of calculation and in the values of the
matrix elements for electron-lattice scattering for
small Z.

APPENDIX B: EXCHANGE TERMS FROM
COULOMB INTERACTION

There are a number of exchange terms in the com-
mutator of the Coulomb interaction:

52 My lowpr,S1=5% 2 My?
X {P_k'[pk',S]+[P_k',S]pk'}, (Bl)

which were omitted in Nakajima’s treatment. Exchange
terms appear only for electrons of parallel spins.
Expansion of the commutators for these gives

7
- Z Mk’ 2{ CK’*CK'—IC' (Cx~k’*cx~k_ CK*CK~Ic+k')
2
+ (Cx—k’*cx—k_ CK*CK—k+Ic’)Cx'*CK’—k'}
X (k) ge—1ig (k) pi}.

In the second line we have changed the sign of k'.

Our problem is to find diagonal parts of the coeffi-
cients of ¢,*c,_xqr and corresponding terms. In addition
to those for which k’=Kk, «’ arbitrary, used in obtaining
(3.24), there are several others: (a) ¥’ =x, (b) ¥’ =x—Kk,
(c) x=«"—k/’, (d) ¥ =x—k+k’. The sum of these may
be expressed in the form

% Z Mk'z[p—k'pk',sjzi Z {Z M2

k,k k',s

(B2)

X{n(x' = k) —n(x)} (k%)
+2 M n(x—k=K)—n(x—K)}/(kx)

+Z Mo n(6)—n(x'~ 1]} f(kx) b o*oerge

+corresponding terms in g(k,x). (B3)
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The first sum in the curly brackets is over both spin
states, the other two only over the spin which is parallel
to that of c*cer.

When exchange terms are included, the effects of the
other electrons on a given electron can no longer be
expressed in terms of a potential, and it is no longer
advantageous to introduce v. In order to eliminate
linear terms in ¢x and p_j in the transformed Hamil-
tonian, f(k,x) and g(k,x) must satisfy the following
equations:

2o @M =M o) [n('— k) —n(x) ]f (k,x")
— (W= W.) f(k, %)+ (Ec— Ec 1) f (k%)
+ g (ki) + 0P =0,
2w @M =M o) [n(¥' —k)—n(x")Jg(kx)
— (W= W)g(k,x)+ (E,— E, 1)g (k,x)
+if(kx)=0, (B4)

where W, is the exchange energy of an electron in the

state x:
We=—3 Mp2n(x—k). (B5)

The factor two multiplying M;? takes account of the
sum over spins. The equations are such that for a
symmetrical distribution of electrons in x space, 7(x)
=n(—x), the solutions satisfy the relations:

Tk, k—1)=—f(kx); gk, k—x)=g(kx). (B6)
The direct term in the equation for g(k,«) then vanishes:
2w M n(' —k)—n(x) Jg(k,x)=0.  (B7)

When the exchange terms are included, the equations
cannot be solved algebraically.

There are two types of exchange terms. One simply
adds the exchange energy W, to the individual particle
energy E.. The other adds sums over f(k,x’) and
g(k,x’) to the equations for f and g, and it is these
which make the solution difficult. An estimate of the
magnitude of the latter terms can be obtained by
taking an average over k. We have

S M _on(x)=—W,. (B8)

An average of W, is the exchange energy, —0.92¢%/7,
for a monovalent metal. This is to be compared with

2M32 Y n(w) =noMy?=4mwnee?/ k2= (3¢*/r,) (kr;)~%, (B9)

where no=23/4nr? is the concentration of electrons.
These exchange terms may be neglected when %7,<1,
i.e., for long wavelengths. However, as discussed in the
text, the exchange energies of the individual electrons,
W, would make marked changes at long wavelengths.
As the collective description shows, these should not be
included.



