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The observed variation of the transition temperature of mercury with isotopic mass is evidence that the
superconducting state arises from interaction of electrons with lattice vibrations. The interaction term
which gives scattering of electrons at high temperatures contributes at low temperatures a term to the
energy of the system of electrons plus normal modes. Frohlich has calculated the interaction energy at
T=0°K by second-order perturbation theory. The energy is calculated here by taking wave functions of
superconducting electrons, which have energies near the Fermi surface, as linear combinations of Bloch
functions whose coefficients are functions of coordinates of the normal modes. In an equivalent approxi-
mation, Frohlich’s expression for the interaction energy is obtained. When the energy is calculated directly
rather than by perturbation theory, modified expressions are obtained for the energy and distribution of
electrons in the superconducting state. The criterion for superconductivity is #/7>~2x«T, where 7 is the
relaxation time for electrons at some high temperature T' where =T is constant. It is shown that super-

conducting electrons have small effective mass.

I. INTRODUCTION

HE isotope effect observed by Reynolds, Serin,

Wright, and Nesbitt! and by Maxwell? is evidence
that the superconducting state arises from the inter-
action of electrons with lattice vibrations rather than
from electrostatic interactions between electrons. They
found a shift in the transition temperature, 7., of
mercury with isotopic mass, M, such that MIT, is
approximately constant, or such that T’ varies directly
with the Debye temperature.?

The interaction term in the Hamiltonian which gives
rise to scattering of electrons and resistance at high
temperatures contributes at low temperatures a term
to the energy of the system of electrons plus normal
modes of vibration. It is possible to make an approxi-
mate calculation of the interaction energy on the basis
of Bloch theory of metals in which correlations between
the positions of electrons which arise from Coulomb
forces are neglected. That the Bloch theory works as
well as it does in view of the large magnitude of the
Coulomb energy is surprising. The theory has a firm
empirical foundation in explaining in a qualitative or
quantitative way a wide variety of experimental
results. An explanation of superconductivity in terms of
the Bloch theory would extend its scope to cover nearly
all conduction phenomena.

Frohlich has made a calculation of the interaction
energy at 7=0°K by an application of perturbation
theory.* Except for interactions with lattice vibrations,
the electrons are treated as free. The interaction terms
give no first-order contribution to the energy. Frohlich
calculated the second-order energy. As the energy de-
nominators vanish over part of the range of summation
or integration of the second-order energy, it is necessary
to take principal values in integrating over the singular
regions.
1;Sl(l)eynolds., Serin, Wright, and Nesbitt, Phys. Rev. 78, 487
( 2 E) .Maxwell, Phys. Rev. 78, 477 (1950); 79, 173 (1950).

2 Serin, Reynolds, and Nesbitt, Phys. Rev. 78, 813 (1950).
4 H. Froéhlich Phvs. Rev. 79, 845 (1950).

The interaction energy can be interpreted as a self-
energy which arises from the virtual emission and ab-
sorption of phonons. The operation of the exclusion
principle is such as to give a contribution to the self-
energy which acts formally like an interaction between
electrons in momentum or k-space. The interaction is
repulsive when the energies of the electrons are nearly
equal and is attractive when the energy difference is
larger than the energy of the phonon which connects the
two states in the Bloch theory of conductivity.

Frohlich finds that if the interaction terms are suf-
ficiently large for superconductivity, there exists a state
of lower energy than the usual one in which states inside
a sphere of radius £=4%, in k-space are occupied and
those outside unoccupied. The lower energy state is
obtained by taking electrons in a thin outer shell of the
usual Fermi distribution and displacing them outward
in k-space so as to leave a small gap between an occupied
sphere and an occupied concentric spherical shell. This
modified distribution has a lower interaction energy
and is stable if the energy gained in this way more than
compensates for the increase in Fermi energy. This
condition gives a criterion for superconductivity.

An approach which appears to be formally quite dif-
ferent from that of Frohlich has been suggested inde-
pendently by the author.® We shall show here that these
two different treatments lead to nearly the same
results. They represent different ways of approximating
the energy of the same basic Hamiltonian. We have
suggested that in the superconducting state the wave
functions of electrons which have energies near the
Fermi surface, E= E,, are modified by interaction with
the normal modes.® Wave functions of the supercon-
ducting electrons are linear combinations of Bloch
functions with energies near E=E,. The coefficients,
which are functions of the displacement coordinates of
the normal modes, are determined by a modification
of the adiabatic theory. The net effect is to lower the
energies of those electrons having energies near the

§ J. Bardeen, Phys. Rev. 79, 167 (1950).
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Fermi surface. This energy gain is a consequence of the
zero-point motion of the ions, and can be interpreted as
a lowering of zero-point energy as a result of the inter-
action between electrons and lattice vibrations.

The mean-square amplitude of a mode with zero-
point energy is inversely proportional to the volume
over which it extends. It was suggested that as a con-
sequence the lowest energy would be obtained if the
modes extended over a distance of the order of 10~% cm,
which is about the minimum distance over which the
electrons can be localized. However, we shall show here
that as a result of the increase in the number of normal
modes involved with increase in volume, the interaction
energy is independent of the volumes occupied by the
normal modes. The distance of ~10~% cm thus repre-
sents a minimum rather than an optimum value.

The way in which the typical superconducting proper-
ties follow from the model is not yet completely clear
and our explanation differs from that of Frohlich.* In
our picture, the superconducting electrons with energies
near the Fermi surface have a small effective mass, of
the order of T/ Ey, and this leads to a perfect diamag-
netism according to the theories of Landau and of
Peierls.®* A model of a gas of non-interactinge lectrons
of small effective mass leads to a theory of the London
type.5* Frohlich’s explanation is based more on a per-
sistent current idea. He finds current carrying states
that are metastable in that it requires energy to remove
a single electron or group of electrons in such a way as
to reduce the current, although the lowest state, which
is the one described above, has zero net current.s®

Whether or not a metal becomes superconducting
depends on the-magnitude of the electron-lattice inter-
action terms. As the same interaction terms enter
into the theory of high temperature resistivity, the
criterion for superconductivity can be expressed in terms
of the resistivity or in terms of the relaxation time
associated with the resistivity. The approximate
criterion which we obtain below is similar to but some-
what more restrictive than the one derived earlier by
Frohlich.* It may be expressed in either of the following
ways: A metal is superconducting if

pn> 108,

where p is the room temperature resistivity expressed
in e.s.u. and # is the number of valence electrons per cc,
or what amounts to the same thing, if

h/1>~2wkT,

where 7 is the relaxation time for the conduction elec-
trons at the high temperature 7. As 7T is constant at

%8 Added in proof. In a paper submitted for publication in the
Physical Review we show that the London phenomenological
equations for superconductivity follow as a limiting case when the
effective mass is so small that the Landau-Peierls theory yields a
diamagnetic susceptibility <—14w, and also that the method
of effective mass may be applied to wave functions for super-
conducting electrons as derived in the present paper.

5 Added in proof. Frohlich has abandoned this explanation.
See the comments added in proof to his paper (reference 4).
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high temperatures, the criterion is really independent
of T. It should be noted that the superconducting metals
are just those for which the electron-lattice interaction
is so strong that the usual perturbation theory treat-
ment for calculating high temperature resistivity begins
to break down. The above criterion holds in nearly all
cases except for the transition metals which are not
expected to be superconducting in any case.

This paper is concerned primarily with the energy of
the lowest state of pure metals and so should give the
energy difference at T=0. We shall not be concerned
with the thermodynamics of the superconducting state
nor with the nature of the transition from the normal
state. Except for some estimates of effective mass, we
shall not attempt to show here how the typical super-
conducting properties follow from the model.

II. THE HAMILTONIAN

We consider a metal of volume V in which there are
N4 atoms and n=»N,4 conduction electrons. The
Hamiltonian is the sum of three terms corresponding to
the electrons, the lattice displacements, and the inter-
action between them:

H=H,+H. +H,. 2.1)

The first term, H., is the Hamiltonian for the electrons
with ions in their equilibrium positions. We shall neglect
correlation effects and assume that each electron moves
in the periodic field U(x) of the lattice. Then

He=3H, i=1,2,--n, (2.2)

where
H=—(1/2m)Ai+U(x:)

and x; represents the coordinates of the ith electron.
The wave functions of H,.; are the Bloch functions
Yi(x;) with energy e:

H.opi(x) = (). (2.3)

The wave functions of H, are products of Bloch func-
tions.
The Hamiltonian for the lattice, H, can be expressed
in the form:
h? 8*
H;=2,{ ——
2p 0g;

(2.2a)

+1K.q2}, r=1,2,---3N4, (24)

2

where u is proportional to the mass of the atoms, the
exact value depending on how the displacement coor-
dinate, g,, is defined. The force constant, K,, can be
expressed in terms of the angular frequency, w,, of the

mode:
(2.5)

We shall be concerned only with the N, longitudinal
modes which interact with the electrons.

The interaction terms are linear in the displacements,
and we shall indicate this explicitly by taking

HI= Ei, rVr(xi)qr-

K,= po’

(2.6)
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The interaction terms give the matrix elements

fmkk:=f¢k*V,(xwk'dr (27)
which vanish except for a normal mode with wave

vector «, such that
k' =k+x,+K,, (2.8)

where K, is a lattice vector of the reciprocal lattice
space. This selection rule is well known from the theory
of metals.® Since we have indicated ¢, explicitly, 9
differs from the usual M by a factor ¢, We shall
define:

| M ke | 2= (Qrir®)ae | M | 2, 2.9

where g is the coordinate of the normal mode which
connects k and k'. The average is over the zero-point
wave function of the normal mode.

III. WAVE FUNCTIONS FOR THE SYSTEM OF
ELECTRONS PLUS NORMAL MODES

An approximate wave function for the system may be
constructed as follows. The wave function for the elec-
trons is taken to be a product of functions ¢i(x; ¢,)
each of which depends on the coordinates of a single
electron, x;, and which depends parametrically on the
coordinates of the normal modes, ¢,. This product is
multiplied by a product of functions Q,(g,) for the
normal modes:

‘I'=Hi¢i(xi, QT)'HrQr(qt')- (31)

In the lowest energy state the functions Q. are the
harmonic oscillator functions for zero-point energy,
2hw..

Each ¢; is assumed to be normalized so that

f pfodr=1

for all values of the g,. This relation, when differentiated
with respect to ¢, gives the real part of

(3.2)

f 0 *(90i/0g,)dr=0, (3.3)

and by a second differentiation:

- f 0 (@0:/ 0 dr= f |i/3g, 2. (3.4)

These well-known relations are useful in calculating the
contribution of the terms (—#42/2u)(8%/9¢,*) to the
energy. Equation (3.3) implies that cross terms of the
form

ei*0*(3¢i/ 39:) (3 i/ 9g:)

8 See, for example, N. F. Mott and H. Jones, Properties of Metals
and Alloys (Oxford University Press, Oxford, 1936), or F. Seitz,
Modern Theory of Solids (McGraw-Hill Book Company, Inc.,
New York, 1940).
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vanish on integration. Equation (3.4) is used in calcu-
lation the contribution of ¢, to the kinetic energy of the
ions.”

The functions ¢; can be expressed as a linear combina-
tion of Bloch functions in which the coefficients are
functions of the ¢’s:

¢i=Zrar(Q¥r. (3.5)
The normalization condition requires that
k| ax|?=1. (3.6)

The wave function, ¢;, makes the following contribution
to the energy:

E;= {Zie| akl 2 P 0¥ Qo M e
+ ek @r * QMo xait (B2 2u) 2k, | 0ar/ 3¢ | 2wy (3.7)

where the first term comes from H., the second and
third from the interaction terms, and the last from the
kinetic energy of the ions after making use of (3.3).
The whole expression is averaged over the normal
modes.

The total energy is obtained by summing (3.7) over
all occupied states of the electrons and adding the
energies of the normal modes. It is, of course, necessary
to take the exclusion principle into account in calcu-
lating the energy of the electrons. If the ¢; are ortho-
gonal, each such state can be occupied by two electrons
of opposite spin.

To get a non-vanishing contribution from the inter-
action terms, a; and aw must have opposite parity.
Thus if a; is an even function of gii, @ must be an
odd function or at least have an odd part. This suggests
taking ¢; of the form

@i= Nt Zebiqrrdnr) (3.8)

where N is a normalization factor chosen to satisfy
3.2):
N= (1+ Ebkﬂqkk'?)—%, (39)

and the b, are constant factors to be chosen to make
the energy a minimum. The normal coordinate ¢ is
that for the mode which connects the states k and &'.

The calculation of the energy by using (3.8) for ¢, in
(3.7) is straightforward. The only term which requires
discussion is that involving |da/dg.|2. We shall show
that terms arising from derivatives of the normalization
factor give a negligible contribution. We have

Ek'fl aga,-/aqk;,:l dr
=2 { N2 ON/dqrr| >+ N?bs2}

=Zp(quar) 2 { (V21 2qirr?) >+ N2bi 2qurr?} . (3.10)

7 A simpler treatment, which leads to the same final results,
could be made if it were assumed that each g, is contained in no
more than one ¢;. This would allow an immediate separation of
the equation into parts which depend only on the coordinates of
a single electron and the normal modes with which it interacts.
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Since
2N2bk'2qkk'2<1, (3.11)

and since the sum is over a large number of positive
terms,

2(grw)~HNba qrar?) K2 (g ) (N ?bi i), (3.12)
and we shall neglect it in comparison.
The last term of (3.7) then reduces to
(B2/2u) 21 N2bi2. (3.13)

The mean square amplitude of a mode with zero-point
energy is such that the mean potential energy is one-
half the total energy, 3%w,, or

%Kr(qu)n= %hwr- (3.14)

Thus
[7%/2u(g:>) In= (K ./ pw,) = he, (3.15)

since K,/u= w2 With use of (3.15), (3.13) becomes:
Zhwie N*bi*(grrr®) v (3.16)

The expression for the energy obtained by using
(3.8) in (3.7) can be simplified considerably by setting:

c?=(N)n, o= (N2qrr?)abi’. (3.17)

With use (3.16) for the last term, Eq. (3.7) becomes
(with neglect of the small difference between (NV?)a
X (grr?)a and (V2qreHa):

Er=clex+Zcp? (et heorr)+ZceM grrcrr
+Eckerrka. (318)

We have replaced (gxe?) !9k by Miwr (see Eq. (2.9)).
The ¢’s are subject to the normalization condition

Ck2+ Ek'ck:2= 1. (319)

The variational problem gives the following set of
equations for the ¢’s

crvextZck’ M w= Excr,
cwr (et hwrrr)+ceM ki = Ercyr.

If the ¢ are determined by second-order perturbation
theory, we have

(3.20a)
(3.20b)

Ck'=CkMkk'/(€k—ekl—hwkk'), (321)

and the second-order contribution to the energy is
AEk= 2w [ Mkk' | 2/(51:_ ek'-—hwkk'). (322)

If this contribution is summed over all & for the occupied
states, the total change is

AW = szzk' | Mkk' I 2/(€k_' €pr— hwkk'). (323)

The factor 2 accounts for the fact that each state can
be occupied by two electrons. Because of the exclusion
principle, the states &’ must be normally unoccupied.
Thus if fy is the probability that a state k is occupied
and (1—fx) the probability that k' is unoccupied, the

JOHN BARDEEN

energy becomes

My | ¥(1—fir)
AW:szzk,M,

€ € — hwkk'

(3.24)

where the sum is now over all values of k and %'.
This expression can be obtained directly from the
original Hamiltonian (2.1), and is the one which
Frohlich* used to calculate the self-energy of the elec-
trons as a result of interaction with the phonon field.
It will be noted that the energy denominators are
small and the perturbation procedure breaks down when

(3.25)

Frohlich integrated over these singular regions by
taking principal parts. We shall follow a different
method which we believe gives a better insight into the
superconducting states.

IV. WAVE FUNCTIONS FOR SUPERCONDUCTING
ELECTRONS

The exclusion principle imposes severe restrictions
on the wave functions. For each linear combination of
the type (3.8) which yields a low energy state there is
an orthogonal state using the same Bloch functions
which has higher than normal energy. In order to get
a net decrease in energy of the electrons, it is necessary
to include twice as many Bloch states as there are elec-
trons to be accommodated so that only the low energy
states need be occupied. This is possibly only if the
initial states have energies within the order of A of the
Fermi surface, where A is the decrease in energy result-
ing from the electron-lattice interaction terms.

We shall construct wave functions for the super-
conducting electrons for the state corresponding to
T=0°K by taking k-values which lie in the energy
range between E, and Ey+¢; and &' values which lie
between Eo—e; and E,. The wave functions for
ex<Eo— ¢ are taken to be the usual Bloch functions.
The energy e will be determined below to make the
total energy a minimum and is approximately equal to
A for the superconducting wave functions. This con-
figuration is similar to that which Frohlich obtained by
displacing a spherical shell of electrons outward from
the boundary of the Fermi distribution. Our calculation
of the energy differs from his in that we do not use
perturbation theory and the questionable procedure of
an integration over singularities by taking principal
parts is avoided.

In the superconducting state, the interaction is
so large that (3.25) is satisfied for k' such that
Ei—ea<ew<Eg. There are terms in the energies of
both the normal and superconducting states which
come from ¢ interaction with unoccupied states of
higher energy and which contribute terms proportional
to M? to the self-energy. Since these latter terms do
not differ much between the normal and superconduct-
ing states we shall omit them from calculations of the
energy difference.

| ex— exr — hwirr | <~| M| .
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If we assume that ex~~ex+ hwir, Eq. (3.20b) gives
Ck'-‘—‘CkMkkl/A, (4.1)

where A is the energy difference E;—e:. Substitution
of this value into (3.20a) gives

A= Ekllekllz, (42)
or

A= (Ek'lek'lz)%. (43)
The wave function of the superconducting state is then
k=N Wr A Z Mk Qi) - (4.4)

Normalization requires that the average value of N?
be 3. The negative signs apply to the low energy state
and the positive to the high energy state; the energies
being

Eir=e+A. 4.5)

The number of states &’ in the sum depends on the
spread of the energies ex=hwii about €. It is reason-
able to take an energy spread of the order of A and we
shall include only those k' which satisfy:

ek—ek'—A<hwk;¢»<ek—ek'+A. (46)

Criterion for Superconductivity

The criterion for superconducivity is obtained from
the condition that (4.6) be satisfied for most %’ in the
gap between the occupied sphere and the occupied
spherical shell.” One can then use (4.3) and (4.5) for
the energies and A is proportional to the first power of
M. Since the average value of e,— e is €1, and since
&1 is approximately equal to A, the &’ which satisfy
(4.6) are such that

horr <2A. 4.7

The value of wi is proportional to |k—k&’| which in
turn depends on the angle, 6, between k and ®. If wa
is the maximum value® corresponding to 6=180°,

hwri = homn sin—‘,f(?. (4.8)
™ Added in proof. The criterion may be derived in a simple
way as follows. The energy corresponding to (4.4) is:

Ei=3}e+3(er+hor) —A.
In order to have a net decrease in energy it is necessary that the

superconducting states have a lower energy than the Bloch
states they replace. The energy difference is on the average:

(Ex— ex)nv=3%(ex— ex )+ 3 (Bore)w—A
=}a+i(how)n— (ae)t.
It follows from (4.3) that A? is proportional to the number of

states &’ and thus to &. The factor e is given by (4.14). The
right-hand side is lowest for e =¢ and is negative only if

a> (hwkgv)Av.

This criterion is equivalent to (4.17) which was derived from the
condition (4.6).

8 Assuming that “Umklapp” processes of Peierls are not in-
volved. Transitions through large angles may result from such
processes (see J. Bardeen, Phys. Rev. 52, 688 (1937)). The values
of Awii for large angles would then be smaller than those given
by (4.8), and the criterion for superconductivity somewhat less
restrictive.
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It is convenient to use

x=sin}0 4.9

as a measure of the angle between k and &’. According
to (4.7), the limiting value of x is

21=24/ hom. (4.10)

We shall now evaluate A from (4.2), taking those &’
in the sum which satisfy (4.7) and assuming that
| Myi|? depends on the angle between k and &’ and
thus on'x. The total number of &’ states in volume V
in the energy range, ¢, is

€1 VZV(E()), (4. 11)

where N (Eo)dE is the number of states per unit volume
in the range dE at the Fermi surface. In integrating
over angles the factor sinfdf becomes 4xdx. The sum
(4.2) is given approximately by an integration over x
between 0 and «x;:

z1
A= 26,V N (Ey) f [M@)Pads.  (4.12)
0
Since e;~~A, this equation can be simplified to:

A=2VN(Eo) f N [M (x) Joxdx. (4.13)

This is an implicit equation for A. The upper limit x,
is 2A/hwm or unity, whichever is the smaller.

The criterion for the existence of the superconducting
state is that (4.13) have a solution other than A=0.
With reasonable assumptions regarding the dependence
of M on x, the right-hand side has an upward curvature
until x; is almost equal to its maximum value of unity.
If there is a solution, it must occur for x; close to unity.
Thus we must have (see Eq. (4.7)):

a=2VN(Ey) f [M () Tade> bhom,  (4.14)

As in the previous work,*5 an estimate of the average
value of the matrix element can be obtained from the
resistivity at high temperatures. When this is done,
(4.14) gives a criterion similar to, but more restrictive
than that of Fréhlich.

The criterion may be expressed most simply in terms
of the relaxation time associated with high temperature
conductivity. The expression for the relaxation time, ,
in terms of the matrix element (Mx)r for high tem-
peratures is given by?®

h/r=7nVN(E,) f '[M r(6) 12(1—cosb) sinbdb. (4.15)

The high temperature matrix element corresponds to an

' N. F. Mott and H. Jones reference 6, Eq. (48), p. 262.
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energy «1" in a vibrational mode while the low tem-
perature matrix element corresponds to zero-point
energy 3hwkr. Thus

Mr*= (2«T/hwu )M*= 2kT/ hwn)(M*/x)

with change of the variable of integration from 6 to x,
(4.15) becomes:

h/r=161r(xT/hw,,.)V1V(Eo)f (M (x)]x%dx. (4.16)

Except for an extra factor of x, the integral in (4.16) is
the same as that in (4.14), so that we can express a in
terms of 7. We shall assume for simplicity that the
angular dependence is such that the extra factor of x
gives an extra factor of } on integration. We may then
write (4.14) in the form

a= (hwn/47kT)(h/7)> S hom (4.17)
The criterion for superconductivity is then:
h/m>~2mkT. (4.18)

As 1/7 is proportional to T at high temperatures,
relation (4.18) is independent of 7'. It indicates that a
large interaction between electrons and lattice vibra-
tions is required for superconductivity. The interaction
must be so large, in fact, that the usual theory of con-
ductivity based on perturbation theory and variation

TasLE I. Test of the approximate criterion for superconductivity :
10~ %pn > 1.

10'%p(e.s.u.)

Normal v 293°K 10 2n/cmd 10 %pn
Li 1 0.10 4.7 0.47
Na 1 0.054 2.56 0.14
K 1 0.079 1.33 0.105
Rb 1 0.15 1.1 0.165
Cs 1 0.22 0.85 0.185
Cu 1 0.018 8.5 0.15
Ag 1 0.018 59 0.11
Au 1 0.025 6.3 0.16
Be 2 0.04 24.5 0.97
Mg 2 0.045 8.6 0.39
Ca 2 0.05 4.7 0.24
Sr 2 0.35 3.6 1.25
Ba 2 0.72 3.2 23

Superconducting
La 3 0.68 8.1 5.5
Ti 4 0.50 23 11.5
Zr 4 0.48 17 8.5
Hf 4 0.39 17 6.6
Th 4 0.12 12 1.4
\% 5 0.20 34 6.8
Nb 5 0.28 27.5 7.7
Ta 5 0.17 27 4.6
Zn 2 0.065 13.2 0.86
Cd 2 0.09 10 0.90
Hg 2 0.30 8.5 2.5
Al 3 0.03 18 0.54
Ga 3 0.45 15 6.8
In 3 0.10 11.5 1.15
Tl 3 0.18 10.5 1.9
Sn 4 0.13 15 1.95
Pb 4 0.24 13 3.1
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of constants begins to break down. The assumption that
the wave functions are Bloch functions only weakly
coupled to the vibrations is not a good approximation
even for the normal state of the superconducting metals.

The criterion (4.18) can be expressed in terms of the
room-temperature resistivity, p, if we use the free-
electron formula :%

o=1/p=netr/m, (4.19)

where # is the number of valence electrons per unit
volume, For T=20°C=293°K, (4.18) becomes

np>2wmxT/het~108 (e.s.u.), (4.20)

The value 108 applies if p is expressed in e.s.u. and would
be about 10' if p is in practical units.!® Except for the
transition metals, (4.20) is valid for practically all
cases (Table I). None of the monovalent metals satisfy
(4.20). Since the transition metals have narrow energy
bands, one would not expect to get much energy gain
by taking linear combinations corresponding to the
superconducting states. A large effective mass should
be used in (4.20). Thus they are not expected to be
superconducting.

Energy of the Superconducting State

We shall suppose that the criterion for supercon-
ductivity is satisfied so that practically all &’ in the
energy range e satisfy (4.6) and may be included in the
sum (4.2). The energy A? is then given by (4.12) with
x1=1. Using the definition of ¢ in (4.14), we have

(4.21)

The difference in energy between the superconducting
and normal states is

W,—W,.=2N(Eo)61(61—A). (422)

The factor 2NV (E)e; is the number of superconducting
electrons, counting both spin states, and ¢;—A is the
average energy difference per electron.

We shall find the value of ¢ which makes W, a
minimum. With use of (4.21), we have

Al= €1Q.

W—W,= ZN(EO)(elz—(ﬁel’). (423)
Setting
AW, —W,)/de~2e,—3/2ate,}=0,
we find
a=(9/16)a, (4.24)
and
A=(3/4)a. (4.25)

The minimum value of W,—W, is then
W,—W,=—(27/128)N(E,)a?
=—(27/128)N(Eo) (hwm/4wxT)*(h/ 7). (4.26)

10 Frohlich’s criterion is approximately pn»i>0.2)X108, where
v is the valency. This criterion is less restrictive than ours and is
not in as good agreement with observation. Compare Table I
with the corresponding table in reference 4.
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The second expression is obtained by using (4.17) for a.
A very similar expression would have been found if we
had used (4.4) for the wave functions and calculated
the energy from the Hamiltonian instead of using
(4.2).10a

The energy difference is usually determined from the
critical field, H,, at T=0:

W,—W,=—H}?/8n. (4.27)
From (4.26) and (4.27), we find
H.= (2717w N(Ey)/16)}(h2w,/4mcT7). (4.28)
The free-electron model gives®
N(Eo) =mko/2mh?, (4.29)

where kg is the maximum value of % in the Fermi dis-
tribution:
ko= (37}, (4.30)

Equation (4.28) gives values for H, which are too
large, as does the corresponding expression of Frohlich.*
For example, approximate values for lead, taking 3
valence electrons per atom, are:

p=2.2X10"7 es.u. at 273°K,
n=1.3X10% electrons/cm?,
hom~10"" ergs, 1/7~netp/m~7X10" sec.”},
ko~1.6X10° cm—t, N (Eog)~8X 10%,

which give H,~3000 oersteds as compared with the
observed value of 800. Values are even higher for lighter
elements with larger values of /wpn.

Our calculations undoubtedly overestimate the
energy, and the free-electron approximation is probably
poor for most of the superconducting metals. Even
when these factors are taken into consideration, the
theoretical values of H. appear to be too large. It is
believed that the difficulty is not so much in the calcu-
lations and model for the superconducting state as for
the normal state. The criterion (4.18) indicates that the
Bloch functions are probably not sufficiently good wave
functions for the normal states of superconducting
metals. A theory of transition phenomena would require
a good model for both superconducting and normal
states.

The expression for ¢ (Eq. (4.14)) is similar to the
expression for the energy change, AE, estimated in the
earlier publication® from the adiabatic approximation
and is what would have been obtained there if account
had been taken of the increase in the number of inter-
actions with increase in volume. The number of inter-
actions is equal to p as there defined, and the expression
for AE (Eq. (4)) should be multiplied by p. This makes
AE independent of the volume, V, but the expression
then gives values which are about an order of magnitude
larger than most values of «T..

108 Added in proof. It probably would have been better to have
used this method which involves replacing ¢ —A in (4.22) with
$a+3(hwr)aw—A. This procedure leads to a larger value for
Ege en)ergy difference, W,—W, when a is larger compared with

Wkk?) Av-
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The calculation given in the present paper shows that
the pure adiabatic approximation is not valid. Terms
coming from J*|d¢i/dq.|%dr give an increase in Fermi
energy which reduces the average energy change per
superconducting electron, but it still appears to be
larger than k7. for most elements.

The expressions for the energy change are consistent
with the isotope effect. Since Aw., varies as M~} and 7
is independent of isotopic mass, H., and thus T', should
vary as M~} in agreement with experiment.?

Non-Symmetric Distributions; Effective Mass

According to Eqs. (4.24) and (4.25) the average
energy difference, A—e;, between the normal and super-
conducting states per superconducting electron is A/4.
The energy difference is large only for a symmetric
distribution in k-space corresponding to zero net
current. Let us imagine a distribution displaced in
k-space by a small vector &, corresponding to an average
momentum k&, per electron. If the displacement &,
changes the Fermi energy of electrons near the Fermi
surface by an amount of the order of A, the condition
(4.6) for the linear combinations will be valid only for
a small number of the k' states and the energy dif-
ference between the superconducting and normal states
will be small. From this we can estimate the change in
superconducting energy with %, and thus estimate the
effective mass of electrons in the superconducting state.

The displacement k; which gives a change in Fermi
energy A is such that

A~Hholy/m,
or
Ei~mb/ 12k 4.31)

The effective mass, m., in the superconducting state
can be estimated by equating A%k.>2/2m, to the energy
difference A/4. This gives

AJA~RR2 2m = (B2 2m.)(mA/ W2ko)?,  (4.32)
from which we get
me~(2Am/ R2k2)m~(A/ Eo)m, (4.33)

which is of the order of 10~* or 10—% m.

As the diamagnetic susceptibility varies as (m/m,)?
according to Peierls’ modification!! of the Landau
theory, a value of m.,~107%m is sufficiently small to
make x<—1/4w, which suggests that when this con-
dition is fulfilled the “superconducting state” is a

1L R. Peierls, Zeits. f. Physik 80, 763 (1933). Peierls’ formula
may be expressed in the following way. The contribution to the
susceptibility of electrons in a given Brillouin zone which contains
n. electrons and is filled to an energy E,, measured from the
bottom of the zone, is x,= —(m/m.)n.u/2E,, where p=ek/2mc.
The number of Brillouin zones required to accomodate all elec-
trons with energies within ~E, of the Fermi surface, Eo, is the
order of (nE./n.Ev), where n is the total number of electrons per
unit volume. The total susceptibility is thus of the order
x:= —(m/m.)nu?/2E,, or the order of (m/m,)? times Landau’s
expression. As Landau’s expression gives values of the order of
1077, it is necessary to have m/m,>~10"3 to have a perfect
diamagnetic.
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perfect diamagnetic. To get a complete theory of the
superconducting properties it would be necessary to
re-examine the problem for the situation in which the
magnetic field is confined to a thin surface layer cor-
responding to the penetration depth of the London
theory.t®
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The energy distribution and angular dependence of the alpha-particle groups from the nuclear reaction
AlP"(d, a)Mg?® have been investigated. A magnetically analyzed beam of 11.1 Mev deuterons was used.
Eleven alpha-particle groups were measured, corresponding to ten excited levels in Mg? at 0.57, 0.96, 1.63,
1.97, 2.74, 3.36, 4.01, 4.81, 5.48, and 5.95 Mev. The ground state Q-value for the reaction was found to be
6.58+0.03 Mev, giving a value for the mass difference Al2%-Mg? of 1.99626+0.00003 mass units. The in-
tensities of all the groups, with the exception of Q,, show marked dependence on the angle of measurement.
The average spacing of the levels in Mg® is 0.6 Mev, and is nearly constant over the range studied.

I. INTRODUCTION

N excited level in Mg® was first observed by
McMillan and Lawrence,! from the Al*(d, o) Mg®»
reaction. Two groups of alpha-particles were found with
an energy difference corresponding to an excited level
at 0.7 Mev. Pollard, Sailor, and Wyly,? using 3.79 Mev
deuterons, observed two additional groups showing
three excited levels in the Mg%» nucleus. French and
Treacy® repeated these measurements with 0.93 Mev
deuterons, using an ionization chamber to count the
alpha-particles and found five groups.

The present investigation of the Al*’(d, «)Mg?* reac-
tion was undertaken to measure the angular distribution
of the alpha-particle groups and to search for groups
corresponding to states of higher excitation made fea-
sible by the use of the 11-Mev deuteron beam of the
Indiana University Cyclotron.

II. METHOD AND APPARATUS

The deuteron beam was led through a four-inch diam-
eter, evacuated tube from the target chamber of the
cyclotron to a magnetic analyzer situated outside the
water shielding tanks; a distance of fifteen feet.

The analyzer magnet was constructed using a rec-
tangular yoke with a cross section sixteen inches square.
The pole pieces were made in the form of a truncated
wedge with a gap of 2.0 inches. The lids of the magnet
vacuum chamber are of one-half inch iron, leaving a net

t This work was assisted by the joint program of the ONR
and AEC.

1E. McMillan and E. O. Lawrence, Phys. Rev. 47, 343 (1935).

2 Pollard, Sailor, and Wyly, Phys. Rev. 75, 725 (1949).

3 A. P. French and P. B. Treacy, Proc. Phys. Soc. London 63,
665 (1950).

gap of one inch. The magnet coils require about one
kilowatt of power to produce a maximum field of 12,000
Gauss. A field of 10,635 gauss was sufficient to deflect
the 11-Mev deuteron beam through 56°. The current in
the coils is supplied by a motor generator, and the use
of an electronic stabilizer enables the current to be held
constant within 0.2 percent. The magnetic field is
measured with a flip coil and ballistic galvanometer,
calibrated against a standard mutual inductance.

Scattering of the beam in the analyzer chamber is
prevented by the use of suitable diaphragms to define
the beam. Adjustable slits are placed at the entrance
to the analyzer chamber and in the tube leading to the
reaction chamber to define the beam to the target.

The magnetic analyzer was calibrated with alpha-
particles of polonium and thorium active deposit. The
source was placed on the axis of the beam tube, ten feet
from the analyzer. A proportional counter located be-
hind the focal slit was then used to count the alpha-
particles as the magnetic field was varied. Alpha-
particles from Po, ThC and ThC’ were used to give
three points on the energy versus magnetic field curve
at energies of 5.3, 6.05, and 8.78 Mev respectively. A
linear relation was obtained between the alpha-particle
energy and the square of the magnetic field. The energy
of the deuteron beam striking the target could then be
determined by using the relation:

Ep= (Hep)2/2mc2,
where m is the deuteron mass, e is the charge, ¢ is the
velocity of light, and H is the magnetic field required
to focus the deuteron beam of energy Ep on the target
slit. p is the effective radius of curvature in the analyzer
and was found equal to 64.1 cm from the alpha-particle



