
AWK (Aho, Kernighan, and Weinberger) Summary

Predefined Variable Summary:
 Support:

Variable Description AWK NAWK GAWK

FS Input Field Separator, a space by default.   
OFS Output Field Separator, a space by default.   
NF The Number of Fields in the current input record.   
NR The total Number of input Records seen so far.   
RS Record Separator, a newline by default.   

ORS Output Record Separator, a newline by default.   

FILENAME
The name of the current input file. If no files are specified on the command line,
the value of FILENAME is "-". However, FILENAME is undefined inside the
BEGIN block (unless set by getline).

  

ARGC
The number of command line arguments (does not include options to gawk, or the
program source). Dynamically changing the contents of ARGV control the files
used for data.

  

ARGV Array of command line arguments. The array is indexed from 0 to ARGC - 1.   
ARGIND The index in ARGV of the current file being processed.   

BINMODE

On non-POSIX systems, specifies use of "binary" mode for all file I/O.
Numeric values of 1, 2, or 3, specify that input files, output files, or all files,
respectively, should use binary I/O. String values of "r", or "w" specify that input
files, or output files, respectively, should use binary I/O. String values of "rw" or
"wr" specify that all files should use binary I/O. Any other string value is treated as
"rw", but generates a warning message.

  

CONVFMT
The CONVFMT variable is used to specify the format when converting a number
to a string. Default: "%.6g"   

ENVIRON An array containing the values of the current environment.   

ERRNO
If a system error occurs either doing a redirection for getline, during a read for
getline, or during a close(), then ERRNO will contain a string describing the error.
The value is subject to translation in non-English locales.

  

FIELDWIDTHS
A white-space separated list of fieldwidths. When set, gawk parses the input into
fields of fixed width, instead of using the value of the FS variable as the field
separator.

  

FNR Contains number of lines read, but is reset for each file read.   

IGNORECASE

Controls the case-sensitivity of all regular expression and string operations. If
IGNORECASE has a non-zero value, then string comparisons and pattern
matching in rules, field splitting with FS, record separating with RS, regular
expression matching with ~ and !~, and the gensub(), gsub(), index(), match(),
split(), and sub() built-in functions all ignore case when doing regular expression
operations. NOTE: Array subscripting is not affected. However, the asort() and
asorti() functions are affected.

  

LINT
Provides dynamic control of the --lint option from within an AWK program. When
true, gawk prints lint warnings.   

OFMT The default output format for numbers. Default: "%.6g"   

PROCINFO

The elements of this array provide access to information about the running AWK
program.
PROCINFO["egid"] the value of the getegid(2) system call.
PROCINFO["euid"] the value of the geteuid(2) system call.
PROCINFO["FS"] "FS" if field splitting with FS is in effect,
 or "FIELDWIDTHS" if field splitting with
 FIELDWIDTHS is in effect.
PROCINFO["gid"] the value of the getgid(2) system call.
PROCINFO["pgrpid"] the process group ID of the current process.
PROCINFO["pid"] the process ID of the current process.
PROCINFO["ppid"] the parent process ID of the current process.
PROCINFO["uid"] the value of the getuid(2) system call.

  

RT
The record terminator. Gawk sets RT to the input text that matched the character or
regular expression specified by RS.   

RSTART The index of the first character matched by match(); 0 if no match.   
RLENGTH The length of the string matched by match(); -1 if no match.   

SUBSEP
The character used to separate multiple subscripts in array elements.
Default: "\034" (non-printable character, dec: 28, hex: 1C)   

TEXTDOMAIN
The text domain of the AWK program; used to find the localized translations for the
program's strings.   

 Variable is supported: 
 Variable is not supported: 

© 2007 Peteris Krumins peter@catonmat.net
http://www.catonmat.net good coders code, great reuse

mailto:peter@catonmat.net
http://www.catonmat.net

Command line argument summary:

Argument Description

-F fs
--field-sepearator fs

Use fs for the input field separator (the value of the FS predefined variable).

-v var=val
--assign var=val

Assign the value val to the variable var, before execution of the program begins. Such variable
values are available to the BEGIN block of an AWK program.

-f program-file
--file program-file

Read the AWK program source from the file program-file, instead of from the first command
line argument. Multiple -f (or --file) options may be used.

-mf NNN
-mr NNN

Set various memory limits to the value NNN. The f flag sets the maximum number of fields, and
the r flag sets the maximum record size. (Ignored by gawk, since gawk has no pre-defined limits)

-W compat
-W traditional

--compat
--traditional

Run in compatibility mode. In compatibility mode, gawk behaves identically to UNIX awk; none
of the GNU-specific extensions are recognized.

-W copyleft
-W copyright

--copyleft
--copyright

Print the short version of the GNU copyright information message on the standard output and
exit successfully.

-W dump-variables[=file]
--dump-variables[=file]

Print a sorted list of global variables, their types and final values to file. If no file is provided,
gawk uses a file named awkvars.out in the current directory.

-W help
-W usage

--help
--usage

Print a relatively short summary of the available options on the standard output.

-W lint[=value]
--lint[=value]

Provide warnings about constructs that are dubious or non-portable to other AWK impl’s. With
argument fatal, lint warnings become fatal errors. With an optional argument of invalid, only
warnings about things that are actually invalid are issued. (This is not fully implemented yet.)

-W lint-old
--lint-old

Provide warnings about constructs that are not portable to the original version of Unix awk.

-W gen-po
--gen-po

Scan and parse the AWK program, and generate a GNU .po format file on standard output with
entries for all localizable strings in the program. The program itself is not executed.

-W non-decimal-data
--non-decimal-data

Recognize octal and hexadecimal values in input data.

-W posix
--posix

This turns on compatibility mode, with the following additional restrictions:
 \x escape sequences are not recognized.
 Only space and tab act as field separators when FS is set to a single space, new-line does not.
 You cannot continue lines after ? and :.
 The synonym func for the keyword function is not recognized.
 The operators ** and **= cannot be used in place of ^ and ^=.
 The fflush() function is not available.

-W profile[=prof_file]
--profile[=prof_file]

Send profiling data to prof_file. The default is awkprof.out. When run with gawk, the profile is
just a "pretty printed" version of the program. When run with pgawk, the profile contains
execution counts of each statement in the program in the left margin and function call counts for
each user-defined function.

-W re-interval
--re-interval

Enable the use of interval expressions in regular expression matching. Interval expressions were
not traditionally available in the AWK language.

-W source program-text
--source program-text

Use program-text as AWK program source code. This option allows the easy intermixing of
library functions (used via the -f and --file options) with source code entered on the command
line.

-W version
--version

Print version information for this particular copy of gawk on the standard output.

--
Signal the end of options. This is useful to allow further arguments to the AWK program itself to
start with a "-". This is mainly for consistency with the argument parsing convention used by
most other POSIX programs.

© 2007 Peteris Krumins peter@catonmat.net
http://www.catonmat.net good coders code, great reuse

mailto:peter@catonmat.net
http://www.catonmat.net

Statements and Functions:
I/O Statements Description

close(file [, how])
Close file, pipe or co-process. The optional how should only be used when closing one end of a two-
way pipe to a co-process. It must be a string value, either "to" or "from".

getline
Set $0 from next input record; set NF, NR, FNR. Returns 0 on EOF and –1 on an error. Upon an
error, ERRNO contains a string describing the problem.

getline <file Set $0 from next record of file; set NF.
getline var Set var from next input record; set NR, FNR.
getline var <file Set var from next record of file.

command | getline [var]
Run command piping the output either into $0 or var, as above. If using a pipe or co-process to
getline, or from print or printf within a loop, you must use close() to create new instances

command |& getline [var]
Run command as a co-process piping the output either into $0 or var, as above. Co-processes are a
gawk extension.

next
Stop processing the current input record. The next input record is read and processing starts over with
the first pattern in the AWK program. If the end of the input data is reached, the END block(s), if
any, are executed.

nextfile
Stop processing the current input file. The next input record read comes from the next input file.
FILENAME and ARGIND are updated, FNR is reset to 1, and processing starts over with the first
pattern in the AWK program. If the end of the input data is reached, the END block(s), are executed.

print Prints the current record. The output record is terminated with the value of the ORS variable.

print expr-list
Prints expressions. Each expression is separated by the value of the OFS variable. The output record
is terminated with the value of the ORS variable.

print expr-list >file
Prints expressions on file. Each expression is separated by the value of the OFS variable. The output
record is terminated with the value of the ORS variable.

printf fmt, expr-list Format and print.
printf fmt, expr-list >file Format and print on file.
system(cmd-line) Execute the command cmd-line, and return the exit status.

fflush([file])
Flush any buffers associated with the open output file or pipe file. If file is missing, then stdout is
flushed. If file is the null string, then all open output files and pipes have their buffers flushed.

print ... >> file appends output to the file.
print ... | command writes on a pipe.
print ... |& command sends data to a co-process.

Numeric Functions Description

atan2(y, x) Returns the arctangent of y/x in radians.
cos(expr) Returns the cosine of expr, which is in radians.
exp(expr) The exponential function.
int(expr) Truncates to integer.
log(expr) The natural logarithm function.
rand() Returns a random number N, between 0 and 1, such that 0 <= N < 1.
sin(expr) Returns the sine of expr, which is in radians.
sqrt(expr) The square root function.

srand([expr])
Uses expr as a new seed for the random number generator. If no expr is provided, the time of day is
used. The return value is the previous seed for the random number generator.

Bit Manipulations Functions Description

and(v1, v2) Return the bitwise AND of the values provided by v1 and v2.
compl(val) Return the bitwise complement of val.
lshift(val, count) Return the value of val, shifted left by count bits.
or(v1, v2) Return the bitwise OR of the values provided by v1 and v2.
rshift(val, count) Return the value of val, shifted right by count bits.
xor(v1, v2) Return the bitwise XOR of the values provided by v1 and v2.

I18N functions

bindtextdomain(directory [, domain])
Specifies the directory where gawk looks for the .mo files. It returns the directory where domain is ``bound.'' The default domain is the
value of TEXTDOMAIN. If directory is the null string (""), then bindtextdomain() returns the current binding for the given domain.
dcgettext(string [, domain [, category]])
Returns the translation of string in text domain domain for locale category category. The default value for domain is the current value of
TEXTDOMAIN. The default value for category is "LC_MESSAGES". If you supply a value for category, it must be a string equal to one
of the known locale categories. You must also supply a text domain. Use TEXTDOMAIN if you want to use the current domain.
dcngettext(string1 , string2 , number [, domain [, category]])
Returns the plural form used for number of the translation of string1 and string2 in text domain domain for locale category category. The
default value for domain is the current value of TEXTDOMAIN. The default value for category is "LC_MESSAGES". If you supply a
value for category, it must be a string equal to one of the known locale categories. You must also supply a text domain. Use
TEXTDOMAIN if you want to use the current domain.

String Functions Description

asort(s [, d])

Returns the number of elements in the source array s. The contents of s are sorted using gawk's
normal rules for comparing values, and the indexes of the sorted values of s are replaced with
sequential integers starting with 1. If the optional destination array d is specified, then s is first
duplicated into d, and then d is sorted, leaving the indexes of the source array s unchanged.

asorti(s [, d])

Returns the number of elements in the source array s. The behavior is the same as that of asort(),
except that the array indices are used for sorting, not the array values. When done, the array is
indexed numerically, and the values are those of the original indices. The original values are lost; thus
provide a second array if you wish to preserve the original.

gensub(r, s, h [, t])

Search the target string t for matches of the regular expression r. If h is a string beginning with g or
G, then replace all matches of r with s. Otherwise, h is a number indicating which match of r to
replace. If t is not supplied, $0 is used instead. Within the replacement text s, the sequence \n, where
n is a digit from 1 to 9, may be used to indicate just the text that matched the n'th parenthesized
subexpression. The sequence \0 represents the entire matched text, as does the character &. Unlike
sub() and gsub(), the modified string is returned as the result of the function, and the original target
string is not changed.

gsub(r, s [, t])
For each substring matching the regular expression r in the string t, substitute the string s, and return
the number of substitutions. If t is not supplied, use $0. An & in the replacement text is replaced with
the text that was actually matched. Use \& to get a literal &. (This must be typed as "\\&")

index(s, t)
Returns the index of the string t in the string s, or 0 if t is not present. (This implies that character
indices start at one.)

length([s]) Returns the length of the string s, or the length of $0 if s is not supplied.

match(s, r [, a])

Returns the position in s where the regular expression r occurs, or 0 if r is not present, and sets the
values of RSTART and RLENGTH. Note that the argument order is the same as for the ~ operator:
str ~ re. If array a is provided, a is cleared and then elements 1 through n are filled with the portions
of s that match the corresponding parenthesized subexpression in r. The 0'th element of a contains
the portion of s matched by the entire regular expression r. Subscripts a[n, "start"], and a[n, "length"]
provide the starting index in the string and length respectively, of each matching substring.

split(s, a [, r])
Splits the string s into the array a on the regular expression r, and returns the number of fields. If r is
omitted, FS is used instead. The array a is cleared first. Splitting behaves identically to field splitting.

sprintf(fmt, expr-list) Prints expr-list according to fmt, and returns the resulting string.

strtonum(str)
Examines str, and returns its numeric value. If str begins with a leading 0, strtonum() assumes that
str is an octal number. If str begins with a leading 0x or 0X, strtonum() assumes that str is a
hexadecimal number.

sub(r, s [, t]) Just like gsub(), but only the first matching substring is replaced.
substr(s, i [, n]) Returns the at most n-character substring of s starting at i. If n is omitted, the rest of s is used.

tolower(str)
Returns a copy of the string str, with all the upper-case characters in str translated to their
corresponding lower-case counterparts. Non-alphabetic characters are left unchanged.

toupper(str)
Returns a copy of the string str, with all the lower-case characters in str translated to their
corresponding upper-case counterparts. Non-alphabetic characters are left unchanged.

Time Functions Description

mktime(datespec)

Turns datespec into a time stamp of the same form as returned by systime(). The datespec is a
string of the form YYYY MM DD HH MM SS[DST]. The contents of the string are six or
seven numbers representing respectively the full year including century, the month from 1 to
12, the day of the month from 1 to 31, the hour of the day from 0 to 23, the minute from 0 to
59, and the second from 0 to 60, and an optional daylight saving flag. The values of these
numbers need not be within the ranges specified; for example, an hour of -1 means 1 hour
before midnight. The origin-zero Gregorian calendar is assumed, with year 0 preceding year 1
and year -1 preceding year 0. The time is assumed to be in the local timezone. If the daylight
saving flag is positive, the time is assumed to be daylight saving time; if zero, the time is
assumed to be standard time; and if negative (the default), mktime() attempts to determine
whether daylight saving time is in effect for the specified time. If datespec does not contain
enough elements or if the resulting time is out of range, mktime() returns -1.

strftime([format [, timestamp]])

Formats timestamp according to the specification in format. The timestamp should be of the
same form as returned by systime(). If timestamp is missing, the current time of day is used.
If format is missing, a default format equivalent to the output of date(1) is used. See the
specification for the strftime() function in ANSI C for the format conversions that are
guaranteed to be available. A public-domain version of strftime(3) and a man page for it come
with gawk; if that version was used to build gawk, then all of the conversions described in that
man page are available to gawk.

systime()
Returns the current time of day as the number of seconds since the Epoch (1970-01-01
00:00:00 UTC on POSIX systems).

 © 2007 Peteris Krumins peter@catonmat.net
http://www.catonmat.net good coders code, great reuse

mailto:peter@catonmat.net
http://www.catonmat.net

