

CMI9738 4CH Audio Codec

Preliminary

Integrated Multi-channel AC'97 Specification

CMI 9738

1. Description and Overview

<u>Versatility</u>

CMI9738 is a 4CH AC97 CODEC, applicable for currently mainstream MB chipsets of Intel, VIA, Ali, and SIS. CMI9738 is ideal for PC2001-compliant desktops, notebooks, and home entertainment PCs where high-quality audio is a must.

4CH Playback

The specially-designed 4CH hardware architecture of CMI9738 allows all types of south bridge to playback 4CH audio, thus helping commonplace south bridge get rid of the limitation of 2CH audio playback capability (patent pending both in Taiwan and United States).

Cost-effectiveness

As to the cost concern, CMI9738 integrates the earphone buffer, analog CD differential interface, and analog switch for rear channel audio to Line-in. Simply by using 0.1uf decoupling capacitor, CMI9738 meets PC2001 frequency response requirements. Alongside offering standard LQFP 48pin packaging option, CMI9738 also offers SOP 24pin packaging, which helps to further cut the cost.

More Audio Option

Last but not least, CMI9738 provides Sensaura® 3D audio option. In that regard, the audio quality of CMI9738 is fabulous beyond general expectation.

Features

- ■Intel AC'97 Rev 2.2 compatible
- ■AC-Link Protocol compliance
- ■Full-Duplex Codec
- ■Earphone Buffer
- ■Line-in/rear out share jack capability
- ■4 channels DAC
- 48 LQFP Package and 24-Lead TSSOP Package
- Meet Microsoft's [®] PC2001 requirements
- Sensaura® 3D Enhancement(optional)

Pin Block Diagram

C-MEDIA Electronics Inc. 6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. 106 TEL: 886-2-8773-1100 FAX: 886-2-8773-2211 E-mail:sales@cmedia.com.tw

PIN DESCRIPTIONS

48-Pin LQFP

PIN #	Signal Name	PIN #	Signal Name		
1	DVdd1	25	AVdd1		
2	XTL_IN	26	AVss1		
3	XTL_OUT	27	NC		
4	DVss1	28	Vrefout		
5	SDATA_OUT	29	AFILT1		
6	BIT_CLK	30	AFILT2		
7	DVss2	31	NC		
8	SDATA_IN	32	NC		
9	DVdd2	33	NC		
10	SYNC	34	NC		
11	RESET#	35	LINE_OUT_L		
12	NC	36	LINE_OUT_R		
13	NC	37	NC		
14	AUX_IN_L	38	AVdd2		
15	AUX_IN_R	39	REAR_OUT_L		
16	NC	40	TEST0#		
17	NC	41	REAR_OUT_R		
18	CD_L	42	AVss2		
19	CD_GND	43	NC		
20	CD_R	44	NC		
21	MIC1	45	RESERVED		
22	NC	46	RESERVED		
23	LINE_IN_L	47	NC		
24	LINE_IN_R	48	NC		

24-Pin TSSOP

	501
PIN #	Signal Name
1	SDATA_IN
2	SYNC
3	RESET#
4	AUX_IN_L
5	AUX_IN_R
6	CD_L
7	CD_GND
8	CD_R
9	MIC1
10	LINE_IN_L
11	LINE_IN_R
12	VREF_OUT
13	AFILT1
14	AFILT2
15	LINE_OUT_L
16	LINE_OUT_R
17	AVdd
18	TEST0#
19	Vss
20	DVsdd
21	XTL_IN
22	XTL_OUT
23	SDATA_OUT
24	BIT_CLK

The CMI9738 mixer is designed to the AC'97 specification to manage playback and record of all digital and analog audio sources in the PC environment. These include :

•System audio : digital PCM input and output for business, games, and multimedia

•CD/DVD : analog CD/DVD-ROM Redbook audio with internal connections to Codec mixer

Mono microphone : choice of desktop or headset mic, with programmable boost and gain

•Speakerphone : use of system mic & speakers for telephony, DSVD, and video conferencing

•Stereo line in : analog external line level source from consumer audio, video camera, etc

•AUX/synth : analog FM or wavetable synthesizer, or other internal source

SOURCE	FUNCTION	CONNECTION	OUTPUT MIX SUPPORTS:
MIC1	desktop microphone	from mic jack	•stereo mix of all sources for LINE_OUT
LINE_IN	external audio source	from line in jack	 stereo output for REAR_OUT
CD	audio from CD-ROM drive	cable from CD-ROM	
AUX	upgrade synth or other external source	internal connector	
PCM out	digital audio output from AC '97 Controller	AC-link	INPUT MUX SUPPORTS:
Mix out	mix of all sources	AC '97 internal	•any mono or stereo source
LINE_OUT	stereo mix of all sources (front channel)	to output jack	•mono or stereo mix of all sources
REAR_OUT	stereo output of rear (surround) channel	to output jack	
PC <u>M in</u>	digital audio input to AC '97 Controller	AC-link	

C-MEDIA Electronics Inc. 6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. 106 TEL: 886-2-8773-1100 FAX: 886-2-8773-2211 E-mail:sales@cmedia.com.tw

2. ORDERING INFORMATION

Part Number		Package	Temperature Range	Supply Range
CMI9738	48-Pin LQFP	9mm×7mm×1.6mm	0 o C to +70 o C	DVdd = 3.3V, AVdd = 5V
CMI9738	24 Pin-TSSOP	7.9mm×6.5mm×1.1mm	0 o C to +70 o C	DVdd = 3.3V, AVdd = 5V

Outline Dimensions Dimensions shown in inches and (mm)

♦48-Lead Thin Plastic Quad Flatpack (LQFP) (ST-48)

◆24-Lead Plastic TSSOP (RU-24)

C-Media reserves the right to change specifications without notice.

C-MEDIA Electronics	Inc.	
6F, 100, Sec. 4, Civil B	oulevard, Taipei, Taiwa	an, R.O.C. 106
TEL: 886-2-8773-1100	FAX: 886-2-8773-2211	E-mail:sales@cmedia.com.tw

TABLE OF CONTENTS

1. D	DESCRIPTION AND OVERVIEW	1
2. 0	ORDERING INFORMATION	4
3. P	IN/SIGNAL DESCRIPTIONS	8
3.1	DIGITAL I/O	8
3.1	ANALOG I/O	8
3.2	FILTER AND REFERENCE PINS	8
3.3	POWER AND GROUND SIGNALS	9
4. D	DIGITAL INTERFACE	10
4.1	AC_LINK	10
4.2	CLOCKING	10
4.3	RESETTING	10
4.4	AC-LINK DIGITAL SERIAL INTERFACE PROTOCOL	11
4.5	AC-LINK AUDIO INPUT FRAME (SDATA_IN)	12
4.6	AC-LINK AUDIO OUTPUT FRAME (SDATA_OUT)	14
4.7	AC-LINK LOW POWER MODE	17
5. C	CMI9738 MIXER	19
5.1	MIXER INPUT	20
5.2	MIXER OUTPUT	20
6. R	REGISTER INTERFACE	21
6.1	REGISTER DESCRIPTIONS	22
6.2	PIN DESCRIPTIONS	28
7. A	C-LINK TIMING CHARACTERISTICS	29
7.1	COLD RESET	29
7.2	WARM RESET	29
7.3	CLOCKS	29
7.4	DATA SETUP AND HOLD	30
7.5	SIGNAL RISE AND FALL TIMES	31
7.6	AC-LINK LOW POWER MODE TIMING	32
7.7	ATE TEST MODE	32
8. 2	ELECTRICAL SPECIFICATIONS	33
8.1	DC CHARACTERISTICS	33
8.2	ABSOLUTE MAXIMUM RATINGS	33
8.3	RECOMMENDED OPERATING CONDITIONS	34
8.4	MIXER CHARACTERISTICS	34
8.5	POWER CONSUMPTION	35
8.6	ANALOG PERFORMANCE CHARACTERISTICS	35
C-ME	DIA Electronics Inc.	

6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan	n, R.O.C. 106	Revision
TEL: 886-2-8773-1100 FAX: 886-2-8773-2211 H	E-mail:sales@cmedia.com.tw	Revision

CMI 9738

C-MEDIA ELECTROMICS INC.	Integrated Multi-channel AC'97
9. REFERENCES	37
10. LIST OF FIGURES	
Figure 1. AC '97 connection to its companion controller	10
Figure 2. AC '97 Standard Bi-directional Audio Frame	11
Figure 3. AC-link Audio Input Frame	12
Figure 4. Start of an Audio Input Frame	13
Figure 5. AC-Link Audio Output Frame	14
Figure 6. Start of an Audio Output Frame	15
Figure 7. AC-link Powerdown Timing	17
Figure 8. CMI9738 Mixer Functional Diagram	19
Figure 9. Cold Reset timing diagram	29
Figure 10. Warm Reset	29
Figure 11. BIT_CLK to SYNC timing diagram	30
Figure 12. Data Setup and Hold	30
Figure 13. Signal rise and fall times diagram	31
Figure 14. AC-link low power mode timing diagram	32
Figure 15. ATE test mode timing diagram	32
11.LIST OF TABLES	
Table 1. Digital Signal List	8
Table 2. Analog Signal List	8
Table 3. Filtering and Voltage References	9
Table 4. Power Signal List CMI9738	9
Table 5. Mixer Functional Connections	20
Table 6. Mixer Registers	22
Table 7. Cold Reset timing parameters	28
Table 8 Warm Reset	28
Table 9. Clocks	29
Table 10. Data setup and hold timing parameters	30
Table 11. Signal rise and fall times parameters	30
Table 12. AC-link low power mode timing parameters	31
Table 13. ATE test mode timing parameters	31
Table 14. DC Characteristics (relative to Vdd)	32
Table 15. DC Characteristics (3.3 V Operation as per PCI 2.2)	32
Table 16. Absolute Maximum Ratings	33
Table 17. Operating Conditions	33
Table 18. Mixer Characteristics	33
Table 19. Power Consumption	34
Table 20. Analog performance characteristics	35

	100, Sec. 4, Civil B	oulevard, Taipei, Taiwa	an, R.O.C. 106
TEL	.: 886-2-8773-1100	FAX: 886-2-8773-2211	E-mail:sales@cmedia.com.tw

3. PIN/SIGNAL DESCRIPTIONS

3.1 DIGITAL I/O

These signals connect the CMI9738 to its AC'97 Controller counterpart, an external crystal, multi-codec selection and external audio amplifier.

		6 6
Signal Name	Туре	Description
RESET#	Ι	AC'97 Master H/W Reset
XTL_IN	Ι	24.576 MHz Crystal
XTL_OUT	0	24.576 MHz Crystal
SYNC	Ι	48 kHz fixed rate sample sync
BIT_CLK	0	12.288 MHz serial data clock
SDATA_OUT	Ι	Serial, time division multiplexed, AC'97 input stream
SDATA_IN	0	Serial, time division multiplexed, AC'97 output stream

Table 1. Digital Signal List

denotes active low

3.2 ANALOG I/O

These signals connect the CMI9738 to analog sources and sinks, including microphones and speakers.

Signal Name	Туре	Description	
AUX_IN_L	Ι	Aux Left Channel	
AUX_IN_R	Ι	Aux Right Channel	
CD_L	Ι	CD Audio Left Channel	
CD_R	Ι	CD Audio Right Channel	
CD_GND	Ι	CD Audio analog ground	
MIC1	Ι	Desktop Microphone Input	
LINE_IN_L	Ι	Line In Left Channel	
LINE_IN_R	Ι	Line In Right Channel	
LINE_OUT_L	0	Line Out Left Channel	
LINEOUT_R	0	Line Out Right Channel	
REAR_OUT_L	0	Rear Out Left Channel	
REAR_OUT_R	0	Rear Out Right Channel	

Table 2. Analog Signal List

3.3 FILTERAND REFERENCE PINS

These signals are connected to resistors, capacitors, or specific voltages, or provide general purpose I/O.

Signal Name	Туре	Description
Vrefout	0	Reference Voltage out 5mA drive (intended for mic bias)
AFLIT1	0	Anti-Aliasing Filter Cap - ADC channel & Sampling hold
AFLIT2	Ο	Anti-Aliasing Filter Cap - ADC channel & Sampling hold

3.4 POWER AND GROUND SIGNALS

Signal Name	Туре	Description
AVdd1	Ι	Analog Vdd $= 5V$
AVdd2	Ι	Analog Vdd $= 5V$
Avss1	Ι	Analog Gnd
Avss2	Ι	Analog Gnd
DVdd1	Ι	Digital Vdd $= 3.3V$
DVdd2	Ι	Digital Vdd $= 3.3V$
DVss1	Ι	Digital Gnd
DVss2	Ι	Digital Gnd

Table4. Power Signal List CMI9738

C-MEDIA Electronics Inc. 6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. 106 TEL: 886-2-8773-1100 FAX: 886-2-8773-2211 E-mail:sales@cmedia.com.tw

4. DIGITAL INTERFACE

4.1 AC-LINK

All digital audio streams, optional modem line Codec streams, and command/status information are communicated over this AC-Link. A breakout of the signals connecting the two is shown in Figure .

4.2 CLOCKING

CMI9738 derives its clock internally from an externally connected 24.576 MHz crystal or an oscillator through the XTAL_IN pin. Synchronization with the AC'97 controler is achieved through the BIT_CLK pin at 12.288 MHz (half of crystal frequency).

The beginning of all audio sample packets, or Audio Frames, transferred over AC-link is synchronized to the rising edge of the "SYNC" signal. "SYNC" is driven by the AC '97 Controller. Data is transitioned on AC-link on everyrising edge of BIT_CLK, and subsequently sampled on the receiving side of AC-link on each immediately followingfalling edge of BIT_CLK.

4.3 RESETTING

There are three types of reset as detailed under "Timing Characteristics" :

1. a cold reset where all CMI9738 logic (registers included) is initialized to its default state

- 2. a warm reset where the contents of the CMI9738 register set are left unaltered
- 3. a register reset which only initializes the CMI9738 registers to their default states

After signaling a reset to the CMI9738, the AC'97 Controller should not attempt to play or capture audio data until it has sampled a "Codec Ready" indication via register 26h from the CMI9738.

Notice : When the AC-link "Codec Ready" indicator bit (SDATA_IN slot 0, bit 15) is a 1 it indicates that the AC-link and AC '97 control and status registers are in a fully operational state.

4.4 AC-LINK DIGITAL SERIAL INTERFACE PROTOCOL

The CMI9738 communicates to the AC'97 controller via a 5-pin digital serial AC-Link interface, which is a bi-directional, fixed rate, serial PCM digital stream. All digital audio streams, commandsand status information are communicated over this point-to-point serial interconnect. The AC-Linkhandles multiple inputs, and output audio streams, as well as control register accesses using a timedivision multiplexed (TDM) scheme. The AC'97 controller synchronizes all AC-Link data transaction. The following data streams are available on the CMI9738 :

· SDATA_OUT TAG	1 output slot (0)
· SDATA_IN TAG	1 input slot (0)
· Status (STATUS ADDR & DATA) read port	2 input slots (1,2)
· PCM L & R DAC Playback	2 output slots (3,4)
· PCM L & R ADC Record	2 input slots (3,4)

SDATA IN

SLO7REQ 3 12 Synchronization of all AC-Link data transactions is handled by the AC'97 controller. The CMI9738 drives the serial bit clock onto AC-Link. The AC'97 controller then qualifies with a synchronization signal to construct audio frames.

SYNC, fixed at 48 kHz, is derived by dividing down the serial bit clock (BIT_CLK). BIT_CLK, fixed at 12.288 MHz, provides the necessary clocking granularity to support 12, 20-bit outgoing and incoming time slots. AC-Link serial data is transitioned on each rising edge of BIT_CLK. The receiver of AC-Link data, CMI9738 for outgoing data and AC'97 controller for incoming data, samples each serial bit on the falling edges of BIT_CLK.

The AC-Link protocol provides for a special 16-bit (13-bits defined, with 3 reserved trailing bit positions) time slot (Slot 0) wherein each bit conveys a valid tag for its corresponding time slot within the current audio frame. A "1" in a given bit position of slot 0 indicates that the corresponding time slot within the current audio frame has been assigned to a data stream, and contains valid data. If a slot is "tagged" invalid, it is the responsibility of the source of the data (CMI9738 for the input stream, AC'97 controller for the output stream) to stuff all bit positions with 0's during that slot'sactive time.

Date: Apr./2002 Revision Revision : 1.1

SYNC remains high for a total duration of 16 BIT_CLKs at the beginning of each audio frame. Theportion of the audio frame where SYNC is high is defined as the "Tag Phase". The remainder of theaudio frame where SYNC is low is defined as the "Data Phase".

Additionally, for power savings, all clock, sync, and data signals can be halted.

4.5 AC-LINK AUDIO INPUT FRAME (SDATA_IN)

The audio input frame data streams correspond to the multiplexed bundles of all digital input data targeting the AC ' 97 Controller. As is the case for audio output frame, each AC-link audio input frame consists of 12, 20-bit timeslots. Slot 0 is a special reserved time slot containing 16-bits which are used for AC-link protocol infrastructure.

Within slot 0 the first bit is a global bit (SDATA_IN slot 0, bit 15) which flags whether CMI9738 is in the "CodecReady" state or not. If the "Codec Ready" bit is a 0, this indicates thatCMI9738 is not ready for normal operation. This condition is normal following the deassertion of power on reset for example, while CMI9738's voltage references settle. When the AC-link "Codec Ready" indicator bit is a 1 it indicates that the AC-link and CMI9738 control and status registers are in a fully operational state. The AC '97 Controller must further probe the Powerdown Control/Status Register (section 6.3) to determine exactly which subsections, if any, are ready.

Prior to any attempts at putting CMI9738 into operation the AC '97 Controller should poll the first bit in the audio input frame (SDATA_IN slot 0, bit 15) for an indication that CMI9738 has gone "Codec Ready". Once CMI9738 is sampled "Codec Ready"8 then the next 12 bit positions sampled by the AC '97 Controller indicate which of the corresponding 12 time slots are assigned to input data streams, and that they contain valid data. The following diagram illustrates the time slot-based AC-link protocol.

C-MEDIA Electronics Inc. 6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. 106 TEL: 886-2-8773-1100 FAX: 886-2-8773-2211 E-mail:sales@cmedia.com.tw

A new audio input frame begins with a low to high transition of SYNC. SYNC is synchronous to the rising edge of BIT_CLK. On the immediately following falling edge of BIT_CLK, CMI9738 samples the assertion of SYNC. This falling edge marks the time when both sides of AC-link are aware of the start of a new audio frame. On the next rising of BIT_CLK, the CMI9738 transitions SDATA_IN into the first bit position of slot 0 ("Codec Ready" bit). Each new bit position is presented to AC-link on a rising edge of BIT_CLK, and subsequently sampled by the AC '97 Controller on the following falling edge of BIT_CLK. This sequence ensures that data transitions and subsequent sample points for both incoming and outgoing data streams are time aligned.

Figure4. Start of an Audio Input Frame

SDATA_IN's composite stream is MSB justified (MSB first) with all non-valid bit positions (for assigned and/or unassigned time slots) stuffed with 0's by CMI9738. SDATA_IN data is sampled on the falling edges of BIT_CLK.

Slot 1: Status Address Port

The status port is used to monitor status for CMI9738 functions including, but not limited to, mixer settings and power management (refer to section 6.3 of this specification).

Audio input frame slot 1's stream echoes the control register index, for historical reference, for the data to be returned in slot 2. (Assuming that slots 1 and 2 had been tagged "valid" by CMI9738 during slot 0.)

Bit (19)	RESERVED	(Stuffed with 0)
Bit (18;12)	Control Register Index	(Echo of register index for which data is being returned)
Bit (11:0)	RESERVED	(Stuffed with 0's)

Status Address Port bit assignments:

The first bit (MSB) generated by CMI9738 is always stuffed with a 0. The following 7 bit positions communicate the associated control register address, and the trailing 12 bit positions are stuffed with 0's by CMI9738.

Slot 2: Status Data Port

The status data port delivers 16-bit control register read data.

Bit (19:4)	Control Register Read Data	(Stuffed with 0's if tagged "invalid")
Bit (3:0)	RESERVED	(Stuffed with 0's)

If Slot 2 is tagged invalid by CMI9738, then the entire slot will be stuffed with 0's.

Slot 3: PCM Record Left Channel

Audio input frame slot 3 is the left channel output of CMI9738 input MUX, post-ADC. CMI9738 ADCs are implemented to support 18-bit resolution.

CMI9738 outputs its ADC data (MSB first), and stuffs any trailing non-valid bit positions with 0's to fill out its 20-bit time slot.

Slot 4: PCM Record Right Channel

Audio input frame slot 4 is the right channel output of CMI9738 input MUX, post-ADC. CMI9738 outputs its ADC data (MSB first), and stuffs any trailing non-valid bit positions with 0's to fill out its 20-bit time slot.

Slot 5: Optional Modem Line 1 ADC

Audio input frame slots 5-12 are not used by the CMI9738 and are always stuffed with 0's.

4.6 AC-LINK AUDIO OUTPUT FRAME (SDATA_OUT)

The audio output frame data streams correspond to the multiplexed bundles of all digital output data targeting the CMI9738 DAC inputs, and control registers. Each audio output frame supports up to 12 20-bit outgoing data time slots. Slot 0 is a special reserved time slot containing 16 bits that are used for AC-Link protocol infrastructure.

Within slot 0, the first bit is a global bit (SDATA_OUT slot 0, bit 15) which flags the validity for the entire audio frame. If the "Valid Frame" bit is a 1, this indicates that the current audio frame contains at least one slot time of valid data. The next 12 bit positions sampled by the CMI9738 indicate which of the corresponding 12 times slots contain valid data. In this way data streams of differing sample rates can be transmitted across AC-Link at its fixed 48kHz audio frame rate. The following diagram illustrates the time slot based AC-Link protocol.

Figure5 . AC-Link Audio Output Frame

TEL: 886-2-8773-1100 FAX: 886-2-8773-2211 E-mail:sales@cmedia.com.tw

A new audio output frame begins with a low to high transition of SYNC. SYNC is synchronous to the rising edge of BIT_CLK. On the immediately following falling edge of BIT_CLK, the CMI9738 samples the assertion of SYNC. This following edge marks the time when both sides of AC-Link are aware of the start of a new audio frame. On the next rising edge of BIT_CLK, the AC'97 controller transitions SDATA_OUT into the first bit position of slot 0 (Valid Frame bit). Each new bit position is presented to AC-Link on a rising edge of BIT_CLK, and subsequently sampled by the CMI9738 on the following falling edge of BIT_CLK. This sequence ensures that data transitions, and subsequent sample points for both incoming and outgoing data streams are time aligned.

Figure 6. Start of an Audio Output Frame

SDATA_OUT's composite stream is MSB justified (MSB first) with all non-valid slots' bit positions AC'97 controller. When mono audio sample streams are sent from the AC'97 controller it is necessary that BOTH left and right sample stream time slots be filled with the same data.

Slot 1: Command Address Port

The command port is used to control features, and monitor status (see Audio Input Frame Slots 1 and 2) of the CMI9738 functions including, but not limited to, mixer settings, and power management (refer to the control register section of this specification).

The control interface architecture supports up to 64 16-bit read/write registers, addressable on even byte boundaries. Only the even registers (00h, 02h, etc.) are valid.

Audio output frame slot 1 communicates control register address, and write/read command information to the CMI9738.

Command Address Port bit assignments :

Bit (19)	Read/Write command	(1=read, 0=write)
Bit (18:12)	Control Register Index	(64 16-bit locations, addressed on even byte boundaries)
Bit (11:0)	Reserved	(Stuffed with 0's)

The first bit (MSB) sampled by CMI9738 indicates whether the current control transaction is a read or a write operation. The following 7 bit positions communicate the targeted control register address. The trailing 12 bit positions within the slot are reserved and must be stuffed with 0's by the AC '97 Controller.

Slot 2: Command Data Port

The command data port is used to deliver 16-bit control register write data in the event that the current command port operation is a write cycle. (as indicated by Slot 1, bit 19)

Bit (19:4)	Control Register Write Data	(Stuffed with 0's if current operation is a read)
Bit (3:0)	Reserved	(Stuffed with 0's)

If the current command port operation is a read then the entire slot time must be stuffed with 0's by the AC'97 controller.

Slot 3: PCM Playback Left Channel

"Games Compatible" PC this slot is composed of standard PCM (.wav) output samples digitally mixed (by the AC'97 controller or host processor) with music synthesis output samples. If a sample stream of resolution less than 20-bits is transferred, the AC'97 controller must stuff all trailing non-valid bit positions within this time slot with 0's.

Slot 4: PCM Playback Right Channel

Audio output frame slot 4 is the composite digital audio right playback stream. In a typical "Games Compatible" PC this slot is composed of standard PCM (.wav) output samples digitally mixed (by the AC'97 controller or host processor) with music synthesis output samples. If a sample stream of resolution less than 20-bits is transferred, the AC'97 controller must stuff all trailing non-valid bit positions within this time slot with 0's.

Slot 5: Reserved

Audio output frame slot 5 is reserved for modem operation and is not used by the CMI9738.

Slot 6: PCM Center Channel

Audio output frame slot 6 is not used by the CMI9738.

Slot 7: PCM Left Surround Channel

Slot 7 carries PCM left surround data in 4 channel wave output.

Slot 8: PCM Right Surround Channel

Slot 8 carries PCM right surround data in 4 channel wave output.

Slot 9: PCM Low Frequency Channel

Audio output frame slot 9 is not used by the CMI9738.

Slot 10: PCM Alternate Left

Audio output frame slot 10 is not used by the CMI9738.

Slot 11: PCM Alternate Right

Audio output frame slot 11 is not used by the CMI9738.

Slot 12: Reserved

Audio output frame slot 12 is reserved for modem operations and is not used by the CMI9738.

4.7 AC-LINK LOW POWER MODE

The CMI9738 AC-Link can be placed in the low power mode by programming register 26h to the appropriate value. Both BIT_CLK and SDATA_IN will be brought to, and held at a logic low voltage level. The AC'97 controller can wake up the CMI9738 by providing the appropriate reset signals.

BIT_CLK and SDATA_IN are transitioned low immediately (within the maximum specified time) following the decode of the write to the Powerdown Register (26h) with PR4. When the AC'97 controller driver is at the point where it is ready to program the AC-Link into its low power mode, slots (1 and 2) are assumed to be the only valid stream in the audio output frame (all sources of audio input have been neutralized).

The AC'97 controller should also drive SYNC and SDATA_OUT low after programming the CMI9738 to this low power mode.

Waking up the AC-link

Once the CMI9738 has halted BIT_CLK, there are only two ways to "wake up" the AC-Link. Both methods must be activated by the AC'97 controller. The AC-Link protocol provides for a "Cold AC'97 Reset", and a "Warm AC'97 Reset". The current power down state would ultimately dictate which form of reset is appropriate. Unless a "cold" or "register" reset (a write to the Reset register) is performed, wherein the AC'97 registers are initialized to their default values, registers are required to keep state during all power down modes. Once powered down, re-activation of the AC-Link via re- assertion of the SYNC signal must not occur for a minimum of 4 audio frame times following the frame in which the power down was triggered. When AC-Link powers up it indicates readiness via the Codec Ready bit (input slot 0, bit 15).

Cold AC '97 Reset → a cold reset is achieved by asserting RESET# for the minimum specified time. By driving RESET# low, BIT_CLK, and SDATA_IN will be activated, or re-activated as the case may be, and all CMI9738 control registers will be initialized to their default power on reset values.

Note: RESET# is an asynchronous input. # denotes active low

- Warm AC'97 Reset →a warm reset will re-activate the AC-Link without altering the current CMI9738 register values. A warm reset is signaled by driving SYNC high for a minimum of 1us in the absence of BIT_CLK.
- Note: Within normal audio frames, SYNC is a synchronous input. However, in the absence of BIT_CLK, SYNC is treated as an asynchronous input used in the generation of a warm reset to the CMI9738.

5. CMI9738 MIXER

The CMI9738 mixer is designed to the AC'97 specification to manage playback and record of all digital and analog audio sources in the PC environment. These include :

•System audio : digital PCM input and output for business, games, and multimedia

•CD/DVD : analog CD/DVD-ROM Redbook audio with internal connections to Codec mixer

- •Mono microphone : choice of desktop or headset mic, with programmable boost and gain
- •Speakerphone : use of system mic & speakers for telephony, DSVD, and video conferencing
- •Stereo line in : analog external line level source from consumer audio, video camera, etc

•AUX/synth : analog FM or wavetable synthesizer, or other internal source

C-MEDIA Electronics Inc. 6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. 106 TEL: 886-2-8773-1100 FAX: 886-2-8773-2211 E-mail:sales@cmedia.com.tw

SOURCE	FUNCTION	CONNECTION
MIC1	desktop microphone	from mic jack
LINE_IN	external audio source	from line in jack
CD	audio from CD-ROM drive	cable from CD-ROM
AUX	upgrade synth or other external source	internal connector
PCM out	digital audio output from AC '97 Controller	AC-link
Mix out	mix of all sources	AC '97 internal
LINE_OUT	stereo mix of all sources (also front channel)	to output jack
REAR_OUT	stereo output of rear (surround) channel	to output jack
PCM in	digital audio input to AC '97 Controller	AC-link

Table 5. Mixer Functional Connections

•stereo mix of all sources for LINE_OUT

INPUT MUX SUPPORTS:

•any mono or stereo source •mono or stereo mix of all sources

5.1 MIXER INPUT

The CMI9738's mixer input is a MUX design which offers the capability to record audio sources or the outgoing mix of all sources. This design is more efficient to implement than an independent input mix, and offers simple monitoring when a mix is recorded: what you hear is what you get (WYHIWYG). The CMI9738 supports the following input sources :

- ♦ any mono or stereo source
- mono or stereo mix of all sources

5.2 MIXER OUTPUT

The mixer generates two distinct outputs:

- ♦ a stereo mix of all sources for output to the LINE_OUT
- ♦ a stereo output of rear (surround) channel for REAR_OUT

6. REGISTER INTERFACE

Reg NUM	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
00h	Reset	Х	SE4	SE3	SE2	SE1	SE0	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	0000h
02h	Master Volume	Mute	х	х	ML4	ML3	ML2	ML1	ML0	х	х	Х	MR4	MR3	MR2	MR1	MR0	0000h
04h	Surround Mixer Volume	Mute	х	х	ML4	ML3	ML2	ML1	ML0	х	х	х	MR4	MR3	MR2	MR1	MR0	8000h
0Eh	Mic Volume	Mute	х	х	х	х	х	х	х	х	20dB	х	х	GN3	GN2	GN1	GN0	8008h
10h	LineIn Volume	Mute	х	х	х	GL3	GL2	GL1	GL0	х	х	х	х	GR3	GR2	GR1	GR0	8808h
12h	CD Volume	Mute	х	х	х	GL3	GL2	GL1	GL0	х	х	Х	х	GR3	GR2	GR1	GR0	8808h
16h	Aux Volume	Mute	х	х	х	GL3	GL2	GL1	GL0	х	х	Х	х	GR3	GR2	GR1	GR0	8808h
18h	PCM Out Vol	Mute	х	х	х	GL3	GL2	GL1	GL0	х	х	х	х	GR3	GR2	GR1	GR0	8808h
1Ah	Record Select	х	х	х	х	х	SL2	SL1	SL0	х	х	х	х	х	SR2	SR1	SR0	0000h
1Ch	Record Gain	Mute	х	х	х	GL3	GL2	GL1	GL0	х	х	Х	х	GR3	GR2	GR1	GR0	8000h
20h	General Purpose	Х	х	х	х	х	Х	х	х	LPBK	х	х	х	х	х	х	х	0000h
26h	Powerdown Ctrl/Stat	х	PR6	PR5	PR4	PR3	PR2	PR1	PR0	х	х	х	х	REF	ANL	DAC	ADC	000 <mark>X</mark> h
28h	Extended Audio ID	ID1	ID0	х	х	х	х	х	х	SDA C	х	х	х	х	х	х	х	0080h
2Ah	Ext'd audio Stat/Ctrl	х	х	х	PRJ	х	х	х	х	SDA C	х	х	х	х	х	х	х	1000h
38h	4CH Vol:L,R Surr	Mute	х	х	LSR4	LSR3	LSR2	LSR1	LSR0	Mute	х	х	RSR 4	RSR 3	RSR 2	RSR 1	RSR 0	8080h
5Ah	Vendor defined Control	х	х	F2R	x	х	S2LN I	х	х	х	х	х	х	х	х	х	х	0000h
7Ch	Vendor ID1	F7	F6	F5	F4	F3	F2	F1	F0	S7	S6	S5	S4	S3	S2	S1	S0	434Dh
7Eh	Vendor ID2	T7	T6	T5	T4	Т3	T2	T1	Т0	REV7	REV6	REV5	REV4	REV3	REV2	REV1	REV0	4941h

Table 6. Mixer Registers

C-MEDIA Electronics Inc. 6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. 106 TEL: 886-2-8773-1100 FAX: 886-2-8773-2211 E-mail:sales@cmedia.com.tw

6.1 Register Descriptions

Reset Register (Index 00h) (Read Only)

Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
00h	Reset	Х	SE4	SE3	SE2	SE1	SE0	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	0000h

No Hardware 3D : SE4...SE0 = 00000b 16 bit ADC & DAC : ID9...ID0 = 000000000b Writing this register will reset the mixer register.

Master Volume Registers (Index 02h, 04h and 06h)

Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
02h	Master Volume	Mut e	X	X	ML 4	ML 3	ML 2	ML 1	ML 0	X	X	X	MR 4	MR 3	MR 2	MR 1	MR 0	0000h
04h	Surround Mixer Volume	Mut e	x	X	х	X	х	Х	X	Х	X	Х	X	X	X	X 1	Х	8000h

• Each step corresponds to 1.5 dB. The MSB of the register is the mute bit. When this bit is set to 1 the level for that channel is set at $-\infty$ dB.

◆Support for the MSB of the level is optional. If the MSB is not supported then AC '97 needs to detect when that bit is set and set all four LSBs to 1s. Example: If AC '97 only supports 5 bits of resolution in its mixer and the driver writes a 1xxxxx AC '97 must interpret that as x11111. It will also respond when read with x11111 rather

♦ then 1xxxxx, the value writen to it. The driver can use this feature to detect if support for the 6th bit is there or not. The 02h default value is 0000h (0000 0000 0000 0000), which corresponds to +12 dB gain with mute off.

Mute	<i>M</i> x5 <i>M</i> x0	Function
0	000000	+12 dB gain
0	000001	+10.5 dB gain
0	001000	0 dB Attenuation
0	011110	33.0dB Attenuation
0	011111	46.5dB Attenuation
0	111111	46.5dB Attenuation
1	XXXXXX	∞ dB Attenuation

Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
0Eh	Mic Volume	Mute	X	X	X	RM3	RM2	RM1	RM0	Х	20dB	X	Х	GN3	GN2	GN1	GN0	8008h
10h	LineIn Volume	Mute	X	x	X	GL3	GL2	GL1	GL0	X	Х	X	X	GR3	GR2	GR1	GR0	8808h
12h	CD Volume	Mute	Х	X	X	GL3	GL2	GL1	GL0	Х	X	Х	X	GR3	GR2	GR1	GR0	8808h
16h	Aux Volume	Mute	X	X	X	GL3	GL2	GL1	GL0	Х	X	Х	X	GR3	GR2	GR1	GR0	8808h
18h	PCM Out Vol	Mute	X	X	X	GL3	GL2	GL1	GL0	X	X	X	Х	GR3	GR2	GR1	GR0	8808h

Analog Mixer Input Gain Registers (Index 0Eh - 18h) (R/W)

The MSB of the register is the mute bit. When this bit is set to 1 the level for that channel is set at - ∞ dB.

Register 0Eh (Mic Volume Register) has an extra bit that is for a 20 dB boost. When bit 6 is set to 1 the 20 dB boost is on. The default value is 8008, which corresponds to 0 dB gain with mute on.

Mute	<i>M</i> x3 <i>M</i> x0	Function
0	0000	0 dB Attenuation
0	0001	2dB Attenuation
0	1111	32dB Attenuation
1	XXXX	∞ dB Attenuation

Record Select Control Register (Index 1Ah) (R/W)

Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
1Ah	Record Select	X	Х	Х	X	Х	SL2	SL1	SL0	X	X	X	X	Х	SR2	SR1	SR0	0000h

The default value is 0000h, which corresponds to Mic in.

SR2SR0	Right Record Source
0	Mic
1	CD In (R)
2	N/A
3	Aux In (R)
4	Line In (R)
5	Stereo Mix (R)
6	Mono Mix
7	N/A

SL2SL0	Left Record Source
0	Mic
1	CD In (L)
2	N/A
3	Aux In (L)
4	Line In (L)
5	Stereo Mix (L)
6	Mono Mix
7	N/A

Record Gain Registers (Index 1Ch) (R/W)

Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
1Ch	Record Gain	Mute	Х	X	Х	GL3	GL2	GL1	GL0	X	Х	X	X	GR3	GR2	GR1	GR0	8000h

Each step corresponds to 1.5 dB. 22.5dB corresponds to 0F0Fh and 000Fh respectively. The MSB of the register is the mute bit. When this bit is set to 1 the level for that channel(s) is set at $-\infty$ dB.

The default value is 8000h, which corresponds to 0 dB gain with mute on.

Mute	Gx3Gx0	Function
0	1111	+22.5 dB gain
0	0000	0 dB gain
1	XXXXX	–∞ dB gain

General Purpose Register (Index 20h) (R/W)

Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
20h	General Purpose	Х	Х	X	X	X	X	Х	X	LPBK	X	Х	X	X	X	X	Х	0000h

Bit	Function
LPBK	ADC/DAC loopback mode

Powerdown Control/Status Register (Index 26h) (R/W)

Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Defaul t
26h	Powerdown Ctrl/Stat	X	PR6	PR5	PR4	PR3	PR2	PR1	PR0	X	Х	X	Х	REF	ANL	DAC	ADC	000 <mark>X</mark> h

This read/write register is used to program powerdown states and monitor subsystem readiness.

The lower half of this register is read only status, a 1 indicating that the subsection is "ready". Ready is defined as the subsection able to perform in its nominal state. When this register is written the bit values that come in on AC-link will have no effect on read only bits 0-7.

When the AC-link "Codec Ready" indicator bit (SDATA_IN slot 0, bit 15) is a 1 it indicates that the AC-link and AC '97 control and status registers are in a fully operational state. The AC '97 Controller must further probe this Powerdown Control/Status Register to determine exactly which subsections, if any, are ready.

Bit	Function
Х	Reserved
REF	Vref's up to nominal level
ANL	Analog mixers, etc. ready
DAC	DAC section ready to accept data
ADC	ADC section ready to transmit data

These bits are pseudo. Default are ready and controlled by PRX.

Bit	Function
PR0	PCM in ADC's & Input Mux Powerdown
PR1	PCM out DACs Powerdown
PR2	Analog Mixer powerdown (Vref still on)
PR3	Analog Mixer powerdown (Vref off)
PR4	Digital Interface (AC-link) powerdown (external clk off)
PR5	Internal Clk disable
PR6	HP amp powerdown

Except PR4, other bits are pseudo. When set, corresponding bits will be not ready. Ex. PR1 =1 causes DAC=0. PRXX must set the volume to mute!! PR4 when set will shut down the ACLINK.

Extended Audio ID Register (Index 28h) (Read Only)

Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
28h	Extended Audio ID	ID1	ID0	X	Х	X	X	Х	X	SDAC	Х	Х	X	Х	X	X	X	0080h

♦ SDAC=1 indicates optional PCM Surround DAC is supported D15,D14:ID1,ID0 is always "00".

Extended Audio Status and Control Register (Index 2Ah)

Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
2Ah	Ext'd audio Stat/Ctrl	x	X	X	PRJ	X	X	X	X	SDAC	X	X	X	Х	X	X	X	1000h

Bits D7 is read only status of the extended audio feature readiness

SDAC=1 indicates the PCM Surround DACs are ready (4CH mode)

Bits D12 are read/write controls of the extended audio feature powerdown

C-MEDIA Electronics	Inc.	
6F, 100, Sec. 4, Civil B	oulevard, Taipei, Taiwa	an, R.O.C. 106
TEL: 886-2-8773-1100	FAX: 886-2-8773-2211	E-mail:sales@cmedia.com.tw

◆PRJ=1 turns the PCM Surround DACs off (4CH mode)

The default value after cold or warm register reset for this register (xxxxh) is all extended features disabled (D3-D0=0) and powered down (D12=1). The feature readiness status should always be accurate (D7=x).

These bits are pseudo.

When 2Ch, 4CH, these bits are still visible.

PRXX must set volume to mute

C	manner	voiui		_ 011		ugiou	, (111	uca J	U) (II	N N N N								
Reg	Name	D15	D1 4	D1 3	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
	4CH																	
38h	Vol:L,R	Mute	Х	Х	LSR4	LSR3	LSR2	LSR1	LSR0	Mute	Х	Х	RSR4	RSR3	RSR2	RSR1	RSR0	8080h
	Surr																	

4-Channel Volume Control Register (Index 38h) (R/W)

These read/write registers control the output volume of the optional four PCM channels, and values written to the fields behave the same as the Play Master Volume Register (Index 02h), which offers attenuation but no gain. There is an independent mute (1=on) for each channel.

The default value after cold or warm register reset for this register (8080h) corresponds to 0 dB attenuation with mute on.

When 2/4 CH, these registers are still visible and controllable.

The all bits of the reg38h are pseudo.

VUI		mcu	Rug	15101	(IIIU	UA J		•••										
Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
5Ah	Vendor defined Control	X	X	F2R	X	Х	S2LNI	Х	Х	x	Х	Х	Х	X	Х	X	Х	0000h

Vendor Defined Register (Index 5Ah) (R/W)

S2LNI : Surround to Line in selection.

"0" : disable (default)

"1" : enable

F2R : Front channels are routed to rear channels.

"0" : disable (default)

"1" : enable

Vendor ID Registers (Index 7Ch - 7Eh) (Read Only)

Reg	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Defaul t
7Ch	Vendor ID1	F7	F6	F5	F4	F3	F2	F1	F0	S 7	S6	S5	S4	S 3	S2	S 1	S0	434Dh
7Eh	Vendor ID2	T7	T6	T5	T4	Т3	T2	T1	Т0	REV7	REV6	REV5	REV4	REV3	REV2	REV1	REV0	4941h

7Ch : 434Dh ASCII code : CM

7Eh : 4941h ASCII code: I A

C-MEDIA Electronics Inc. 6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. 106 TEL: 886-2-8773-1100 FAX: 886-2-8773-2211 E-mail:sales@cmedia.com.tw

6.2 PIN DESCRIPTIONS

48-Pin LQFP

	m LQI I		
PIN #	Signal Name	PIN #	Signal Name
1	DVdd1	25	AVdd1
2	XTL_IN	26	AVss1
3	XTL_OUT	27	NC
4	DVss1	28	Vrefout
5	SDATA_OUT	29	AFILT1
6	BIT_CLK	30	AFILT2
7	DVss2	31	NC
8	SDATA_IN	32	NC
9	DVdd2	33	NC
10	SYNC	34	NC
11	RESET#	35	LINE_OUT_L
12	NC	36	LINE_OUT_R
13	NC	37	NC
14	AUX_IN_L	38	AVdd2
15	AUX_IN_R	39	REAR_OUT_L
16	NC	40	TEST0#
17	NC	41	REAR_OUT_R
18	CD_L	42	AVss2
19	CD_GND	43	NC
20	CD_R	44	NC
21	MIC1	45	RESERVED
22	NC	46	RESERVED
23	LINE_IN_L	47	NC
24	LINE_IN_R	48	NC

24-Pin TSSOP

PIN #	Signal Name
1	SDATA_IN
2	SYNC
3	RESET#
4	AUX_IN_L
5	AUX_IN_R
6	CD_L
7	CD_GND
8	CD_R
9	MIC1
10	LINE_IN_L
11	LINE_IN_R
12	VREF_OUT
13	AFILT1
14	AFILT2
15	LINE_OUT_L
16	LINE_OUT_R
17	AVdd
18	TEST0#
19	Vss
20	DVsdd
21	XTL_IN
22	XTL_OUT
23	SDATA_OUT
24	BIT_CLK

7. AC-LINK TIMING CHARACTERISTICS

(Tambient = 25 °C, AVdd = 5.0V ±5%, DVdd= 3.3V ±5%, AVss=DVss+0V; 50pF external load)

7.1 COLD RESET

Figure 9. Cold Reset timing diagram

Table 7.	Cold	Reset	timing	parameters
----------	------	-------	--------	------------

Parameter	Symbol	Min	Тур	Max	Units
RESET# active low pulse width	Tres_low	1.0	-	-	us
RESET# inactive to BIT_CLK startup delay	Trst2clk	162.8	-	-	ns

denotes active low.

7.2 WARM RESET

Table 8.	Warm	Reset
----------	------	-------

Parameter	Symbol	Min	Тур	Max	Units
SYNC active high pulse width	Tres_high	1.0	1.3	-	us
SYNC inactive to BIT_CLK startup delay	Trst2clk	162.8	-	-	ns

7.3 CLOCKS

C-MEDIA Electronics Inc.						
6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. 106						
TEL: 886-2-8773-1100	FAX: 886-2-8773-2211	E-mail:sales@cmedia.com.tw				

Figure 11. BIT_CLK to SYNC timing diagram

Table 9. Clocks

Parameter	Symbol	Min	Тур	Max	Units
BIT_CLK frequency		-	12.288	-	MHz
BIT_CLK period	Tclk_period	-	81.4	-	ns
BIT_CLK output jitter		-	-	750	ps
BLT_CLK high pulsewidth (note 1)	Tclk_high	36	40.7	45	ns
BIT_CLK low pulse width (note 1)	Tclk_low	36	40.7	45	ns
SYNC frequency		-	48.0	-	kHz
SYNC period	Tsync_period	-	20.8	-	us
SYNC high pulse width	Tsync_high	-	1.3	-	us
SYNC low_pulse width	Tsync_low	_	19.5	-	us

Notes: 1) Worst case duty cycle restricted to 45/55.

7.4 DATA SETUP AND HOLD (50pF external load)

Figure 12. Data Setup and Hold

C-MEDIA Electronics Inc. 6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. 106 TEL: 886-2-8773-1100 FAX: 886-2-8773-2211 E-mail:sales@cmedia.com.tw

CMI 9738

Integrated Multi-channel AC'97

Parameter	Symbol	Min	Тур	Max	Units
Setup to falling edge of BIT_CLK	Tsetup	10.0	-	-	ns
Hold from falling edge of BIT_CLK	Thold	10.0	-	_	ns

Table 10. Data setup and hold timing parameters

Note 1: Setup and hold time parameters for SDATA_IN are with respect to the AC '97 Controller.

7.5 SIGNAL RISE AND FALL TIMES

(50pF external load; from 10% to 90% of Vdd)

Figure 13. Signal rise and fall times diagram

Table 11. Signal rise	e and fall times	parameters
-----------------------	------------------	------------

Parameter	Symbol	Min	Тур	Max	Units
BIT_CLK rise time	Triseclk	2	-	6	ns
BIT_CLK fall time	Tfallclk	2	-	6	ns
SYNC rise time	Trisesync	2	-	6	ns
SYNC fall time	Tfallsync	2	-	6	ns
SDATA_IN rise time	Trisedin	2	-	6	ns
SDATA_IN fall time	Tfalldin	2	-	6	ns
SDATA_OUT rise time	Trisedout	2	-	6	ns
SDATA_OUT fall time	Tfalldout	2	-	6	ns

7.6 AC-LINK LOW POWER MODE TIMING

Figure 14. AC-link low power mode timing diagram

Table 12. AC-link low power mode timing parameters

Parameter	Symbol	Min	Тур	Max	Units
End of Slot 2 to BIT_CLK, SDATA_IN low	Ts2_pdown	-	-	1.0	us

7.7 ATE TEST MODE

Figure 15. ATE test mode timing diagram

Table 13. ATE test mode timing parameters

Parameter	Symbol	Min	Тур	Max	Units
Setup to trailing edge of RESET# (also applies to SYNC)	Tsetup2rst	15.0	-	-	ns
Rising edge of RESET# to Hi-Z delay	Toff	-	-	25.0	ns

Notes:

•All AC-Link signals are normally low through the trailing edge of RESET#. Bringing SDATA_OUT high for the trailing edge of RESET# causes CMI9738's AC-Link outputs to go high impedance which is suitable for ATE in circuit testing.

Once either of the two test modes have been entered, the CMI9738 must be issued another RESET# with all AC-Link signals low to return to the normal operating mode.

denotes active low.

8. ELECTRICAL SPECIFICATIONS

8.1 DC CHARACTERISTICS

(Tambient = 25 0 C, AVdd = 5.0V + -5%, DVdd = 3.3V + -5%; AVss = DVss = 0V; 50pF external load)

Table 14. DC Characteristics (relative to Vdd)							
Parameter	Symbol	Min	Тур	Max	Units		
Input voltage range	Vin	-0.30	-	DVdd+0.30	V		
Low level input voltage	Vil	-	-	0.40xVdd	V		
High level input voltage	Vih	0.60xVdd	-	-	V		
High level output voltage	Voh	0.70xVdd	-	-	V		
Low level output voltage	Vol	-	-	0.30xVdd	V		
Input Leakage Current (AC-link inputs)	-	-100	-	100	uA		
Output Leakage Current (Hi-Z'd AC-link outputs)	-	-100	-	100	uA		

SDATA_IN = 8mA BIT_CLK = 24mA

NOTE:

It is recommended that the digital portion of the CMI9738 component be capable of operating at either 3.3V (+/- 5%), depending on which DVdd is supplied. However, the following has been added to simplify the implementation for those who do not support dual voltage (and possibly those who do), by allowing 5.0 or 3.3 V parts to match the PCI 2.2 specifications for Vih, Vil, Voh, and Vol:

3.3 V Only Operation								
Parameter	Symbo	l Min	Тур	Max	Units			
Input voltage range	Vin	-0.30	-	3.60	V			
Low level input voltage	Vil	-	-	1.32	V			
High level input voltage	Vih	1.98	-	-	V			
High level output voltage	Voh	2.97	-	-	V			
Low level output voltage	Vol	-	_	0.33	V			

Table 15. DC Characteristics (3.3 V Operation)

8.2 ABSOLUTE MAXIMUM RATINGS

Voltage on any pin relative to Ground Operating Temperature Storage Temperature

Soldering Temperature

Vss - 0.3V TO Vdd + 0.3V 0 o C TO 70 o C -55 o C TO +125 o C 260 o C FOR 10 SECONDS

CMI 9738

Integrated Multi-channel AC'97

Table 16. Absolute Maximum Ratings							
Para	Min	Тур	Max	Units			
Power Supplies					V		
	+3.3V Digital	-3.0	3.3	3.6			
	+5V Analog	-4.5	5.0	5.0			
Total Power Dissipation	(Supplies, Inputs, Outputs)	-	-	500	mW		
Input Current per Pin	(Except Supply	-100	-	+100	μΑ		
Pins)							
Output Current per Pin	(Except Supply	-15	-	15	mA		
Pins)							
Analog Input voltage		-0.3	-	AVdd+0.3	V		
Digital Input voltage		-0.3	-	DVdd+0.3	V		
Ambient Temperature	(Power Applied)	-55	-	110	⁰ C		
Storage Temperature		-65	-	150	⁰ C		

8.3 RECOMMENDED OPERATING CONDITIONS

Table 17. Operating Conditions

Parameter		Min	Тур	Max	Units
Power Supplies					
	+3.3V Digital	3.135	3.3	3.465	V
	+5V Analog	4.75	5	5.25	V
Operating Current		-			
	+3.3V Digital		10	20	mA
	+5V Analog		20	30	mA
Ambient Temperature		0	-	70	°C

8.4 MIXER CHARACTERISTICS

Table 18. Mixer Characteristics

Parameter		Min	Тур	Max	Units
Mixer Gain Range Span	LineIn, Aux, CD, Mic1	-	46.5	-	dB
	Line Out, Alternate Line Out	-	94.5	-	
Step Size	All volume controls	-	1.5	-	dB

8.5 POWER CONSUMPTION

C-MEDIA Electronics	Inc.				
6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. 106					
TEL: 886-2-8773-1100	FAX: 886-2-8773-2211	E-mail:sales@cmedia.com.tw			

	1					
Parameter		Min	Тур	Max	Max Units	
Digital Supply Current	+3.3V Digital	-	10	-	mA	
Analog Supply Current	+5V Analog	-	20	-	mA	

Table 19. Power Consumption

8.6 ANALOG PERFORMANCE CHARACTERISTICS

(Standard test conditions unless otherwise noted: $T_{ambient} = 25^{0}$ C; DVdd = 3.3 V +/- 5%; AVdd = 5.0 V +/-5%; Input Voltage Levels: Logic Low = 0.35*Vdd, Logic High = 0.65*Vdd; 1 kHz input sine wave; Sample Frequency = 48 kHz; 0 dB = 1Vrms, 10KW/50pF load, Testbench Characterization BW: 20 Hz – 20 kHz, 0 dB attenuation; tone and 3D disabled)

Notes:

- (1) With +20 dB Boost on, 1.0 Vrms with Boost off
- (2) ±1dB limits
- (3) The ratio of the rms output level with 1kHz full scale input to the rms output level with all zeros into the digital input. Measured "A wtd" over a 20 Hz to a 20 kHz bandwidth. (AES17-1991 Idle Channel Noise or EIAJ CP-307 Signal-to-noise Ratio).
- (4) 0 dB gain, 20 kHz BW, 48 kHz Sample Frequency
- (5) +3 dB output into 32W load
- (6) ±0.25 dB limits
- (7) Stop Band rejection determines filter requirements. Out-of-Band rejection determines audible noise.
- (8) The integrated Out-of-Band noise generated by the DAC process, during normal PCM audio playback, over a bandwidth 28.8 to 100 kHz, with respect to a 1VRMS DAC output.
- (9) Gain step size 1.5 dB is true for all attenuators except for PC_BEEP, which has 3.0dB step size.

Parameter		Тур	Max	Units
Full Scale Input Voltage:	-			
Line Inputs		1.0	-	Vrms
Mic Inputs		0.1	-	Vrms
Full Scale Output Voltage:	-			
LINE_OUT (Front Channel) @ $10K\Omega$ Load		1		Vrms
LINE_OUT (Front Channel) @ $32K\Omega$ Load		1		Vrms
SURROUND_OUT (Rear Channel) @ 10K Ω Load		1		Vrms
Analog Dynamic Range:	-		-	
CD to LINE_OUT		88		dB
Other to LINE_OUT		88		dB
Analog Frequency Response	20	-	20,000	Hz
SNR				
D/A		82	-	dB
A/D		72	-	dB
Total Harmonic Distortion:				
Line Output		0.04	-	%
D/A & A/D Frequency Response		-	19,200	Hz
Crosstalk between Input channels @ 10kHz		85	-	dB
Input Impedance		-	-	KΩ
Input Capacitance		15	-	pF
Vrefout	-	2.25V	-	V
External Load Impedance				
LINE_OUT (Front Channel) @ $32K\Omega$ Load	32Ω			KΩ
SURROUND_OUT (Rear Channel) @ 10K Ω Load		10KΩ		

Table 20. Analog performance characteristics

9. REFERENCES

Intel, Audio Codec '97 Component Specification, Revision 2.2, September, 2000.

- Notes -

C-MEDIA ELECTRONICS INC.

6F., 100, Sec. 4, Civil Boulevard, Taipei, Taiwan, R.O.C. TEL (886): 2-8773-1100 FAX (886): 2-8773-2211

E-mail: <u>sales@cmedia.com.tw</u> Homepage: <u>http://www.cmedia.com.tw</u>

