# Qalculate! Qt UI Qalculate! is a multi-purpose cross-platform desktop calculator. It is simple to use but provides power and versatility normally reserved for complicated math packages, as well as useful tools for everyday needs (such as currency conversion and percent calculation). Features include a large library of customizable functions, unit calculations and conversion, symbolic calculations (including integrals and equations), arbitrary precision, uncertainty propagation, interval arithmetic, plotting, and a user-friendly interface (GTK, Qt, and CLI). ## Requirements * Qt5 (>= 5.6) or Qt6 * libqalculate (>= 5.5.0) ## Installation Instructions and download links for installers, binaries packages, and the source code of released versions of Qalculate! are available at https://qalculate.github.io/downloads.html. In a terminal window in the top source code directory run * `qmake` * `make` * `make install` *(as root, e.g. `sudo make install`)* The resulting executable is named `qalculate-qt`. ## Features (from libqalculate) * Calculation and parsing: * Basic operations and operators: + - * / mod ^ E () && || ! < > >= <= != ~ & | << >> xor * Fault-tolerant parsing of strings: log 5 / 2 .5 (3) + (2( 3 +5 = ln(5) / (2.5 * 3) + 2 * (3 + 5) * Expressions may contain any combination of numbers, functions, units, variables, vectors and matrices, and dates * Supports complex and infinite numbers * Propagation of uncertainty * Interval arithmetic (for determination of the number of significant digits or direct calculation with intervals of numbers) * Supports all common number bases, as well as negative and non-integer radices, sexagesimal numbers, time format, and roman numerals * Ability to disable functions, variables, units or unknown variables for less confusion: e.g. when you do not want (a+b)^2 to mean (are+barn)^2 but ("a"+"b")^2 * Controllable implicit multiplication * Matrices and vectors, and related operations (determinants etc.) * Verbose error messages * Arbitrary precision * RPN mode * Result display: * Supports all common number bases, as well as negative and non-integer radices, sexagesimal numbers, time format, and roman numerals * Many customization options: precision, max/min decimals, complex form, multiplication sign, etc. * Exact or approximate: sqrt(32) returns 4 * sqrt(2) or 5.66 * Simple and mixed fractions: 4 / 6 * 2 = 1.333... = 4/3 = 1 + 1/3 * Symbolic calculation: * E.g. (x + y)^2 = x^2 + 2xy + y^2; 4 "apples" + 3 "oranges" * Factorization and simplification * Differentiation and integration * Can solve most equations and inequalities * Customizable assumptions give different results (e.g. ln(2x) = ln(2) + ln(x) if x is assumed positive) * Functions: * Hundreds of flexible functions: trigonometry, exponents and logarithms, combinatorics, geometry, calculus, statistics, finance, time and date, etc. * Can easily be created, edited and saved to a standard XML file * Units: * Supports all SI units and prefixes (including binary), as well as imperial and other unit systems * Automatic conversion: ft + yd + m = 2.2192 m * Explicit conversion: 5 m/s to mi/h = 11.18 miles/hour * Smart conversion: automatically converts 5 kg*m/s^2 to 5 N * Currency conversion with retrieval of daily exchange rates * Different name forms: abbreviation, singular, plural (m, meter, meters) * Can easily be created, edited and saved to a standard XML file * Variables and constants: * Basic constants: pi, e, etc. * Lots of physical constants (with or without units) and properties of chemical element * CSV file import and export * Can easily be created, edited and saved to a standard XML file * Flexible - may contain simple numbers, units, or whole expressions * Data sets with objects and associated properties in database-like structure * Plotting: * Uses Gnuplot * Can plot functions or data (matrices and vectors) * Ability to save plot to PNG image, postscript, etc. * Several customization options * and more... _For more details about the syntax, and available functions, units, and variables, please consult the manual (https://qalculate.github.io/manual/)_ ## Examples (expressions) _Note that semicolon can be replaced with comma in function arguments, if comma is not used as decimal or thousands separator._ ### Basic functions and operators sqrt 4 _= sqrt(4) = 4^(0.5) = 4^(1/2) = 2_ sqrt(25; 16; 9; 4) _= \[5 4 3 2\]_ sqrt(32) _= 4 × √(2) (in exact mode)_ cbrt(−27) _= root(-27; 3) = −3 (real root)_ (−27)^(1/3) _≈ 1.5 + 2.5980762i (principal root)_ ln 25 _= log(25; e) ≈ 3.2188758_ log2(4)/log10(100) _= log(4; 2)/log(100; 10) = 1_ 5! _= 1 × 2 × 3 × 4 × 5 = 120_ 5\2 _= 5//2 = trunc(5 / 2) = 2 (integer division)_ 5 mod 3 _= mod(5; 3) = 2_ 52 to factors _= 2^2 × 13_ 25/4 × 3/5 to fraction _= 3 + 3/4_ gcd(63; 27) _= 9_ sin(pi/2) − cos(pi) _= sin(90 deg) − cos(180 deg) = 2_ sum(x; 1; 5) _= 1 + 2 + 3 + 4 + 5 = 15_ sum(\i^2+sin(\i); 1; 5; \i) _= 1^2 + sin(1) + 2^2 + sin(2) + ... ≈ 55.176162_ product(x; 1; 5) _= 1 × 2 × 3 × 4 × 5 = 120_ var1:=5 _(stores value 5 in variable var1)_ var1 × 2 _= 10_ 5^2 #this is a comment _= 25_ sinh(0.5) where sinh()=cosh() _= cosh(0.5) ≈ 1.1276260_ plot(x^2; −5; 5) _(plots the function y=x^2 from -5 to 5)_ ### Units 5 dm3 to L _= 5 dm^3 to L = 5 L_ 20 miles / 2h to km/h _= 16.09344 km/h_ 1.74 to ft _= 1.74 m to ft ≈ 5 ft + 8.5039370 in_ 1.74 m to -ft _≈ 5.7086614 ft_ 100 lbf × 60 mph to hp _≈ 16 hp_ 50 Ω × 2 A _= 100 V_ 50 Ω × 2 A to base _= 100 kg·m²/(s³·A)_ 10 N / 5 Pa _= (10 N)/(5 Pa) = 2 m²_ 5 m/s to s/m _= 0.2 s/m_ 500 € − 20% to $ _≈ $451.04_ 500 megabit/s × 2 h to b?byte _≈ 419.09516 gibibytes_ ### Physical constants k\_e / G × a\_0 _= (coulombs\_constant / newtonian\_constant) × bohr\_radius ≈ 7.126e9 kg·H·m^−1_ ℎ / (λ\_C × c) _= planck ∕ (compton\_wavelength × speed\_of\_light) ≈ 9.1093837e-31 kg_ 5 ns × rydberg to c _≈ 6.0793194E-8c_ atom(Hg; weight) + atom(C; weight) × 4 to g _≈ 4.129e-22 g_ (G × planet(earth; mass) × planet(mars; mass))/(54.6e6 km)^2 _≈ 8.58e16 N (gravitational attraction between earth and mars)_ ### Uncertainty and interval arithmetic _"±" can be replaced with "+/-"; result with interval arithmetic activated is shown in parenthesis_ sin(5±0.2)^2/2±0.3 _≈ 0.460±0.088 (0.46±0.12)_ (2±0.02 J)/(523±5 W) _≈ 3.824±0.053 ms (3.825±0.075 ms)_ interval(−2; 5)^2 _≈ interval(−8.2500000; 12.750000) (interval(0; 25))_ ### Algebra (5x^2 + 2)/(x − 3) _= 5x + 15 + 47/(x − 3)_ (\a + \b)(\a − \b) _= ("a" + "b")("a" − "b") = 'a'^2 − 'b'^2_ (x + 2)(x − 3)^3 _= x^4 − 7x^3 + 9x^2 + 27x − 54_ factorize x^4 − 7x^3 + 9x^2 + 27x − 54 _= x^4 − 7x^3 + 9x^2 + 27x − 54 to factors = (x + 2)(x − 3)^3_ cos(x)+3y^2 where x=pi and y=2 _= 11_ gcd(25x; 5x^2) _= 5x_ 1/(x^2+2x−3) to partial fraction _= 1/(4x − 4) − 1/(4x + 12)_ x+x^2+4 = 16 _= (x = 3 or x = −4)_ x^2/(5 m) − hypot(x; 4 m) = 2 m where x > 0 _= (x ≈ 7.1340411 m)_ cylinder(20cm; x) = 20L _(calculates the height of a 20 L cylinder with radius of 20 cm)_ _= (x = (1 / (2π)) m)_ _= (x ≈ 16 cm)_ asin(sqrt(x)) = 0.2 _= (x = sin(0.2)^2)_ _= (x ≈ 0.039469503)_ x^2 > 25x _= (x > 25 or x < 0)_ solve(x = y+ln(y); y) _= lambertw(e^x)_ solve2(5x=2y^2; sqrt(y)=2; x; y) _= 32/5_ multisolve(\[5x=2y+32, y=2z, z=2x\]; \[x, y, z\]) _= \[−32/3 −128/3 −64/3\]_ dsolve(diff(y; x) − 2y = 4x; 5) _= 6e^(2x) − 2x − 1_ ### Calculus diff(6x^2) _= 12x_ diff(sinh(x^2)/(5x) + 3xy/sqrt(x)) _= (2/5) × cosh(x^2) − sinh(x^2)/(5x^2) + (3y)/(2 × √(x))_ integrate(6x^2) _= 2x^3 + C_ integrate(6x^2; 1; 5) _= 248_ integrate(sinh(x^2)/(5x) + 3xy/sqrt(x)) _= 2x × √(x) × y + Shi(x^2) / 10 + C_ integrate(sinh(x^2)/(5x) + 3xy/sqrt(x); 1; 2) _≈ 3.6568542y + 0.87600760_ limit(ln(1 + 4x)/(3^x − 1); 0) _= 4 / ln(3)_ ### Matrices and vectors \[1, 2, 3; 4, 5, 6\] _= ((1; 2; 3); (4; 5; 6)) = \[1 2 3; 4 5 6\] (2×3 matrix)_ 1...5 = (1:5) = (1:1:5) = _\[1 2 3 4 5\]_ (1; 2; 3) × 2 − 2 _= \[(1 × 2 − 2), (2 × 2 − 2), (3 × 2 − 2)\] = \[0 2 4\]_ \[1 2 3\].\[4 5 6\] = dot(\[1 2 3\]; \[4 5 6\]) _= 32 (dot product)_ cross(\[1 2 3\]; \[4 5 6\]) _= \[−3 6 −3\] (cross product)_ \[1 2 3; 4 5 6\].×\[7 8 9; 10 11 12\] _= hadamard(\[1 2 3; 4 5 6\]; \[7 8 9; 10 11 12\]) = \[7 16 27; 40 55 72\] (hadamard product)_ \[1 2 3; 4 5 6\] × \[7 8; 9 10; 11 12\] _= \[58 64; 139 154\] (matrix multiplication)_ \[1 2; 3 4\]^-1 _= inverse(\[1 2; 3 4\]) = \[−2 1; 1.5 −0.5\]_ ### Statistics mean(5; 6; 4; 2; 3; 7) _= 4.5_ stdev(5; 6; 4; 2; 3; 7) _≈ 1.87_ quartile(\[5 6 4 2 3 7\]; 1) _= percentile((5; 6; 4; 2; 3; 7); 25) ≈ 2.9166667_ normdist(7; 5) _≈ 0.053990967_ spearman(column(load(test.csv); 1); column(load(test.csv); 2)) _≈ −0.33737388 (depends on the data in the CSV file)_ ### Time and date 10:31 + 8:30 to time _= 19:01_ 10h 31min + 8h 30min to time _= 19:01_ now to utc _= "2020-07-10T07:50:40Z"_ "2020-07-10T07:50CET" to utc+8 _= "2020-07-10T14:50:00+08:00"_ "2020-05-20" + 523d _= addDays(2020-05-20; 523) = "2021-10-25"_ today − 5 days _= "2020-07-05"_ "2020-10-05" − today _= days(today; 2020-10-05) = 87 d_ timestamp(2020-05-20) _= 1 589 925 600_ stamptodate(1 589 925 600) _= "2020-05-20T00:00:00"_ "2020-05-20" to calendars _(returns date in Hebrew, Islamic, Persian, Indian, Chinese, Julian, Coptic, and Ethiopian calendars)_ ### Number bases 52 to bin _= 0011 0100_ 52 to bin16 _= 0000 0000 0011 0100_ 52 to oct _= 064_ 52 to hex _= 0x34_ 0x34 = hex(34) _= base(34; 16) = 52_ 523<<2&250 to bin _= 0010 1000_ 52.345 to float _≈ 0100 0010 0101 0001 0110 0001 0100 1000_ float(01000010010100010110000101001000) _= 1715241/32768 ≈ 52.345001_ floatError(52.345) _≈ 1.2207031e-6_ 52.34 to sexa _= 52°20′24″_ 1978 to roman _= MCMLXXVIII_ 52 to base 32 _= 1K_ sqrt(32) to base sqrt(2) _≈ 100000_ 0xD8 to unicode _= Ø_ code(Ø) to hex _= 0xD8_